
Tools for Declarative Performance Engineering
Tutorial Paper

Jürgen Walter
University of Würzburg

Germany

Simon Eismann
University of Würzburg

Germany

Johannes Grohmann
University of Würzburg

Germany

Dušan Okanović
University of Stuttgart

Germany

Samuel Kounev
University of Würzburg

Germany

ABSTRACT
Performance is of particular relevance to software system design,
operation, and evolution. However, the application of performance
engineering approaches to solve a given user concern is challenging
and requires expert knowledge. In this tutorial paper, we guide the
reader step-by-step through the answering of performance con-
cerns following the idea of declarative performance engineering.
We explain tools available online, which can be used for automating
huge parts of the software performance engineering process. In
particular, we present a performance concern language, for which
we provide automated answering and visualization referring to
measurement-based and model-based analysis. We also detail how
to derive performance models using automated extraction of archi-
tectural performance models and modeling of parametric depen-
dencies.

CCS CONCEPTS
•General and reference→Evaluation;Experimentation;Per-
formance; • Software and its engineering → Model-driven
software engineering; Abstraction, modeling and modular-
ity; Software performance;

KEYWORDS
Declarative performance engineering, Model-based performance
analysis, Measurement-based performance analysis, Software per-
formance engineering

ACM Reference Format:
Jürgen Walter, Simon Eismann, Johannes Grohmann, Dušan Okanović,
and Samuel Kounev. 2018. Tools for Declarative Performance Engineering:
Tutorial Paper. In ICPE ’18: ACM/SPEC International Conference on Perfor-
mance Engineering Companion , April 9–13, 2018, Berlin, Germany.ACM,New
York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3185768.3185777

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3185777

1 INTRODUCTION
Currently, there is a huge abstraction gap between the level on
which performance concerns are formulated and the level on which
performance evaluations are actually executed. Declarative Perfor-
mance Engineering (DPE) [14] decouples the description of perfor-
mance concerns to be solved (performance questions and goals)
from the task of (automatically) selecting and applying specific
solution strategies to answer these concerns. In this tutorial pa-
per, we present how to apply open source tools available online to
implement DPE.1 Figure 1 provides a high-level overview of how
concerns can be answered using measurement- and model-based
analysis. In particular, we present the following building blocks:

Specifying performance concerns DPE requires a language to
formulate concerns. We present how to query performance
indicators, as well as the latest SLA language features, which
we integrated into the DQL (Descartes Query Language) [2,
11] (Section 2).

Answering using measurements One way to answer perfor-
mance concerns is interpreting measurements derived from
application performance measurement (APM) tools. We
present how to answer concerns based on the measurements
obtained using the Kieker monitoring framework [8] and
the adapter to DQL [1] (Section 3).

Answering using performance models Performance concerns
can also be answered based on performance models. We
present how to answer performance concerns usingDescartes
Modeling Language (DML) models [3] and the adapter to
DQL (Section 4).

Result visualization In addition to providing performance met-
rics as plain data, there are visualizations which can help
stakeholders to better understand problems at hand. We
present visualizations based on the PAVO (Performance Anal-
ysis Visualization) framework [10] (Section 5).

Performance model extraction Performancemodelsmay be cre-
ated in an editor or derived formmonitoring data.We present
PMX (Performance Model Extractor) [12] to derive perfor-
mance models from APM data (Section 6).

Parametric dependencies We present novel modeling features
to accurately and efficiently depict parametric dependencies
(Section 7).

1Descartes Tools: http://descartes.tools/

Tutorial ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

53

https://doi.org/10.1145/3185768.3185777
https://doi.org/10.1145/3185768.3185777
http://descartes.tools/

ICPE ’18, April 9–13, 2018, Berlin, Germany Walter et al.

DPE Framework

Results Visualization

Performance
Indices

Performance Concern
``What is the response time of my service?´´
``Can my system satisfy a given SLA when removing
resources? ´´
…

Architectural Performance
Model

Kieker
Adapter

DML
Adapter

Measurement

Model Extraction

Monitoring
Trace

doFilter(…)
▼ •doFilter(…)
▼ •list(…)
n executeQuery()
n executeQuery()

System

Interpretation
of Results

Triggers to
Processing

Figure 1: Overview of Tools for Declarative Performance Engineering

2 FORMULATION OF PERFORMANCE
RELATED CONCERNS USING DQL

Descartes Query Language (DQL) [2] enables to query performance
of a system using adapters to various solution approaches. Thereby,
DQL is a realization of the vision of Declarative Performance Engi-
neering (DPE), which decouples the description of user concerns
(performance questions and goals) from the task of selecting and
applying a specific solution approach.

DQL allows for specification of the following types of concerns:
(i) performance indicators [2], (ii) service level agreements (SLAs)
[11], and (iii) variation and what if analysis. Examples for these
types of concerns can be seen in the following listings. Listings show
respectively querying of a service response time, SLA evaluation,
and analysis of a service response time when the number of CPUs
is varied.

SELECT service.responseTime

FOR SERVICE 'CatalogActionBean.getItem ()' AS

service

USING kieker@ 'dql.properties ';

EVALUATE

AGREEMENTS sla1 CONTAINS slo1

GOALS

slo1: welcome.responseTime < 0.2ms

FOR SERVICE "welcomeGET" AS welcome

CONSTRAINED AS fast

USING connector@ 'domain_access ';

SELECT session.responseTime

FOR SERVICE 'Session ' AS session

VARYING 'processing units cpu '

AS cores <1 .. 40 BY 1>

USING dml@ 'model.properties ';

Language
& Editor

Execution Engine

Connector
Registry Connector

<< register >>

<< submit concern >>

External
Toolchain

Figure 2: DPE Framework Architecture

The corresponding processing framework, depicted in Figure 2,
enables to integrate performance evaluation techniques that may
benefit from reusing a set of generic processing algorithms. More
details on DQL and query processing can be found in [2, 11].

3 MEASUREMENTS-BASED ANSWERING OF
CONCERNS USING KIEKER

In order to showcase answering performance concerns based on the
data available in running systems, we developed a DQL adapter [1]
for the Kieker monitoring framework [8].

The adapter consists of two modules. A stated performance con-
cern is first analyzed by a configuration generation module to create
a tailored monitoring configuration for that particular concern.
Based on the query, the module identifies points of interest in mon-
itored software. Only required points will be instrumented. This
generated configuration is stored in a Kieker configuration file. Ob-
tained data is used by the filtering module. This module filters and
interprets collected execution traces according to concerns. The
implementation of the module uses the pipe-and-filter architecture
of the Kieker analysis framework: the chain of filters take out the
data required for answering of the stated concern, and convert
it into DQL data structures. The filtering module can work with
monitoring data that is collected using both tailored and default

Tutorial ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

54

Tools for Declarative Performance Engineering ICPE ’18, April 9–13, 2018, Berlin, Germany

<

A

B

A

C

InterfaceRequiringRole InterfaceProvidingRole

BasicComponent AssemblyContext

ProvidingDelegationConnector

System

VM A VM B
Host 1

RuntimeEnvironment
ComputingInfrastructureDataCenter

DeploymentContext

RequiringDelegationConnector

CompositeComponent

Figure 3: DML notation

monitoring configurations, with equal results in both cases. How-
ever, when using tailored configuration, performance overhead is
significantly lower.

4 MODEL-BASED ANSWERING OF
CONCERNS USING DML

Another way to answer performance related concerns is using per-
formance models. We propose to apply architectural performance
models, as they preserve the semantics of the system under test.
As a prototype implementation we apply Descartes Modeling Lan-
guage (DML) [3, 5], due to efficient existing model-solvers.

4.1 Descartes Modeling Language
DML provides descriptive, architecture-level performance models
for performance and resource management. In contrast to other
architecture-level performance models, it supports empirical as
well as explicit descriptions of model variables and parameter de-
pendencies.

A DML instance contains a repository of basic and composite
components. Each component has interface providing and interface
requiring roles. Roles are associated with an interface that declares
a set of operations. Each operation of an interface providing role
corresponds to a service of a component that can be called by other
components. The interface requiring roles specify the services that
a component depends on. A basic component must specify a service
behavior for each provided service (i.e., for each interface providing
role and operation). The service behavior specifies the performance
relevant control flow of the component (i.e., resources accesses,
external calls to other services, loops, forks, etc.). Composite com-
ponents bundle a set of components which are deployed together.

Components are composed to a system using assembly contexts,
assembly connectors, and delegation connectors. Each assembly con-
text represents a component instance within a system or a compos-
ite component. A component may be instantiated multiple times in
a system at different positions in the control flow (e.g., component
A in Figure 3). Assembly connectors represent the control flow be-
tween components. Delegation connectors can be used to expose
providing or requiring roles to enclosing composite component or
system. The resource landscape describes the physical and logical
resources in a data center. The main entities are containers which
can be a computing infrastructure (i.e., physical server) or a runtime
environment (e.g. a VM or a middleware service). Each container
contains a description of its resources (CPU, hard disks, network

Figure 4: Tailored prediction process

links, etc.). Deployment contexts map an assembly context to a con-
tainer. A usage profile contains a set of usage scenarios describing
the incoming workload to a system (open/close workload). A us-
age scenario defines the sequence of system user calls to interfaces
provided by the system.

4.2 Tailored Model Solution
Performance concern processing can be based on different require-
ments in terms of requested metrics, required accuracy, and time-to-
result. Therefore, the performance prediction process should allow
to flexibly take such requirements into account. DML offers flexibil-
ity in solution techniques based onmodel-to-model transformations
(e.g., to Queueing Networks (QNs) or Queueing Petri Nets (QPNs)).
Figure 4 illustrates the DML prediction process. Every request con-
sists of a performance model instance and a performance concern.
The Resolution step includes the selection of an appropriate service
behavior abstraction, resolution of component instantiation, call
paths, and parametric dependencies as well as the parametrization
of model variables. Next, an appropriate solver is selected and the
model is solved to provide performance predictions. According to
the performance concern, DML internally switches between two
fully automated analysis approaches.

The first analysis method transforms the performance model
into a QPN, utilizing the mappings proposed in [6]. The resulting
QPN is solved using the SimQPN simulation engine [4]. SimQPN
utilizes discrete event simulation to predict performance indices
such as the utilization, response time, response time distribution
and throughput of a QPN.

The second analysis method provides lower bounds for response
times and upper bounds for throughput, applying bounds analysis
to synchronous and asynchronous behavior. Since no simulation
is required for the bounds analysis, this can be significantly faster
than QPN simulation. However, the approach can only solve mod-
els containing a single usage scenario, an open workload, and no
passive resources.

In the future, DML is planned to be expanded by additional
analysis methods. The current selection of analysis methods is based
on a hard coded decision tree which is unsuitable to maintain. To
overcome this weakness, we developed a framework for automated
decision support based on capability models [13].

5 RESULT VISUALIZATION
A suitable visualization allows for better understanding of applica-
tion performance. Usually, analysis tools include some tool specific

Tutorial ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

55

ICPE ’18, April 9–13, 2018, Berlin, Germany Walter et al.

Figure 5: Visualization of performance analysis results

visualization, or no visualization at all. Our declarative approach al-
lows for generalization of performance analysis visualizations, and
reuse of these visualizations for multiple performance evaluation
techniques.

PAVO framework [10] provides result visualization for a given
performance analysis result. It includes several features such as a
decomposition into multiple diagrams, flexibility in changing dia-
gram types, and enrichment using aggregated metrics. To illustrate,
Figure 5 shows a visualization for measurements triggered by DQL.

6 AUTOMATED PERFORMANCE MODEL
EXTRACTION

We see a reluctance from industry to adopt model-based analysis
approaches due to the required expertise and modeling effort. Build-
ing models from scratch in an editor does not scale for medium
and large-scale systems available in industry. In order to automat-
ically derive performance models we propose the use of Perfor-
mance Model Extractor (PMX) [12], for which we also provide a
web service [9]. PMX extracts architectural performance models
from application performance management (APM) data.

The parametrization of the required resource demands in order
to complete the DML model can be done via Library for Resource
Demand Estimation (LibReDE). LibReDE is a library of ready-to-
use implementations of state-of-the-art approaches for resource
demand estimation, which can be used for online and offline analy-
sis [7]. It provides eight statistical estimation approaches to derive
the resource demands based on generic system- and application-
level measurements.

7 MODELING OF PARAMETRIC
DEPENDENCIES

Currently, automated model extraction cannot recognize when
model parameters depend on a range of input characteristics or
various system parametrizations. In order to reflect parametric de-
pendencies within a performance model, explicit modeling of input
parameters and description of resource demands as a function of
input parameters has been shown to be effective. DML provides
so-called relationships to model dependencies between various pa-
rameters and therefore predict the impact of workload changes

on model parameters. Additionally, correlation relationships al-
low to estimate parameters that cannot be monitored, by defining
correlations to measurable variables.

8 CONCLUSION
This tutorial paper addresses tools for automation of software per-
formance engineering approaches. We present a declarative lan-
guage to specify performance concerns, as well as demonstrate
tools which can be used to automatically answer them based on
measurements and software performance models, and a framework
to provide decision support. To enable model-based analysis, we
discuss tools for the efficient creation of performance models.

ACKNOWLEDGMENTS
This work is supported by the German Research Foundation (DFG)
in the Priority Programme “DFG-SPP 1593: Design For Future—
Managed Software Evolution” (HO 5721/1-1 and KO 3445/15-1).

REFERENCES
[1] Matthias Blohm, Maksim Pahlberg, Sebastian Vogel, Jürgen Walter, and Du-

san Okanovic. 2016. Kieker4DQL: Declarative Performance Measurement. In
Proceedings of the 2016 Symposium on Software Performance (SSP).

[2] Fabian Gorsler, Fabian Brosig, and Samuel Kounev. 2014. Performance Queries
for Architecture-Level Performance Models. In Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering (ICPE 2014). ACM, New York,
USA, 99–110.

[3] Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel Kounev, and Manuel Bähr.
2017. Model-Based Self-Aware Performance and Resource Management Using
the Descartes Modeling Language. IEEE Transactions on Software Engineering
(TSE) PP, 99 (2017). DOI:http://dx.doi.org/10.1109/TSE.2016.2613863

[4] Samuel Kounev and Alejandro Buchmann. 2006. SimQPN: A Tool and Methodol-
ogy for Analyzing Queueing Petri Net Models by Means of Simulation. Perform.
Eval. 63, 4 (2006), 364–394. http://dx.doi.org/10.1016/j.peva.2005.03.004

[5] Samuel Kounev, Nikolaus Huber, Fabian Brosig, and Xiaoyun Zhu. 2016. A Model-
Based Approach to Designing Self-Aware IT Systems and Infrastructures. IEEE
Computer 49, 7 (2016), 53–61.

[6] Philipp Meier, Samuel Kounev, and Heiko Koziolek. 2011. Automated transfor-
mation of Palladio component models to queueing Petri nets. In 19th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2011), Singapore.

[7] Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. 2014. Li-
bReDE: A Library for Resource Demand Estimation. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE 2014). ACM
Press, New York, USA, 227–228. http://doi.acm.org/10.1145/2568088.2576093

[8] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Analysis.
In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12). 247–248.

[9] Jürgen Walter, Simon Eismann, Nikolai Reed, and Samuel Kounev. 2017. Archi-
tectural Performance Model Extraction as a Service. In Proceedings of the 2017
Symposium on Software Performance (SSP).

[10] Jürgen Walter, Maximilian König, Simon Eismann, and Samuel Kounev. 2016.
PAVO: A Framework for the Visualization of Performance Analyses Results. In
Proceedings of the 2016 Symposium on Software Performance (SSP).

[11] Jürgen Walter, Dusan Okanovic, and Samuel Kounev. 2017. Mapping of Service
Level Objectives to Performance Queries. In Proceedings of the 2017 Workshop on
Challenges in Performance Methods for Software Development (WOSP-C’17). ACM.

[12] Jürgen Walter, Christian Stier, Heiko Koziolek, and Samuel Kounev. 2017. An
Expandable Extraction Framework for Architectural Performance Models. In Pro-
ceedings of the 3rd International Workshop on Quality-Aware DevOps (QUDOS’17).
ACM, 6.

[13] Jürgen Walter, Andre van Hoorn, and Samuel Kounev. 2017. Automated and
Adaptable Decision Support for Software Performance Engineering. In Proceed-
ings of the 11th EAI International Conference on Performance Evaluation Method-
ologies and Tools.

[14] Jürgen Walter, Andre van Hoorn, Heiko Koziolek, Dusan Okanovic, and Samuel
Kounev. 2016. Asking “What?”, Automating the “How?”: The Vision of Declar-
ative Performance Engineering. In 7th ACM/SPEC Int. Conf. on Perf. Eng. (ICPE
’16).

Tutorial ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

56

http://dx.doi.org/10.1109/TSE.2016.2613863
http://dx.doi.org/10.1016/j.peva.2005.03.004
http://doi.acm.org/10.1145/2568088.2576093

	Abstract
	1 Introduction
	2 Formulation of Performance Related Concerns using DQL
	3 Measurements-based Answering of Concerns using Kieker
	4 Model-based Answering of Concerns using DML
	4.1 Descartes Modeling Language
	4.2 Tailored Model Solution

	5 Result Visualization
	6 Automated Performance Model Extraction
	7 Modeling of Parametric Dependencies
	8 CONCLUSION
	References

