
Benchmarking of Message-Oriented Middleware

Kai Sachs
TU Darmstadt, Germany

sachs@dvs.tu-
darmstadt.de

Samuel Kounev
FZI Karlsruhe, Germany
skounev@acm.com

Stefan Appel,
Alejandro Buchmann
TU Darmstadt, Germany
lastname@dvs.tu-

darmstadt.de

1. INTRODUCTION
Message-oriented middleware (MOM) is increasingly used

as enabling technology for modern event-driven applications
typically based on publish/subscribe (pub/sub) communica-
tion [1]. Many of these applications are designed for maxi-
mum scalability and flexibility and as such, they pose some
serious performance issues for the underlying pub/sub mid-
dleware. Additionally, software designers face a new chal-
lenge: designing message-based communication flows which
rely on asynchronous decoupled communication patterns. In
order to develop good designs, system designers have to un-
derstand quality of service aspects and their performance
costs. We believe that benchmarks are very helpful tools to
analyse these aspects.

In this poster, we provide an overview of our past and
current research in the area of MOM performance bench-
marks. Our main research motivation is a) to gain a bet-
ter understanding of the performance of MOM, b) to show
how to use benchmarks for the evaluation of performance as-
pects and c)to establish performance modeling techniques.
For a better understanding we first introduce the Java Mes-
sage Service (JMS) standard. Afterwards, we provide an
overview of our work on MOM benchmark development,
i.e., we present the SPECjms2007 benchmark [4] and the
brand new jms2009-PS [3], a test harness designed specifi-
cally for JMS-based pub/sub. We outline a new case study
with jms2009-PS and present first results of our work-in-
progress. Due to space constraints we refer the interested
reader for related work to [4] (for an overview in the area of
MOM) and to [2] (for performance of event-based systems
in general).

2. JAVA MESSAGE SERVICE
The JMS interface [6] is supported by all major MOM ven-

dors and has established itself as the de facto industry stan-
dard interface for MOM. It supports two messaging models:
point-to-point (P2P) and publish/subscribe (pub/sub). P2P
messaging is built around the concept of message queues

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6-9, Nashville, TN, USA.
Copyright 2009 ACM 978-1-60558-665-6/09/07... $10.00.

ID JMS Sever JVM DB Max

A ActiveMQ 4.1.2 Sun, Java 6.0 Derby 720
B ActiveMQ 4.1.2 Sun, Java 6.0 MySQL 770
C ActiveMQ 4.1.2 Oracle JRockit, Java 6.0 Derby 830
D ActiveMQ 4.1.2 Oracle JRockit, Java 6.0 MySQL 870
E Comm. Vendor Oracle JRockit, Java 5.0 File 710

Table 1: Configurations and Vertical Results

where each queue forms a virtual communication channel.
Each incoming message is processed by a single consumer
(1:1). In contrast, pub/sub messaging is built around the
concept of topics. Each message may be delivered to multi-
ple consumers which are interested in a specific topic (1:n).
JMS queues and topics are commonly referred to as destina-
tions. Furthermore, JMS offers so-called selectors. Selectors
allow consumers to define filters for incoming messages in
SQL-like notation.

3. BENCHMARKS

3.1 SPECjms2007 - A JMS Benchmark
SPECjms2007 is the first industry standard benchmark

for JMS. It was developed by the Standard Performance
Evaluation Corporation (SPEC) under the leadership of TU
Darmstadt. The underlying application scenario models
a supermarket’s supply chain where RFID technology is
used to track the flow of goods between different parties.
The workload of this scenario is based on the experience
of SPEC member organisations including IBM, Sun and
Oracle. Seven interactions such as order management are
modeled in detail to stress different aspects of MOM perfor-
mance.

SPECjms2007 is implemented as a Java application frame-
work comprising multiple Java Virtual Machines and threads
distributed across a set of client nodes [5]. A detailed work-
load description and a case study using SPECjms2007 is
provided in [4]. As an example for SPECjms2007 usage,
we present performance results for ActiveMQ [7], an open
source JMS implementation, with different configurations
(see Table 1 and Figure 1).1

1
SPECjms2007 is a trademark of the Standard Performance Evalua-

tion Corporation(SPEC). The results or findings in this publication
have not been reviewed or accepted by SPEC, therefore no compar-
ison nor performance inference can be made against any published
SPEC result. The official web site for SPECjms2007 is located at
http://www.spec.org/osg/jms2007.

 0

 20

 40

 60

 80

 100

200 400 600 800

C
P

U
 U

ti
liz

a
ti
o
n

BASE

Config A
Config B
Config C
Config D

 50

 55

 60

 65

 70

700 750 800 850 900

C
P

U
 U

ti
liz

a
ti
o
n

BASE

Config A
Config B
Config C
Config D

 0

 20

 40

 60

 80

 100

200 400 600 800

C
P

U
 U

ti
liz

a
ti
o
n

BASE

Config A
Comm. Vendor

 0

 0.1

 0.2

 0.3

 0.4

 0.5

200 400 600 800

C
P

U
 T

im
e
 P

e
r

M
e
s
s
a
g
e
 (

m
s
)

BASE

Config A
Config B
Config C
Config D

Figure 1: SPECjms2007 Results for ActiveMQ

and workload [4] using pub/sub communication for each in-
teraction. jms2009-PS offers two different ways to achieve
this: a) using one topic per interaction or b) using a separate
topic for each message type in an interaction. Additionally,
queues can be used instead of topics for P2P communica-
tion. In contrast to other frameworks, jms2009-PS allows to
define complex traffic scenarios with different destinations,
message types (using different sizes), service levels and fil-
ters.

4. A CASE STUDY USING JMS2009-PS
We present initial results of our work-in-progress: a case
study using jms2009-PS. Our motivation for this case study
is to analyse different performance aspects of MOM. We fo-
cus on pub/sub communication as well as on the influence of
design decisions on system performance. System developers
have to decide at design time what message communication
patterns to use, e.g. destination types, message filter com-
plexity, and number of destinations. Such decisions strongly
influence scalability, flexibility, and performance, whereas
wrong decisions can cause serious problems and high follow-
up costs for correcting them afterwards. Therefore, we see
a strong need for methods and tools, that allow system de-
signers to predict the impact of their decisions in advance.
One class of such tools are benchmarks, which are highly
useful for performance evaluation of complex system archi-
tectures. In our case study we use the latest version of
jms2009-PS which contains specific extensions to meet our
requirements.

One focus of our case study is to evaluate the choice of des-
tination types, i.e. queues vs. topics. In case of multiple
consumers per message, it is easy to see that topics are the
better option. However, for message exchanges with a single
consumer (P2P), the developer may choose either topics or
queues. One reason for using topics can be better scalability
and flexibility compared to queues.

For example, consider a system where incoming orders are
consumed by an order management component. We extend
the system by a new controlling component that also receives
all incoming order messages, i.e., changing the communica-
tion pattern from 1:1 to 1:n. In case of an implementation

using queues, at minimum the MOM has to be reconfigured
(which can lead to downtime) and likely the code of the or-
der management system would have to be adjusted and the
component redeployed. Instead, in a solution based on top-
ics, the new controller component only has to subscribe to
the corresponding topics. Other software components are
not affected and will not even notice the new component.
However, what are the costs for this flexibility? Other im-
portant questions are, for example., related to the number of
message destinations (e.g. one topic for each message type
vs. one topic for all message types), transaction costs as well
as overhead of durable subscriptions, number of subscribers,
filter complexity and message sizes.

Since a system designer has to deal with such questions, we
are evaluating these aspects in our case study by analysing
various scenarios. We focus on pub/sub communication and
compare it, where meaningful, with queues. In contrast
to other case studies, we use a complex and comprehen-
sive workload with different message types, high parallelism,
high number of destinations, and different message sizes.
Our server setup is comparable to a state-of-the-art real-
world environment; as JMS implementation we use a major
commercial product for our experiments.

5. SUMMARY
We gave a brief overview of our past and ongoing research
work in the area of MOM benchmarks and presented the two
benchmarks including results: SPECjms2007, a standard-
ized JMS benchmark, and jms2009-PS, a pub/sub perfor-
mance test harness. Furthermore, we outlined a case study
in which we use jms2009-PS to evaluate different perfor-
mance aspects of MOM.

6. REFERENCES
[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):pages 114–131, 2003.

[2] S. Kounev and K. Sachs. Benchmarking and
performance modeling of event-based systems. In
Review.

[3] K. Sachs, S. Kounev, S. Appel, and A. Buchmann. A
Performance Test Harness For Publish/Subscribe
Middleware. In SIGMETRICS/Performance 2009:
Demo Competition. SIGMETRICS, 2009.

[4] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented middleware
using the SPECjms2007 benchmark. Performance
Evaluation, 2009. Article in press, online available via
doi:10.1016/j.peva.2009.01.003.

[5] K. Sachs, S. Kounev, M. Carter, and A. Buchmann.
Designing a Workload Scenario for Benchmarking
Message-Oriented Middleware. In Proceedings of the
2007 SPEC Benchmark Workshop, 2007.

[6] Sun Microsystems, Inc. Java Message Service (JMS)
Specification - Version 1.1. Technical report, 2002.

[7] The Apache Software Foundation. ActiveMQ.
http://activemq.apache.org/, 2009.

Figure 1: SPECjms2007 Results for ActiveMQ

3.2 jms2009-PS - A pub/sub Benchmark
jms2009-PS is a novel benchmark for pub/sub systems [3].

jms2009-PS is built on top of the SPECjms2007 framework
and workload [4] using pub/sub communication for each in-
teraction. jms2009-PS offers two different ways to achieve
this: a) using one topic per interaction or b) using a separate
topic for each message type in an interaction. Additionally,
queues can be used instead of topics for P2P communica-
tion. In contrast to other frameworks, jms2009-PS allows to
define complex traffic scenarios with different destinations,
message types (using different sizes), service levels and fil-
ters.

4. A CASE STUDY USING JMS2009-PS
We present initial results of our work-in-progress: a case

study using jms2009-PS. Our motivation for this case study
is to analyse different performance aspects of MOM. We fo-
cus on pub/sub communication as well as on the influence of
design decisions on system performance. System developers
have to decide at design time what message communication
patterns to use, e.g. destination types, message filter com-
plexity, and number of destinations. Such decisions strongly
influence scalability, flexibility, and performance, whereas
wrong decisions can cause serious problems and high follow-
up costs for correcting them afterwards. Therefore, we see
a strong need for methods and tools, that allow system de-
signers to predict the impact of their decisions in advance.
One class of such tools are benchmarks, which are highly
useful for performance evaluation of complex system archi-
tectures. In our case study we use the latest version of
jms2009-PS which contains specific extensions to meet our
requirements.

One focus of our case study is to evaluate the choice of
destination types, i.e. queues vs. topics. In case of multiple
consumers per message, it is easy to see that topics are the
better option. However, for message exchanges with a single
consumer (P2P), the developer may choose either topics or
queues. One reason for using topics can be better scalability
and flexibility compared to queues.

For example, consider a system where incoming orders are
consumed by an order management component. We extend
the system by a new controlling component that also receives

all incoming order messages, i.e., changing the communica-
tion pattern from 1:1 to 1:n. In case of an implementation
using queues, at minimum the MOM has to be reconfigured
(which can lead to downtime) and likely the code of the or-
der management system would have to be adjusted and the
component redeployed. Instead, in a solution based on top-
ics, the new controller component only has to subscribe to
the corresponding topics. Other software components are
not affected and will not even notice the new component.
However, what are the costs for this flexibility? Other im-
portant questions are, for example., related to the number of
message destinations (e.g. one topic for each message type
vs. one topic for all message types), transaction costs as well
as overhead of durable subscriptions, number of subscribers,
filter complexity and message sizes.

Since a system designer has to deal with such questions,
we are evaluating these aspects in our case study by analysing
various scenarios. We focus on pub/sub communication and
compare it, where meaningful, with queues. In contrast
to other case studies, we use a complex and comprehen-
sive workload with different message types, high parallelism,
high number of destinations, and different message sizes.
Our server setup is comparable to a state-of-the-art real-
world environment; as JMS implementation we use a major
commercial product for our experiments.

5. SUMMARY
We gave a brief overview of our past and ongoing research

work in the area of MOM benchmarks and presented the two
benchmarks including results: SPECjms2007, a standard-
ized JMS benchmark, and jms2009-PS, a pub/sub perfor-
mance test harness. Furthermore, we outlined a case study
in which we use jms2009-PS to evaluate different perfor-
mance aspects of MOM.

6. REFERENCES
[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):pages 114–131, 2003.

[2] S. Kounev and K. Sachs. Benchmarking and
performance modeling of event-based systems. Special
issue of it - Information Technology on Complex Event
Processing, 2009. To appear.

[3] K. Sachs, S. Kounev, S. Appel, and A. Buchmann. A
Performance Test Harness For Publish/Subscribe
Middleware. In SIGMETRICS/Performance 2009:
Demo Competition. SIGMETRICS, 2009.

[4] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented middleware
using the SPECjms2007 benchmark. Performance
Evaluation, 66(8):410–434, Aug. 2009.

[5] K. Sachs, S. Kounev, M. Carter, and A. Buchmann.
Designing a Workload Scenario for Benchmarking
Message-Oriented Middleware. In Proceedings of the
2007 SPEC Benchmark Workshop, 2007.

[6] Sun Microsystems, Inc. Java Message Service (JMS)
Specification - Version 1.1. Technical report, 2002.

[7] The Apache Software Foundation. ActiveMQ.
http://activemq.apache.org/, 2009.

