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ABSTRACT
Queueing Petri Nets (QPNs) are a powerful formalism to
model the performance of software systems. Such mod-
els can be solved using analytical or simulation techniques.
Analytical techniques suffer from scalability issues, whereas
simulation techniques often require very long simulation runs.
Existing simulation techniques for QPNs are strictly sequen-
tial and cannot exploit the parallelism provided by modern
multi-core processors. In this paper, we present an approach
to parallel discrete-event simulation of QPNs using a con-
servative synchronization algorithm. We consider the spa-
tial decomposition of QPNs as well as the lookahead cal-
culation for different scheduling strategies. Additionally,
we propose techniques to reduce the synchronization over-
head when simulating performance models describing sys-
tems with open workloads. The approach is evaluated in
three case studies using performance models of real-world
software systems. We observe speedups between 1.9 and
2.5 for these case studies. We also assessed the maximum
speedup that can be achieved with our approach using syn-
thetic models.
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1. INTRODUCTION
Queueing Petri Nets (QPNs) are a combination of Colored

Generalized Stochastic Petri Nets (CGSPNs) [6] and Queue-
ing Networks (QNs) [20]. In [23], the authors show the ben-
efits of using QPNs in terms of modeling power and expres-
siveness when analyzing the performance behavior of soft-
ware systems. In contrast to traditional QNs and CGSPNs,
QPNs enable the description of hardware and software as-
pects of system behavior in the same model [23]. Software
contention effects, such as synchronization, simultaneous re-
source possession and blocking, can be easily described us-
ing QPNs [23]. In recent years, QPNs have been successfully

used to model the performance of different types of software
systems (e.g., component-based systems, event-based sys-
tems, database systems, computer networks, or multi-tenant
systems [22, 38, 34, 37, 39], see 1 for more). The respective
case studies use QPN models for the quantitative analysis of
the performance and the scalability of a system under test.
QPN models can be analyzed quantitatively using analyti-
cal or simulation-based solution techniques. Analytical so-
lution techniques for QPNs are based on transformations to
Markov chains. However, models of realistic software sys-
tems often result in Markov chains with a too large state
space to be analytically tractable [23]. In contrast, simu-
lation techniques provide better scalability and thus enable
the analysis of models that could not be solved analytically.
SimQPN, which is part of the Queueing Petri Net Modeling
Environment (QPME) [42, 24], is the only discrete-event
simulator for QPNs currently available. However, the im-
plementation of SimQPN is strictly sequential, limiting its
performance on modern multi-core computer systems.

Different approaches to parallel discrete-event simulation
have been proposed in the literature to leverage the poten-
tial speedup of modern multi-core computer systems [15].
While the general challenges of parallelizing a discrete-event
simulation are well understood, the actual speedup heav-
ily depends on the characteristics of the used modeling for-
malism and the concrete model. So far, only the authors
of [18] have evaluated the potential speedup for QPNs using
parallel event-discrete simulation. However, this work does
not consider queueing places and their associated schedul-
ing strategies, which are an integral part of QPNs (e.g., to
model hardware contention effects in a system). The choice
of scheduling strategies can severely impact the paralleliza-
tion potential of discrete-event simulation, as shown in [27]
for traditional QNs.

Novel use cases of QPNs identified in the last few years
require substantial improvements in simulation speed. The
first scenario is online performance prediction for run-time
resource management. Many software systems are subject
to Service Level Agreements (SLAs) regarding response time
or throughput. In order to proactively reconfigure a system
before SLAs are violated, it is necessary to be able to predict
the system performance under different configurations and
workloads. QPNs provide the modeling power and expres-
siveness required for such performance predictions. In online
performance prediction scenarios [8], the time for solving
QPNs models is a limiting factor in order to be able to react
before SLAs are violated. Speedups through parallel simu-
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lation would enable the timely analysis of larger and more
accurate models. The second scenario is the use of QPNs to
analyze design-oriented architecture-level performance mod-
els, which describe a system with a high level of detail.
In [28], the authors propose a transformation from the Palla-
dio Component Model (PCM) [7] to QPNs for performance
analysis. Applied to practical PCM models, the transforma-
tion often results in large and complex QPNs models [28]. A
significant speedup of simulation speed is especially worth-
while for such models. Given that the number of cores of
modern processors is continuously increasing while the clock
frequency stays the same, parallel simulation techniques can
provide the speedup required by the previously described us-
age scenarios for QPNs. In this paper, we show how parallel
simulation techniques can be applied to analyze QPNs and
evaluate the potential speedup of QPN simulation through
parallelization. More specifically, we make the following con-
tributions:

1. We explore the potential of QPNs for parallel event-
discrete simulation, which includes the analysis of looka-
head estimation for QPNs.

2. We propose a Directed Acyclic Graph (DAG) decom-
position approach for QPNs required for efficient par-
allel discrete-event simulation.

3. We provide an implementation of a parallel discrete-
event simulation engine for QPNs based on the SimQPN
simulation engine.

The evaluation of our approach is focused on the following
two questions: 1) What speedup can be achieved by using
discrete-event simulation for QPN models of realistic sys-
tems? 2) What is the maximum speedup that can be prac-
tically reached? To answer the first question we conducted
three case studies using performance models of real-world
systems: a model of a large Software-as-a-Service (SaaS)
provider, a model of a complex J2EE application, and a
model describing the performance behavior of a data-center
network. We observed speedups between 1.91 and 2.45 for
the considered models. To answer the second question, we
used a synthetic model to systematically benchmark the par-
allel simulation. With the synthetic model, we could even
observe super-linear speedups.

The remainder of this paper is organized as follows. We
start with a brief introduction to the QPN formalism in
Section 2 and parallel simulation in Section 3. Section 4 dis-
cusses challenges for parallelization of discrete-event QPN
simulation and presents the parallelization approach includ-
ing our assumptions and design decisions. Section 5 de-
scribes the case studies. Section 6 is about related work.
Section 7 concludes the paper.

2. QUEUEING PETRI NETS
Queueing Petri Nets (QPNs) are an extension of Colored

Generalized Stochastic Petri Nets (CGSPNs) [24], a special
type of Petri Nets (PNs). PNs are a general formalism for
the analysis of concurrent systems. In mathematical terms,
a PN is a directed bipartite graph with two different types of
nodes named places and transitions. Places represent sys-
tem states and can contain a number of tokens. Tokens
can be used to represent resource availability, jobs to be ex-
ecuted, flow of control or synchronization conditions [32].

The initial marking can be changed by the firing of transi-
tions. Transitions are connected to input and output places
with forward and backward incidence functions. The firing
of a transition changes the system state by removing one
token from each input place and adding one token to each
output place. While PNs are easy to understand and have a
rigorous mathematical foundation, PNs of realistic systems
quickly become very large. Therefore, extensions to PNs
have been proposed to improve its model expressiveness.

Jensen [17] describes Colored Petri Nets (CPNs) introduc-
ing token colors which can be used to distinguish between
different types of requests in a system. Firing modes can
be defined depending on token colors. A color function C
assigns the different firing modes to transitions. The greater
modeling convenience comes along with no loss of PN prop-
erties since CPNs are a backward-compatible extension to
the original PNs. In addition to immediate transitions,
Generalized Stochastic Petri Nets (GSPNs) introduce timed
transitions enabling the integration of temporal aspects by
assigning firing delays to transitions. The firing delay spec-
ifies the time an enabled transition waits before it fires. If
multiple timed transitions are enabled at the same time,
the next transition to fire is chosen based on firing weights
(probabilities) assigned to the transitions [26]. The combina-
tion of CPNs and GSPNs results in CGSPNs [6]. CGSPNs
are a powerful modeling formalism for describing concur-
rency and synchronization aspects. However, CGSPNs do
not support a direct representation of scheduling behaviors
[4, 25] and therefore are limited when modeling hardware
contention [21]. The Queueing Petri Net (QPN) formal-
ism combines the advantages of QNs and PNs by intro-
ducing queueing places. A token that arrives at a queue-
ing place is first served in a queue (see QNs), before it is
put in the depository. Only tokens in the depository are
available to outgoing transitions. Queueing places enable
the description of scheduling aspects in QPNs. QPNs are
suited for quantitative, as well as qualitative analyses. In
this paper, we focus on the quantitative analysis of QPNs
required for the performance analysis of computer systems.
The HiQPN tool [5] enables the analytical solution of QPNs.
However, it is severely limited by the model size that can
be solved [23]. SimQPN [24, 42] is a discrete-event sim-
ulator for QPNs. SimQPN supports different methods for
steady-state analysis (batch means, replication deletion, and
method of Welch) and provides great flexibility in controlling
the amount of quantitative data (e.g., utilization, through-
put, and response time) collected for each place in a QPNs.
SimQPN has been shown to scale well with increasing mod-
eling size [28, 8]. However, SimQPN is currently a strictly
sequential program and cannot utilize the parallelism offered
by modern systems.

3. PARALLEL SIMULATION
QPN actions such as transition firing or token emittance

of a queue are discrete events. This makes QPNs a natu-
ral candidate for discrete-event simulation which is prefer-
able to continuous simulation whenever the simulation can
be split into discrete events [29]. In discrete-event simula-
tion the operation of a system is represented as a discrete
sequence of events over time. When parallelizing a discrete-
event simulation, the causal ordering of these events needs to
be guaranteed in order to ensure correctness of the results.
In general, parallelization of a discrete-event simulation can



be performed at the following three levels [19]:

• At the application level, replicated simulation runs can
be executed in parallel. Replicated simulation runs are
often used for variance reduction of a long simulation
run by running multiple shorter runs or for investi-
gating a large number of different parameter settings
[15]. This parallelization approach works well indepen-
dently simulated model.

• At a functional level, individual functions (e.g., event
list manipulation and random number generation) can
be executed in parallel to the main simulation thread.
In order to achieve significant speed-ups, this paral-
lelization approach requires computationally expensive
functions [15]. However, such functions are often an
indicator for an inefficient implementation where opti-
mization offers more potential than parallelization[18].

• At the event level, a simulated model can be decom-
posed in spatial or temporal partitions. Each partition
can be executed in its own process. In order to ensure
the causal ordering of events, a synchronization be-
tween the processes is required.

In this paper, we will focus on event-level parallel simu-
lation QPNs, as this approach promises to provide advan-
tages when simulating large models. By decomposing a large
QPNs into smaller partitions, the overall simulation time
may be reduced significantly.

For an event-level parallel execution of a single simula-
tion run several design questions need to be answered. We
need to decide on: model decomposition, synchronization
algorithm (conservative vs. optimistic), and communication
mode (synchronous vs. asynchronous). In the following, we
give a short overview of different techniques typically used
for event-level parallel simulation. A detailed introduction
to the topic can be found in [15].

Model decomposition: Parallel discrete-event simula-
tion decomposes the simulation model into disjunct parti-
tions, which are simulated in parallel. The corresponding
process that executes the events within a single partition
is called logical process (LP). The decomposition goal is
to keep the load between LPs balanced while minimizing
the communication costs. The decomposition is either spa-
tial or temporal. Temporal decomposition requires (rarely
available) knowledge about future system states to achieve
speedup. Spatial decomposition partitions the net into sev-
eral connected subnets. It scales with model size and of-
fers more potential for speedup than temporal decomposi-
tion [33].

Synchronization algorithm: The event processing of
the simulation is executed in an event loop in each LP.
Hence, each LP has its dedicated virtual simulation time.
In order to guarantee the local causality constraint (i.e.,
each LP processes events in nondecreasing timestamp or-
der), timestamps need to be exchanged between LPs. For
a correct causality of the simulation, synchronization algo-
rithms are required to ensure that no token with a smaller
timestamp than the LP’s current time may arrive later in
the simulation. Conservative synchronization enforces the
local causality constraint at every point in time. They pause
processing if they reach a lookahead border waiting for the
other LPs to progress further. Lookahead is the (virtual)

time span from the current clock for which an LP is guaran-
teed to receive no incoming events with smaller timestamps
from neighboring LPs. It is the time an LP can process
without synchronization. The largest possible lookahead is
the time interval an LP has from the current clock time un-
til processing of the next incoming token. Often lookahead
estimation in conservative approaches is far from optimal.
The predicted lookahead is less than the maximum possi-
ble lookahead. In the worst case, the predicted lookahead
is zero, which results in sequential simulation. Optimistic
simulation approaches allow temporary violations of the lo-
cal causality constraint. Single LPs may pass the lookahead
border. Consequently, events with a timestamp previous to
the current LP time may arrive. Straggler messages, which
is the name of late events, are cleaned by rollbacks. A roll-
back restores a state previous to the straggler message from
history. This enables the correct processing of the straggler.
Optimistic approaches aim at utilizing the model inherent
parallelism, introducing additional computational costs for
rollbacks and history preservation. It depends on the appli-
cation whether conservative or optimistic approaches per-
form better. Both approaches fail at concurrent event pro-
cessing if the model contains little inherent parallelism.

Communication mode: Asynchronous or synchronous
communication can be used to exchange timestamp guar-
antees between LPs. In synchronous approaches all LPs
progress until they reach a certain barrier. For conservative
simulation, this barrier is the lookahead. When entering the
barrier, an LP waits until all other LPs have also reached
the barrier, before continuing with the processing. During
barrier operation, the lookahead value is updated in a global
operation. In contrast, asynchronous approaches update the
lookahead value using message-based approaches and have
no global operation.

Parallel discrete-event simulation is an established research
area. The basic algorithms are well understood and a lot of
effort was put in optimizing them. Independent of the cho-
sen paradigm additional overheads are introduced by paral-
lelization. The parallelization of simulation will only yield
a speedup when the simulated model has good lookahead
characteristics. The effort for additional data structures –
like incoming token lists – is inevitable to all parallel sim-
ulation approaches. Synchronization operations are costly
as well. These overheads require reasonably sized lookahead
intervals enabling multiple events to be processed before the
next synchronization operation. Previous studies show that
the potential speedup through parallelization is limited by
characteristics inherent to the simulation model. The over-
head introduced by parallelization even slows down the sim-
ulation in many situations when compared to a sequential
execution.

4. PARALLEL SIMULATION OF QUEUE-
ING PETRI NETS

The main research questions for parallel simulation are:
Which simulation models offer speedup potential through
parallel simulation and how to maximize the speedup for
these models. While this question has been answered for
other types of models in different domains, to the best of
our knowledge, no previous work considered the potential of
QPNmodels (including queueing places) for speedup through
parallel discrete-event simulation. Generally speaking, QPNs



inherit the challenges of both formalisms, QNs and PNs.
Approaches for QNs have been proposed to estimate looka-
heads for different queue scheduling strategies (FCFS, PS,
IS, LCFS, PRIO). One challenge is that scheduling strate-
gies other than First-Come-First-Serve (FCFS) and Infinite
Server (IS) exhibit a gap between the predicted and the ac-
tual next token emittance. Performance engineering mod-
els often use a Processor Sharing (PS) strategy to model
CPUs. PS offers less potential for lookahead prediction
as jobs leave in a different order than they arrived at the
queue. To predict the next token emittance time it is nec-
essary to maintain a list of future events. The length of
this list limits the achievable parallelism as it is an upper
bound on the maximum possible lookahead. Furthermore,
maintaining the future event list introduced additional over-
heads reducing the potential speedup even further. In ad-
dition to this, not all relevant queueing strategies for per-
formance modeling have been covered so far. For example,
many system designs give preference to short jobs, apply-
ing policies like Non-Preemptive-Shortest-Job-First (SJF)
or Preemptive-Shortest-Job-First (PSJF) to disk scheduling
[47] and web server scheduling [40, 41]. To apply classical al-
gorithms, we would have to extend lookahead approaches to
further scheduling strategies. Moreover, QPN performance
models often use multiple token colors. Token colors increase
the overhead for lookahead computation as a prediction for
each color is required.

Due to the challenges introduced by the scheduling strate-
gies and the different token colors, we argue that the looka-
head potential of general QPNs is relatively low and the
synchronization overhead outweighs the benefits. Initial ex-
periments using a parallel implementation with conserva-
tive synchronization and synchronous communication, also
supported this conclusion resulting in a slow-down even for
primitive nets limited to FCFS scheduling and one token
color. Without constraining the problem by introducing ad-
ditional assumptions on the simulation model, reasonable
speedups are in general unrealistic, as also noted by Fuji-
moto [14]. However, parallel simulation of QPNs can ben-
efit under the assumption that there are no cycles between
LPs. In this section, we propose a novel approach to circum-
vent the lookahead estimation challenge for QPNs and thus
leverage the speedup potential for a certain class of QPN
models. Section 4.1 illustrates the high-level idea of our ap-
proach. As the high-level idea is not sufficient to achieve
speedup, 4.2 provides implementation details. Section 4.3
explains our approach to QPN decomposition into LPs.

4.1 General Idea
For an efficient parallelization, we assume that the QPNs

model can be decomposed into cycle-free partitions which
can be described as Directed Acyclic Graph (DAG). This
may sound like a strong restriction but can be accomplished
throughout a smart decomposition for all performance mod-
els with an open workload (i.e., the arrival rate is constant
and independent of the processing of the system). We il-
lustrate the idea using the example depicted in Figure 1.
In this example, model elements B and C are cyclically con-
nected and have to be merged to receive a DAG. We name
an LP A preceding to another LP B if Amay send tokens to B.
Then B is successor of A. For an efficient parallelization, each
predecessor has to provide a good lookahead guarantee to its
successor. In our approach, each LP passes its clock value as

step 1

step 2

step 3

LP1 LP2 LP3

10 0 0

20 10 0

30 20 10

A B C

D

E

Figure 1: Stepwise virtual time propagation

a lookahead border to its succeeding LPs. To enable parallel
execution, it is necessary that LPs are ahead in time of pre-
ceding LPs, which has to be ensured by the program logic.
Figure 1 shows an example procedure. In the first step only
LP1 is processing ten time steps. In the next step, addition-
ally LP2 processes until reaching the lookahead border of 10
granted by LP1. Before entering the third step, LP1 grants
lookahead border of 20 to LP2 and LP2 grants execution until
10 to LP3. Starting from the third step, all LPs may process
ten time units per synchronization step. For every step, the
lookahead of an LP can be set to the minimum time of its
predecessor(s). Referring to the example, the key parts for
our parallel simulation are:

Stepwise time propagation. Predecessors of LP have to
be ahead in time to enable parallel execution. To re-
duce the synchronization overhead, we we propose a
stepwise increment if no cycles exist. The time step
size, which has been set to 10 in the example, can be
tuned for a concrete scenario.

DAG decomposition. The requirement of a cycle-free ini-
tial model can be relaxed dramatically through smart
decomposition. The initial model may contain cycles.
The transformation to a DAG happens by merging all
cycle elements into one LP. As a consequence, the
model is free of cycles on the LP meta-level.

Through the DAG decomposition, we can extend the ap-
plicability of our approach to all open workload models where
cycles are either inexistent or can be merged. Models with
a closed workload cannot benefit from our idea. They con-
tain one all-encompassing cycle which results in a single LP
decomposition equal to sequential simulation. The assump-
tion of the absence of cycles allows to avoid complex looka-
head computation and even grant arbitrary lookahead in-
tervals. This arbitrary lookahead is the key to achieving an
efficient parallel simulation. The restriction on open work-
loads for QPNs is necessary, as the synchronization over-
head for conservative approaches significantly outweighs the
benefits through parallelization. It depends on system de-
sign whether to model open or closed workloads. Schroeder
et al. [41] provide a detailed discussion and guidelines for
the choice of open or closed workloads. Current trends like
cloud applications or internet of things result in increasing
numbers of performance models with open workloads, as,
according to Schroeder et al., systems with a high number
of simultaneous users should be modeled with an open work-
load.



Our approaches for stepwise time propagation and DAG
decomposition may be ported to formalisms other than QPNs
as well. The LPs A, B or C could stand for queues of a
QN or a set of places and transitions in a Stochastic Petri
Net (SPN) or subparts of other formalisms.

4.2 Implementation
Our simulation process for the three LPs of the initial

example is depicted in Figure 2. The newly implemented
parallel simulation starts if the model can be decomposed
to a DAG. Otherwise, sequential simulation is started auto-
matically. Thereby, the user does not need to consider the
the suitability of a model for parallel simulation. The limita-

LP1 terminated
&&

consistant
LP2

decomposition

LP3

barrier operation

start

endSequential 
Simulation

decomposed

false

true

true

false

Parallel Simulation

Figure 2: Parallel Simulation Process

tion to models that can be decomposed to a DAG influences
the choice of parallelization techniques and paradigms. Op-
timistic parallelization would result in additional overheads
(e.g., for state saving) in order to increase intervals between
synchronizations. The stepwise time concept enables to in-
crease these intervals to an arbitrary length. Hence, we
minimize computational overhead by applying conservative
synchronization where the minimal clock of the predeces-
sors of an LP is used as its lookahead. The next choice is on
synchronous or asynchronous communication. We apply a
synchronous barrier-based parallelization, as the global bar-
rier operation enables efficient lookahead updates. During
each barrier operation the simulation engine updates the
lookahead time for each LP. Then each LP processes all
events in its safe to process time range and enters the bar-
rier afterwards. The procedure repeats until the stopping
criterion of the simulation is fulfilled and and the model
is in a consistent state again. During parallel simulation
the LPs have different virtual times which results in a glob-
ally inconsistent state of the model, as depicted in Figure 1.
A consistent state is restored on simulation termination by
choosing the event with the highest timestamp (which re-
sides within an LP with no predecessors) and processing all
events with smaller timestamps. Token generation at LPs
without predecessors stops and then the LPs process all re-
maining events up to the stopping virtual time. Finally, we
equalize time so that all LPs have the same virtual time
which results in a consistent global state again. During this
consistency step, a few additional events may be simulated
compared to sequential simulation. However, given that the

stopping criteria is specified as a minimum requirement on
the accuracy, this does not invalidate the results.

The time safe to process for each LP is set during barrier
operation. The mechanism depends on whether an LP has
predecessors or not. In models with open workloads, at least
one LP exists without predecessors exists (called workload
generator in the following). The absence of predecessors (i.e.
no incoming events) implies the absence of lookahead con-
straints. An infinite lookahead prohibits a balanced simula-
tion as the LP would never enter the barrier. Consequently,
we require an artificial lookahead border which forces the
LP to enter the barrier. Ideally, this artificial border cre-
ates a balanced token flow between LPs to get a balanced
simulation. The decision for the artificial lookahead border
size depends on the implementation and is a possible candi-
date for auto-tuning mechanisms. If the border is chosen too
small the workload-generator LP sends few or even no tokens
to its successors. This results in multiple barrier operations
with low progress. A long period allows for processing of
multiple events which may result in a surge of events be-
ing sent to the successor LPs. The incoming token list of
an LP is a priority queue and insertions get more expensive
with increasing queue length. We refined the idea of a user
defined time interval in the form of a specified number of
tokens to be processed before entering the barrier. Thereby,
a more constant token flow can be generated and a sensitive
time step size parameter can be avoided.

Parallel simulation depicts a special case, where standard
barrier implementations fail to achieve good performance.
In standard barrier implementations, as e.g., provided by
the Java standard library, threads leave the CPU while wait-
ing on a barrier. Especially in Java, this wait step causes an
expensive operating system operation [3]. Instead of expen-
sive passive wait, active wait saves the costs for leaving and
reentering CPU. In many application scenarios, the costs for
barrier operations are negligible. In parallel simulation, we
enter the barrier very frequently (every few microseconds).
Hence, active wait helps to reduce the synchronization over-
heads significantly. Another problem of standard implemen-
tations is the access contention on the entering function of
a barrier. This access contention can be parallelized using
hierarchical barriers [3]. We employ the barrier implementa-
tion of Peschlow et al. [35] for our parallel simulation engine.
Their implementation utilizes the described techniques for
high frequency parallel simulation.

4.3 Decomposition
Decomposition into LPs is a precondition for parallel sim-

ulation. Zeng et al [48] name the primary partitioning goal
for parallel simulation as decomposition ”of the simulation
model into a number of components that keep the com-
putational load approximately balanced while minimizing
the communication overheads”. The decomposition prob-
lem can be reduced to an NP-hard bin-packing problem.
The NP-hard problem suggests a greedy approach that not
necessarily represents an optimal solution. One approach is
to use predefined hierarchies of Hierarchical Queueing Petri
Nets (HQPNs) which has been proposed in [18]. However,
this approach is inapplicable due to the lack of predefined
hierarchies and the author does not provide guidelines on
how to define hierarchies for a specific scenario. Originally
developed for Timed (Transition) Petri Nets (TPNs), one
can apply the minimum region concept of Chiola and Fer-
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Figure 3: Decomposition Scheme

scha [10] to QPNs. A minimum region includes all places
that share one transition and all transitions for which one of
these places is an input place. The advantage of the mini-
mum region idea is that the choice which transition fires next
resides in one minimum region which reduces communica-
tion overheads for parallel simulation. After decomposition
in minimum regions, they can be assembled to larger units.
We now describe our merging process for the minimum re-
gions which results in a DAG which has only one LP without
predecessors. An overview of the decomposition process is
depicted in Figure 3. At first, we ensure constant token
flow in case more than one workload generator exists. In
that scenario, one workload generator may increase its vir-
tual time faster than the others which may result in overflow
situations. We prevent this by merging all workload genera-
tors into one LP. Another option would be to artificially set
one workload generator as predecessors for the other work-
load generators. Next, we remove any cycles between LPs
by merging all cyclically connected LPs. We receive a DAG
by merging all strongly connected sets detected by Tarjan’s
algorithm [43]. Through the previous two steps, we obtain
a DAG with only one LP without predecessors. Next, we
merge LPs having ordinary places as input places into their
predecessors. Transitions of such LPs fire directly whenever
a token arrives at their ordinary incoming place(s). Conse-
quently, there is no virtual time delay to their predecessors
which makes them a suitable candidate for merging. Finally,
we merge LPs until the number of LP is less or equal to the
number of processor cores. The merging algorithm starts
from the element with no predecessors and merges its suc-
cessors until a certain size is reached. Then the procedure
repeats with one of the successors. A more formal view of
this algorithm is depicted in Algorithm 1. It receives a set
of LPs (lps) which is merged until the number of LPs sinks
below the upperBound. This parameter can either be set by
the user or is automatically set to the number of available
processor cores. Lines 4 to 14 show the merging process for
the first #core − 1 LPs. In the last step all remaining LPs
are merged into the current to ensure that the total number
of LPs is less or equal to the upper bound. The function
hasAdequateSize in line 8 is used to decide whether to in-
crease the size of the current LP or to select one of the suc-
cessors as new initial merging spot. The decision is based on
a ratio of the current LP’s computational effort compared
to the total effort. Our actual implementation uses LP’s
place count as indicator for this but further factors, e.g.,
number of branchings, internal recursion depth, queues and
their queueing strategies, may be included. In general, the
number of LPs has not necessarily to be less or equal to the

number of cores when multiple LPs are assigned to a thread.
We decided against this option as computational overheads
would increase.

Algorithm 1 Final Merging Step

1: function mergeFinal(lps, upperBound)
2: current ← getLPWithoutPredecessor(lps);
3: reachable ← ∅
4: numLPs ← 1
5: while numLPs < cores; do
6: reachable.append(current.getSuccessors());
7: while ¬ reachable.isEmpty() do
8: successor ← reachable.removeFirst();
9: if ¬ hasAdequateSize(current) then
10: current ← merge(current, successor);
11: else if numLPs < cores then
12: current ← successor;
13: numLPs = numLPs + 1
14: else
15: if ¬ reachable.isEmpty() then
16: reachable.append(current.getSuccessors());
17: end if
18: break;
19: end if
20: end while
21: end while
22: while ¬ reachable.isEmpty() do
23: successor ← reachable.removeFirst();
24: current ← merge(current, successor);
25: if ¬ reachable.isEmpty() then
26: reachable.append(current.getSuccessors());
27: end if
28: end while
29: end function

5. CASE STUDIES
We conducted a series of case studies with open workload

models to evaluate the speedup achieved through barrier-
based parallel simulation. For each model, we compare the
runtime of the parallel to the sequential case. Speedup is
defined as the runtime of parallel implementation divided
by the runtime of the sequential one. The significance level
is determined using a two-sided Student’s t-test rejecting
the hypothesis that the runtime of parallel and sequential
executions belong to one set. A validation which shows that
sequential and parallel simulation yield the same results with
equal accuracy has been performed in [46].

Except for the network traffic model, we ran our experi-
ments on an Intel Xeon E5430 2x4core, 2.66GHz, 12MB L2
Cache per CPU and 32 GB RAM running Linux CENTOS
5.8 (Final). The network traffic model was simulated on
a MacBook Pro with 4 cores Intel i7 having 2.2 GHz run-
ning OS X Yosimite(10.10.2). The number of used cores
during simulation equals the number of LPs. We marked
LPs decomposition by surrounding blue boxes in the fig-
ures. The achieved speedup depends on various factors, e.g.,
the size and decomposability of the model. We investigate
the following aspects: (a) speedup for small-scale models,
(b) speedup for medium-scale models, and (c) divide-and-
conquer effects. Section 5.1 presents a case study with a
performance model provided by a large SaaS provider. Sec-



tion 5.2 presents a medium-scale model of the SPECj Ap-
plication Server benchmark. The case study presented in
Section 5.3 uses a network model that has been generated
by an automated transformation. Section 5.4 systematically
evaluates different aspects of our implementation using a
synthetic model.

5.1 Layered Architecture Model of a Large
SaaS Provider

The QPN model shown in Figure 4 describes the perfor-
mance behavior of a Customer Relation Ship (CRM) appli-
cation of a large SaaS cloud provider in a simplified form.
The model represents an application scenario comprising

AppServer1CPU1OpenWorkload/4 DBServerCPU1tasendLoadBalancer trashtstart tdb tendtas1 tas1end

Figure 4: Performance Model Decomposition

two application servers (in our case each with 6 cores), a
load balancer, a database server and a delay incurred by
the storage system. The model has nine token colors, rep-
resenting nine different transaction types. We measured the
simulation runtime at QPME statistics level 4 (i.e., includ-
ing response time histograms). The average speedup was
1.91 with significance level of 7.70290e−9. This example
shows that even for small models speedup is possible with
our approach.

5.2 SPECjAppServer2004
The QPN model in Figure 5 describes a deployment of the

SPECj Application Server benchmark. The model contains
a load balancer, a replicated application server tier and a
replicated database tier. The model is based on the case
study presented in [23]. We changed the model to an open
workload using an equivalent parametrization. The model

Figure 5: SPECj Application Server Benchmark
Modeled With Open Workload

of the load balancer (T,L, t3, t4) includes a circular struc-
ture. To apply our stepwise virtual time all elements of a
cycle have to be merged into one LP. Compared to the de-
composition algorithm described in Section 4.3, we merged

OpenWorkload5 into E instead of merging it with OpenWork-

load6 to improve load balancing. We obtained an aver-
age speedup of 2.45 using 4 cores with a significance level
of 2.04099e−18. In general, we expect increased speedups
through better load balancing as the model size increases.

5.3 Network Traffic Model
The network traffic model for this case study was gen-

erated using the DNI-to-QPN transformation published in
[37]. Compared to QNs, QPNs offer advantages for modeling
software contention in switches. The model has one server
connected to another server by one switch. We applied a
fully automated decomposition. We omit the depiction of
the model due to space constraints.

Number of Threads/ LPs 2 3 4
Speedup 1.61 1.92 2.22

5.4 Synthetic Model
The previous subsections demonstrated the real-world ap-

plicability of parallel QPN simulation. However, a synthetic
model allows for a systematic investigation of the scalability
and speedup potential of our implementation. This section
shows that the main reason for deviation from linear speedup
is a non-optimally balanced decomposition.

We used a synthetic model that generates tokens and dis-
tributes them to multiple lanes. The structure for token
generation and distribution remains constant whereas the
number and length of lanes can be varied. Models are gen-
erated as m×n. Variable m represents the number of lanes
and n is the number of queueing places. Figure 6 shows an
example of a 3× 2 model.

Figure 6: Generated Model With Three Lanes, Each
of Length Two Queueing Places.

The model is partitioned into the constant token gener-
ation part and lanes, each representing an LP, so that the
lanes execute in parallel. The two parameters m and n vary
two aspects. The length of a lane determines the amount of
operations between barrier synchronizations. The number
of lanes determines the number LPs and thereby the num-
ber of cores that can be utilized. The synthetic model allows
to specify an upper bound for the theoretical speedup which
enables a comparison with actual measured execution times.

speedup = m× f(m,n) + k (1)

whereas k represents the constant part of token generation,
and f(m,n) maps the synchronization overheads into a fac-
tor. Theoretically: f(m,n) ≤ 1. We estimate a theoretical



upper bound for speedup as

speedup = m+ 1 (2)

The first experiment we present keeps m = 6 fixed and
varies the length of the lane n. Figure 7 shows speedups com-
pared to n. As expected, an increased n increases speedup.
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Figure 7: Speedup for Length of Lanes Variation

However, the experiments even show speedups above the
theoretical optimum. This can be explained by two divide-
and-conquer benefits of the parallel implementation. Firstly,
we benefit form cache effects. Subproblems are smaller and
can be kept in the cache. The parallel version is faster be-
cause of cheaper cache accesses instead of “expensive”RAM
accesses. The second divide and conquer effect is algorith-
mic. The parallel version performs the choice of the next
transition to fire LP-locally. Thereby less concurrently en-
abled transitions occur compared to the global solution and
unnecessary choices for the next transition can be omitted.
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Figure 8: Speedup for Lane Number Variation

The second experiment, depicted in Figure 8, varies the
number of lanes and keeps the length n = 2 fixed. The
setup poses a very small load for the LPs, which reveals
the barrier contention effect. The speedup is proportional
to the number of lanes up to an asymptotic border. After
that the speedup may even decline. The reason is the global

barrier which becomes a bottleneck for high numbers of LPs.
We optimized for common use cases at the expense of a
scalability limitation. However, in scenarios where the load
between barrier operations is higher, the asymptotic bound
would appear at a much higher number of cores.

6. RELATED WORK
The question about suitability for parallel simulation has

been answered for different types of models in different do-
mains. To the best of our knowledge, no previous work con-
sidered the potential of QPN models for speedup through
parallel discrete-event simulation. The only previous work
we are aware of that considers the concurrent simulation
of QPNs was presented in a master’s thesis [18]. However,
the thesis does neither consider any formalism specific as-
pect like lookahead for queues nor does it consider model
decomposition. Instead the thesis provides a performance
test for well known conservative and optimistic scheduling
algorithms. Our work is the first to consider formalism spe-
cific discrete-event simulation of QPNs. The parallelization
of a DAG, as we proposed, has been performed in different
research areas. However, we could not find applications to
simulation. The majority of related work is on paralleliza-
tion on the event level for TPNs and QNs. Most publications
in this area propose different algorithms optimized for differ-
ent model use cases. In the following, we present a selection:
A set of approaches build on specialized hardware, like vec-
tor machines or Graphics Processing Units (GPUs), which
have a Single Instruction Multiple Data (SIMD) architec-
ture. This hardware is able to solve vector operations very
fast that appear when solving PN recurrence equations. For
vector machines, SPN analysis has been parallelized [2]. For
GPUs, SPN [16] and Hybrid Functional Petri Nets (HFPNs)
[9] analysis has been parallelized. All SIMD approaches have
in common that speedup is reached by specialized hardware
matrix operations on sparse matrices but not by an efficient
strategy. Multiple LP-based discrete-event parallelizations
for QNs and TPNs have been proposed. Nicol and Roy [31]
apply a conservative synchronization protocol for discrete-
event analysis of TPNs. They propose a tripartition event
types to improve efficiency. Chiola and Ferscha [10] describe
how TPNs can be split in LPs to apply conservative and
time warp synchronization. They define minimum regions
by the use of (extended) conflict sets which can be merged to
LPs. In general, they provide a good overview of advantages
of different partitionings. Nketsa and Khalifa [33] modified
the lookahead definition of [10] to better suit asynchronous
communication. Fang et al. [11] refine the approach in [33]
to fit for extended TPNs. Ammar and Deng [1] apply an
optimistic time warp simulation to SPNs. They use a com-
bination of spatial and time scale decomposition to derive
LPs. Their time scale decomposition divides a large net-
work into small subnets by separating short activities and
long activities into different subnets. Ferscha [12] studies
approaches to make the time warp algorithm more robust
to different model domains for TPN. Besides TPNs, QNs
have been a common benchmark for the evaluation of dif-
ferent synchronization protocols, e.g., [30, 36, 13, 45]. Nicol
[30] proposed an efficient lookahead computation for FCFS
queues with the future list technique. Based on Nicols fu-
ture list, Lazowska et al [44, 27] extended the approach for
further scheduling strategies (PS, LCFS, PRIO). Their ap-
proach assumes an upper bound of tokens in the queue.



7. CONCLUSION
We investigated the feasibility for parallel discrete-event

QPN simulation. The QPN formalism inherits bad looka-
head characteristics from its subformalisms, which makes
QPNs a challenging candidate for parallel simulation. How-
ever, we showed that QPN models with open workloads are
suitable for parallel execution. Support for parallel simula-
tion of such models has been integrated into a general open-
source simulation engine and extensively tested.

The experiments show speedups of 1.9 using 3 threads
and 2.5 using 4 threads in the context of real-world case
studies. In general, higher speedups are possible. The scal-
ability analysis we presented using artificial models demon-
strates that our implementation can provide up to super-
linear speedups. During our work on parallel QPN simu-
lation, many new questions arose. We consider improve-
ments on decomposition to be the most promising field for
future work. We apply a decomposition to minimum re-
gions and use a set of merging rules. The decomposition can
be improved by the use of runtime statistics. Furthermore,
our currently static partitioning does not consider changing
workloads during simulation. For further research, we pro-
pose a dynamic partitioning approach which could improve
load balancing during a simulation run. Furthermore, addi-
tional case studies with large scale models can be conducted
to further evaluate the scalability of the parallel simulation
approach.
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