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Abstract—Offering services in the internet requires a de-
pendable operation of the underlying software systems with
guaranteed quality of service. The workload of such systems
typically significantly varies throughout a day and thus leads
to changing resource utilisations. Existing system monitoring
tools often use fixed threshold values to determine if a system
is in an unexpected state. Especially in low load situations,
deviations from the system’s expected behaviour are detected
too late if fixed value thresholds (leveled for peak loads) are
used. In this paper, we present our approach of a workload-
aware performance monitoring process based on performance
prediction techniques. This approach allows early detections of
performance problems before they become critical. We applied
our approach to the e-mail system operated by Germany’s
largest e-mail provider, the 1&1 Internet AG. This case study
demonstrates the applicability of our approach and shows its
accuracy in the predicted resource utilisation with an error of
mostly less than 10%.

Keywords-software; software performance; software archi-
tecture; predictive models; industrial case study

I. INTRODUCTION

The dependable operation of software systems with guar-
anteed quality of service is one of the most important
aspects when hosting large and distributed systems. Due
to the complexity of such systems and the distribution
across several servers, the detection of potential performance
problems like overloaded resources or delayed requests,
is a complex but substantially important activity. In order
to detect such potential problems and malfunctions within
the system and the infrastructure as early as possible, ma-
nagement applications enable a centralised and automated
collection and aggregation of performance indicators like
CPU and network utilisation, the current length of request
queues, or the processing time of requests.

In most systems, the workload induced by users varies
over time. Especially in the case of systems offering services
to end users over the internet, significant variation regarding
the system’s usage depending on the time of day can be
observed [1]. These changes lead to variations within the re-
source utilisation of servers and the system’s response times.
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These load-dependent variations complicate the detection of
anomalies such as “higher CPU utilisation than expected”
that might be indicators for potential performance problems.

Existing monitoring and software management solutions
support the definition of rules and conditions that are eval-
uated at runtime in order to detect potential performance
problems and to identify malfunctions of the system. Most
of these solutions use fixed thresholds as upper or lower
bounds to differentiate between normal system operation and
a potentially problematical system state [2]. However, using
fixed values allows for detecting problems only when the
system is under high load (i.e. the conditions are already
critical or close to critical). In low load situations, deviations
from the expected value and potential malfunctions can
hardly be detected. Some more advanced monitoring systems
already support time-dependent thresholds to handle load
variations. These systems limited to fixed recurring patterns
in the usage of the system and can not handle unexpected
peak loads or other variations in the user behaviour, which
might be caused by uncontrollable factors.

In this paper, we present our approach of a workload-
aware performance monitoring process. We apply model-
based performance prediction techniques to derive the ex-
pected behaviour and resource utilisation induced by the cur-
rent workload. Deviations between predicted and measured
values serve as early indicators of performance abnormalities
for all workload situations. Compared to the use of fixed
threshold values, the detection of unexpected behaviour can
be improved, especially in the case of low load situations.
We describe the application of our method to the e-mail
system operated by the 1&1 Internet AG, which is one of
Europe’s largest e-mail providers. Additionally, this case
study demonstrates and validates the applicability of our
modelling and prediction approach to large and distributed
systems.

The contributions of this paper are: i) A workload-aware
performance monitoring process, ii) the application of our
process to a large industrial case study, iii) the validation
of our prediction approach based on this case study, and
finally, iv) a list of experiences we gained when applying



our approach to this large distributed system. The case study
demonstrates that our approach enables the detection of
deviations from the expected behaviour that would not be
detected using fixed thresholds. Furthermore, we evaluate
the accuracy of the applied prediction technique, showing a
prediction error of less than 10% in most cases.

The remainder of this paper is organised as follows.
Sect. II introduces the foundations of our work including an
overview of the e-mail system operated by the 1&1 Internet
AG and an introduction of our performance prediction
approach. Sect. III describes the workload-aware system
monitoring process. In Sect. IV, we present the application
of our process in the context of the 1&1 e-mail system.
Sect. V presents the evaluation of the prediction accuracy.
In Sect. VI, we summarise the experiences we gained when
applying our method to this large distributed system. Next,
we present an overview of related work and finally conclude
with a brief summary and a discussion of future work.

II. FOUNDATIONS

The following gives an overview of the e-mail system op-
erated by the 1&1 Internet AG, which forms the basis for our
case study. Furthermore, we introduce software performance
engineering in general and the prediction approach Palladio
we applied in our case study in particular.

A. 1&1 E-Mail System

1&1 Internet AG is a brand of the United Internet AG,
which also includes the brands Web.de, GMX, United Inter-
net Media, Fasthosts, InterNetX, AALINK MEDIA, Affilinet,
and Sedo. With over 13 locations, the United Internet AG is
the world’s biggest web hoster and leading domain registrar.
The company is number two in DSL access and the number
one in e-mail services in Germany. The 1&1 e-mail system
is the basis of several national and international e-mail
platforms like GMX, web.de, mail.com and india.com. The
system comprises more than 2,000 servers and provides
services for more than 40 million users in Germany alone.

On the systems back-end, the core functionalities for
e-mail sending, receiving, requesting and persistence are
realised and provided through interfaces like restful HTTP
services, POP3, or IMAP. Further products such as web
clients or mobile mailers are built on top of these inter-
faces. The different internal software components follow
the service-oriented design paradigm. The dimensioning of
the system allows for an individual deployment of each
component on dedicated servers that exist in redundant
instances. Figure 1 illustrates the components that realise the
core-functionality and the number of deployed instances.

In the STORE, folder structures of mailboxes, e-mails
and their attachments are saved. The SERIE and DBFM
databases provide fast access to information about the in-
ternal instances to which single mailboxes are dedicated.
Mail Delivery Agents (MDA) and Mail Transfer Agents
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Figure 1. Back-end software components of the e-mail system

(MTA) are located on the Mail Exchanger (MX) and Mail
Proxy (MP) servers. They are external interfaces of the
system and responsible for sending and receiving e-mails.
For requesting e-mails, external clients connect to the Proxy
servers using IMAP and POP3 requests, which translate
and forward the requests to the STORE servers. Internally
managed clients such as web-based user interfaces and
mobile mailers use the restful HTTP services. Additionally,
several other components for contact-management, virus-
and spam-protection, handling of quotas, trusted e-mails and
other tasks are available.

B. Performance Modelling and Prediction

Over the last fifteen years, a number of approaches
have been proposed for integrating performance prediction
techniques into the software engineering process. Efforts
were initiated with Smith’s seminal work on Software
Performance Engineering (SPE) [3]. Since then, a number
of architecture-level performance meta-models have been
developed by the performance engineering community. The
most prominent examples are the UML SPT profile [4] and
its successor, the UML MARTE profile [5]. Both of them are
extensions of the UML as the de-facto standard modelling
language for software architectures. All approaches have in
common that they aim on the evaluation of the system’s
performance at design time. They support the comparison
of different design alternatives and deployment options.

In model-based quality prediction processes at the ar-
chitecture level as described in [6], the starting point of
this process is a model that describes the software system
itself using an established modelling language such as the
UML. General software models do not include any specific
information regarding the performance characteristics of a
software. This information is added in the next step. If
the system is not implemented yet, the resource demands
are estimated. If an implementation is already available,
for example in the case of a refactoring, measurements of
the system can be used to gather the relevant information
to annotate the model. The annotation can be done using
one of the UML profiles mentioned before or using a
meta-model designed specifically for this purpose, such as
KLAPER [7] or the Palladio Component Model (PCM) [8],
which we selected for our case study. The annotated software
model is used as an input for a transformation into a ded-
icated performance model like layered queueing networks



or queueing Petri nets. This performance model is then
evaluated by analysis or simulation techniques. In a final
step, the prediction results are returned as a feedback related
to the original software model.

C. Falladio Component Model (PCM)

The PCM [8] is a domain-specific modelling language
for component-based software architectures. It supports an
automated transformation of architecture-level performance
models to predictive performance models including layered
queueing networks [9], queueing Petri nets [10] and simula-
tion models [6]. PCM supports the evaluation of different
performance metrics, including response time, maximum
throughput, and resource utilisation. The PCM approach
provides an Eclipse-based modelling and prediction tool
(http://www.palladio-simulator.com). Further details and a
technical description can be found in [11].

The performance of a component-based software system
is influenced by four factors [11]: The implementation of
system components, the performance of external components
used, the deployment platform (e.g., hardware, middleware,
networks), and the system’s usage profile. In the PCM, each
of these factors is modelled in a specific sub-model and
thus can be adapted independently. The composition of these
models forms a PCM instance.

The Repository Model specifies system components and
their behaviour. Components provide and require inter-
faces. The PCM provides a description language, called Re-
sourceDemandingServiceEffectSpecification (RD-SEFF) to
specify the behaviour of the components and their resource
demands. The System Model describes the structure of the
system by interconnecting components via their provided
and required interfaces. In the Allocation Model, system’s
components are allocated to physical resources described
in the Resource Environment. The latter model specifies
the hardware environment the system is executed on (e.g.
servers, processor speed, network links). The Usage Model
describes the workload induced by the system’s end-users.
For example, the workload may specify how many users
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Figure 2. Workload-aware continuous performance monitoring process

access the system, the inter-arrival time of requests, and their
input parameters. Usage profiles within the model represent
individual user behaviours.

Usually, parameter values have an influence on the soft-
ware’s behaviour and thus the resource demands. However,
often it is not possible to explicitly model these dependen-
cies. The PCM offers random variables to abstract such
parameter dependencies. Random variables can be specified
by various probability distribution functions.

III. WORKLOAD-AWARE CONTINUOUS PERFORMANCE
MONITORING PROCESS

The integration of performance predictions into a contin-
uous system monitoring process promises several benefits
compared to the use of fixed thresholds. Performance pre-
dictions consider the influence of the workload on the sys-
tem’s behaviour and resource utilisation. Thus, the predicted
performance metrics vary corresponding to the metrics col-
lected on the running system. If the runtime measurements
correlate with the predictions, the system is in the expected
state. Using workload-aware adaptations of the thresholds
allows for an improved and faster detection of deviations
between measured and expected values. In contrast to the use
of historical data to derive the thresholds and their variation
over time, the presented prediction-based approach can also
be applied in situation when the workload caused by the
users differs from the normal and expected one or in situ-
ations that are not covered by the historical data. Addition-
ally, using architecture-level performance models, allows us
adapting the prediction models to changes of the systems’s
architecture or deployment without re-collecting a large set
of historical data to derive the varying monitoring thresholds.
The detailed prediction results support the system operator in
detecting the root cause. Furthermore, the prediction model
itself can be used by the operator to evaluate the performance
impact and compare different possible counteraction like for
example adding new hardware resources.

In Figure 2, we illustrate our workload-aware continu-
ous performance monitoring process, which consists of the
main activities Model Preparation, Model Calibration, and
Prediction and Comparison. The result of the first two
activities is an initial performance model. This model has
to be specified only once and is used within the fully
automated continuous runtime monitoring represented by
the Prediction and Comparison activity. Each of these main
activities consists of several sub activities, which we describe
in the following.

A. Model Preparation

The aim of this first activity is the creation of a model
describing the system. Therefore, the sub process starts
with the System Analysis sub activity. This includes the
identification of components, their interactions and their be-
haviour. Additionally, it is necessary to identify the available



hardware resources and the deployment of the system on
those resources.

Based on this information, the architecture of the system is
described in the Architecture Modelling step using an archi-
tecture description language like the PCM. This architecture
model consists of the specification of components including
a description of their behaviours as well as the provided
and required interfaces and their connections to build up
the complete system. In the PCM these aspects are covered
within the Repository and System Model.

As a final step of the model preparation activity, the
available hardware resources, namely the different servers
including the available CPUs and storage devices and their
network connections are described. Additionally, the Hard-
ware Modelling includes the specification of the deployment
of system components on available servers.

B. Model Calibration

In order to enable the prediction of resource utilisations
and response times, the behavioural specifications of the
architectural model need to be annotated and calibrated with
resource demands (e.g., amount of data written to disk and
required CPU time). In our case study, we automated the
data collection and analysis. However, depending on the
scenario, it might be necessary to perform these activities
manually. The first sub activity is the Data Collection. Sys-
tematic experiments as proposed in [12] can be conducted
to ease the derivation of dependencies between input param-
eters like the size of an e-mail attachment and the resulting
resource demand. However, such experiments require to set
up an equivalent system. For large systems such as the e-
mail system of 1&1, distributed over hundreds of servers,
this is quite infeasible. In such cases, the calibration needs
to be done using monitoring and log data of the live system.

The collected data often only consists of aggregated
values like the mean resource utilisation, the number of
invocations per second, or the overall CPU time of a spe-
cific component. Based on the collected data, the Resource
Demand Estimation activity is responsible for deriving the
individual resource demands for each operation provided
by a service based on the collected data. Furthermore,
the estimation also includes the analysis of dependencies
between input parameters like the size of an attachment or
the type of request and the induced resource demand.

As part of the Model Annotation activity, the estimated
resource demands including their dependencies on other
parameters are integrated into the prediction model. The
Stochastic Expression Language (StoEx), which is part of
the PCM, allows for specifying different types of resource
demands, including simple constant values, different prob-
abilistic distribution functions, and mathematical functions
reflecting the dependencies between input parameter values
and the resulting resource demands.

C. Prediction and Comparison

After the specification of the performance model in
the previous activities, the performance monitoring can be
started. As mentioned before, the utilisation of resources
often varies depending on the workload of the system.
For this reason, the prediction of the expected resource
utilisation requires measuring the current workload, which
is performed in the measurement workload activity. In most
production systems, the external interfaces are already ex-
tended with interfaces to monitor the system’s usage. Hence,
these interfaces can be used to collect the required data.

Based on this data, the prediction model is completed with
the specification of the system’s usage within the Usage
Model Generation activity. This specification can contain
several independent usage behaviour to differentiate between
the normal usage of the system by customer and for example
additionally data analyse or report generation processes
invoked by internal users of the system. To reduce the
runtime load induced by monitoring and data collection, live
monitoring data often do not include as much information
as the data gathered in the previous data collection step.
The resulting Usage Model is then used as an input to
the Performance Prediction activity, which in our case is a
PCM-based performance simulation, to derive the expected
utilisation of servers and response times of operations.

After collecting the performance metrics of interest (e.g.,
CPU utilisation, service response times) on the running
system and predicting the expected values for the current
workload, they are analysed and compared. In the case of
a deviation between predicted and measured values within
the Comparison activity, a warning is sent to the system’s
operator. The operator is then in charge to analyse the
potential error and plan counteractions if required.

IV. CASE STUDY

In this section we present the application of our approach
in the industrial context of the 1&1 e-mail system. For the
sake of brevity, we focus in this paper on the STORE sub-
system, which still consists of about 100 server nodes. The
whole case study [13] covers the complete incoming e-mail
processing including the MX, Virus, and Spam servers as
well as the SERIES and DBFM databases. After presenting
further details of the STORE subsystem, we demonstrate the
use of the PCM for modelling the system and the application
of performance predictions.

A. STORE Subsystem

The STORE consists of several software components that
are deployed on three different types of servers, namely
Proxy, Store, and Backup servers. The Proxy servers protect
the Store servers from a direct access by hosts that are not
part of the e-mail system. They provide access to the e-
mails using IMAP and POP3 protocols by dedicated com-
ponents. Additionally, the SGATE component is responsible
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for handling internal requests from other components of the
e-mail system. The communication between Proxy and Store
servers is exclusively performed by the SGATE component.
Thus, the IMAP and POP3 components act as adapters that
transform IMAP and POP3 requests into requests supported
by SGATE and vice versa. The Store servers are responsible
for storing all data related to customers mailboxes including
the folder structures, e-mail texts and attachments.

To guarantee high availability and to prevent data loss,
each Store server is running as a cluster of two servers.
A client’s mailbox is associated with exactly one cluster.
The responsibility for mailboxes is balanced over both
hosts while the mailbox data is stored and continuously
synchronised on both servers. In the case of software or
hardware failures on one host, the other host automatically
takes over the responsibility within seconds. The Backup
servers are an additional instance to assert data persistency.

In order to handle the large amount of requests, multiple
instances of all components are deployed on several servers
to distribute the load. The SGATE, IMAP, and POP3 are
running on 10 servers, the Store clusters consist of overall
76 servers, and the BACKUP component is deployed on 22
servers.

B. Performance Modelling Study

After this overview of the STORE system, we will now
describe the application of the PCM as performance model
in the context of the workload-aware continuous perfor-
mance monitoring process.

1) Model Preparation: The selection of an adequate
abstraction layer that promises a good trade-off between
prediction accuracy and modelling effort requires an analysis
of the system regarding the available calibration data and the
potential performance-influencing factors. The monitoring
tool running on the Store and Backup servers only measures
the resource utilisation of the whole server and does not
allow to measure the resource consumption of individual
processes or components. For this reason, we introduce
logical software components STORE and BACKUP that
summarise all resource utilisations on one of these servers.
Due to the missing calibration data, a more fine-grained
model would not provide any improvements for the pre-
diction results. On the Proxy servers, component-dependent
resource monitoring is possible. Thus, we model the IMAP,
POP3, and SGATE components as individual components as
illustrated in Figure 3.

Table I
PERFORMANT RELEVANT REQUESTS

miweb: : SGATE % P miweb: : POP % P miweb: : IMAP % P
SortMails 49 COMPLETE 31 FETCH 30
GetMailText 16 TOPO 21 STATUS 30
GetMails 14 ABORTED 16 SEARCH 15
AppendMail 9 RETR 12 STORE 10
ChangeMails 5 DELETE 8 SELECT 4 i
MoveMails 4 i TOPN 8 LIST 2 i
RemoveMails 1 i LOGIN 2 i
ReplaceMail 1 i CAPABILITY 2 i
CreateFolder 0 D 1 i
Subscribe 0 LOGOUT 1 i
ChangeFolder 0 CLOSE | i
FindMails 0 APPEND 0 e
RemoveFolder 0 . 0
Unsubscribe 0 0
GetFolderInfos 0 0
msweb : : STORE %o P mbweb : : BACKUP % P
AppendMail 44 remove expired 21
ChangeMails 27 u-summary 17
RemoveMails 10 sm-summary 17
ExpungeMails 9 f-summary 17
MoveMails 8 AppendMail 11
CopyMails 1 force deletion 8
Subscribe 0 UpdateMails 3 Legend:
CreateFolder 0 retrieve non ex. 2 %: Portion of Workload
ChangeFolder 0 RemoveMails 2 p: Interview based characterisation
SelectFolder 0 CopyMails 1 iz Performance irrelevant
Create 0 . 0 e: Expensive operation
Unsubscribe 0 0
RemoveFolder 0 0 bold: Considered within the model
£] SGATE ] AP _ &1 PoP _ £] BACKUP
37 SEFF <AppendMail> 37 SEFF <FETCH> K SEFF <COMPLETE> . SEFF <AppendMail>
1 SEFF <GelMallTent> | |21 SEFF <STATUS> | | S19EFE IOP0 | | TISERF <Combiales |
LI SEFF <GetMalls> IISEFF <SEARCH> | |57 SEFF <RETR> TSEFF <tomovo oxpired ma>
T SEFF <SorMais> I SEFF <APPEND> SEFF <DELETE> SEFF <refiove nop exstants
37 SEFF <ChangeMails> | | #] SEFF <STORE> = = !
11 SEFF <TOPN> ] SEFF <UpdateMail>
<< Requires >> << Requires >> << Requires >> << Requires >>
@ IPop @ IBackup
O ISgate @ limap [Z] COMPLETE [Z] AppendMail
[=] AppendMail [Z] FETCH [Z1 ToP0 [] CopyMails
|5 GetMailText [£] STATUS [5] ABORTED || force deletion
=] GetMails [£] SEARCH [Z]RETR [£] remove expired mails
[Z] SortMails [Z] APPEND [Z] DELETE [=] retrieve non existant
[£] ChangeMails [Z] STORE [Z] TOPN [Z] UpdateMail
<< Provides >> << Provides >> << Provides >> << Provides >>
€] STORE

] SEFF <STATUS> ¥] SEFF <APPEND>

1 SEFF <FETCH>

] SEFF <SEARCH>

] SEFF <TOPN>

] SEFF <AppendMail (B)>

EFF <force deletion>

EFF <remove expired mails>
EFF <retrieve non existant>
+] SEFF <UpdateMail>

H] SEFF <TOPO>

Figure 4. The Repository as part of the structural model

The API of the SGATE component supports a large set
of different request types. Modelling the huge amount of
different possible requests would result in an infeasible
modelling effort. To identify the methods with a potentially
high impact on the overall system’s performance, we anal-
ysed existing log files and performed interviews with the
responsible architects and developers. The selection of the
performance-relevant request types is based on two criteria.
A request is categorised as potentially performance relevant
if its occurrence within the overall workload is higher
than 1% in average or the request is expected to be very
resource intensive. Interviews with the developers were used
to identify these resource intensive requests and additionally
to select requests that are known as performance-irrelevant
(see Table I). In our performance model, we included
all potentially performance relevant requests that are not
classified as irrelevant as well as all requests classified as
expensive operations.

Based on this system analysis, we started system mod-
elling by describing the different components in the PCM
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Repository Model, which is shown in Figure 4. In addition
to the interfaces, components, and roles (assignment of
provided and required interfaces), the Repository includes
a RD-SEFF for each provided interface.

As part of the PCM System Model (see Figure 5),
the different components defined within the Repository
are instantiated and the components SGATE, POP, IMAP,
BACKUP and STORE are connected to each other through
the interfaces ISgate, IPop, Ilmap and IBackup. Additionally,
the model includes the definition of four system external
interfaces that are used to connect the Usage Model, which
contains the user behaviour generated within the perfor-
mance monitoring activity, with the System Model. The
model includes three instances of the STORE component, as
during the interviews, we identified that the servers hosting
the Store can be clustered in three server types with identical
hardware. The load balancing between the different server
groups is integrated into the behavioural specifications and
not modelled as an explicit load balancing component.

The PCM provides a dedicated model, called the Resource
Environment, to describe the hardware resources of the
system. Caused by the huge number of involved servers
— in this subsystem over 100 — we had to find a way to
abstract from modelling each individual server to reduce
the size of the model and the required modelling effort.
As already mentioned above, the servers can be classified
based on their hardware and configuration into clusters of
servers with nearly identical resources and configuration. For
each group, we modelled only one node within the Resource
Environment. Since all the Proxy servers are equal in their
hard- and software configuration, they are represented by
one logical server in the model. All logical servers are sized
with the cumulated resource capacities of the real servers
they represent.

2) Model Calibration: For each server, we analysed log
files and monitoring data to derive those hardware resources
(e.g., CPU, HDD, LAN) which are significantly used by
the implementation of the system. In the case of the Proxy
servers, these resources are CPUs and the network connec-
tion. As expected, the HDD usage is very low on these
servers, since they only forward requests without any local
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Figure 6. CPU Utilisation on a Proxy server over 24 hours
Table III
CPU DEMANDS CAUSED BY THE POP COMPONENT
Request CPU Demand
ABORTED 16134069 Cycles / Request
COMPLETE 4520880 Cycles / Request
TOPN 3267070 Cycles / Request
DELETE 684569 Cycles / Request
RETR 353879 Cycles / Request
TOPO 4319 Cycles / Request
RETR 48 Cycles / Byte

persistence. In contrary, on the Store servers, the HDDs,
CPUs, and network connections are heavily demanded re-
sources and therefore need to be modelled.

For the sake of brevity, we now focus our description on
the calibration of the Proxy servers’ components and omit
the Store and Backup servers. The procedure is the same for
the other components. The system monitoring tools running
on the Proxy servers provided us with detailed measure-
ments of the resource utilisation. Each component, namely
the IMAP, SGATE, and POP3, are individually measured
by the tool, which provides logs of the induced resource
consumption every 30 seconds. Additionally, the overall
CPU utilisation is logged. Thus we were able to derive
the resource demands that are induced by the operating
system or other monitoring activities. Figure 6 shows the
CPU utilisation on a Proxy server over 24 hours, induced
by the software components SGATE, IMAP and POP, as
well as the sum of these values and the overall utilisation.

Detailed analyses of the overhead peaks showed that they
appear directly after the compression of request log files is
initiated. To estimate the resource demand for each request
type classified as performance relevant, we conducted fur-
ther measurements to derive the distribution frequency of
the different request types. We collected 864 sample sets
covering 5 minutes each. In addition, data about the size of
the requested data was collected. Table II shows the derived
correlation coefficients of the request types and the resource
utilisations caused by them.

In order to calculate the absolute resource demands of
the different request types, we had to consider the available
hardware resources on the servers. Each server is equipped
with two dual core CPU running with 2GHz. The network
connection has a capacity of 2GBit/s. Based on this knowl-
edge, we calculated our modelling functions describing the
resource demand for each resource type. Table III exemplary
shows the utilisation of a Proxy server’s CPU resource,
caused by the processed requests of the POP component.
We differentiate between resource demands with fixed value
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the different groups of servers, i.e. the three Store server
groups mentioned before. We modelled the load balancing
behaviour with a ProbabilisticBranchAction (control flow
branch in the RD-SEFF) based on data available from
individual request logs contained in the Store cluster’s
redirect logs. Figure 7 shows the annotated RD-SEFF for
the APPENDMAIL request on a Proxy server. It includes the
resource demands for different resources of the server and
the BranchAction forwarding the requests to the different
server groups.

3) Prediction and Comparison: In order to consider the
current workload of the running system in the performance
prediction, we first have to specify the user interactions
with the system. For each external interface specified in
the System Model, a dedicated usage profile is defined
within the Usage Model. Each usage profile is a template
for the measured workload, i.e. request frequencies can be
automatically integrated.

To achieve full automation, we implemented tools that
automatically collect, parse, and analyse the log files of the
servers. Based on this data, the parameters for the usage
profile are calculated. These values are then automatically
integrated in the XML representation of the usage profiles
by replacing the previously inserted placeholder values. The
usage profiles are then used to execute the performance pre-
dictions. The relevant prediction results, namely the average

resource utilisations, are compared with the measured values
to identify mismatches.

Since we are working with the live system, we were
not allowed to induce failures resulting in an unexpected
behaviour of the system. To demonstrate the detection ca-
pabilities of our process, we applied our approach during a
planned software update on the live system as the system
administrators expected that the update induces additional
load on the system resulting in deviations from the normal
and expected behaviour of the system. Figure 8 illustrates the
monitored and predicted resource utilisations over the day
of the scheduled update. In the time slot between 2 and 5
o’clock PM, the measured CPU utilisation was significantly
higher than the predicted values. This deviations from the
expected respectively predicted values started exactly at the
same point, when the rollout of the update was executed.
With this scenario, we could demonstrate that deviations
from the expected resource utilisation under the given work-
load can be detected using our approach.

V. EVALUATION OF PREDICTION ACCURACY

With the case study presented in the previous section, we
demonstrated the applicability of PCM-based performance
predictions in an industrial context. However, the accuracy
of the prediction results has not been discussed. Since the
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Figure 9. Measured and predicted resource utilisation of a Proxy server

accuracy is an important aspect when integrating predictions
in a performance monitoring process, this section presents
a detailed evaluation of the prediction results. Validating
performance predictions is often done by conducting bench-
marks or controlled experiments and compare measured with
predicted values. Such experiments cannot be performed on
the live system as they might influence the reliable operation
of the system. To perform integration tests, a dedicated
test system is available. However this system is downsized
and running on virtualised systems with some business
logic realised as mockups. Thus, this test system cannot be
used to perform representative load tests and performance
measurements. Due to the costs, complexity, and size of the
system, we refrained from setting up an equivalent system
with identical hardware resources and a load driver inducing
the workload of millions of users.

Instead, we base our evaluation on measurements on the
live system using the real workload. We exploit the fact that
the workload of the system significantly varies during a day
of operation, which allows us for collecting measurements
in different load situations. The workload varies between
low load situations at night and high load situations in the
evening, when after work, the private mailboxes are checked
for new e-mails.

Within our evaluation, we analysed one reference-day and
measured the average resource utilisation every 30 minutes.
Additionally, we derived the 48 usage profiles of the same
intervals using the existing monitoring system. This way,
we gained 48 tuples of predicted and measured values
representing different load situations of the system. In con-
trast to the calibration measurements, these measurements
cover the whole workload range and thus are a valid set of
measurements to perform an evaluation of the accuracy.

Figure 9, presents the measured (solid) and predicted
(dashed) resource utilisations on the Proxy servers for one
day. The predicted curves have the same characteristics
compared to the measured ones, with small differences
between predicted and measured values. They show that
the expected resource utilisation based on the performance
predictions fits the measured values on the live system with

Table IV
ERROR CHARACTERISTICS

CPU NET-IN NET-OUT DISK-WRITE
relative absolute relative absolute relative absolute relative absolute
[%] _[PP] [%] _[PP] [%] _[PP] [%] _[PP]
Entire model
Average 12.94 1.32 5.99 0.25 592 0.5 9.64  0.027
Upper decile 36.7 2.98 1346 0.56 12.37 1.55 20.1 0.052
Proxy server
Average 59 1.91 293 0.67 592 1.48
Upper decile 10.1 4.24 6.4 1.43 11.09 2.5
Store server
Average 15.29 113 7.01 0.12 6.01 0.18 9.64  0.027
Upper decile 42.1 2.47 16.19  0.25 13.31 0.40 20.1 0.052

only small deviations. In Table IV, we list the averaged
relative error in %, the averaged absolute error in percent
points (PP), and the upper decile for the errors between
measured and predicted values of the entire model and
individually for the Proxy and Store servers for all observed
resources. Although the percental error exceeds 10% in few
cases, the averaged absolute error is always less than 2
PP and upper deciles never exceed 5 PP. This accuracy is
acceptable for the integration in a performance monitoring
process.

VI. EXPERIENCES AND LESSONS LEARNED

During our case study, we faced several challenges when
modelling the system caused by its size and the fact, that
we were not allowed to perform any experiments on the
live system. But even if we had been allowed to do so,
the generation of a representative workload (i.e. millions of
users) would have required a lot of resources and thus makes
this strategy infeasible. Since these challenges are valid for
all large and distributed systems, the experiences we gained
are not limited to e-mail systems and thus considered helpful
for modelling large and distributed systems in general.

Often, large-scale systems provide business-critical func-
tionality and therefore runtime monitoring of those systems
is very detailed. Especially systems that offer services to
end users over the internet have significant variations within
their workload. Combined with the detailed monitoring data,
they allow for a good estimation of the required resource
demands and a validation of the model accuracy. In large
systems consisting of several subsystems and components,
the knowledge about the architecture is often distributed
among several people or even departments. This fact sig-
nificantly increases the required effort to collect information
required for modelling the system’s architecture. Addition-
ally, the available architecture documentation often turns out
to be outdated and the information has to be gathered in
interviews. In the case of redundant components and nearly
identical servers, the approach to abstract these servers as
one abstract resource with multicore scheduling for each re-
source can significantly reduce the modelling effort without
negative influences on the prediction results.

In addition to our original aim to improve the performance
monitoring, applying a model-based prediction approach like
PCM has further benefits. Since the PCM is an architecture
modelling language, it can serve as architecture documenta-
tion which counteracts missing or outdated documentation.



Although this prohibits the application of modelling abstrac-
tion like the one we presented in our case study, the creation
of a useable architecture documentation can balance the
additionally required effort. While analysing the system and
collecting monitoring data, we performed several plausibility
checks of the predicted values. Even early stage prediction
models could reveal some misconfigurations of the system.
Based on the statistics collected by our analysis tools for log
files, we could for example detect a server with inadvertently
disabled hyper threading. When modelling a component’s
behaviour combined with deriving the resource demands,
we furthermore identified some potential performance im-
provements that the developers accepted to be considered in
the next version of the component.

In general, the use of the prediction models is not limited
to the performance monitoring aspect. They can for instance
be used to evaluate i) different deployment variations, ii)
architectural changes caused by integrating new components
or iii) to predict the system’s behaviour in exceptional high
workload situations. Furthermore, the performance models
can be used to optimise resource sizing and deployment of
the components and thereby improve the system’s efficiency.

VII. RELATED WORK

Software Performance Engineering (SPE) [3] as intro-
duced by Smith forms the base for several architecture-
level performance meta-models supporting model-based per-
formance predictions (surveyed in [14]). Often they are
extensions of UML as the de facto standard modelling
language for software architectures like the UML SPT
profile [4] and its successor the UML MARTE profile [5].
Architecture-level performance models are built during sys-
tem development and are used at design and deployment
time to evaluate system designs and/or predict the system
performance for capacity planning purposes. A recent survey
of methods for component-based performance-engineering
has been published by Koziolek in [15].

Most of these approaches aim on the evaluation of dif-
ferent design options and support manual or automated
optimising of the system’s architecture and deployment at
design time and do not consider an integration of perfor-
mance predictions into the runtime management of systems.
Menasce et al. [16] present an approach supporting the
automated assurance of Quality of Service (QoS) levels
using performance models. Based on queueing networks
different configuration alternatives are evaluated regarding
their QoS attribute. However, the approach cannot be applied
to detect and identify performance problems and behaviour
anomalies at runtime.

The PCM and its prediction capabilities are a central
component of the presented case study. Its applicability
and accuracy has been demonstrated in several research
and industrial case studies (e.g., [17], [18], [19]). How-
ever, not any of these case studies modelled a system of

similar size and complexity and only focus on the design-
time evaluation of systems. In addition to those manually
conducted case studies, PCM-based performance predictions
have been integrated in an automated process for capacity
planning [20] and into the architecture optimisation approach
PerOpteryx [21].

In the literature, only few approaches exists that integrate
performance prediction techniques into the system monitor-
ing process. R-Capriccio [22] developed at the HP Labs is a
tool supporting capacity planning and performance anomaly
detection for multi-tier enterprise systems. Queuing models
abstracting each server by only one queue are used to predict
the expected CPU utilisation. Deviation between predicted
and measured CPU utilisation can be detected. However,
response times and utilisation of other resources like net-
work or hard disk are not considered. Cherskova et al. [2]
present an alternative approach supporting the detection of
performance anomalies. Applying regression techniques, the
approach enables the detection of unexpected behaviour,
which is demonstrated in two case studies. However, the
regression techniques requires the collection of a significant
amount of data. In the case of a detected anomaly, the
approach does not support the operator in analysing and
detecting the root cause. Kadirvel et al. [23] present an
approach using prediction techniques to enable an automated
management of IT systems. Although they use models to
predict the potential performance changes induced by recon-
figurations, the detection of malfunctions and abnormalities
is based on fixed threshold values. However, the approach
demonstrates the use of performance models in order to
solve performance problems, which could be a potential
extension of our approach.

VIII. CONCLUSION AND OUTLOOK

In this paper, we presented an approach to integrate
performance prediction techniques into a performance mon-
itoring process. We applied our approach to one of Europe’s
largest e-mail systems operated by the 1&1 Internet AG
running on more than 2,000 servers with more than 40
million users. Using the Palladio Component Model (PCM),
we specified architecture-level performance models of the
STORE subsystem. The implemented data collection and
analysis tool enables a fully automated generation of the
workload specification required by the performance pre-
dictions that corresponds to the current workload on the
system. Based on the prediction results, even small devi-
ations between measured and predicted resource utilisation
(i.e. expected for the current workload) can be detected. As
our experiences show, such analyses are suitable to identify
performance problems. The evaluation of the prediction
results shows a prediction error of mostly less than 10%

In addition to the workload-aware performance monitor-
ing, the created models can be used to evaluate the perfor-
mance of the system and possible system extensions and



compare different design or deployment variations. Based
on the prediction results, the sizing of the hardware can be
optimised and thereby the efficiency of the whole system im-
proved. Furthermore, during our case study, the performance
models helped to locate some configuration problems on the
servers and to identify potential performance improvements
within the component’s implementations.

The case study presented in this paper forms the basis for
several areas of future work. Our implementation of the data
collection and analysis tool is limited to the 1&1 monitoring
system and the specific log file formats. In a next step, we
plan to extend our tooling to support further formats and
monitoring interfaces. Furthermore, we plan to improve the
integration into the PCM tool suite. The presented approach
focuses on the detection of potential performance problems
only. However, the performance models can also support the
automated identification and evaluation of counter actions.
Developing such automated and system-aware controlling
algorithms is one of the future research directions resulting
from the experiences we gained in this case study.

In the following references except [13], the author S. Becker is Steffen
Becker and not Stefan Becker, who co-authored this paper.
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