
Palladio Workbench: A Quality-Prediction Tool for Component-Based Architectures

Christoph Rathfelder∗ and Benjamin Klatt∗
∗FZI Research Center for Information Technology

Karlsruhe Institute of Technology, Karlsruhe, Germany
Email: rathfelder@fzi.de, klatt@fzi.de

Abstract—Today, software engineering is challenged to han-
dle more and more large-scale distributed systems with a guar-
anteed level of service quality. Component-based architectures
have been established to build more structured and manageable
software systems. However, due to time and cost constraints, it
is not feasible to use a trial and error approach to ensure that
an architecture meets the quality of service (QoS) requirements.
In this tool demo, we present the Palladio Workbench that per-
mits the modeling of component-based software architectures
and the prediction of its quality characteristics (e.g., response
time and utilization). Additional to a general tool overview,
we will give some insights about a new feature to analyze the
impact of event-driven communication that was added in the
latest release of the Palladio Component Model (PCM).

I. INTRODUCTION

The central idea of component-based software engineering
(CBSE) is to compose complex software systems of basic
components. The initial goal was to support the reuse of
those components, but clear encapsulation of functionality
and the contractual interaction with components based on
their interfaces allow a better control and predictability
of this single unit. However, predicting the quality (e.g.,
performance or reliability) of the component-based software
system is much more complex than understanding the im-
plementation of a single unit. Multiple influence factors such
as the deployment of the components, the usage profile, the
required external services and for sure the implementation
of the component itself have impact on the systems overall
quality. The Palladio Component Model (PCM) permits the
modeling of component-based architectures and provides
different models for those influence factors. Due to this
independent models, it is possible to predict the systems
behavior for variations of one or more of these factors
without the need to change the others.

The overall architecture is not only influenced by the
components internals but also by their way of interaction.
In recent years, the event-driven paradigm gets more and
more attention to build more scalable and loosely coupled
systems. In event-driven systems, components communicate
by sending and receiving events. Compared to synchronous
communication using, for example, remote procedure calls
(RPCs), event-driven communication among components
promises several benefits like increased flexibility or better

This work was partially funded by the EU (grant No. FP7-216556)

scalability [1]. However, the event-driven software model
is more complex as application logic is distributed among
multiple independent event handlers and the flow of control
during execution can be hard to track.

However, current performance modeling and prediction
techniques for component-based systems, surveyed in [2], do
not support modeling systems using event-driven communi-
cation. Also the PCM did not in the previous versions. With
the latest release published in March 2011, this has become a
new feature of the Palladio Workbench. Using an automated
two-stepped model transformation enables the integration of
different middleware models without changing the model
of the whole system. We demonstrate the application of
this new feature using a real-world case study of a traffic
monitoring system, which we already used for validating the
prediction result’s accuracy [3].

The remainder of this paper is organized as follows. In
Sect. II, we introduce the PCM meta-model for component-
based software architectures. Sect III gives a short overview
on the tool and the underlying technology. Sect. IV presents
further details of the extension for the analysis of event-
based communication that we will present in the demo. The
case study used on the demo is described in Sect. V before
we present some tools related to the PCM in Sect. VI. We
conclude with a brief summary at the end.

II. PALLADIO COMPONENT MODEL

The Palladio Component Model (PCM) is a component
meta-model with focus on performance prediction. The fol-
lowing gives a brief overview of the PCM. A more detailed
and technical description is given in [4].

The PCM is a domain specific meta-model. It describes
the performance-relevant aspects of component-based soft-
ware architectures, often used in business information sys-
tems. The Palladio Workbench provides tools (see Sec. III)
to create and analyze PCM model instances.

The performance of a component-based software system
is influenced by four factors [4]. The first is the imple-
mentation of the component itself. Second, the component
performance depends on required services. Third, it depends
on the deployment platform (e.g. hardware, middleware,
networks). Finally, the way the component is used must be
considered. In the PCM, each of these influence factors is



Figure 1. Palladio Overview

modeled in a specific sub-model. The composition of these
models forms a PCM instance.

The Component Model consists of component specifi-
cations including a model of their behavior. Components
refer to interfaces (comparable to signature lists) which
are provided or required. Provided interfaces specify the
services a component offers. Required interfaces are external
services the component needs to fulfill its purpose. The
PCM provides a description language, called ResourceDe-
mandingServiceEffectSpecification (RDSEFF), to specify the
behavior of components as an abstraction that is quality-
related.

The Composition Model describes the structure of the sys-
tem by the composition of the components to be used. The
components are connected via their provided and required
interfaces to satisfy all required interfaces.

In the Deployment Model the components of the system
are allocated to physical resources. The characteristics of
the resource containers (e.g., processor speed and number
of cores) are specified in the resource environment model.

The Usage Model contains the workload induced by the
system’s end-users. The workload specifies, for example,
how many users invoke the system as well as their inter-
arrival time between two invocations. Furthermore, it in-
cludes the characteristics of the request parameters such as
the number of items in a list or the size of the input data.

As sketched in Figure 1, PCM supports the evaluation
of different performance attributes, including response time,
maximum throughput, resource utilization, and QoS levels.
To realize these predictions, the Palladio approach provides
a model that reflects the already mentioned four aspects im-
plementation, service composition, deployment and service
usage as separated sub models.

III. PALLADIO WORKBENCH

The Palladio Workbench provides an advanced tooling
to create PCM models and to predict quality characteris-
tics of the software architecture. This workbench includes
graphical editors aligned with the UML syntax to create the
different models. As soon as a complete PCM instance is
prepared, a prediction run can be configured and started.
The configuration includes the type of prediction (e.g.,
simulation or one of the analytical solutions). Furthermore,
the configuration includes a variety of prediction options

(e.g., the data storage or stopping criteria) as well as the
combination of sub-models to be used in the prediction.
During a prediction run, the Palladio workbench provides
a simulation dock with status information about the actual
run. When the prediction is finished, a list of available
sensors that have been automatically installed on resource
containers and component interfaces are presented. For each
of those sensors, various visualizations are provided and can
be used to understand the quality properties of the specific
parts of the architecture. Due to this integration of modeling,
transformation, performance analyses and visualization, the
performance evaluation of a system does not require any ex-
pert knowledge about the underlying prediction techniques.

Technically, the Palladio Workbench is based on the
Eclipse platform and makes extensive use of the Eclipse
Modeling Project as well as corresponding standards such
as data interfaces (e.g., XMI) or infrastructure frameworks
(e.g., Eclipse Bundles).

The development of the Palladio Component Model
(PCM) started in 2003 at the University of Oldenburg, and
since 2006 it is continued at the Karlsruhe Institute of Tech-
nology (KIT) and the FZI Research Center for Information
Technology. Meanwhile, it is extensively used and enhanced
in research projects as well as industrial case studies with
enterprises such as ABB, IBM, SAP as well as mid-size
companies. In several industrial and research case studies
(e.g. [5], [6], [3]) we validated the prediction accuracy.
Additionally, the applicability of the PCM approach was
investigated in an empirical study [7]. The results show that
the quality of the models differs less than 10% from the
predictions achieved with a reference model. Furthermore,
over 80% of the subjects were able to rank the given design
alternatives correctly, which indicates the appropriateness of
the approach itself.

Further details about the PCM are given in [4] and can
be found on the project website1.

IV. INTEGRATION OF EVENT-BASED COMMUNICATION

With the latest release of the Palladio Workbench, pub-
lished in March 2011, a new feature to analyze the impact
of event-driven communication on the whole software archi-
tecture was added. This includes new modeling as well as
prediction capabilities to the Palladio Workbench.

For a semantically correct modeling of event-driven
communication, we extended the PCM meta-model with
new constructs (e.g., EventSource, EventSink,
EventEmitAction) [8], [9] and enhanced the graphical
editors to support them. Furthermore, as previously shown
in [10], an automatic model-to-model transformation is
used to transform these new elements into existing PCM
modeling constructs in to permit the usage of the various
existing model analysis techniques. Additional to that, the

1www.palladio-simulator.com



transformation is able to automatically weave configurable
middleware repositories into the system architecture.
Such repositories encapsulate the middleware specific
characteristics and can be reused for different software
architectures.

To realize the separation of platform-independent and
platform-specific influence factors as mentioned above, we
divided the transformation internally into two parts. The
extended PCM model, that includes event-driven commu-
nication, is first transformed into a generic model rep-
resenting the event transmission by a combination of
ExternalCallActions and Forks as sketched in [9].
This model does not include platform-specific details such
as resource demands or sizes of thread-pools. In the second
step, a platform-specific middleware model, specified in a
separated component model, is woven into the PCM model
instance. This platform-specific component repository has to
be created only once and can be reused in different contexts.

The result of the transformation is a model instance which
includes platform-specific details and can be analyzed by
means of analytical or simulation techniques. The transfor-
mation is performed automatically and is fully transparent
for the analyst. It is only required to select the component
repository that corresponds to the used middleware.

Fig. 2 shows the result of the platform-independent part of
the transformation. For each Sink and Source an additional
component is added. These composite components include
several components that represent different steps in the
middleware’s event processing:

• SourcePort Interaction between source component and
middleware.

• DistributionPreparation Processing within the mid-
dleware done once per event (e.g., marshaling before
the distribution).

• EventDistribution Splitting the control flow and dis-
tributing the events to all sinks.

• EventSender Processing within the middleware that
per connected sink (e.g., communication handshake).

• EventReceiver Receiver-side event processing within
the middleware (e.g., receiving from the communica-
tion channel).

• SinkPort Pass event to the receiving component.
Each of these internal components includes an

ExternalCallAction to trigger a dedicated interface
of the middleware model.

Sink C

IMiddlewareSink

A

Source A

IMiddlewareSource

C

Sink B B

A
B

C

Source A
Sink B

Sink C

Figure 2. Platform-independent Result of the Transformation

V. EXAMPLE CASE STUDY

To demonstrate the Palladio Workbench and the perfor-
mance predictions, give some insights of a case study that
was used for validating the new modeling and prediction
capabilities for event-driven communication ([3], [11]). The
system we studied was partially developed as part of the
TIME project (Transport Information Monitoring Environ-
ment) [12] at the University of Cambridge. The system is
based on the SBUS middleware [13] which supports peer-to-
peer event-driven communication including both continuous
streams of data (e.g., from sensors), asynchronous events,
and synchronous RPC.

ACIS

SCOOT 

LPR
LPR

CamCamCam

Speeding Toll

Location

Bus
Proximity

Figure 3. Case Study Overview

Our implementation of this application uses different
classes of SBUS components (see Figure 3) described below.
With ACIS and SCOOT, GPS tracking data of buses and
status updates on traffic lights are transferred into the system.
Several cameras (Cam) take pictures of the traffic. These pic-
tures are received and processed by license plate recognition
(LPR) components. 4 different classes of components are
receiving and processing these events about bus tracking,
traffic lights status and license plate detections. The LPR
events are used to detect speeding and to calculate the toll
for entering the city. The tracking information is used to
calculate the position of all buses. Combined with the traffic
light status this information is used to calculate if buses are
reaching or waiting in front of red traffic lights. The aim
of the case study was to asses different deployment and
configuration scenarios.

In our demo we will show the use of the Palladio
Workbench to analyze and predict the different design and
deployment options.

VI. RELATED TOOLS

Over the last fifteen years a number of approaches have
been proposed for integrating performance prediction tech-
niques into the software engineering process. Efforts were
initiated with Smith’s seminal work on Software Perfor-
mance Engineering (SPE) [14]. Based on this work, the
SPEED tool [15], [16] was developed. The SPE method was
the first elaborated, practically applicable comprehensive
approach for early, design-time performance prediction for
software systems. However, it is a monolithic approach



which does not consider the new requirements that are in-
troduced by component-based architectures like adaptability
of the models and reuse of component models [7].

Queuing Petri nets are often used to model performance
critical systems in general and are not limited to software
systems. With QPME [17], Kounev et al developed a mod-
eling and prediction tool, that already has been validated
in several case studies (e.g. [18], [19]). However, due to the
use of queuing Petri nets as modeling language, performance
modeling and prediction requires specific knowledge.

A recent survey and complete overview of analysis tech-
niques specific to component-based performance-engineer-
ing was published in [2].

CB-SPE [20] applies the SPE method to component-
based systems by separating component performance mod-
els. However, the software architect has to specify a per-
formance critical scenario in analogy to the not scalable
and proprietary SPE method and the influence of parameter
values is neglected.

With SAPS [21] a simulation-based approach is presented,
that uses annotated UML diagrams to derive a simulation
model. With UML, they have chosen an established model-
ing language with good tool support. However, as they have
an SAPS specific annotation language, this annotation are
not supported by the general UML modeling tools.

VII. CONCLUSION

In this research tool demo we introduced the Palladio
Component Model with its architecture model and predic-
tion techniques implemented in the Palladio Workbench. In
addition we gave insights about a new workbench feature
to analyze the impact of event-driven communication in-
troduced in the latest PCM version. The prediction results
allow to compare different design alternatives and evaluate
the system performance under different load situations.

REFERENCES

[1] B. Hohpe, Gregor ; Woolf, Enterprise integration patterns
: designing, building, and deploying messaging solutions.
Addison-Wesley, 2008.

[2] H. Koziolek, “Performance evaluation of component-based
software systems: A survey,” Performance Evaluation, August
2009.

[3] C. Rathfelder, D. Evans, and S. Kounev, “Predictive
Modelling of Peer-to-Peer Event-driven Communication in
Component-based Systems,” in Proc. of EPEW’10, vol. 6342.
Springer, 2010, pp. 219–235.

[4] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Systems and Software, vol. 82, pp. 3–22, 2009.

[5] N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus, and
R. Reussner, “Performance Modeling in Industry: A Case
Study on Storage Virtualization,” in Proc. of ICSE 2010,
2010.

[6] F. Brosig, S. Kounev, and K. Krogmann, “Automated Extrac-
tion of Palladio Component Models from Running Enterprise
Java Applications,” in Proc. of ROSSA 2009, 2009.

[7] A. Martens, S. Becker, H. Koziolek, and R. Reussner, “An
Empirical Investigation of the Effort of Creating Reusable
Models for Performance Prediction,” in Proc. of CBSE’08,
vol. 5282. Springer, 2008, pp. 16–31.

[8] C. Rathfelder and S. Kounev, “Model-based Performance
Prediction for Event-driven Systems (Fast Abstract),” in Proc.
of DEBS2009, 2009.

[9] Christoph Rathfelder and Samuel Kounev, “Modeling Event-
Driven Service-Oriented Systems using the Palladio Compo-
nent Model,” in Proc. of QUASOSS 2009. ACM, 2009.

[10] C. Rathfelder, B. Klatt, S. Kounev, and D. Evans, “Towards
Middleware-aware Integration of Event-based Communica-
tion into the Palladio Component Model (Poster Paper),” in
Proc. of DEBS 2010. ACM, 2010.

[11] B. Klatt, C. Rathfelder, and S. Koounev, “Integration of event-
driven communication into the palladio component model,” in
QoSA 2011, 2011 (submitted for review).

[12] J. Bacon, A. R. Beresford, D. Evans, D. Ingram, N. Trigoni,
A. Guitton, and A. Skordylis, “TIME: An open platform for
capturing, processing and delivering transport-related data,”
in Proceedings of the IEEE consumer communications and
networking conference, 2008, pp. 687–691.

[13] D. Ingram, “Reconfigurable middleware for high availability
sensor systems.” in Proc. of DEBS 2009. ACM Press, 2009.

[14] C. U. Smith, Performance Engineering of Software Systems.
Addison-Wesley, 1990.

[15] C. U. Smith and L. G. Williams, “Performance Engineer-
ing Evaluation of Object-Oriented Systems with SPEED,”
in Computer Performance Evaluation: Modelling Techniques
and Tools, R. Marie, Ed., vol. 1245, 1997.

[16] Connie U. Smith and Lloyd G. Williams, Performance So-
lutions: A Practical Guide to Creating Responsive, Scalable
Software. Addison-Wesley, 2002.

[17] S. Kounev and C. Dutz, “QPME - A Performance Modeling
Tool Based on Queueing Petri Nets,” ACM SIGMETRICS
Performance Evaluation Review (PER), Special Issue on Tools
for Computer Performance Modeling and Reliability Analysis,
vol. 36, no. 4, pp. 46–51, Mar. 2009.

[18] S. Kounev, “Performance Modeling and Evaluation of Dis-
tributed Component-Based Systems using Queueing Petri
Nets,” IEEE Trans. on Softw. Eng., vol. 32, no. 7, 2006.

[19] S. Kounev, K. Bender, F. Brosig, N. Huber, and R. Okamoto,
“Automated Simulation-Based Capacity Planning for Enter-
prise Data Fabrics,” in ICST’11, 2011.

[20] A. Bertolino and R. Mirandola, “CB-SPE Tool: Putting
Component-Based Performance Engineering into Practice,” in
Proc. of CBSE 2004, vol. 3054. Springer, 2004, pp. 233–248.

[21] S. Balsamo and M. Marzolla, “A Simulation-Based Approach
to Software Performance Modeling,” in Proc of ESEC 2003.
ACM, 2003, pp. 363–366.


