

Automating the Build Pipeline for Docker Container

Nikolai Reed, Jürgen Walter, and Samuel Kounev

University of Würzburg

November 9-10, 2017 SSP 2017 Karlsruhe, Germany

Reproducibility Problem

- The lack of reproducibility of scientific experiments is a huge problem in research [5]
- Scientific papers often lack a detailed description on how to apply the research software [5, 2]
- Many software projects in public repositories cannot be built or installed within a hour [2]

Nikolai Reed 08.11.17 2

- Problem: Traditional deployment of software can be cumbersome due to compilation, required adaptations, dependency resolution, and lack of developer knowledge [2, 3, 4]
- Problem: Classical virtualization using virtual machines leads to heavy weight containers [1]
- Novel container technologies like Docker
 - provide a reproducible environment to run software
 - run on every machine the same
 - allow for a fast deployments
 - provide smaller containers compared to VM images

- This talk motivates and explains the integration of Docker into an automated build and delivery pipeline
- The SSP community provides more containerized services
- The SSP community solves the reproducibility problem through containerization

Nikolai Reed 08.11.17

Introduction to Docker

Creation of Docker Containers

- Docker containers include dependencies required to run the software
- Required software packages are integrated into the Docker image during its build process
- Required information is contained in the so called DockerFile [3]

Nikolai Reed 08.11.17

Creation of Docker Containers

DockerFile example for the apache webserver

A basic apache server. To use either add or bind mount content under /var/www FROM ubuntu:12.04

RUN apt-get update && apt-get install -y apache2 && apt-get clean && rm -rf /var/lib/apt/lists/*

ENV APACHE_RUN_USER www-data ENV APACHE_RUN_GROUP www-data ENV APACHE_LOG_DIR /var/log/apache2

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

Nikolai Reed 08.11.17

Creation of Docker Containers

DockerFile for our performance model extraction software

```
# Pull base image
FROM openidk:8u111-jre
# Expose port of the Docker container
EXPOSE 8080
# Define working directory
WORKDIR /opt
# Add Software and server
ADD pmxConsole.jar /opt/data/
ADD target/pmxserver-0.0.1-SNAPSHOT.jar /opt/
# Create directories during build process
RUN \
            mkdir /opt/input && \
            mkdir /opt/zip && \
            mkdir /opt/download && \
            mkdir /opt/output && \
            mkdir /opt/uploaded
# Start command to run wenn container is started
ENTRYPOINT ["java", "-jar", "/opt/pmxserver-0.0.1-SNAPSHOT.jar"]
```

Nikolai Reed 08.11.17

Docker Commands

- Creation of Docker container
 - docker build -t descartesresearch/pmx-dml-server .
- Running a Docker container
 - docker run -d -p 8080:8080 descartesresearch/pmx-dml-server
- Pulling a Docker container
 - docker pull descartesresearch/pmx-dml-server

Nikolai Reed 08.11.17

- The combination of Docker and CI allows to join their benefits
- Benefits of a automated Docker build Pipeline
 - fast time to production
 - low overhead for developers and operators
 - fast distribution and deployments

Automated Pipeline Process

NEW compared to non-dockerized CI

Required Artifacts

We already had a running Jenkins CI-server setup available that we could expand upon.

Component Type	Component Instance
Version Control Server	GitLab (Git repository hosting service)
Docker Engine	standard (running on a Linux 64-bit system with Jenkins)
CI Server	Jenkins (an open source automation CI-server)
Docker build software	GitLab plugin (interaction with GitLab) CloudBees plugin (build and publish of docker images)

Nikolai Reed 12 08.11.17

WÜ Alternatives for Automated Pipeline Setup

- Plugin
 - Travis: native Docker integration
 - Team Foundation Server (Windows): Docker plugin available
 - ...
- Command line scripts
 - Writing your own scripts based on the Docker file structure
- External service
 - GitLab already offers a CI service that is capable of building Docker images
 - DockerHub can be configured to build images from repositories of BitBucket and GitHub

Nikolai Reed 08.11.17 13

Will What we Dockerized so far ...

- We apply the presented build pipeline for
 - The performance model extraction tool Performance Model eXtractor (PMX) [6]
 - The Pet Supply Store, a micro-service reference test application for model extraction, cloud management, energy efficiency, power prediction, multi-tier autoscaling
- Further ideas
 - Simulation as a Service
 - Performance evaluation as a Service

- Docker can be applied to solve the reproducibility problem
- The combination of Docker and CI allows to join their benefits.
- Their combination enables fast time to production with low overhead for operators and developers.

Thank You!

Nikolai Reed, Jürgen Walter, and Samuel Kounev

University of Würzburg

November 9-10, 2017 SSP 2017 Karlsruhe, Germany 2017

References

- [1] B. Howe. "Virtual Appliances, Cloud Computing, and Reproducible Research". In: Computing in Science & Engineering 14.4 (2012), pp. 36-41.
- [2] C. Collberg et al. Measuring Reproducibility in Computer Systems Research. Tech. rep. University of Arizona, Mar. 2014.
- [3] C. Boettiger. "An Introduction to Docker for Repropucible Research". In: SIGOPS Operating Systems Review 49.1 (Jan. 2015), pp. 71-79.
- [4] R. Nagler et al. "Sustainability and Reproducibility via Containerized Computing". In: CoRRabs/1509.08789 (2015).
- [5] J. Cito and H. C. Gall. "Using Docker Containers to Improve Reproducibility in Software Engineering Research". In: Proceedings of the 38th International Conference on Software Engineering (ICSE 2016). Austin, Texas: ACM, 2016, pp. 906-907.
- J. Walter et al. "An Expandable Extraction Framework for Architectural Performance Models". In: Proceedings of the 3rd International Workshop on Quality-Aware DevOps (QUDOS'17). ACM, 2017,pp. 165-170.

Nikolai Reed 08.11.17 17