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Abstract Cloud Computing promises a variety of opportunities but
also brings up several challenges. The three case studies presented in
the following are examples on how challenges in the field of capacity
management, dependability, and scalability can be addressed and how
opportunities of Cloud Computing can be leveraged to, e.g., maintain
performance requirements or to increase dependability.

1 Introduction

As discussed in Chapter X4, Cloud Computing has several challenges and op-
portunities. The increased flexibility and the shared resources cause challenges
like security or performance issues, to mention only some examples. However,
the increasing flexibility provides also opportunities like higher availability and
fault tolerance, resilience to attacks, or improved resource efficiency.

In this chapter we present three case studies as examples on how the previ-
ously mentioned challenges can be addressed and how the opportunities can be
used to add value to systems running in Cloud Computing environments. The
first two case studies are approaches on managing performance and dependability
in Cloud Computing environments. The third case study is a scalability study of
two different tools for performance analysis in Cloud Computing environments.
For related work and state-of-the-art on approaches for resilience assessment and
managing dependability and performance, the reader is referred to Chapter X.

In Section 2, we demonstrate how prediction techniques based on perfor-
mance models can be used to maintain the service-level agreements (SLAs) while
using available resources efficiently. The approach uses the Palladio Component
Model [3] and its simulator to predict service response times and resource uti-
lizations. Section 3 presents an architecture and algorithm on balancing the
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trade-off between performance and dependability. It uses performance and avail-
ability models to react to changes in the underlying infrastructure which are
results of failures or upgrades. The hierarchical optimization algorithm extends
queuing models to balance the needs of availability and performance. Several
scenarios show the applicability of this approach even in a cloud scenario with
different data centers. Finally, we present a case study on the computational
and communication scalability of a Cloud Computing environment by transfer-
ring two HPC applications to a Cloud Computing environment (Amazon EC2).
Both tools calculate the full distributions of response times in Continuous Time
Markov Chains (CTMCs) but require a different amount of interprocessor com-
munication, and hence scale different in Cloud Computing environments.

2 Elastic Capacity Management

In this section we present results of our case study on self-adaptive resource
management in virtualized environments [23]. To avoid violations of service-level
agreements (SLAs) or inefficient resource usage, capacity management has to be
adopted continuously during system operation. For example, in Cloud Comput-
ing scenarios resources allocated to services need to be increased or decreased to
reflect changes in application workloads. This is an approach on elastic capacity
management based on online architecture-level performance models [25]. The
goal is to maintain performance and efficient resource usage during run-time. In
our evaluation we use the new SPECjEnterprise2010 benchmark5.

2.1 Self-adaptive Resource Management

Our self-adaptive resource management follows the control loop model [11] which
consists of four phases: collect, analyse, decide and act. For the collect phase,
we assume that changes of the application workload are either announced by
the customers (e.g., for an upcoming sales promotion) or by techniques like
workload forecasting [5]. We then use the Palladio Component Model [3] and
its performance prediction techniques to analyze the impact of these changes
and to decide which actions to take. In this case study, the act phase covers
the reconfiguration operations adding/removing application server cluster nodes
and increasing/decreasing the number of virtual CPUs of a cluster node’s virtual
machine.

Resource Allocation Algorithm The following algorithm is executed if SLAs
are violated or resources are used inefficiently. The goal is to find a new system

5 SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp.
(SPEC). The SPECjEnterprise2010 results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no comparison nor performance in-
ference can be made against any published SPEC result. The official web site for
SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.



configuration which again maintains performance and resource efficiency. The
algorithm is specified in generic terms, such that it can be applied to different
types of resources and resource allocation operations. In short, the algorithm
works on a set of services, resource types and SLAs. The SLAs specify, e.g., the
requested average response time for a service at a given arrival rate. Each time
there is a change of a specified SLA (e.g., a new client workload is scheduled
for execution or a change in the workload intensity of an existing workload is
forecast), we use our architecture-level performance models to predict the effect
of this change on all SLAs. The algorithm can be divided into two phases: PUSH
phase and PULL phase. If an SLA violation is detected, the PUSH phase of our
algorithm is executed which allocates additional resources (PUSH additional
resources into the system) until all client SLAs are satisfied. After the PUSH
phase finishes, the PULL phase is executed to optimize the resource efficiency.
If no SLAs are violated, the PULL phase starts directly to reduce the amount
of used resources (PULL them out of the system).

PUSH: Basically, while there exists a client response time SLA that is violated,
in this phase the algorithm increases the amount of allocated resources for all
resource types used by the service which are overutilized. Increasing the number
of allocated resources works as follows: If a there is an instance of an overutilized
resource type (e.g., a VM) which has some processing resources available that
are not allocated yet, additional resources are allocated (e.g., virtual CPUs).
Otherwise, a new instance of this resource type is added (e.g., a new VM is
started).

PULL: The PULL phase aims to optimize the resource efficiency by releasing
resources that are not utilized efficiently under the current client workloads. In
our algorithm, inefficient usage means the delta of maximum utilization and
current utilization of a resource type is greater than a predefined constant, e.g.,
20%. While there is a resource type assigned to service of the currently considered
workload which is used inefficiently, the amount of resources allocated to this
service will be decreased, i.e., for a resource type instance the capacity (e.g.,
virtual CPUs) is reduced. If the client SLAs are predicted to be violated after
this change, the change is reversed.

2.2 Evaluation

In this section we briefly explain the SPECjEnterprise2010 benchmark and the
experimental environment we used to evaluate our approach. Finally, we present
the experimental results.

SPECjEnterprise2010 Benchmark We selected the SPECjEnterprise2010
benchmark application as a basis for our case study because it models a represen-
tative, state-of-the-art enterprise system. SPECjEnterprise2010 is a benchmark
developed by SPEC’s Java subcommittee to measure the end-to-end performance



and scalability of Java EE-based application servers. The benchmark workload is
generated by an application that is modeled after an automobile manufacturer.
As business scenarios, the application comprises customer relationship manage-
ment (CRM), manufacturing and supply chain management (SCM).

The benchmark driver executes five benchmark operations. A dealer may
browse through the catalog of cars, purchase cars or manage his dealership in-
ventory, i.e., sell cars or cancel orders. A manufacturer may place work orders

for manufacturing vehicles, either triggered per WebService or RMI call. In our
experiments these benchmark operations function as the different services. To
control the request arrival rate of each service individually, we had to slightly
modify the benchmark driver. We split up the two driver domains and three man-
ufacturing domains into five different domains, each invoking its own service.
The resulting five independent services are called Purchase, Manage, Browse,
CreateVehicleEJB and CreateVehicleWS.

Architecture-level Performance Model To make decisions in our control
loop, we use a PCM model [3] as architecture-level performance model to predict
the service response times and resource utilizations of the SPECjEnterprise2010
application for a specific load. The PCM model is semi-automatically extracted
from a running benchmark application instance. As extraction method, we use
the method in [7]. However, for this case study we extracted the entire benchmark
application, i.e., including supplier domain, dealer domain, web tier and the
asynchronous communication between the three domains. For reasons of brevity,
the reader is referred to [23] for a detailed description of the PCM model instance.

Experimental Setup As hardware environment for the experiments, we use
six blade servers from a cluster environment. Each server is equipped with two
Intel Xeon E5430 4-core CPUs running at 2.66 GHz and 32 GB of main memory.
The machines are connected by a 1 GBit LAN. On top of each machine, we run
Citrix XenServer 5.5 as the virtualization layer. Inside the XenServer’s VMs, we
run the benchmark components. Each component runs in its own VM, initially
equipped with 2 virtual CPUs (VCPUs). As operating system, these VMs ex-
ecute CentOS 5.3. As Java EE application server, we use the Oracle Weblogic
Server (WLS) 10.3.3. The load balancer is haproxy 1.4.8 using round-robin as
load balancing strategy. The database is an Oracle 11g database server instance
deployed on a VM with eight VCPUs on a separate node on Windows Server
2008. The SPECjEnterprise2010 benchmark application is deployed in a cluster
of WLS nodes. For the evaluation, we considered reconfiguration options con-
cerning the WLS cluster and the VCPUs the VMs are equipped with: WLS nodes
are added to or removed from the WLS cluster, VCPUs are added to or removed
from a WLS node’s VM. These reconfigurations are applicable at run-time, i.e.,
can be applied while the benchmark application is running.

Results In the following section we present experimental results of our ap-
proach. First, we demonstrate how the approach behaves when the system work-



load increases. Next, we give an example how this approach can be used for elastic
capacity management and show its benefits.

Workload Growth: In this scenario, we evaluate our approach when increasing
the workload of all services deployed in our environment. We increase the load
in two steps from 2x to 4x and 4x to 6x (see Figure 1). The standard workload
(1x) is defined as request arrival rate (requests/second) for each service: (Cre-
ateVehicleEJB, 15), (CreateVehicleWS, 15), (Purchase, 12.5), (Manage, 12.5)
and (Browse, 25). Our starting point is that five services are running on one
node with three VCPUs (c1) with 2x the standard workload and the following
SLAs (CreateVehicleEJB, 30, 74ms), (CreateVehicleWS, 30, 74ms), (Purchase,
25, 130ms), (Manage, 25, 130ms), (Browse, 50, 130ms) which are initially sat-
isfied. Now, we increase the workload to 4x the standard load. For this new
workload, the reallocation algorithm detects a violation of the SLAs and recom-
mends to reallocate the system resources using two nodes, one with four VCPUs
and one using three VCPUs (c2). Applying this configuration to our benchmark,
the SLAs are satisfied. For the measurement results see Figure 1 a).

Figure 1. The response times when changing workload from 2x to 4x and 4x to 6x,
respectively (SLAs denoted by ▽). The three bars depict the response times for all five
services before the load increase, after the load increase, and after system reconfigura-
tion.

In the second step, we increase the workload to 6x the standard load and
do not change the SLAs. Again, this leads to a violation of the SLAs in our
simulation results. Therefore, we apply our algorithm, finding a new suitable
configuration with three nodes, two with four VCPUs and one with three VCPUs
(c3). The experiment results are depicted Figure 1 b). However, the results show
that after reallocation the SLA of the Browse service is still slightly violated. This
is not due to inaccuracy of our model, but rather due to scalability problems of



the database machine, which is not powerful enough to handle the new workload
while satisfying the original SLAs. Hence, we are confident that given a more
powerful database, the SLAs would be satisfied. The way this problem would be
addressed in practice would be to either scale the database or renegotiate the
SLAs. As both solutions can be handled with our online performance prediction
mechanism, we plan to extend our approach with this solution in the future.

Resource Usage and Efficiency: After evaluating the functionality of our ap-
proach, this section discusses its benefits. Imagine a workload distribution over
seven days like the one depicted in Figure 2. In a static scenario, one would as-
sign three dedicated servers to guarantee the SLAs for the peak load. However,
with our approach one can dynamically assign the system resources. In the static
scenario, one would use three servers for seven days, whereas our approach needs
only 1+2+3+2+3+1+1 = 13 server days. Hence, in such a scenario, only 62%
of the resources of the static assignment are needed and thereby almost 40% of
the resources available can be saved.

Figure 2. Assigned capacity and servers for a workload distribution over seven days.

2.3 Conclusions

This case study on self-adaptive resource management demonstrates that archi-
tecture-level performance models in combination with resource allocation algo-
rithms can be applied to react to changes during runtime. It shows that it is
possible to achieve elastic capacity management while satisfying specified SLAs.
Exemplary, we showed how the system reacts on changes in the workload and
how such an approach can save up to 40% of the resources. Also important to
note is that this case study demonstrates that architecture-level performance
models can be used effectively at runtime to support self-adaptiveness.

3 Case Study: Balancing Performance and Dependability

Tradeoffs

Availability and responsiveness are crucial, although often conflicting, require-
ments for the multitier applications that implement critical business functional-



ity for many enterprises. Ensuring high availability requires the applications to be
deployed with sufficient redundancy, potentially spanning several data centers.
Today, large geographically dispersed hosting facilities provided by leading cloud
computing providers have made wide area deployments practical for even low
to medium scale applications. However, with such dispersion come consistency
and synchronization overheads, and applications must often pay a performance
penalty as a result. In traditional static deployments, application designers of-
ten tune such availability and performance tradeoffs manually after taking into
consideration application architectures, workloads, and requirements.

However, shared infrastructures such as compute clouds necessitate a re-
thinking of static deployment schemes. For example, resource contention might
require relocation of applications to another machine rack, cluster, or even an-
other data center. Additionally, current trends in system and data center design
emphasize the use of large numbers of machines running cheap, less reliable com-
modity components that can fail often. For example, Google reported an average
of 1000 node failures/yr in their typical 1800 node cluster for a cluster MTBF
of 8.76 hours [13]. At the same time, skilled manpower is quickly becoming the
most expensive resource, thus encouraging data center operators to batch re-
pairs and replacement, thus increasing MTTR. in the process. In fact, portable
“data-center in a box” designs (e.g., [21]) that contain tightly packed individual
components that are completely non-serviceable, i.e., with an infinite MTTR,
are emerging.

These trends imply that applications will run in increasingly dynamic en-
vironments in which parts of the infrastructure are in a failed state and static
solutions to availability and performance tradeoffs will no longer suffice. However,
dynamic solutions that redeploy multitier applications are challenging because
they must not only balance availability against performance, but they must also
factor in resource allocation between competing applications. Poor placement
of a critical resource such as a database server may cause it to be a bottleneck
for the whole application and as a result, the hosts where other tiers of the
application are placed may become underutilized.

In this study, we show how online performance and availability models can
be used to address these challenges and drive dynamic multitier application
redeployment in the event of failures so as to minimize performance degradation
while maintaining availability constraints. We build an online controller based
on the models that regenerates the affected software components across clusters
or data centers in the event of infrastructure failures, and reconfigures the entire
system to run optimally on the remaining resources. Using simulation and fault
injection studies, we show that this approach can provide high availability with
far fewer resources than traditional approaches.

3.1 Performance and Availability Models

We consider a consolidated data-center environment in which a set of multitier
applications A are deployed on a set of physical hosts H located in a number of
data centers. The hosts are organized into racks, clusters, and data centers in a
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Figure 3. Resource levels example and approach overview.

resource hierarchy (R,≤R), where R is the set of “resource groups” (i.e., machine,
rack, cluster, data-center) and ≤R specifies a direct hosting relationship between
the groups, e.g., Host1 ≤R Rack1 ≤R DataCenter1. The hosting relation ≤∗

R is
the transitive closure of ≤R, e.g., Host1 ≤∗

R DataCenter1 indicates that Host1
is directly or indirectly hosted in DataCenter1. Figure 3(a) shows an example
resource hierarchy with 20 machines distributed across four racks in two data
centers. Two resource groups are said to be at the same “level” rl ∈ RL if they
are of the same type, e.g., Rack1 and Rack2. The example in the figure has three
levels.

Hosts are interconnected by a data center network and the network latency
between hosts depends on how close they are to one another in the hierarchy, i.e.,
hosts placed in the same rack have a lower network latency between them than
hosts across different racks, which have a lower latency than hosts in different
data centers. We denote by L(rl) the maximum latency between two hosts sepa-
rated at resource level rl. Finally, we denote the mean time between failures for
each resource group r by MTBFr. In general, MTBF increases with increasing
resource level, i.e., MTBF for hosts is smaller than MTBF for a rack, which is
smaller still than the MTBF for an entire data center.

Each application a consists of a set Na of component types (e.g., web server,
database), each of which contains several replicated components to avoid single
points of failure. Each application a may support multiple transaction types Ta.
For example, the RUBiS [10] auction site benchmark used in our testbed has
transactions that correspond to login, profile, browsing, searching, buying, and
selling. Each transaction can initiate a sequence of function calls between appli-
cation components. The application’s workload wa is given by a vector of request
rates wt

a for its transactions. Each application-component replica executes in its
own virtual machine (VM) [2] on a physical host anywhere in the resource hi-
erarchy that it can share with other VMs. Each VM is allocated a share of the
host’s CPU capacity that is enforced by Xen’s credit-based scheduler.

Availability Models. We consider an application to be available when at least
one replica of each component is running on an operational machine, and define



availability as the fraction of time the application is available. A replication level
of at least two for each of the application’s component types is necessary to avoid
single points of failure, but not always sufficient. If all replicas of the same type
are contained within a single resource tier, e.g., a rack, then a failure of that
tier causes application failure. Therefore, we allow each application to specify
its desired availability and use information about the system’s recovery policy
codified by the MTTR to calculate the application’s minimum desired “mean
time between failures”, or MTBFa as: MTBFa ≥

Availabilitya·MTTR
1−Availabilitya

.
We can now calculate the application’s actual MTBF for a given placement

of its components across the resource hierarchy. Assume that each resource
group r fails independently according to a Poisson failure process with rate
λr = 1/MTBFr and each failure disables all the application components the
group contains. If the replication level of any application component type drops
to zero as a result of a resource failure, then the application fails. For each of
application a’s component types na, let rmax(na) be the highest level resource
group such that all replicas of na are contained in that resource group. E.g.,
if an application’s database had 2 replicas hosted in DataCenter1:Rack1:Host1
and DataCenter1:Rack2:Host3, then rmax(dba) = DataCenter1. Only failures at
resource levels rmax(na) or higher will cause an application failure by causing
the replication level of the component type na to fall to zero.

Under these assumptions, the overall failure arrival process is also Poisson
with rate

∑

r∈R λr. A failure event affects resource group r with probability
λr/

∑

r∈R λr, and causes application a to fail if r is such that there is at least
one component type na with a value of rmax(na) that is lower than r. I.e.,
rmax(na) ≤∗

R r (Condition 1). Since this condition only filter resource groups,
the application failure process is also Poisson with a rate equal to the sum of
λr over resource groups for which condition 1 is true. rmax(na) depends only
the exact system configuration, so the application failure process has a constant
rate until the system is reconfigured by the controller. Thus, the MTBF for
application a in a system configuration c is given by:

MTBFa(c) =
(

∑

∀r∈R s.t. ∃na∈Na

s.t. rmax(na)≤∗

R
r

MTBF−1
r

)−1

(1)

This equation assumes that no additional failures occur in the time window
between the first failure and the time the controller finishes reconfiguring the
system. While this is not strictly true, it is a reasonable assumption because the
reconfiguration actions (VM instantiation, migration, CPU capacity changes)
are very short compared to typical resource MTBF values.

Performance Models. To quantify the performance of alternative system con-
figurations, we construct application models using the layered queuing network
modeling formalism [31] to predict the response times of application transac-
tions and the corresponding resource utilization demands for each replica for
a given workload and system configuration (i.e., the CPU capacity assigned to
each application VM). Each application component is modeled as a FCFS queue,



while hardware resources (e.g., CPU and disk) are modeled as processor sharing
(PS) queues. Interactions between tiers triggered by a transaction are modeled
as synchronous calls in the queuing network, and our models also account for the
resource sharing overhead imposed by Xen. The parameters for models (e.g., per-
transaction service time at each queue) are measured in an offline measurement
phase, where each application is instrumented using system call interception.
Then, delays between incoming and outgoing messages are measured per trans-
action. Details of the LQN models and their validation can be found in [24].

We compute the application’s mean response time in a new configuration as
the sum of the response time RT (a, t) of each transaction t weighted by the frac-
tion γ(a, t) of the transaction in the application’s workload mix. The response
time degradation in a potential new configuration is simply the difference be-
tween the predicted mean response time in the new configuration and the mean
response time in the original configuration before the failure.

3.2 Online Optimization Algorithm

Our approach, as shown in Figure 3(b), is realized by a runtime controller that
monitors the system and which, when a failure or recovery occurs, reconfigures
all applications. To do so, it uses standard virtual machine techniques - it can
either migrate each application component’s VM to another host, or change the
CPU share allocated to the VM on its current host. The controller chooses ac-
tions that minimize the mean performance degradation (across all applications)
as a result of the failure while still maintaining the desired level of replication and
application MTBF (Equation 1). It has to balance several factors in doing so.
Maximizing performance dictates that application components be placed close
to one another to minimize the impact of network latency, but packing compo-
nents too closely (e.g., on the same machine) may actually degrade performance
by forcing VMs to use less CPU resources than they require. Additionally, ap-
plications requiring high levels of reliability will have to be distributed across
higher resource levels to prevent single failures from impacting multiple replicas.

The optimization is carried out over the large space of all possible system
configurations c ∈ C, each of which specifies: (a) the assignment of each replica
nk to a physical host c.host(nk), and (b) the CPU share cap c.cap(nk). The CPU
cap c.cap(nk) allocated to a replica impacts it’s processing speed, and thus the
application’s end-to-end performance. However, for a fixed CPU cap, the choice
of machine on which to host a component only depends on the network latency of
the machine to the locations of the other application components. Furthermore,
according to our definition of L(rl) in Section 3.1, the network latency is a
function of the resource level rather than individual resources. For example, a
resource level of “rack” would require placement of replicas of the same type
across different hosts in the same rack, while a resource level of “whole system”
would entail placing the replicas on hosts in different data centers.

The optimization algorithm determines the values of the parameters that
affect application performance (CPU cap, resource level) by using a gradient
descent search to minimize performance degradation. The algorithm starts with



the maximum value of CPU cap (i.e., 1.0) for every replica and the lowest per-
missible resource level for each tier such that the application’s MTBF given by
equation 1 is higher than the application’s desired MTBF. Once an initial value
for the parameters is chosen for every replica, the algorithm attempts to fit the
replicas into the available resources using a bin-packing algorithm that respects
each replica’s choice of resource level and uses the CPU cap as the “volume” of the
replica. If a fit cannot be found, the algorithm executes an additional iteration of
the gradient descent to either choose to lower the value of the CPU cap of a single
replica to reduce CPU requirements, or to increase the resource levels of a single
application tier to increase the flexibility the bin-packer has when distributing
replicas. The option (which application, which tier, and whether to reduce the
CPU cap or increase the resource level) that results in the least amount of per-
formance degradation is chosen. The LQNS queuing model described above is
used to estimate the performance degradation in the new configuration. The
bin-packing is attempted again and the process repeats until a successful fit in
the available resources is found. More details of the optimization algorithm can
be found in.

Upon finding a successful fit, the optimizer calculates the difference between
the original configuration and new configuration for each replica, and returns
the set of actions (migrate VM, adjust CPU cap, re-instantiate VM) needed to
affect the change. The durations of these actions are relatively short compared
to typical MTBF values, and range from a few milliseconds to a few minutes at
most. Furthermore, they can be performed without causing VM downtime [12].

3.3 Simulation based Evaluation

In this section, we present simulation results using a simulator written in the
Java based SSJ framework [26]. The target application for the experiments is
the RUBiS online auction benchmark. We created the LQNS model using offline
measurements from [24] and execute the model using transaction workload rates
representing user behavior according to the “browsing mix” defined by the RUBiS
test client generator.

We compare our approach (Opt) with two reference strategies: a) the Static
strategy that relies on design redundancy to tolerate failures, and b) the “least
loaded” (LL) strategy that reinstantiates each failed replica (VM) in the order
of decreasing CPU utilization on the least loaded host within the same level
of the resource hierarchy. The utilization of the target host is then updated to
take into account the reinstantiated VM before choosing a host for the next
failed VM. Once the VMs have been reassigned, the controller reallocates the
CPU capacities to the VMs on each host proportional to their measured CPU
utilization with a lower bound of 10% CPU. When a host is recovered/replaced,
LL migrates the original VMs running on the host before it failed from their
current locations back to the host.

We simulate the three strategies in a cloud setup consisting of two data
centers with three clusters each, 3 racks in each cluster, and 4 machines in
each rack. The communication delays between two machines in a rack are D,
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Figure 4. Simulation results.

while those between machines in different racks, clusters, and data centers are
1.5D, 2D, and 2.5D, respectively. The setup hosts 6 instances of RUBiS: 3 gold
instances each with a weight of 5 (Equation 1) and 3 silver instances with a weight
of 1 (Equation 1). For all instances, each of the three tiers is replicated twice.
The gold instances offer higher availability and require tiers to be replicated at-
least across separate clusters, while the silver application tiers can be replicated
across racks in the same cluster. The workload is set to 30 and 60 requests/sec
for the gold and silver instances, respectively. Each VM is initially allocated 80%
of one physical CPU.

For each strategy, we run fault injection experiments in which failures are
simulated at different levels of the hierarchy (i.e., data center, cluster, rack,
host) using a Poisson process with different failure and repair rates. Specifically,
if the MTBF and MTTR on the host-level are Mf and Mr, then at the rack,
cluster, and data center levels they are 4Mf and 4Mr, 16Mf and 16Mr, and
160Mf and 160Mr, respectively. To make the results applicable for systems with
different MTBFs and MTTRs, we report all times normalized to the host-level
MTBF Mf , which was set to 1.0, For repair, we vary the per host relative MTTR
from 0.1 to 1, indicating that repair takes from 10% to 100% of the MTBF. Each
simulation runs for a normalized time period of 10 (i.e., 10 failures per run on
the average), and we repeat each experiment 10 times. For each experiment, we
calculate both the availability of the system and the performance degradation.

Figure 4(a) shows the unavailability of the system as a function of the rel-
ative MTTR. Both the Opt and LL strategies achieve 100% availability, while
the unavailability of the Static strategy increases significantly with the relative
MTTR. Since both LL and Opt regenerate VMs as soon as a failure occurs, this
result is expected. In practice, both strategies may not achieve 100% availability
for two reasons. First, the controllers require time to make a reconfiguration
decision after a failure event and second, instantiation of new VMs is not in-
stantaneous. During both intervals, the system may be vulnerable to additional
failures. Fortunately, both windows are very short compared to typical MTBF
values in practice.



Figure 4(b) shows the mean performance degradation D of the applications
computed over the period that they are available vs. the MTTR. The results
show that in some cases LL does not perform much better than Static. This is
because if a set of hosts (a whole rack, cluster, or data center) fails and the failed
hosts contain the VMs of the silver applications, it may be better to do nothing
(i.e., Static) than reallocating those VMs to machines that are running Gold
instances (which have a higher impact on the weighted mean response time) and
slowing them down. LL also cannot determine which components are bottlenecks
and often makes decisions based on small differences in host CPU utilizations
(since all of them are high). It can end up co-locating a regenerated VM with a
bottleneck resource, thereby greatly degrading the response time. On the other
hand, the Opt strategy can avoid these bottlenecks using its queuing model,
and performs significantly better than both Static and LL by exhibiting little
performance degradation even at high relative MTTR values.

3.4 Fault Injection based Evaluation

Next, we experimentally evaluate the Opt, Static, and LL strategies using fault
injection experiments on a system subjected to actual failures and a realistic
workload. Our testbed contains 10 machines divided into two racks of 5 each.
Each host has an Intel Pentium 4 1.80GHz processor, 1 GB RAM, and a 100 Mb
Ethernet interface and runs Linux kernel 2.6.18 guest OS VMs on an open-source
Xen version 3.2.0 hypervisor. The controller is run on a separate server.

The hosted applications are two instances of the 3-tier servlet version of RU-
BiS running on an Apache 2.0.54 webserver, a Tomcat 5.0.28 application server,
and MySQL 3.23.58 database. Each tier has two replicas, and each replica runs
in its own VM for a total of 12 VMs. Replicas for the same tier are constrained to
run in different racks. In the initial configuration, the VMs hosting the Tomcat
and MySQL replicas are allocated 80% of a physical CPU capacity and the VMs
hosting Apache replicas are allocated 40% of a physical CPU capacity. For the
Static strategy, the placement and the capacity allocation of the VMs remains
the same throughout the experiment, while the Opt and LL strategies adjust the
location and capacity allocation of the VMs based on the workload at the time
of the failure.

The applications are subjected to the workloads shown in Figure 5(a). These
traces are produced by a user emulator that simulates actual users using a semi-
Markov model. Each state of semi-Markov model corresponds to a single trans-
action. Transitions between states s′ → s′′ encode the probability that a user
issues the transaction destination transaction s′′ after visiting the source page s′.
The user is assumed to spend a normally distributed amount of random “think
time” between every consecutive transaction. The number of concurrent users
at any given time varies, and we obtain these variations from actual user traces
from publicly available web-site logs [1, 14].

Both individual host and rack failures (i.e., a correlated failure of all ma-
chines in a rack due to a common cause such as power supply or switch/router)
are injected. In each run, a single failure is injected at a random time instant
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Figure 5. Cloud simulation results.

and the mean response time of the applications before and after the injection
and reconfiguration is measured to calculate the performance degradation. Each
strategy is subjected to failures at the same time instant and workload and the
mean performance degradation across all transactions is reported. The results
for one of the RUBiS instances are shown in Figure 5(b). Across all failures,
the average performance degradation for the Static and LL strategies is 46%
and 47%, respectively, while it is only 9.5% for the Opt. controller. The gap
between Static and LL is small because the initial configuration has no single
point of failure, and the relatively light workload allows the Static approach to
operate after a single failure without requiring VM regeneration. The large dif-
ferences between Opt. and LL demonstrate the benefits of taking performance
bottlenecks into account during reconfiguration. The Opt. controller has very
low degradation even when entire racks fail.

3.5 Conclusion

In this study, we have examined how online controllers can be constructed to
optimize multitier application placements by balancing performance and avail-
ability tradeoffs. We use component redundancy to tolerate single machine fail-
ures, virtual machine cloning to restore component redundancy whenever ma-
chine failures occur, and smart component placement based on performance and
availability models to minimize the resulting performance degradation. Experi-
mental results show that the proposed approach provides improved performance
than classical approaches.



4 Computational and Communication Scalability of EC2

Stochastic models of real-life computer and communication systems allow en-
gineers to analyse the correctness and performance of such systems at design
time. This allows for problems to be detected and choices to be investigated
much more quickly and cheaply than if such investigations are delayed until
after the system has been implemented. Markov chains are one of the most
commonly-encountered modelling formalisms, but to capture even the most es-
sential behaviour of a real-life system may require a Markov chain with many
millions of states. The analysis of such chains will require the combined compute
power and memory capacity of a number of computers in parallel; for example,
see [4,6,8,18,20,22,27,30]. Typical quantities of interest are long-run or steady-

state probability distributions and the distributions of response times between
specified initial and goal states.

To exploit the power of these implementations, the user is typically required
to possess a dedicated computational cluster or network of workstations. Such
hardware is, however, expensive to buy and to run, requires sufficient space with
associated power and cooling to house it, and staff to maintain it. With the ever-
present pressure on academic research budgets, it is conceivable that individual
research groups will struggle to continue to acquire such resources for themselves.
Cloud computing holds the promise of dramatically reducing these overheads.

A key concern in using existing performance analysis tools in the cloud is how
well those tools themselves perform in this environment, as their performance in
this shared environment could well differ from their performance on dedicated
hardware. Cloud computing offers the ability to make use of large numbers of
processors far more cheaply than we could ourselves own, but if our tools cannot
efficiently use these extra resources then they will need either to be modified or
to be replaced with tools that can.

In this section we study the scalability of two of our previously-presented per-
formance analysis tools: a Laplace transform-based response time analyser [16]
and the HYpergraph-based Distributed Response-time Analyser (HYDRA) [17,
18]. Both tools calculate the full distributions of response times in Continuous
Time Markov Chains (CTMCs), which can then be used to reason about a wide
range of performance requirements in formal models of systems.

We compare the two tools’ scalabilities in a cloud computing environment
(Amazon EC2) and a variety of traditional environments in the context of a
case study analysis of a CTMC model. We expect that the Laplace transform-
based tool will scale well in all environments because of the minimal amount of
interprocessor communication that it requires, but that HYDRA may suffer in
environments with limited network bandwidth despite the fact that it employs
a data partitioning scheme that minimises interprocessor communication.

4.1 Performance Analysis Tools

We will study the scalability of two previously-presented performance analysis
tools: a Laplace transform inverter [16] and the HYpergraph-based Distributed



Response-time Analyser (HYDRA) [17,18]. Although the core computation car-
ried out by both tools is repeated sparse matrix–vector multiplication, the way
in which they parallelise the problem is different and consequently they place
very different communication loads on the network.

Laplace Transform Inverter The distributed Laplace transform inverter is
written in C++ and uses the Message Passing Interface (MPI) [19] standard, so
it is portable to a wide variety of parallel computers and workstation clusters. It
features a master-slave architecture that ensures a good load balance and very
high utilisation of slave processors. In addition, there is no inter-slave commu-
nication and the amount of master-slave communication is low. We therefore
expect this tool to exhibit good scalability.

HYDRA HYDRA is also implemented in C++ and uses MPI. The key op-
portunity for parallelism in HYDRA is in the repeated sparse matrix–vector
multiplications that form the core of the implemented algorithm. To perform
these operations efficiently in parallel it is necessary to map the non-zero ma-
trix elements onto processors such that the computational load is balanced and
communication between processors is minimised. To achieve this, we use hyper-
graph partitioning to assign matrix rows and corresponding vector elements to
processors [9]. Our previous work has observed that this gives HYDRA good
scalability on both parallel computers with fast interconnection networks and
also on networks of workstations connected via switched Ethernet [17, 18].

4.2 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (Amazon EC2) is a service that allows users
both to purchase computing resources on-demand and also to reserve them to
guarantee availability in the future. Central to EC2 are Amazon Machine Images
(AMIs), which are instantiations of the Linux or Windows operating system that
are brought into being by the user and run as virtual machines. Amazon have a
range of standard AMIs, based on Windows and various versions of Linux, that
come pre-installed with commonly-used packages as well as providing tools to
enable users to build their own AMIs containing exactly the applications and
packages that they require.

Both of our tools described in the previous section require MPI and, although
none of the standard Amazon AMIs include this, there is a user-produced AMI
that does [28, 29]. This AMI costs $0.085 per instance per hour,6 and is only
available in the US-N. Virginia region of EC2. Similarly, although Amazon has
recently released a dedicated Cluster Compute image (Cluster Compute Quadru-
ple Extra Large, or cc1.4xlarge) with access to 10Gbps Ethernet interconnec-
tion, this image does not come with MPI installed as standard. By following the
publicly-available instructions of [28], however, we were able to create our own

6 See http://aws.amazon.com/ec2/pricing/ for a full list of rates.



custom Cluster Compute image that included MPI. It costs $1.60 per instances
per hour to run and is also only available in the US-N. Virginia region.

4.3 Results

Name Type CPU RAM Network

PC (2004) Workstation Intel Pentium 4 2.0GHz 512MB 100Mbps Ethernet
PC (2010) Workstation Intel Core2 Duo 3.0GHz 4GB 1Gbps Ethernet
Camelot Cluster Opteron dual-core 2.2GHz 8GB 2.5Gbps Infiniband
Amazon EC2 Small Instance c. Opteron 1.0-1.2GHz 1.7GB Unknown

Table 1. Summary of the four architectures on which the Laplace transform inversion
tool was executed.

PC (2004) PC (2010) Camelot Amazon
p T Sp Ep T Sp Ep T Sp Ep T Sp Ep

1 5 096.0 1.0 1.0 1 190.5 1.00 1.00 4 181.3 1.00 1.00 2 835.9 1.00 1.00
2 2 582.6 1.97 0.99 592.4 2.00 1.00 2 149.1 1.95 0.97 1 522.4 1.86 0.93
4 1 298.4 3.92 0.98 301.4 3.95 0.99 1 083.1 3.86 0.97 776.2 3.65 0.91
8 675.8 7.54 0.94 150.9 7.89 0.99 587.6 7.12 0.89 422.7 6.71 0.83
16 398.4 12.79 0.80 78.0 15.26 0.95 350.3 11.94 0.75 218.8 12.96 0.81

Table 2. Average run-times in seconds (T), speed-ups (Sp) and efficiencies (Ep) for p-
processor response time density calculations in a 537 768 state model using the Laplace
transform inversion tool.

Laplace Transform Inverter These results are presented for four architec-
tures and are reproduced from [15] to provide a basis for comparison with the
new results in the next section. Tab. 1 summarises the processor speeds, main
memory and network bandwidths of the four architectures. Tab. 2 shows the
run-times, speed-ups and efficiencies for the calculation of response time densi-
ties on p processors for a 537 768 state model. Corresponding graphs of speed-up
and efficiency are shown in Fig. 6. Note that run-times are averages of 5 runs.

We expect the Laplace transform tool to exhibit good scalability as there
is very little inter-processor communication, and this is shown to be the case.
Indeed, it is noticeable that on EC2 the speed-up trend is almost linear, which
suggests that the master-slave architecture with minimal intercommunication is
an appropriate design for cloud-based parallel tools.

HYDRA These results are presented for five architectures, four of which are
reproduced from [15]. Tab. 3 summarises the processor speeds, main memory
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Figure 6. Speed-up and efficiency graphs for p-processor response time density calcu-
lations in a 537 768 state model using the Laplace transform inversion tool.

Name Type CPU RAM Network

AP3000 Distributed-memory UltraSparc 300MHz 256MB 520Mbps mesh
parallel computer

PC (2010) Workstation Intel Core2 Duo 3.0GHz 4GB 1Gbps Ethernet
Camelot Cluster Opteron dual-core 2.2GHz 8GB 2.5Gbps Infiniband
Amazon EC2 Small Instance c. Opteron 1.0-1.2GHz 1.7GB Unknown

Amazon CC EC2 Compute Cluster Xeon quad-core 2.93GHz 23GB 10Gbps Ethernet
Table 3. Summary of the five architectures on which HYDRA was executed.



AP3000 PC (2010) Camelot Amazon Amazon CC
p T Sp Ep T Sp Ep T Sp Ep T Sp Ep T Sp Ep

1 1 243.3 1.00 1.00 76.8 1.00 1.00 178.1 1.00 1.00 112.5 1.00 1.00 61.77 1.00 1.00
2 630.5 1.97 0.99 43.5 1.76 0.88 98.7 1.81 0.90 166.2 0.68 0.34 31.05 1.99 0.99
4 328.2 3.78 0.95 23.2 3.31 0.83 87.9 2.03 0.51 104.8 1.07 0.27 19.25 3.21 0.80
8 182.3 6.82 0.85 15.5 4.94 0.62 48.2 3.70 0.46 86.3 1.30 0.16 12.26 5.04 0.63
16 99.7 12.47 0.78 7.2 10.72 0.67 26.8 6.65 0.42 123.4 0.91 0.06 8.94 6.91 0.43

Table 4. Average run-times in seconds (T), speed-ups (Sp) and efficiencies (Ep) for p-
processor response time density calculations in a 1 639 440 state model using HYDRA.
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Figure 7. Speed-up and efficiency graphs for p-processor response time density calcu-
lations in a 1 639 440 state model using HYDRA.



and network bandwidths of the five architectures. As parallel sparse matrix–
vector multiplication potentially requires a great deal of data to be exchanged
at each iteration of the solution, we also investigate HYDRA’s scalability when
executed on Amazon’s Compute Cluster instances. In an effort to ensure that
we the effect of the network is included in our results, we used two instances for
all values of p > 1, with at least one process assigned to each instance.

Tab. 4 shows the run-times, speed-ups and efficiencies for the calculation
of response time densities on p processors for a 1 639 440 state model. Corre-
sponding graphs of speed-up and efficiency are shown in Fig. 7. Once again,
these run-times were averaged over 5 runs. Although the use of hypergraph par-
titioning minimises the amount of data that must be sent, we observe that the
speed-ups achieved are accordingly lower than for the Laplace transformer in-
verter. We also observe that the scalability of HYDRA on the standard Amazon
EC2 instances is the worst of all five architectures. Although we expected the
speed-up and efficiency to be lower than on the dedicated hardware platforms,
it is still very surprising to see just how badly HYDRA fares in the cloud.

1 2 4 8 16

Amazon $0.09 $0.17 $0.34 $0.68 $1.36
Amazon CC $1.60 $3.20 $3.20 $3.20 $3.20

Table 5. Average costs (to the nearest whole cent) for HYDRA execution.

The interconnection of the Cluster Compute instances clearly provides far
higher bandwidth than the network connecting standard EC2 instances, and as
a result HYDRA’s scalability on these AMIs is much more in line with that
experienced in dedicated HPC environments. This higher performance comes at
increased cost, however, as can be seen from Tab. 5. Note that Amazon charges
by the hour and that each Cluster Compute image provides 8 CPUs (hence why
only two are required to run 16 HYDRA processes).

4.4 Conclusion

We observed that the Laplace transform tool scaled much better in the cloud
than HYDRA, but that HYDRA’s scalability improved dramatically when it was
executed on Amazon’s new Cluster Compute instances. This suggests that there
are now cloud computing services that can rival traditional dedicated HPC envi-
ronments; it should be recalled, however, that these instances were significantly
more expensive than the standard EC2 ones.
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