A Generic Approach for Architecture-Level Performance
Modeling and Prediction of Virtualized Storage Systems

Qais Noorshams, Andreas Rentschler, Samuel Kounev, Ralf Reussner

Chair for Software Design and Quality
Karlsruhe Institute of Technology
Karlsruhe, Germany
{noorshams, rentschler, kounev, reussner}@kit.edu

ABSTRACT

Virtualized environments introduce an additional abstraction
layer on top of physical resources to enable the collective
resource usage by multiple systems. With the rise of I/O-
intensive applications, however, the virtualized storage of
such shared environments can quickly become a bottleneck
and lead to performance and scalability issues. The latter can
be avoided through careful design of the application architec-
ture and systematic capacity planning throughout the system
life cycle. In current practice, however, virtualized storage
and its performance-influencing design decisions are often
neglected or treated as a black-box. In this work-in-progress
paper, we propose a generic approach for performance mod-
eling and prediction of virtualized storage systems at the
software architecture level. More specifically, we propose
two performance modeling approaches of virtualized sys-
tems. Furthermore, we propose two approaches how the
performance models can be combined with architecture-level
performance models. The goal is to cope with the increasing
complexity of virtualized storage systems with the benefit of
intuitive software architecture-level models.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques;
D.2.11 [Software Engineering]: Software Architectures

Keywords

I/0, Storage, Performance, Virtualization

1. INTRODUCTION

In recent years, virtualization technology has been widely
adopted. According to analysts, this development has yet
to reach its peak. Over the period 2012-2016, the server
virtualization market is expected to grow annually by more
than 31% [18]. In a parallel development, the I/O resource
demands of modern IT systems have grown exponentially
over the past couple of decades [17]. Until the year 2020, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

amount of digital data is expected to double every year, 40%
of which is expected to be either processed or stored in the
cloud [5]. The danger of this trend is, however, that the virtu-
alized storage of shared environments becomes a bottleneck,
thus leading to significant performance and scalability issues
as there are many performance-influencing factors. To avoid
such issues, performance modeling and evaluation techniques
are needed for capacity planning at deployment time as well
as to guarantee performance requirements during operation
upon changes in the workload.

In current practice, however, virtualized storage and its
performances influences on the overall system performance
are often neglected or treated as a black-box due to their com-
plexity. Since traditional storage systems were not designed
for the intricate data consumption in virtualized environ-
ments [7], virtualized storage systems have evolved signifi-
cantly to sophisticated systems with multiple caching and
virtualization layers.

Existing approaches model the storage performance of I/0O-
intensive applications in virtualized environments, e.g., [1,
10], however, with validation limited to basic environments
or with focus on consolidation scenarios only. Moreover, it
is difficult to include such models into software architecture
models, because the required information between the two
modeling abstraction levels needs to be synchronized. Soft-
ware architecture models are on a higher abstraction level
making them simpler and more intuitive to use. However,
they may have several access points to the storage resources,
thus, having mutual performance effects with low-level stor-
age models. A media streaming portal, for instance, can
have multiple different requests at the software architecture
level, e.g., watermarking and media downloading. Those
requests translate to intertwined read and write accesses at
the storage system.

In this work-in-progress paper, we propose a generic ap-
proach for performance modeling and prediction of virtu-
alized storage systems and combining high-level software
architecture models with low-level storage models. More
specifically, we propose a black- and a white-box perfor-
mance modeling approach for virtualized storage systems.
Furthermore, we propose two approaches how the perfor-
mance models can be combined with architecture-level per-
formance models. The goal is to cope with the increasing
complexity of virtualized storage systems with the benefit of
intuitive software architecture models. The overall method-
ology, however, is generic and can be applied for enhancing
any software architecture models by more complex resource
or subsystem models.

Response Time,

UML, ADL, ... Throughput, ...
#
lels) feedback L.
Software e Architecture Prediction
System Model il‘ Results

estimate/measure analysis
models resource consumption simulation

Annotated transform

Analysis

— Model

Queueing Networks, Algebras,
Stochastic Petri Nets, ...

Architecture
Model

X
UML Performance Profile,
PCM, QML, ...

Figure 1: Model-based Performance Prediction (Source: [2])

2. PROPOSED APPROACH

In this section, we first present the background of our work
originated from model-based performance prediction. Then,
we present our performance modeling methodology as well as
our combination approach integrating performance models of
virtualized storage systems into software architecture models.

2.1 Background

In general, our approach can be applied to any performance-
aware software architecture models. We apply our proposed
approach to the Palladio Component Model (PCM) [3], a
modeling language for component-based software architec-
tures realizing a model-based performance prediction ap-
proach. The PCM is aligned with the component-based soft-
ware engineering (CBSE) development process and provides
modeling constructs to describe the i) software components,
ii) system architecture, iii) resource allocations, and iv) usage
profile of a component-based software system.

Using model transformations, e.g., to queueing networks
or performance prototypes, a PCM model instance can be
analytically solved or simulated to predict the system per-
formance. The performance prediction serves as feedback
and enables a model-based quality assessment of software
systems. This process is illustrated in Figure 1.

2.2 Performance Modeling Methodology

Illustrated in Figure 2, in this section we show how our
approach fits into the model-based performance prediction
approach by first analyzing performance-influencing factors
and then creating black- and white-box storage analysis
models, i.e., performance prediction models. The storage
analysis models are combined with the software architecture
level model in the next section.

2.2.1 System Under Study

As a proof-of-concept of our approach, we study a represen-
tative virtualized environment based on the IBM mainframe
System z and the storage system DS8700. They are state-of-
the-art high-performance virtualized systems with redundant
or hot swappable resources for high availability. The System z
combined with the DS8700 represents a typical virtualized
environment that can be used as a building block of cloud
computing infrastructures. It supports on-demand elasticity
of pooled resources with a pay-per-use accounting system
(cf. [12]). The System z provides processors and memory,
whereas the DS8700 provides storage space.

2.2.2 Performance-Influencing Factors

Aligned with our modeling methodology, in [16] we identified
and evaluated the performance-influencing factors of appli-

Virtualized models transform

Annotated

St Analysis
orage rchitectur

g Architecture Model

System Model

i)iterative
analyze) refinement N
b) refinement
transformation

Performance- include Storage
Influencing Analysis

Factors Model

systematic goal-oriented
experiments experiments

Black-box White-box
Analysis Analysis
Model Model

Statistical Regression
Models

Queueing Models

Figure 2: Proposed Approach

cations deployed in the considered environment. The factors
comprise both workload-specific characteristics and system-
specific configuration parameters. An important aspect is
to find an appropriate abstraction level for the factors. On
the one hand, too coarse-grained factors lead to inaccuracies
in the performance models. On the other hand, too fine-
grained factors cannot be specified by software developers
and deployers. Furthermore, we develop a fully automated
approach to extract the workload characteristics for a given
application. Tools like blktrace! are able to provide detailed
workload-level information, e.g., the read/write ratio and the
requested block addresses. Based on this information, we
calculate important request metrics, e.g., the average size.
Moreover, we develop a heuristic classification strategy to
identify multiple, possibly intertwined, sequential accessing
clients, since this has a significant performance impact [16].

2.2.3 Black-box Analysis Model

In [15] we created black-box analysis models by applying
multiple statistical regression techniques on systematic mea-
surements. Regression techniques are very powerful in terms
of prediction accuracy for interpolation scenarios. Further-
more, we proposed a general heuristic optimization algorithm
to optimize the parameters of the regression techniques. The
main advantage of our black-box modeling approach is that
it is fully automated as part of our tool SPA [4], thus, lifting
the burden for performance engineers to manually develop
the models. We are working on extending our automated
methodology to further evaluate the approach with another
load-driver and in another system environment. Moreover,
we plan to use the automatically extracted workload char-
acterization, which will be integrated into SPA; as input for
the regression-based models to be able to predict arbitrary
workloads, cf. Figure 3. This approach aims at creating the
black-box models once and map different applications to the
required black-box model input parameters.

2.2.4 White-box Analysis Model

The black-box modeling approach requires systematic ex-
periments that cover the whole parameter space. To create
performance models with a set of goal-oriented experiments
and gain further understanding of the system environment,
we develop an iterative white-box performance modeling
methodology and model our virtualized storage system in a
queueing network, cf. Figure 4. Our approach follows the

1ht1:p ://www.cse.unsw.edu.au/ aaronc/iosched/doc/blktrace.html

: "High-level" :
' Workload ! N
T~ - . Eg.,
: 11/O-intensive &
' o —— Media
! Application Streaming

"Lowlevel"
oad

Monitoring,
e.g., blktrace

‘Watermarking,

Downloading

‘Workload
Characterization,

e.g., Read/Write
Mix, Requested
Block Addresses

Input for Regression
' Models to Predict

Storage Requests

Figure 3: Analysis Model Generalization Approach

common generic steps in classical performance engineering
comprised of performance model creation, calibration, and
validation established by existing approaches [13, 14]. We
first analyze the system environment identifying the system-
specific performance-relevant aspects including the generic
performance-influencing factors. Furthermore, we identify
the workload scenarios we want capture as part of the model
initially. We then create the model calibrated with experi-
ments that we iteratively refine to account for more complex
scenarios. Our preliminary results model the caching and
the RAID array resource of our environment in homogeneous
queueing models. The mean service times p of the service
stations are parameterized and calibrated based on response
time measurements, such that

wu(t,s,d) =cits-In(d) + ca2 t - In(d) + ¢s s - In(d)+
cats+cest+ce s+ crln(d) + cs; ¢ €R,

where t is the number of simultaneous requests (clients),
s is the request sizes, and d is the overall amount of data
the workload operates on. Shown in Figure 5, the results
demonstrate the high prediction accuracy of our white-box
models for both interpolation and extrapolation (or consol-
idation) scenarios. Figure 5a shows the relative error for
1200 completely random configurations. The mean error
(depicted as cross) is 7.22% and 2.39% for read and write
requests, respectively. Figure 5b shows the relative error
for 480 workload consolidation scenarios with 2 and 3 VMs.
Here, the mean error is 8.22% and 2.74% for read and write
requests, respectively. Next, we plan to extend the queue-
ing models to account for mixed workloads. Furthermore,
we plan to generalize the white-box model similar to the
black-box model generalization approach.

2.3 Combination Approach

We propose two approaches to combine the low-level storage
models with high-level software architecture models, iter-
ative refinement and refinement transformations. In both
approaches, it is important to design the storage interface
between the two modeling abstraction levels and integrate
the interface into the architecture model.

2.3.1 Storage Interface Design

The storage interface includes the required dynamic infor-
mation (i.e., the workload-specific performance-influencing
factors) in the software architecture model that is passed
as input to the storage analysis model (e.g., the distinction

System Environment Analysis Creation Calibration Validation

Creation of Calibration of
Topology Service Times

Validation of
Prediction Accuracy
Tdentification of

Performance-Relevant

System Aspects Analysis of valid?
Goodness-of-Fit
Identification of Refinement of - ;[(-)(-{}?]dv
Workload Scenarios Topology and /or Modellacceptable? misheds
Workload Scenarios j NO /

[}

Figure 4: Iterative White-box Modeling Methodology

between read and write requests and their access pattern).
Furthermore, the set of static storage-relevant information
(i.e., the system-specific performance-influencing factors) is
used to configure or initialize the storage analysis model (e.g.,
the chosen I/O scheduler). At this point, the main research
question is what to include in the storage interface and at
which abstraction level.

2.3.2 lIterative Refinement

An iterative refinement approach allows for combining a spe-
cific software architecture model instance with the storage
analysis model. The software architecture model instance
contains multiple accesses to different active and passive
resources (e.g., thread pools) and, more specifically, con-
tains storage resource consumptions that are represented by
a parametric delay, e.g., when simulating the architecture
model instance. The architecture model instance is coupled
with the storage analysis model as follows (cf. Figure 6):

1. The storage delays are initialized with a small value.

2. The architecture model instance is simulated to obtain the
performance characteristics of the model instance. During
the simulation, the storage accesses of the model instance
over the storage interface are monitored to extract the
storage workload profile.

3. The workload profile and the static storage-relevant in-
formation is used as input for the storage analysis model to
obtain specific storage delays for the architecture model.
4. The storage delays in the simulation are updated with
the delays obtained by the storage analysis model.

5. Step 24 is repeated until the performance characteristics
of the model instance converge.

The caveat is, however, that the performance characteristics
are not guaranteed to converge. Moreover, it is an open
question to what extent this approach can be automated.

2.3.3 Refinement Transformations

A second approach is to include the storage analysis model
with refinement transformations. Illustrated in Figure 7,
the transformations include both i) a completion transfor-
mation [19] as well as ii) an analysis transformation. The

o

100 — 30 4
=3 o
S . S :
o 75— °© =
o o
g 8 = 20 — g
<3| 0 8 <3| o
£ 5 £ e
=] = 8
= = 10 — g
. E
= = |

read write

(b) Consolidation
Figure 5: Prediction Accuracy of Queueing Models

read write
(a) Interpolation

initialize simulate &

simulated monitor storage
delays Annotated | interface Storage
Architecture Workload
Model J Profile
calibrate o
ﬁ simulated ' @ se as
- input
delays
N Storage solve Storage
Request <,1:| Analysis
Delays Model

Figure 6: Iterative Refinement Approach

completion transformation refines the architecture model to
fill in the static storage-relevant information and is config-
ured, e.g., using feature tree models, cf. [8]. The analysis
transformation uses the architecture model and creates the
target analysis model to predict the system performance,
cf. Figure 1. This transformation is extended to combine
the target analysis model with the storage analysis model
over the storage interface using a bridge or adapter. Gen-
erally, this approach allows for an arbitrary target analysis
model. However, the conceptual interoperability of different
modeling formalisms is still subject to research. Thus, if dif-
ferent formalisms are to be combined, their interoperability
is required to be well-defined.

3. RELATED WORK

Several existing approaches have been proposed for perfor-
mance analysis of I/O-intensive applications in virtualized
environments. However, none of these approaches considers
the system performance at the software architecture level
as realized in the approach presented in this paper. Most
related, Kraft et al. [10] propose a queueing network-based
approach to predict the I/O performance of consolidated
virtual machines. They monitor and model low-, block-level
I/0 requests. Their approach is focused on predicting consol-
idation scenarios. Further, Ahmad et al. [1] analyze the I/O
performance in VMware’s ESX Server virtualization. They
compare virtual against native performance using bench-
marks. They create mathematical models scaling the native
performance down for I/O throughput predictions in virtual-
ization. To analyze performance interference in a virtualized
environment, Koh et al. [9] manually run CPU bound and
1/0 bound benchmarks. While they develop mathematical
models for prediction, they explicitly focus on the consolida-
tion of different types of workloads, i.e., CPU and I/O bound.
By applying machine learning techniques, Kundu et al. [11]
use artificial neural networks and support vector machines
for dynamic capacity planning in virtualized environments.
In [6], Gulati et al. present a study on storage workload
characterization in virtualized environments, however, they
do not propose any performance prediction techniques.

4. CONCLUSION

In this work-in-progress paper, we proposed a methodology
for performance modeling and analysis of a) I/O-intensive
applications in b) virtualized environments at the c) software
architecture level. To the best of our knowledge, there are no
other approaches that combine a), b), and c) to our extent.
For this approach, we will extend the Palladio Component
Model, a model-based performance prediction approach for
component-based software architectures. For performance
modeling, we create both black-box models based on statis-

completion analysis
Annotated transformation | Annotated® | transformation %
. . Analysis
Architecture Architecture
, Model
Model . § Model
Configured
with Feature 1 e X
Tree Model Refined with Target Analysis
ree Mode
Static Storage Storage Model Combined
Information Analysis with Storage

Model Analysis Model

Figure 7: Refinement Transformation Approach

tical regression techniques and white-box models based on
queueing networks. We apply our approach in real world
environments as the IBM System z and the IBM DS8700.
Our main contribution is that we provide a generic approach
for combining software architecture level performance models
with resource-specific storage models. More specifically, our
contributions are the following:

— We analyze virtualized storage systems and identify the

performance-influencing factors.

— We create both black- and white-box analysis models of

virtualized storage systems.

— We combine high-level software architecture models and

low-level storage performance models.

Acknowledgments This work was funded by the German Re-
search Foundation (DFG) under grant No. RE 1674/5-1 and KO
3445/6-1. We especially thank the Informatics Innovation Cen-
ter (IIC) — http://www.iic.kit.edu/ — for providing the system
environment of the IBM System z and the IBM DS8700.

[1] I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija. An
analysis of disk performance in vinware esx server virtual machines.
In WWC-6, 2003.

[2] S. Becker. Coupled model transformations for QoS enabled
component-based software design. PhD thesis, Universitit Oldenburg,
2008.

[3] S. Becker, H. Koziolek, and R. Reussner. The palladio component
model for model-driven performance prediction. J. of Systems and
Software, 82(1), 2009.

[4] D. Bruhn, Q. Noorshams, S. Kounev, and R. Reussner. Storage
Performance Analyzer (SPA). http://sdqweb.ipd.kit.edu/wiki/SPA,
2012.

[5] J. Gantz and D. Reinsel (IDC). THE DIGITAL UNIVERSE IN
2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the
Far East. http://idcdocserv.com/1414, 2012. Last accessed: Jan 2013.

[6] A. Gulati, C. Kumar, and I. Ahmad. Storage workload
characterization and consolidation in virtualized environments. In
VPACT ’09.

[7] InformationAge. The year of virtual storage. http://www.information-
age.com/channels/the-cloud-and-virtualization/perspectives-and-
trends/1596523/the-year-of-virtual-storage.thtml, 2011. Last
accessed: Jan 2013.

[8] L. Kapova and T. Goldschmidt. Automated feature model-based
generation of refinement transformations. In SEAA ’09.

[9] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu.
An analysis of performance interference effects in virtual
environments. In ISPASS ’07.

[10] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick.
Performance models of storage contention in cloud environments.
Springer Journal of Software and Systems Modeling, 2012.

[11] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta.
Modeling Virtualized Applications using Machine Learning
Techniques. In VEE ’12.

[12] P. Mell and T. Grance. The nist definition of cloud computing.
National Institute of Standards and Technology, 53(6), 2009.

[13] D. Menascé and V. Almeida. Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall, 2000.

[14] D. Menascé, V. Almeida, L. Dowdy, and L. Dowdy. Performance by
Design: Computer Capacity Planning by Example. Prentice Hall
science explorer. Prentice Hall, 2004.

[15] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner. Predictive
Performance Modeling of Virtualized Storage Systems using
Optimized Statistical Regression Techniques. In ICPE ’'13.

[16] Q. Noorshams, S. Kounev, and R. Reussner. Experimental
Evaluation of the Performance-Influencing Factors of Virtualized
Storage Systems. In EPEW ’12, volume 7587 of LNCS. Springer.

[17] S. Oliveira, K. Furlinger, and D. Kranzlmuller. Trends in
computation, communication and storage and the consequences for
data-intensive science. In IEEE HPCC-ICESS’12, pages 572 —579.

[18] TechNavio. Global Server Virtualization Market 2012-2016.
http://www.technavio.com/content/global-server-virtualization-
market-2012-2016, 2013. Last accessed: Jan 2013.

[19] M. Woodside, D. Petriu, and K. Siddiqui. Performance-related
completions for software specifications. In ICSE ’02.

