
PABS - a Programming Assignment Feedback System

Lukas Iffländer1 Alexander Dallmann2 Philip-Daniel Beck3 Marianus Ifland4

Abstract: Giving invididual feedback to students in large programming courses is time consuming
and in most cases not feasible. In order to provide students with feedback we introduce PABS, a
tool for automated feedback generation for programming assignments on the Java virtual machine.
PABS is a web application giving students the opportunity to submit an arbitrary number of solutions
and receive automatically generated feedback. It has been developed to scale with a growing user
base by delegating the feedback generation to separate proccesses, called agents, that communicate
asynchronously with the web application. At the University of Würzburg, PABS is successfully used
in many courses that hand out programming assignments.

Keywords: E-Learning, automatic assessment, feedback

1 Introduction

Today methods from computer science are used in many different areas and therefore it
is an increasingly popular field of study. Consequently, more students are trained in basic
methods of computer science and programming. These students need to solve practical
programming assignments as part of their education. Feedback can help students to stay
motivated and assess their progress, but giving manual feedback is a very time consuming
task. Especially in large courses with beginners it is not practical due to staff limitations.
As a result it is desirable to automatically generate feedback whenever possible, so that
time budgets can be moved to tasks that can’t be automated like tutoring.

In this paper we describe a web-based tool for automatic feedback generation called PABS
(German: ProgrammierAufgaben BewertungsSystem). It was created to support the prac-
tical programming course offered by the computer science faculty at the University of
Würzburg, but has since then been extended to several other courses that are handing out
programming assignments. PABS enables students to request and view automated feed-
back for their solutions, e.g. functional tests and style checks. For that purpose it uses
Subversion repositories to store the students’ code and provides a web-based user inter-
face to display the code history as well as the generated feedback.

1 University of Würzburg, Chair of Computer Science II, Am Hubland, 97074 Würzburg,
lukas.ifflaender@uni-wuerzburg.de

2 University of Würzburg, Chair of Computer Science VI, Am Hubland, 97074 Würzburg,
alexander.dallmann@uni-wuerzburg.de

3 University of Würzburg, Chair of Computer Science VI, Am Hubland, 97074 Würzburg,
philip.beck@uni-wuerzburg.de

4 University of Würzburg, Department of Computer Science, Am Hubland, 97074 Würzburg,
marianus.ifland@uni-wuerzburg.de

1



In order to support a large userbase, the feedback generation in PABS is designed to be
scalable. PABS uses agents to generate feedback. Agents run independently and use an
asynchronous communication protocol to receive feedback requests and deliver gener-
ated feedback. Agents can be deployed to an arbitrary number of servers and dynamically
started and stopped. This enables PABS to scale with the number of active users.

So far, PABS only supports programming assignments for languages based on the Java
virtual machine (JVM) and has been exclusively used for Java programming assignments.
Other languages based on the JVM have been tested, e.g. Scala and Groovy. In the future
support for other programming languages will likely be implemented.

This paper starts with an overview of related work, describes the technical structure of
the system in more detail and ends with a report of our experience with the practical
application during the last years including statistics.

2 Related Work

There are a lot of systems implemented by other institutions that are somehow related to
PABS. In recent years much effort has gone into the development of systems that can pro-
vide automatic feedback for programming assignments. Every system focuses on different
aspects of improving teaching of programming skills, like user/group management, easy
submission, testing/debugging, code review and feedback[Ih10].

In the following section we review a selection of tools, regarding technical and design
aspects as well as core features. Some of the tools, e.g. VIPS[GW13] are completely web-
based including a browser-based code editor. The advantage is that students don’t need
to install other tools making it easier to concentrate on solving the assignments. Other
tools, e.g. MARMOSET[Sp06], also integrate directly into IDEs by providing plugins.
This usually limits the set of supported IDEs. Getting in touch with development tools,
especially IDEs, is a core competency for programmers, which is why we decided to use
existing local applications instead of a web-based solution.

Most tools provide programming tasks for Java[MS13][ES13], but there are tools for other
languages. VIPS[GW13] supports Prolog, Lisp, Haskell and Octave, the system described
in [KJ13] supports SQL. MARMOSET[Sp06] supports Java, C, Ruby and Caml.

M. Novák and M. Biňas describe a system[NB11] that is completely built around existing
tools. IDEs, like Netbeans or Eclipse, are used for development as well as for uploading
submissions. The uploading is done utilizing ANT scripts. The second part of the system
is a web service that applies different checks to the submission, like plagiarism detection.
Then feedback is given through Moodle or the IDE.

Most of the tools provide testing and/or debugging abilities, e.g. ProgTEST[DMB11] or
PASS[LLY10]. They use unit tests to check code functionality and give test results as
feedback to the student. The student may resubmit a revised version until tests finally
pass. An extension to PASS, ADA[La08] (automatic debugging assistant), tries to give

2



students hints for debugging their code. Web-CAT extends this functionality by not only
providing tests but also having students write and submit their own tests.

In contrast MARMOSET[Sp06] tries to prevent being used as a debugging tool by using
release tokens. Each student has a limited number of such tokens per day, therefore starting
to work on the task early leads to more submission possibilities. MARMOSET is built as
a web service utilizing Apache Tomcat and a MySQL database. Several build servers are
used for security and scalability reasons. A build server downloads a submission from the
submit server, checks it and sends feedback back to the submit server.

Automatic assessment is done in various tools, e.g. in Web-CAT[EPQ08], in VIPS[GW13]
or in Praktomat[KJ13]. Other tools, e.g. GATE provide possibilities for manual assessment
or additional manual improvement of automatic assessment (Web-CAT). Most systems
deal with security issues by using Java Security Manager and having a timeout for pro-
gramming code with endless loops.

3 Technical Description of the PABS System

At the University of Würzburg the number of students in computer science and related
fields has drastically increased in recent years. Consequently the time needed by teachers
to help students and grade assignments has also increased. PABS was written to provide
students with automatically generated feedback for programming assignments and reduce
the amount of time needed to tutor students. Primarily it is intended as a tool to support
students attending the practical programming course but nowadays it is also used in various
other courses that hand out programming assignments.

PABS is centered around the notion of a course. A course consists of an arbitrary number
of assignments and has a number of students who subscribe to it. Every assignment must
be solved within a configurable time that needs to be specified by a teacher. Afterwards
students can still work on the assignment but will not be able to submit a final solution
that will be graded. For every assignment a minimum requirement needed to submit a final
solution is set by a teacher. An example requirement would be the passing of all required
functional tests or the successful compilation of both solution and test code.

A web application gives students access to the assignment text and shows a list of all
submissions made by a user. It also enables a user to request feedback for a submission
and subsequently view the automatically generated feedback as can be seen in Figure 1. If
the automatically generated feedback meets the requirements specified by the teacher, the
student is then able to submit a final solution that will be graded.

PABS uses Subversion1(SVN) to manage assignment text, configuration and tests as well
as student submissions. To that end a SVN repository is created for every course. The
repository seperates the configuration from the students submission using different paths.
In order to prevent students from accessing the assignment configuration, tests or other

1 https://subversion.apache.org/

3

https://subversion.apache.org/


Figure 1: Students can see which tests they passed and which they failed

Figure 2: Administrators are shown which students already handed in successful solutions (names blurred for data protection)

students’ files, the access for every student is being restricted to a single directory within
the repository. Students commit possible solutions of the assignments to their path within
the repository. The revisions can then be viewed and used within the web application.

The SVN repository gives students and teachers convenient access to the work history.
This enables students to discard wrong solutions and go back to an earlier version without
fear of losing data. Teachers on the other hand profit from being able to inspect the work
history of a student to provide fast and tailored feedback as well as detect plagiarism.
There are also technical advantages compared to storing submissions e.g. in a database.
A SVN repository is very compact and even courses with several thousand commits only
need about 100 MB of disk space. Also the repository can be setup independently from
the web application which means that it can still be used in case of an outage of the web
application. This setup allows the students to freely choose the used IDE or even pass
on using one at all. The learning curve for SVN is softened by providing a simple reset
solution in case of SVN conflicts.

Feedback generation can be a time and resource consuming task depending on the number
and complexity of tests but also on code quality. To support fast feedback generation with

4



Agent

Agent

Agent

N

Queue PABS
post work

Agent

send results

request / receive work

Figure 3: Shows the asynchronous communication between PABS and its agents through a queue. First PABS posts a submission into the queue. A free worker than asks the queue
for work. After the worker is finished it sends the results back to PABS and informs the queue that the submission has been processed.

a growing user base PABS employs separate processes called agents that are able to com-
municate with the web application over a network. Agents can be deployed on separate
machines and activated independently. While running, an agent is in constant commu-
nication with the queue of submissions maintained by the web application as shown in
Figure 3. An enqueued submission is assigned to the first available agent available who
subsequently starts processing it. After the feedback generation is completed the agent
sends the results back to the web application and the queue is being informed that the
agent is now available.

The communication between web application and agent is implemented using Akka2. First
an actor responsible for managing the queue is started. Then an actor that is able to send
submissions to the queue is brought up. Next an arbitrary number of agent actors is started
and registered with the queue actor. After that the pipeline for processing is initialized and
can start processing submissions. It is worth mentioning that agents send the generated
feedback directly to the actor who sends the submission, thus bypassing the queue.

The agent utilizes Gradle3 to compile the student’s submission and execute tests and other
analysis tools. Meanwhile a custom plugin gathers information about the build and makes
the results available to the agent. The agent monitors the build process and terminates it if
necessary e.g. because of an endless loop in the student’s code. After successful execution
of the build, the agent creates feedback data from the build information and sends it back
to the web application.

2 http://www.akka.io
3 http://www.gradle.org

5

http://www.akka.io
http://www.gradle.org


4 Practical Application

The initial vesion of PABS was developed in 2010 and introduced for the practical pro-
gramming course of computer science students at the University of Würzburg, replacing
an older system called “Praktomat” which back then required manual upload of the stu-
dent submissions in an archive file and did not perform well under heavy load. This course
is offered in every semester break and is obligatory for all students either aiming for a
bachelors degree in either computer science or aerospace computer science or a teaching
degree for computer science. It consist of three phases. They are accompanied by practice
tutorials in which tutors answer questions of the participants.

In the first phase students are given time to learn the basics of the Java programming
language if they didn’t take the introductory lecture to programming.

During the second phase, the students have to complete three medium sized programming
tasks, each estimated at 30 hours of work. Their solutions are automatically validated using
PABS. Only GUI assignments are tested by tutors for their functionality since previous
experiences with automated GUI testing have shown to be prone to errors. Also very severe
restrictions on the GUI design had to be made limiting the students freedom in designing
solutions. The tutors are supplied with the results of the remaining automatic tests. Only
students passing all automatic tests and having their GUI functionality verified are allowed
to the third phase.

In the third phase a larger more complex programming task has to be completed. To hand
in the task students again have to pass the unit tests provided by PABS but this time the
code of the solutions that pass the automatic tests are also checked by tutors for code style
and documentation as well as for code written to cheat the unit test without writing the
actual code logic. Students passing the phase’s automatic and manual tests are allowed to
the final task. Students that pass the third phase but not the final task are exempted from
retaking the second phase when repeating the course.

The final task is primarily designed to validate that the students completed the program-
ming tasks on their own and didn’t copy from other students or even payed someone to do
their tasks. Therefore the students have to complete a given task within 90 minutes with
only the Java API documentation given as aid. The students can evaluate their progress by
executing unit tests. The final task is graded manually.

The current major revision of PABS has been utilized for four repetitions of the practical
programming course. Therefore it was possible to create some first statistics. On average
130 Students registered for the course every semester and about 51 successfully hand in
solutions to all exercises in the second phase. This can be explained due to the fact, that
many students that are not actually planning to take the course nevertheless register to take
a peak at the exercises to prepare for future semesters. Other students may think they are
capable of skipping the self study phase resulting in them not being able to hand in valid
solutions. After the second phase about ten students that are repeating the course and are
not required to complete phase two usually join in. Of these now 60 students admitted to
the third phase about 52 students or 87 percent hand in solutions that pass the automatic

6



tests. Of these about 48 students or 93 percent pass the manual control steps. In the final
task about 38 students or 77 percent receive passing grades and complete the course.

Those statistics prove the value of automated testing since the quota of students passing
the final task is at level or above similar courses. Therefore the automatic screening in the
second phase is competitive with the manual approach but requires far less manpower. The
amount of tutor involvement was reduced from over 700 man hours to mere 300 man hours
including the time frames for the tutorials and the preparation of exercises and unit tests.
The actual amount of time necessary for the manual correction of the presented solutions
has been reduced to about 80 man hours.

With PABS already having reached the second iteration of the third major version it has
been stable enough that the weakest link of the automatic grading process is not the system
itself which is accountable for less than 1% of all failures e.g. crashes of the sheduler.
Most failures come from poorly written tests provided by the assignment creators or from
students deliberately ignoring instructions. The former issue is going to be addressed by
increasing the focus on testing in the education of future co-workers.

After the success of PABS the internal application has been extended to multiple other
courses and lectures. Until now PABS has been used for 19 courses and has acquired
almost 1300 student users. The user community at the university is steadily growing as
can be seen in Table 1.

Course Name PABS no. of Avg.
introduction repetitions Participants

Pre-Course Programming S13 3 161
Practical Programming Course S13 5 130
Algorithms and Data Structures W13 2 400
Introduction to Computer Science W14 1 111
Practical Programming Course for Business Informatics W13 5 159
Programming Basics W14 1 168
Computer Science for all Departments W14 1 86
Object Oriented Design and Java Programming W14 1 46

Table 1: Lectures utilizing PABS system (W = Winter Term, S = Summer Term). All lectures except of the practical programming courses are offered only every second semester,
the practical programming courses are offered every semester. State up to S15

5 Conclusion

We introduced PABS, a system that automatically generates feedback for programming
assignments and gave an overview over related work. PABS is highly scalable and can
adapt to a growing number of courses and students. In practical application PABS has
shown to be highly reliable and a valuable tool for teachers offering courses with pro-
gramming assignments. The amount of required man hours for student assistants has been
vastly reduced. The success led to the successful introduction in multiple courses across
the Department of Computer Science. The time spent on developing the PABS system has
been proven valuable for the complete Department on the one hand allowing the student

7



assistant resources to be used for other applications and on the other hand providing and
objective way to evaluate solutions handed in by the students.

Further development steps are planned like the integration of PABS in the learning man-
agment system moodle as well as the development of grader agents to support additional
languages. An open source distribution is currently not planned.

For further research there are ideas of performing a didactical evaluation of the feedback
provided by PABS as well as the evaluation of different algorithms to utilize the history
for better plagiarism detection.

References
[DMB11] De Souza, Draylson Micael; Maldonado, Jose Carlos; Barbosa, Ellen Francine: ProgTest:

An environment for the submission and evaluation of programming assignments based
on testing activities. In: Software Engineering Education and Training (CSEE&T), 2011
24th IEEE-CS Conference on. IEEE, p. 1–10, 2011.

[EPQ08] Edwards, Stephen H; Perez-Quinones, Manuel A: Web-CAT: automatically grading pro-
gramming assignments. In: ACM SIGCSE Bulletin. volume 40. ACM, p. 328–328,
2008.

[ES13] Eggert, Daniel; Schulze, Eike Clas: GWT basiertes System zur automatischen Bewertung
von Programmieraufgaben. In: ABP. 2013.

[GW13] Gust, Helmar; Werner, Nadine: Automatische Bewertung von Übungsaufgaben in VIPS.
In: ABP. 2013.

[Ih10] Ihantola, Petri; Ahoniemi, Tuukka; Karavirta, Ville; Seppälä, Otto: Review of Recent
Systems for Automatic Assessment of Programming Assignments. In: Proceedings of
the 10th Koli Calling International Conference on Computing Education Research. Koli
Calling ’10, ACM, New York, NY, USA, p. 86–93, 2010.

[KJ13] Kruse, Marcel; Jensen, Nils: Automatische Bewertung von Datenbankaufgaben unter
Verwendung von LON-CAPA und Praktomat. In: ABP. 2013.

[La08] Lam, Maria SW; Chan, Eric YK; Lee, Victor CS; Yu, Yuen-Tak: Designing an automatic
debugging assistant for improving the learning of computer programming. In: Hybrid
Learning and Education. Springer, p. 359–370, 2008.

[LLY10] Law, Kris MY; Lee, Victor CS; Yu, Yuen-Tak: Learning motivation in e-learning facili-
tated computer programming courses. Computers & Education, 55(1):218–228, 2010.

[MS13] Müller, Oliver; Strickroth, Sven: GATE-Ein System zur Verbesserung der Programmier-
ausbildung und zur Unterstützung von Tutoren. In: ABP. 2013.

[NB11] Novák, M; Biňas, M: Automated testing of case studies in programming courses. In:
Emerging eLearning Technologies and Applications (ICETA), 2011 9th International
Conference on. IEEE, p. 157–162, 2011.

[Sp06] Spacco, Jaime; Hovemeyer, David; Pugh, William; Emad, Fawzi; Hollingsworth, Jef-
frey K; Padua-Perez, Nelson: Experiences with marmoset: designing and using an ad-
vanced submission and testing system for programming courses. ACM SIGCSE Bulletin,
38(3):13–17, 2006.

8


	Introduction
	Related Work
	Technical Description of the PABS System
	Practical Application
	Conclusion

