
Autoscaler Evaluation and Configuration:
A Practitioner’s Guideline (Author Preprint)

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

The definitive version was published in ACM/SPEC ICPE ’23, https://doi.org/10.1145/3578244.3583721.

Martin Straesser
University of Würzburg
Würzburg, Germany

martin.straesser@uni-wuerzburg.de

Simon Eismann
University of Würzburg
Würzburg, Germany

simon.eismann@uni-wuerzburg.de

Jóakim von Kistowski
DATEV eG

Nürnberg, Germany
joakim.vonkistowski@datev.de

André Bauer
University of Würzburg
Würzburg, Germany

andre.bauer@uni-wuerzburg.de

Samuel Kounev
University of Würzburg
Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Autoscalers are indispensable parts of modern cloud deployments
and determine the service quality and cost of a cloud application in
dynamic workloads. The configuration of an autoscaler strongly
influences its performance and is also one of the biggest challenges
and showstoppers for the practical applicability of many research
autoscalers. Many proposed cloud experiment methodologies can
only be partially applied in practice, and many autoscaling papers
use custom evaluation methods and metrics. This paper presents
a practical guideline for obtaining meaningful and interpretable
results on autoscaler performance with reasonable overhead. We
provide step-by-step instructions for defining realistic usage be-
haviors and traffic patterns. We divide the analysis of autoscaler
performance into a qualitative antipattern-based analysis and a
quantitative analysis. To demonstrate the applicability of our guide-
line, we conduct several experiments with a microservice of our
industry partner in a realistic test environment.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization→ Cloud computing; • Ap-
plied computing→ Service-oriented architectures.
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1 INTRODUCTION
Efficiency and reliability are two central characteristics of a suc-
cessful cloud application. In order to ensure these characteristics
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even under fluctuating load, autoscalers adapt supplied resources
dynamically. An increasing number of enterprises are transform-
ing their applications into modern microservice applications and
deploying them in a cloud environment [8]. As a result, more and
more companies are coming into direct contact with the issues of
software performance and autoscaling [5]. The choice of a suitable
production-ready autoscaler, and especially the configuration, is
by no means trivial. Our previous work found that the configura-
tion of autoscalers is complex and influences their performance
significantly [26]. Furthermore, the configuration might differ from
service to service, and due to regular updates, continuous reconfig-
uration and fine-tuning are necessary.

Configuration tuning requires (i) a standardized experiment de-
sign and (ii) metrics and methods for evaluating autoscaler per-
formance. In the literature, there is no widely-used evaluation
methodology; many papers even evaluate their algorithms only
by simulation [24]. For practitioners, it is crucial to get reliable and
explainable information about the performance of an autoscaler
configuration with reasonable effort, i.e., with not too many, too
long measurements. Therefore, measurement methodologies de-
signed for scientists have only limited applicability because of the
enormous effort involved.

This paper presents a comprehensive guideline suited for practi-
tioners using state-of-the-art best practices. Specific requirements
are understandability, from the design of the experiments to the
result analysis, as well as reasonable complexity and effort. We
present step-by-step instructions on usage behavior definition and
traffic pattern selection for autoscaling experiment design. The
analysis of autoscaler performance is divided into two parts. In the
first part, the qualitative analysis, we present seven autoscaling
antipatterns that indicate misconfigurations. We also explain pos-
sible causes and appropriate reconfigurations. In the second part,
the quantitative analysis, we present metrics that can be used to
compare an autoscaler under test against another configuration or
baseline. In all parts of the guideline, we illustrate our statements
with experiments using a business service of our industry partner
that we evaluate in a realistic test environment.

https://doi.org/10.1145/3578244.3583721
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Figure 1: Autoscaler evaluation and reconfiguration process.

The goal of this paper is to give a methodology, primarily for
practitioners, to get a meaningful evaluation of their autoscaling
configuration with reasonable overhead. Moreover, it should mo-
tivate researchers to do structured, standardized evaluations for
their proposed autoscalers. In summary, the contribution of this
paper is twofold:

• We provide a step-by-step methodology for autoscaler eval-
uation and configuration especially tailored to the needs of
practitioners

• We illustrate the applicability of the guideline by performing
a set of experiments with a business microservice application
in a realistic environment

The remainder of this paper is structured as follows: Section 2
presents our test application and setup used as a running example
in the guideline. Section 3 contains the guideline with four major
steps: usage behavior definition, traffic pattern selection, antipat-
tern analysis, and quantitative analysis. We discuss open problems
in the areas of autoscaler evaluation and configuration in Section 4.
In Section 5, we classify our work into research areas and distin-
guish ourselves from existing work, while conclusions are drawn
in Section 6.

2 RUNNING EXAMPLE
Weuse a running example throughout this guideline to illustrate our
proposed methodology. As our test application, we use a business
service from our industry partner DATEV eG with the symbolic
name vacation. It is responsible for operations connected to an
employee’s absence and holiday times. From a technical point of
view, the service offers four endpoints from which three cause
requests to a connected PostgreSQL database, and one retrieves
information from a local information cache. The test application
uses Java and Spring1 as implementation technologies.

The test service is deployed in an environment that mirrors our
industry partner’s technology stack. We use a KubeCF2 cluster, an
open-source and Kubernetes native distribution of the platform-as-
a-service environment CloudFoundry for deployment and scaling.
The autoscaler under test provides the same functionality as the
1https://spring.io/
2https://kubecf.io/

CloudFoundry App Autoscaler,3 a simple reactive autoscaler us-
ing one scaling metric (e.g., CPU, memory), which is evaluated
in fixed periods (e.g., every 60 seconds). The autoscaler uses an
upper and lower threshold for the scaling metric to determine its
decisions. Whenever the scaling metric is above (below) the upper
(lower) threshold, the autoscaler adds (removes) one instance. We
use the HTTP Load Generator4 to send user requests. The load
generator and the PostgreSQL database are deployed on dedicated
machines outside the KubeCF cluster to avoid interference with the
test service.

3 AUTOSCALER EVALUATION AND
CONFIGURATION GUIDELINE

In this section, we describe our autoscaler evaluation and config-
uration guideline. Figure 1 visualizes our proposed process. First,
it is important to design an autoscaling experiment that will pro-
duce meaningful results. Therefore, it is crucial to define a realistic
usage behavior, i.e., which endpoints of the test application users
would request. Afterward, the traffic pattern, i.e., the request rates
over time, has to be selected. After this step, the workload for the
autoscaling experiment is defined, and the measurement can be
executed. The measurement results are analyzed in two steps: a
qualitative analysis based on antipatterns and a quantitative anal-
ysis. Depending on the evaluation outcome, the autoscaler might
be reconfigured, and measurements in the same setup are executed
to test the reconfiguration effects. The process might be repeated
until a proper configuration has been found. In the following, we
describe each proposed step in more detail.

3.1 Usage Behavior Definition
First, we need to ensure that the workload (mix of requests) rep-
resents realistic traffic that the microservice would receive when
deployed in production. This means that the workload needs to con-
tain requests to each endpoint/API implemented by our microser-
vice. Two endpoints of a microservice can induce vastly different
loads; for example, getting a single item from an inventory service
is much faster than getting all items that meet a criterion. However,
3https://github.com/cloudfoundry/app-autoscaler-release
4https://github.com/joakimkistowski/HTTP-Load-Generator

https://spring.io/
https://kubecf.io/
https://github.com/cloudfoundry/app-autoscaler-release
https://github.com/joakimkistowski/HTTP-Load-Generator
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Endpoint Request Type Path Variables Request Parameters Input data in Body Workload Share
/resultdata GET No Yes No 20%
/absences GET Yes Yes No 40%
/absences POST Yes No Yes 20%
/holidays GET No Yes No 20%

Table 1: Endpoints, parameterization, and workload share for the running example.

in practice, the endpoint retrieving all items that match a criterion
will also be accessed far less often than the get single item endpoint.
Therefore, we need to ensure a realistic distribution of requests
between the endpoints of our microservice. Depending on the appli-
cation domain, one might define more than one request distribution
to emulate special situations. For example, a company that updates
its requirements on user account passwords might temporarily get
unusually many requests to a change password endpoint. If such
situations are expected to impact the scaling behavior greatly, they
might be considered in the autoscaler evaluation and configuration
process.

Other factors that influence the load induced by a request are the
parameterization and method body of the request (payload). For
example, the execution time of a resize image endpoint depends
on the size of the image. Therefore, requests during an autoscaling
experiment need to have realistic input values for our microservice.
Any requests that result in reads from a database, such as the
retrieval of product information, should have varying parameters to
avoid unrealistic caching effects. Further, the size of the test dataset
in the database should be realistic, as a SELECT from a table with
hundreds of items performs much faster than with millions of items
in the table.

Step 1: Determine endpoint frequency. Assume an equal
distribution of requests among the endpoints of the microservice
unless domain knowledge or (if applicable) monitoring data from
production suggests that a specific endpoint might be called more or
less frequently. For example, we might model a 3 to 1 ratio between
product pages and purchase requests.

Step 2: Identify relevant request parameters. Identify the
key parameters influencing the performance of each microservice
endpoint based on knowledge about the application. For example,
for an image recoloring endpoint, the size of the image will be im-
pactful, while the target color scheme is unlikely to affect execution
time.

Step 3: Determine request parameterization. Provide best-
effort estimations for the values of the selected key parameters
or derive from production monitoring data. Then, select a small
set of representative inputs that will be used in the load test. For
example, we might assume that small and medium images are the
most common for an uploaded profile picture and use two images
with sizes 200x200 and 400x400.

Running Example
Table 1 shows the four endpoints implemented in the vacation
service from the running example.

Step 1: Determine endpoint frequency. The vacation service
is not yet deployed in production at our industry partner, so we
can not use monitoring data to determine the access frequency of

the endpoints. Based on our domain knowledge, we can expect that
absence times are queried more often than the other functionalities
of the service. Consequently, we estimate that these requests should
occur twice as much as the others.

Step 2: Identify relevant request parameters. After talking
to one of the engineers building the service, we determine that none
of the parameters should significantly influence the performance
of the service as they have a near-constant size and do not impact
the control flow within the service.

Step 3: Determine request parameterization.Most endpoints
have path variables, request parameters, or input data in the request
body that are required to form valid requests. While we did not iden-
tify any of these parameters as particularly performance-relevant,
we still want to provide varying inputs to prevent excessive caching.
Therefore, we decide to define a set of values for the input parame-
ters for each endpoint and then randomly pick for every request a
value from this set.

3.2 Traffic Pattern Selection
After modeling realistic user behavior, we need to select a traffic
pattern, that is, how the number of requests per second changes over
time. Selecting a realistic traffic pattern is important since the same
autoscaling configuration can be suitable for a certain traffic pattern
and unsuitable for a different traffic pattern. Therefore, we must
select a realistic traffic pattern for our autoscaling experiment. For
most human-related traffic, there is a repeated 24h cycle. However,
using a representative 24h cycle during a load test is very time-
intensive — as it takes 24h per experiment. Therefore, we want
to select the most relevant time periods from the daily cycle, e.g.,
when the request rate grows and decreases the fastest, as well as
any significant bursts contained in a typical 24h cycle. The test
environment in which the autoscaling experiments run often has
fewer resources than the production environment. Therefore, we
need to rescale the traffic intensity so that it does not overload
the test environment. The more the test environment mirrors the
production environment, the better the autoscaler evaluation results
can be transferred to the latter. Hence, it is recommended to choose
a test environment with a similar hardware and software stack as
present in production. Our guideline recommends the following
three steps for traffic pattern selection:

Step 1: Select traffic patterns of interest. If the service is
already deployed in production, we can analyze a 24h cycle and de-
termine the segments during which we expect to be most challeng-
ing for the autoscaler. Usually, this means looking at the sharpest
changes (both up and down) in the traffic intensity. If the service
is not in production yet, synthetic workload segments that cover
common autoscaling scenarios, e.g., rising/decreasing intensities or
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bursts, can be used. In Section 3.3, we use four scenarios with syn-
thetic traffic patterns to find autoscaler misconfigurations. In some
use cases, one might also use open-source traces (if available) from
the same domain if similar workloads are expected in production.

Step 2: Estimatemaximum load in a test environment. First,
deploy the maximum number of instances that the autoscaler will
be able to scale up to in the test environment. Then conduct a load
test with a linearly increasing load pattern without autoscaling
activated. Repeat this with increasing numbers of requests per
second until the load driver starts to report timeouts or errors. The
highest load the system could handle without timeouts/errors will
be the estimated maximum load the test environment can process.
This experiment can be repeated multiple times to validate the
estimation and assess performance variability.

Step 3: Rescale the traffic patterns to the maximum load
the test environment can process. To do so, first, determine the
ratio between the maximum number of requests per second the
test environment can handle and the maximum number of requests
per second in the traffic pattern. Then, multiply every request per
second value in the traffic pattern with that ratio.

Running Example
As mentioned earlier, we do not have access to the production data
of our test service. Therefore, we can not use monitoring data to
derive traffic patterns. Instead, we make use of a 24h trace from
IBM [2] (shown in Figure 2a), as this trace is from a similar domain
as our vacation service.

Step 1: Select traffic patterns of interest. As we are not in-
terested in the low load periods overnight and want to pick an
interesting sub-trace for the autoscaling test, we select the 4-hour
span around the lunch break (12pm-4pm). As highlighted in Fig-
ure 2a, it has both a decreasing and increasing load.

Step 2: Estimate maximum load in a test environment.
We perform a load test with linearly increasing load intensity to
estimate the maximum load in our test environment. We deploy five
instances of our test service and then start to stress these instances
with a slowly, linearly increasing workload. We observe that at
around 220 requests per second (req/s), the response time starts to
rise exponentially. Consequently, we estimate the maximum load
to be around 220 req/s.

Step 3: Rescale the traffic patterns to the maximum load
that the test environment can process. To rescale the trace, we
multiply each value in the trace with the ratio of the desired and
actual maximum values. In our case, this ratio 𝑅 evolves as:

𝑅 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑀𝑎𝑥/𝑟𝑒𝑎𝑙𝑀𝑎𝑥 = 220/56574 = 0.00388 .

We nowmultiply every value in our trace with this ratio. In order
to make this trace usable for a load generator, we have to rescale the
time axis as well, as most load generators require arrival rates for
every second. The trace above has a 15-minute difference between
each value. To address this, we oversample the trace above and
use linear interpolation to calculate intermediate values. Figure 2b
shows the resulting trace.
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Figure 2: Traffic pattern selection for the running example.

3.3 Antipattern Analysis
After defining the usage behavior and the traffic pattern selection,
the scaling experiment can be executed. It is important to ensure
that the initial system state is always the same at the start of the
experiment. This means that a warmup may have to be performed,
and database states must be reset. We distinguish two methods
for the experiment analysis: qualitative analysis and quantitative
analysis. In this section, we focus on the first one.

In the qualitative analysis, the visual impression of the scaling
behavior plays the most important role, and the methodology is
based on seven typical antipatterns that can be discovered. These
antipatterns are signs of autoscaler misconfigurations. To evaluate
the performance and scaling behavior of an autoscaler, we check
whether it can handle four simple load scenarios. If antipatterns
occur, they can be recognized clearly in those rather simple set-
tings. In general, the antipattern analysis has two main use cases.
First, we can run dedicated autoscaling test runs with simple traffic
patterns based on the four defined scenarios. The advantage is that
antipatterns are nicely visible, and the results are comprehensive.
Second, antipattern analysis can be used to analyze the autoscaler
performance while running a complex traffic pattern and focusing
only on smaller parts of the experiment. These smaller parts are
then similar to the four basic scenarios. The scenarios, antipatterns,
and potential reasons for each antipattern are summarized in Ta-
ble 2. Note that the potential reasons in this table primarily apply to
horizontal threshold-based autoscaling, which is commonly used in
the area of microservice applications [24, 26]. In the following, we
describe every scenario and the linked antipatterns in more detail
and name options for autoscaler reconfiguration.

Scenario A: Increasing/Decreasing Load. The first scenario
tests whether the autoscaler can sense and react to varying loads.
Therefore, any increasing or decreasing load can be used in this
scenario to see if the autoscaler makes upscaling or downscaling de-
cisions. The expectation is that when violations of the service level
objectives (SLOs) occur, upscaling will occur. For the downscaling
test, the concrete expectation depends on the use case. However,
an autoscaler should remove resources in case of very low or no
load up to a configured minimum.
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Scenario Expected Behavior Antipattern Potential Reasons
𝐴: Increasing/Decreasing Service instances are being (1) No reaction: Neither up- nor down- - Wrong scaling metric
Load added/removed scaling is performed - Bad scaling thresholds

- Technical issues
𝐵: Constant Load No scaling after a (2) Wrong steady state provisioning: No - High upscaling threshold

certain time, SLOs are met scaling actions, but SLO violations - Wrong scaling metric
- Slow service implementation
- Slow dependencies

(3) Jitter: No steady state is reached, - Small desired metric range
repeated scaling - Short scaling period

𝐶: First increasing, Upscaling phase, then (4) Rapid upscaling: Too many instances - Low upscaling threshold
then constant load potential corrections, added, large underutilization - Short scaling period

followed by steady state - Conservative upscaling policy
(5) Slow upscaling: Not enough instances - High upscaling threshold
added, SLO violations occur - Long scaling period

- Upscaling limits enforced
𝐷 : First decreasing, Downscaling phase, then (6) Rapid downscaling: Too many - High downscaling threshold
then constant load steady state instances removed, SLO violations occur - Aggressive downscaling

policy
(7) Slow downscaling: Instances - Low downscaling threshold
hesitantly removed, high costs - Conservative downscaling

policy
- Long scaling period

Table 2: Autoscaling antipatterns.

The first antipattern No reaction captures the behavior when
the autoscaler does not react to varying load and SLO violations.
The possible causes of this misbehavior can be divided into two
groups: misconfiguration of the autoscaler or misconfiguration of
the environment. In the first group, either the scaling metric or
the scaling policy, e.g., up- and downscaling thresholds, may be
misconfigured. If no suitable scaling metric is chosen, the autoscaler
cannot infer overload or underload from the measurements and,
therefore, cannot make any decisions. If the scaling metric is not
the problem but the autoscaler does not react, another reason could
be that the desired metric range, i.e., the interval between the lower
and upper threshold, is too large. Depending on the cause, possible
reconfigurations are the selection of another scaling metric or new
threshold settings.

The second group of possible reasons is technical problems in
the cloud setup. For example, the autoscaler may not receive valid
values as input. This can be especially the case when metrics are
obtained from third-party monitoring frameworks. It has to be
ensured that all required metrics are available to the autoscaler at
regular intervals. Log data from the autoscaler or the monitoring
framework should be used to verify that all components areworking
correctly. Even if this is probably the simplest failure, a test is
worthwhile in practice.

Scenario B: Constant Load. The second scenario covers the
opposite of the first one. With the help of constant load, we test
the stability of the system and our autoscaling mechanism. The ex-
pected behavior is that after a certain settling period, the resources
provided remain constant, and all SLOs are fulfilled.

The second antipatternWrong steady state provisioning describes
the case where the provided resources are stable, but SLO viola-
tions occur. Again, there are two groups of errors: misconfiguration
of the autoscaler or errors in the environment. The first group is
similar to Antipattern 1. A possible cause can be a high upscal-
ing threshold, which leads to the fact that despite SLO violations,
upscaling decisions are not made. Another possible cause is an
unsuitable scaling metric, which prevents the autoscaler from de-
tecting overload or underload. The second group of causes does
not concern the autoscaler itself but the test application and its
environment. This is the case when classical scaling/performance
metrics (e.g., CPU, memory) are all in reasonable ranges, but SLO
violations, usually high response times., are still observed. This can
be due to a poorly performing test application or slow dependencies
(e.g., databases). In this case, not the autoscaler but the test service
and its dependencies must be optimized. If this is not possible, the
definition of the SLOs should be refined.

In the same scenario, it can also happen that no steady state is
reached at all, i.e., even after a long time, up- and downscalings take
place. In this case, we talk about the antipattern Jitter, which has
also been discussed in recent papers [12, 28]. A misconfiguration
of the autoscaler most likely causes the misbehavior. For example,
the allowed range of the scaling metric can be too small. Imagine a
theoretical example with a CPU-based autoscaler with an upscal-
ing threshold of 80% and a downscaling threshold of 50%. If we
now consider one service instance with 85% CPU utilization, our
autoscaler would start a second instance. After the second instance
has started, both instances would theoretically have a CPU utiliza-
tion of less than 50%, assuming the same load level and perfect
distribution. Consequently, this would again lead to a downscaling
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decision in the next interval. Another reason for jitter could be a
short scaling period, where too many decisions are made in a short
time and could cancel each other out. Possible reconfigurations
include adjusting the thresholds and the period and introducing
cooldown times.

Scenario C: Increasing and Constant Load. In this scenario,
the upscaling speed and convergence are tested. The test service is
stressed with an initially increasing and later constant load. The
expected behavior of the autoscaler is that an upscaling phase
is initiated when SLO violations occur. When the load increase
ends, the autoscaler should keep a stable resource allocation in the
shortest possible time without violating any SLOs.

The fourth antipattern Rapid upscaling describes the behavior
when the autoscaler starts too many instances in the upscaling
phase. This leads to the fact that in the constant load phase after-
ward, many instances must be shut down again, and unnecessarily
high costs are created. To counteract this behavior, a reconfigura-
tion of the upscaling policy is necessary. One reason could be that
the autoscaler makes upscaling decisions too early, i.e., the thresh-
old at which upscaling is initiated is too low. A second cause could
be that the autoscaler makes upscaling decisions too quickly, i.e., the
interval between two scaling decisions is too short. A third cause
could be that during a scaling decision, too many new instances are
started at once, i.e., the upscaling policy is too conservative. Depend-
ing on the identified cause, increasing the upscaling threshold or
the scaling period is recommended. As an alternative, introducing a
limit for the number of instances that can be started simultaneously
might be helpful.

Slow upscaling, the opposite of the previous antipattern, is dan-
gerous because it causes unnecessary SLO violations. The reasons
for this are the opposite of those for rapid upscaling. One reason
could be a high upscaling threshold that causes upscaling actions
to be triggered lately. Furthermore, due to a high scaling period,
the frequency of upscaling decisions can be too low to react ap-
propriately to rapidly increasing load. Last but not least, upscaling
limitations can also be the reason that not enough instances can be
created at the same time.

Scenario D: Decreasing and Constant Load. The scenario
for testing the downscaling behavior is analogous to the upscaling
tests. A traffic pattern with initially decreasing and then constant
load is used to stress the test application. The desired behavior of
the autoscaler is a downscaling phase followed by a transition to
the steady state. Optimally, no SLOs should be violated during the
whole process.

The sixth antipattern Rapid downscaling describes the behavior
when the autoscaler removes too many instances during the down-
scaling phase, and SLO violations occur. Specifically, this means that
the application goes from an underloaded state to an overloaded
state due to clumsy scaling. This is one of the most dangerous and
unnecessary misbehaviors because it creates unnecessary SLO vi-
olations and costs, as seen in our running example later on. The
reason for this could be a high downscaling threshold, which causes
the downscaling to start too early. Another reason could be a too-
aggressive downscaling policy, i.e., too many instances are removed
simultaneously. Note that the scaling period is a more unlikely root
cause here than in the upscaling scenario, as a service removal
usually takes less time than a service start. Besides lowering the

downscaling threshold, potential reconfigurations could introduce
downscaling limits and cooldown times.

Our last antipattern Slow downscaling might be the most ac-
ceptable misbehavior depending on the use case. It describes the
situation when the autoscaler removes resources unexpectedly hes-
itantly, and thus the system is heavily underloaded. This leads to
higher costs but not to SLO violations. The reasons are opposite
to the previous antipattern. Thus, choosing a higher downscaling
threshold could force more downscaling decisions. By choosing
a more aggressive downscaling policy, one could remove more
instances concurrently and thus increase the impact of a scaling
decision. Likewise, one could lower the scaling period or cooldown
times to increase the frequency of downscaling decisions. As already
mentioned, a conservative downscaling behavior may be desirable,
especially as it prevents SLO violations in case of unexpected load
increases.

Running Example
In the following, we illustrate one antipattern per scenario with
the vacation service in our realistic test environment. Figure 3
visualizes the deployed number of instances, the traffic pattern, and
the measured response times for all scenarios.

Scenario A.We stress two instances of the vacation service with
a constant load of 10 req/s first and then increase the load directly
to 200 req/s. The service should answer with an average response
time smaller than 4 seconds. We use a memory-based autoscaler
with an upscaling threshold of 80% and a downscaling threshold
of 25%. During the whole experiment, the autoscaler performs no
up- and downscaling. The measured response times are shown in
Figure 3. We see that the service has massive performance problems
with the increased load. The response time rises to 15 seconds, the
configured HTTP timeout.

The memory utilization in Figure 4 shows why the autoscaler did
not come into action. It stays within the desired range (between 25%
and 80%) during the whole experiment. We conclude that memory
utilization is the wrong scaling metric for this service for multiple
reasons. First, the metric does not reflect overutilization clearly. We
see a small increase of about 9% in memory utilization when the
load level changes and the response time rises. However, we see
that there is still enough memory capacity available even for the
high load intensity. Second, we see that memory utilization never
decreases. This is problematic for our threshold-based downscaling
strategy. Therefore, a promising reconfiguration is to try another
scaling metric (e.g., CPU) for this service.

Scenario B.We stress our test service with a constant load of
60 req/s. The service should answer requests with an average re-
sponse time smaller than 2 seconds. We use a CPU-based autoscaler
with an upscaling threshold of 80% and a downscaling threshold of
25%. The autoscaler deploys one service instance during the whole
experiment and performs no up- and downscaling. The measured
response times are shown in Figure 3. We see that the measured
response time is above our target of 2 seconds. The CPU utilization
varies between 31% and 45% during the experiment and is, therefore,
in the desired range. It indicates that the CPU is not a bottleneck
in this case. In the next step, we check for other bottlenecks (e.g.,
memory, network). We find out that none of them appears to be a
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Figure 3: Response times, traffic patterns, and deployed instances for the antipattern analysis.

bottleneck. Consequently, we conclude that external connections,
the test service implementation, or the SLO definition are the root
cause. This is also confirmed by our results for other experiments
in Figure 3, where we observe that the response time does not fall
under the 2-second mark, even for low loads. As a result, we cannot
derive any statements about the autoscaler configuration, as the
autoscaler is not part of the problem here.

Scenario C.We stress our test service with a linearly increasing
load first and a constant load of 200 req/s afterward. We use a CPU-
based autoscaler with a scaling period of 30 seconds, an upscaling
threshold of 80%, and a downscaling threshold of 25%. The number
of deployed instances over time and the load intensity are shown in
Figure 3. We see that, starting at 190 seconds, the autoscaler begins
to deploy one instance in nearly every scaling period and increases
the instance count from 1 to 9. With nine deployed instances, the
system is in an overprovisioned state. This can be seen in two
characteristics in the graph. First, shortly after the maximum load
intensity has been reached, the autoscaler directly scales down,
which means that the average CPU utilization is under 25%, and
the system is clearly underutilized. Second, the autoscaler performs
multiple consecutive downscaling actions until the steady state of
5 instances is reached. In our case, the rapid upscaling behavior
comes from the low scaling period of 30 seconds. The average

readiness time of the vacation service is between 40 and 45 seconds.
The autoscaler tends to add more instances than required because
it makes new decisions before the old ones are executed.

Scenario D. We stress our test service with a linear decreasing
load first and a constant load of 10 req/s afterward. We use a CPU-
based autoscaler with a scaling period of 60 seconds, an upscaling
threshold of 80%, and an aggressive downscaling threshold of 50% to
save costs. The number of deployed instances over time and the load
intensity are shown in Figure 3. It is shown that the autoscaler starts
to remove one instance per minute until the minimum number of
1 is reached. At this point in time, the system is in an overloaded
state, as shown by the response time graph. Consequently, the
autoscaler has to revert its latest decisions and scales up at three
intervals in a row. After that, the system is underutilized again, and
downscaling takes place until a steady state is reached. We see that
rapid downscaling behavior can be dangerous for various reasons.
First, performance problems evolve, and the service quality drops.
Second, unnecessary costs might be created because of upscaling
decisions to correct wrong decisions. We conclude that a lower
downscaling threshold is needed to achieve a safe downscaling
behavior.
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Figure 4: Memory utilization in Scenario A.

3.4 Quantitative Analysis
Qualitative analysis using antipatterns primarily aims to check
whether an autoscaler meets all essential requirements. When using
complex workloads, it is more challenging to evaluate the quality
of an autoscaler only visually. Quantitative analysis metrics are
therefore necessary. In the following section, we present the most
common metrics for this purpose and start with metrics that can
be used to compare two autoscalers or configurations.

SLO violations: One goal of every autoscaler is to enable a specific
level of service quality despite varying workloads. This quality level
is defined by service level objectives (SLOs). In the field of web
services, those are normally defined by upper bounds of response
times, which product requirements might give. A quality measure
of the autoscaler is the ratio of failed requests, which is defined by
the number of slow/failed requests divided by the total number of
sent requests — the lower this ratio, the better the performance of
the autoscaler. Note that this metric considers the load intensity
(total sent requests) but not the temporal evolvement.

Costs: Preventing SLO violations is only one side of the medal.
The autoscaler has to achieve this goal while keeping the costs as
low as possible. Different approaches can be used to quantify the
costs of a service deployment. In general, we multiply the tempo-
ral difference between two scaling decisions with the number of
instances. This is equal to calculating the integral of the deployed
instances over time. This abstract cost measure can be turned easily
into more interpretable units by multiplying a monetary measure,
e.g., dollars per instance second.

Combining costs and SLO violations: The goals of minimizing
costs and SLO violations might be weighted differently depending
on the use case. For example, a core backend service with many
dependencies should have no SLO violations (e.g., high response
times), so cost minimization might be a secondary goal here. On
the other hand, a rarely used legacy service should consume as few
resources as possible, and high response times in some cases are
acceptable. In order to combine costs and SLO violations in one
metric while taking the weight of the goals into account, we can
use a simple scaling performance metric 𝑃𝑤 [26]. 𝑃𝑤 is defined as:

𝑃𝑤 = 𝑤 ·𝑉 + (1 −𝑤) · 𝐶

𝐶𝑚𝑎𝑥
.

Hereby, 𝑉 is the SLO violation ratio, 𝐶 is the total costs, 1/𝐶𝑚𝑎𝑥

is a normalization factor, and 𝑤 is the weight for our goals. The
normalization factor is needed to transform the costs to a value
between 0 and 1. Similar to the costs and SLO violations, the scaling
performance metric 𝑃𝑤 is a lower-is-better metric.
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Figure 5: Comparison between test autoscaler (red) and base-
line (blue) for Scenario C.

Consider the following example, where we compare two config-
urations of an autoscaler. Config A achieves an SLO violation ratio
of 0.2 while having normalized costs of 0.6. Config B has a lower
SLO violation ratio of 0.1 while having higher normalized costs
of 0.8 compared to Config A. If we now assign equal weights to
SLO violation prevention and cost minimization, Config A would
be better with a 𝑃0.5 value of 0.4 (Config B: 0.45). If we put a higher
importance on the SLO violation prevention by setting 𝑤 to 0.7,
then Config B is better with a 𝑃0.7 value of 0.31 (Config A: 0.32).

Metrics for comparing the autoscaler against a baseline: In the
following, we consider metrics where the performance and tem-
poral behavior of the autoscaler are compared against a baseline.
This baseline is often referred to as the demand or desired curve
in the literature, and several methodologies exist to determine this
baseline [4, 14]. BUNGEE [10] uses dedicated benchmarking runs
to determine the maximum load for different numbers of instances.
All methods have in common that they are only an estimate of the
actual demand. The actual demand might depend on many factors
depending on the test application and environment, e.g., user be-
havior, software and hardware technology stack, and co-locations.
Once the baseline is determined, several elasticity metrics [10] can
be calculated, e.g., underprovisioning accuracy and timeshare. The
first is the average amount of resources that are underprovisioned
during the experiment time. The latter is the total time spent in an
underprovisioned state normalized by the experiment time. Analo-
gous measures exist for overprovisioning.

Metrics for quantifying the transient behavior : The following met-
rics do not directly quantify the autoscaler performance but might
still be relevant for tuning the autoscaler configuration. We know
that new instances do not start in zero time, and the performance
of a freshly started instance differs from the performance of an in-
stance that has already handled some minutes of workload. Similar
behavior is known as the cold start phenomenon in the serverless
computing domain [18]. These facts lead to a transient phase af-
ter a scaling decision, where the system behaves differently for a
certain load level than it would in a steady state. To analyze this
transient phase, one might consider classical performance metrics,
e.g., the response time while up- and downscaling or the start time
of a new container. Furthermore, the number of scaling events, i.e.,
how often the autoscaler performed up- or downscaling, might be
an interesting metric, e.g., to quantify jitter. The insights we get
from this analysis can influence the autoscaler configuration. For
example, if our service has a start time of 40 seconds, it makes no
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Metric Value
SLO Violations 0.150
Total Costs 6264
Normalized Costs 0.58
𝑃0.5 0.365
𝑃0.7 0.279
Underprovisioning accuracy 0.014
Underprovisioning timeshare 0.014
Overprovisioning accuracy 1.543
Overprovisioning timeshare 0.475

Table 3: Autoscaling metrics for Scenario C.

sense to have a scaling period of 30 seconds, as the scaling decision
from the previous interval may not have been executed yet.

Running Example
We reuse our example from Scenario C (Antipattern 4) and evaluate
the performance of our test autoscaler. We perform dedicated runs
according to the BUNGEE methodology to determine the baseline
for the comparison. We stress a different number of instances with
different load levels to obtain an estimation of the maximum load
that can be processed without violating our SLOs. The result is a
mapping function that outputs the number of desired instances
for a certain request rate. For further information on the BUNGEE
methodology, refer to the original paper [10]. Figure 5 shows the
behavior of the baseline compared to the test autoscaler. From the
visual impression, we see the test autoscaler scales up rapidly and
therefore tends to overprovision resources. Additionally, we see
a small period around the 200-second mark where the autoscaler
fails to provide enough resources.

Table 3 reports all autoscaling metrics for the experiment. The
normalized costs were calculated by setting𝐶𝑚𝑎𝑥 to 10800 instance
seconds, which would be the costs if nine instances (maximum
instances deployed by autoscaler, see Figure 5) had been deployed
during the whole experiment. We used a response time limit of 4
seconds for the SLO violations, while the service responds within 2-
3 seconds under low load. We see that the overprovisioning metrics
are much higher than the underprovisioning metrics. If we take
the visual impression into account and our knowledge from the
antipattern analysis, we see that the test autoscaler tends to a rapid
upscaling behavior. The accuracy and timing metrics presented in
this section help verify this and allow for quantitative comparison,
e.g., to evaluate a reconfigured version of the autoscaler.

4 OPEN CHALLENGES
This paper presents guidelines that cover both the design and eval-
uation of autoscaling experiments. However, there are still open
challenges in the areas of autoscaling evaluation and configuration
and limitations to this work which we discuss in the following.

Challenge 1: Automating autoscaling experiments.Generally speak-
ing, automatability is crucial for adopting new processes and stan-
dards into practice. Automated autoscaler evaluation and config-
uration require a solution dependent on the targeted cloud envi-
ronment. Hence, we could not make general statements about the
measurement execution, and this is why it is the only step from

Figure 1 that is not covered within this guideline. In general, these
experiments require significant manual efforts. This motivates the
development of a comprehensive framework for autoscaling exper-
iments based on benchmarking best practices.

Challenge 2: Automating autoscaler configuration tuning. In Sec-
tion 3.3, we give hints on which reconfigurations can be applied
based on detected antipatterns. The reconfiguration step and the
choice of refined parameter values require manual effort. Automa-
tion is desirable here, similar to the execution of autoscaling exper-
iments. In general, the problem of automatic configuration can be
approached from two directions. On the one hand, it can be seen as
a continuous process with feedback, like in reinforcement learning.
On the other hand, it can be seen as a classical optimization process
where methods like genetic algorithms could be used to explore the
configuration space. Either way, both approaches require expert
knowledge and possibly many repeated experiments. As discussed
in the next challenge, this raises the question of what costs one is
willing to invest in configuration tuning.

Challenge 3: Assessing costs and benefits of autoscaler tuning. Be-
sides the absence of a universal automation solution for autoscaler
evaluation and configuration, another challenge is the trade-off
between the costs and benefits of autoscaling tuning. Each test run
requires preparation, execution, and post-processing time and con-
sumes significant resources depending on the use case. The question
arises of when to stop the tuning process. Last but not least, there
is not one optimal autoscaling configuration for a service. This is
due to the different characteristics of real-world workloads, e.g.,
bursts and unexpected user behavior. It is, therefore, essential to
define a realistic usage behavior and traffic pattern but also to keep
in mind that, in reality, things can get more complex.

Challenge 4: Tuning ML-based autoscalers. In recent years, au-
toscalers based on machine, deep, or reinforcement learning have
become increasingly popular [24]. While both the antipatterns and
our quantitative metrics are applicable to these types of autoscalers,
the possible reasons for misconfigurations and available reconfigu-
ration options might be different. Our work assumes that upscaling
and downscaling behavior is threshold-based, or at least a policy
is directly adjustable. For ML-based autoscalers, this may not be
the case. Here, the mapping between discovered antipatterns or
bad results to suitable reconfiguration is much more challenging.
The amount and type of training data play an enormous role. This
challenge goes along with the challenge of explainability from
our previous study [26]. For processes with limited explainability,
(automated) reconfigurations are much harder.

Challenge 5: Coordinatingmulti-service autoscaling.Our guideline
focuses on the autoscaler evaluation and configuration concern-
ing a single service. This is also a common focus of many other
papers [24]. A modern application typically consists of multiple
services with complex inter-service communication. Therefore, the
reconfiguration of the autoscaling policy of a single service can
impact the autoscaling behavior of multiple other services. A com-
mon example is bottleneck shifting: Consider a scenario with two
services, X and Y, where X sends requests to Y. Assume that we
detect a rapid upscaling behavior for service Y and fix it by recon-
figuration. Service X could now get problems because Y does not
scale up as fast as before. This is just one example where we see
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that it is crucial to maintain the global view despite service-specific
configurations.

5 RELATEDWORK
In this section, we discuss recent contributions from the areas of
measurement and benchmarking, configuration, and evaluation of
autoscalers.

5.1 Measurement Principles and Autoscaling
Benchmarking

In their papers, Papadopoulos et al. [20] and Schwartzkopf et al. [23]
proposed eight and seven principles for reproducible experiments in
cloud computing, respectively. For supercomputing environments,
Hoefler and Belli [11] suggested 12 principles, and Frachtenberg and
Feitleson [9] discuss 32 pitfalls as well as measurement principles.
In contrast to the aforementioned articles, Leznik et al. [17] and
Vitek and Kalibera [27] elaborate shortcomings of state-of-the-art
experiments. In terms of evaluating or benchmarking autoscalers,
different approaches were proposed. Papadopoulos et al. [19] in-
troduced PEAS that evaluates autoscalers based on simulations.
Another tool for measuring the performance of autoscalers in IaaS
environments was introduced by Jindal et al. [14]. Further tools that
assess the performance of autoscalers automatically are BeCloud [4]
and BUNGEE [10]. In this paper, we propose an autoscaling experi-
ment methodology and evaluation process that is usable in practice.
For this purpose, it is essential to get meaningful and interpretable
results with a reasonable effort. This is the main contrast point
to methodologies with a purely scientific background. Neverthe-
less, we use best practices from generic measurement guidelines
and tailor them to the autoscaling use case while preserving the
applicability in practice.

5.2 Autoscaler Configuration
Finding the most suitable configuration for an autoscaler remains
a trial-and-error task, as the type and meaning of configuration
parameters needed by various approaches are manifold. For in-
stance, rule-based autoscalers require many critical manual set-
tings (at least up- and/or downscaling thresholds) that influence
the performance of the autoscaler massively [1]. More sophisti-
cated approaches require inputs like manually created models [3]
or costs of reconfiguration [21]. Especially hybrid scalers [13, 25]
often require manual parameter or offline tuning. Although rein-
forcement learning-based approaches [15, 22, 29] help to reduce
the configuration overhead, most reinforcement learners assume
a static application and have problems with changes introduced
by updates [7]. In summary, autoscaler configuration is non-trivial
in practice, as every service might need different settings, and
one must understand the configuration parameters’ meaning and
influence on the autoscalers decision logic. In this guideline, we
show seven common antipatterns which can be used to discover
autoscaler misconfigurations. Moreover, we link possible reasons
and reconfigurations to each antipattern.

5.3 Autoscaler Evaluation
Although there are different benchmarks for quality assessment
and comparison of autoscalers, most of the proposed autoscalers

were evaluated in custom experiments. Some approaches were only
simulated on up to four different workloads [6, 13, 16, 25, 29] or built
a custom testbed with up to two different workloads [3, 15, 21, 22],
while using their own quality measures to quantify the performance
of their autoscalers. By using simulation or own metrics or custom
testbeds, the results can be poorly generalized and thus transferred
into practice. In this guideline, we propose to split the result analysis
into two parts. While the qualitative analysis tests whether the
autoscaler fulfills essential requirements using easily reproducible
test setups, the quantitative analysis provides an in-depth look at
the autoscaler performance using well-defined metrics.

6 CONCLUSION
Autoscalers are needed for any cloud application that is exposed
to dynamic workloads. The configuration of an autoscaler has a
massive impact on its performance. It is not trivial for practitioners
to measure the performance of an autoscaler and derive a proper
configuration. This paper presented a comprehensive methodology
and guidelines specifically for practitioners. It allows obtaining
meaningful insights about autoscaler performance with reasonable
overhead.

We propose step-by-step instructions for the design of autoscal-
ing experiments, including usage behavior definition and traffic
pattern selection. The evaluation of the experiment results is divided
into two parts. In the antipattern analysis, the expected behavior is
compared with the actual behavior of the autoscaler in simple sce-
narios. We link every scenario and antipattern to possible reasons
and reconfigurations. In the quantitative analysis, we define a set
of metrics to compare one autoscaler against another autoscaler
or a baseline. Experiments with a microservice from our industry
partner illustrate all steps within this guideline. Furthermore, we
identify open challenges in the areas of autoscaler evaluation and
configuration. All in all, this paper aims to serve as an entry point
to these areas for practitioners. Moreover, it gives researchers an
idea of how a simple yet meaningful evaluation of an autoscaler
might be done.
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