
* Institute of Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw.
piotr.rygielski@pwr.wroc.pl, pawel.swiatek@pwr.wroc.pl

Key words – SOA, optimal, complex service, composition, Quality of Service

Piotr RYGIELSKI*, Paweł ŚWIĄTEK*

OPTIMAL COMPLEX SERVICES COMPOSITION IN SOA SYSTEMS

One of the most important tasks in service oriented architecture paradigm based systems is the task of
composition of the complex service. Aim of this paper is to focus on the very last phase of the composition
process, where proper atomic service versions are picked to execute the whole complex service. An exact
algorithm is proposed in this paper solving two tasks based on popular quality of service delivery approaches:
best-effort and differentiated services. The procedure of graph reduction has been introduced to generate space of
possible solutions in such way that decision is made in more efficient way. The graph-fold algorithm was tested
in simulation environment where its performance was compared to five reference algorithms. Moreover ability to
deliver quality at desired level has been tested.

1. INTRODUCTION

In systems based on SOA (Service-Oriented Architecture) paradigm services delivered to end-
users (complex services) are composed with use of atomic services (services that have atomic
functionality). The functionality of a complex service is an aggregation of functionalities of atomic
services [5]. In general system is distributed, what means that applications acting as atomic services
can be installed on any machine with communication interface available. An user requesting a
service from the system formulates a request that is specifying functionality demanded. To deliver
requested functionality system uses service composition procedure which consists of choosing
proper atomic services with an execution order to satisfy user requirement. Moreover, user is able to
formulate an additional terms of service delivery which involves non-functional aspect of delivering
the service – Quality of Service requirements. Such complex request for service is called SLA –
Service Level Agreement – and uniquely defines functional and non-functional user needs.

1.1. SERVICE COMPOSITION TASK

In general, the task of complex service composition consists of finding, for given ordered set

of required functionalities (stated in the SLA), an order of atomic services versions execution such
that non-functional requirements are met. The task of complex service composition can be
decomposed into three sequential subtasks (see figure 1):

1. Complex service structure composition – transformation of the SLA into set of required
functionalities and the precedence relations between them. The result of this task is complex service
structure represented as a directed graph (not connected in general) of required functionalities.

2. Complex service scenario composition – transformation of complex service structure graph
into single and consistent graph of required functionalities with precisely defined order of execution
of all atomic functionalities. Since it is possible, that single functionality is delivered by more than
one atomic service version, the scenario graph represents in fact a family of execution graphs where
member graphs differ in atomic service versions applied to deliver required atomic functionality.

3. Complex service execution plan composition – choice of particular atomic services in
complex service scenario graph such that non-functional requirements of complex service are met.

In order to deliver complex service with requested functionality and non-functional properties
various optimization tasks need to be solved on consecutive stages of complex service composition
task (i.e.: stages of complex service structure, scenario and execution plan composition) [9].

Fig. 1. Decomposition of the process of complex service composition

1.2. COMPLEX SERVICE EXECUTION PLAN

Aim of this paper is to focus on the complex service execution plan determination. Order

constraints and atomic services selected under complex service scenario determination process
should be processed further to select proper atomic service versions for execution. Atomic service
versions can be available at the distributed execution system in many versions (each version differs
from other in nonfunctional aspect) so choosing proper execution plan can be treated as quality
optimization task with popular QoS criteria i.e., execution time, cost, security, etc.

2. THE COMPLEX SERVICE SCENARIO

At the third stage of complex service composition process it is assumed that a graph called

complex service execution scenario is given. The scenario defines unambiguously the order in
which atomic functionalities should be delivered in order to fulfill the user functional requirement.
The scenario is modeled as a graph),(ECVCGC = where VC is a vertex set where one vertex
represents functionality to be delivered and EC is a set of edges which defines the order of
delivering functionalities. Exemplary complex service scenario is presented on the figure 2.

Fig. 2. Exemplary scenario of complex serviced which goal is to make a cell phone call. Each of distinguished
functionalities can be delivered by many versions of atomic services.

An exemplary complex service - which goal is to make a cell phone call - consists of four
operations that have to be executed. Assuming that user does not have money to execute this
service, first user has to get the money, for example by getting a loan. A loan can be given by many
institutions where each can be treated as another atomic service version. Similar situation is with
buying a cell phone – user can buy same phone in many stores – and with sim card – many cellular
operators can offer user a sim card. Finally user can make a call using a newly bought cell phone
and sim card using various versions of calling service e.g. VoIP call, gsm call, video call etc.

 An user formulating its requirement for service defines a set of quality parameters that should
be delivered to satisfy the user. Of course those requirements concern the whole process of
delivering a service and should be taken into consideration during the composition especially in the
execution plan determination stage.

3. PROBLEM FORMULATION

A task of execution plan determination is the last task that needs to be solved in the complex

service composition procedure. In general the task of determination of optimal execution plan of
complex service can be described as follows. The systems task is to pick one version of each atomic
service defined uniquely by the scenario in such way, that quality requirements are satisfied.
Noteworthy is fact that picking two atomic service versions defines also a communication path that
is going to be used to communicate between these services – assuming that there is always chosen
the best possible path if there is more than once. The task is similar to the task of finding an optimal
path in graph considered in earlier work [4] but the difference is that in this approach the solution is
represented as a graph - not as a single path - and the former algorithms can not be used. Formally
the task of finding optimal a complex service execution plan can be formulated as follows:

For given:

• Scenario graph),(ECVCGC =

• A l-th service request represented by the lSLA

• Complex service nonfunctional requirement lΨ

• Quality criterion ()lGQ Ψ,

Find:
• Such set of atomic services versions for scenario GC that quality criterion is

minimized
{ }()()lkjj

asas
kjj

EasasGQasas
kk

kkjkj
kk

Ψ= ,,,...,minarg,..., 1
,...,

1
1

**

where:
•

kj
as1 denotes kj -th version of k-th atomic service

The problem stated above can be easily transformed into multi-choice knapsack problem in
the following way. The task is to pick exactly one item (atomic service version) from each group
(atomic service) in such way that quality of represented by picked items (complex service) is
optimal in sense of choosen quality criterion Q .

The solution of the formulated problem is known and some algorithms solving such problem
has been presented i.e. in [7]. But the problem formulated at the beginning of this chapter can not be
directly transformated into multichoice knapsack problem because of scenario of execution of
complex service is given as a graph in general. In order to transformate problem of determination of
optimal execution plan into multi-choice knapsack problem, one has to reduce scenario graph into
connected directed graph having all vertices with input and output degree no higher than one. In
order to solve stated problems the procedure of graph reduction is proposed in next chapter of this
paper.

4. SCENARIO GRAPH REDUCTION PROCEDURE

The goal of scenario graph reduction procedure is to transform the scenario graph into
connected graph where all vertices have input and output degree no higher than one. Transformation
of input graph scenario consists of determination of sub graph - called a pattern - and defining a
result of reduction for this defined pattern. Moreover all versions of atomic services present within
this pattern should be aggregated in the new resulting vertex in such way that latter distinguishing of
the original versions in possible. The most important part of pattern reduction is to find an
aggregating function that aggregates values of nonfunctional parameters into new ones in newly
created vertex of the reduction process. The whole procedure of pattern reduction has been
described below.

4.1. REDUCTION PROCEDURE

In order to reduce the scenario graph into form that stated optimization problems can be
solved, the set of patterns with aggregation function has to be defined. On the figure 3 there has
been presented two scenario subgraph patterns (subfigures a and c) with corresponding resulting
vertex (subfigures b and d respectively) obtained using aggregation function. The original versions
of the atomic services are being merged into new ones in the newly created vertex. The aggregation
functions for the examples given on the figure 3 – considering execution time as a nonfunctional
parameter - are sum and sum-max - respectively for serial reduction (subfigures a,b) and split
reduction (subfigures c,d). Therefore the resulting versions of k-th atomic service obtained in
process of serial reduction has the following values of execution time: () () ();1,1,11 ididkd +−=

() () ();2,1,12 ididkd +−= () () ();1,2,13 ididkd +−= () () ();2,2,14 ididkd +−= where ()1,id denotes

execution time of first version of i-th atomic service. Respectively the execution times for split
reduction procedure can by calculated by following the following pattern:

() () () (){ };1,,...,1,max1,11 nidididkd ++−= () () () (){ };2,,...,1,max1,12 nidididkd ++−= and for the

last m-th version of newly created service: () () () (){ };2,,...,2,max2,1 nidididkd m ++−= . The

number of versions in the newly created service can be calculated using the equation 1

∏
=

=
J

j
jassizem

0

)(, (1)

where)(jassize denotes number of versions of j-th atomic service and J denotes count of atomic

services in the pattern.

..
.

..
.

Fig. 3. Two subgraph patterns (serial - a and split - c) and corresponding results of reduction (b and d respectively).
Atomic service versions before reduction (a,c) are transformed into new ones (b,d) which nonfunctional parameters
values were also recalculated using proper aggregation functions. In this example count of atomic service versions in
serial reduction equals to 4 and in the split reduction can be calculated using equation (1).

Except of vertices patterns reduction one can distinguish an edge reduction pattern which

leads to decrease of graph complexity. The redundant edge reduction pattern has been presented on
figure 4.

Fig. 4. Possible edge reduction non violating precedence relations between vertices of scenario graph; a) before edge
removal, b) after removing redundant edge.

Without loosing any information one can remove edge (11, +− ii asas) because of transitivity of

precedence relation: 1111 +−+− ⇒∧ iiiiii asasasasasas ppp . Of course one can distinguish other

patterns of edge removal if and only if one does not cause loss of information in case of such
reduction.

The reductions defined formerly are basic ones and one can define more of such reductions to
cope with more complicated scenario graphs in more efficient way. The complete reduction
operations set should contain at least two mentioned vertex reduction operations (serial and split)
and redundant edge reduction. This gives guarantee to reduce any graph into desired form.

4.2. THE GRAPH-FOLD REDUCTION ALGORITHM

In order to reduce the scenario graph to the form that is appropriate for the multi-choice
knapsack problem one has to perform steps concerning all vertex reduction patterns and all edge
reduction patterns. Assuming that each reduction procedure reduces exactly one edge (in case of
edge reduction) or exactly one pattern (in case of pattern reduction), the whole reduction process
makes maximum ECVC + reductions.

Each reduction has also its computational complexity which is influenced by: the complexity
of procedure of finding a pattern, complexity of calculating the values of non-functional parameters
of newly created node, disconnecting removed vertices and connecting newly created one. All of
mentioned procedures can have different implementations so complexities may vary. Trying to
estimate complexities of former operations the results has been presented in table 1.

Operation Complexity Denotation

Finding an pattern ()knO VCn =
k – largest output degree of
vertex in graph
M - number of vertices in the
reduction pattern

mJ – number of versions of m-th

atomic service

Calculating new values of non-
functional parameters 







∏
=

M

m
mJO

1

Disconnection and connection
of graph vertices

()nO

Finding and reducing
redundant edge

()nnO log3

Table. 1. Estimation of calculation complexities of operations used in reduction procedure.

Noteworthy is fact that vertices that are disconnected can be removed and not considered

further, so value of n (VCn =) is decreasing during the process of reduction. Decreasing speed

depends on number of vertices that are being disconnected during single reduction operation.
The general procedure consists of looped execution of all reduction operations until the

vertices count 1=n (in case of reduction of all vertices of the graph) or input and output degrees of
all vertices is no greater than 1.

Fig. 5. Exemplary reduction process for scenario with six functionalities (atomic services), each having two versions.
After two split reductions and one serial reduction the result is single atomic service with 64 versions. Every newly
created scenario gets new number for ease of distinguishing.

Example of the reduction process has been presented on the figure 5. Scenario graph used in
this example contains six vertices (functionalities) with precedence relations given as on subfigure 1
of figure 5. Each functionality in considered scenario graph has two versions of atomic service. In
the first step there is a split-reduction pattern found and the result of reduction is presented on
subfigure 2. In the second step situation repeats – split reduction pattern is found and reduced.
Notice that number of versions in the resulting vertex increase. On subfigure 3 the serial reduction
pattern is found and reduced. The algorithm stops in step four where only one vertex is left
(subfigure 4). Resulting vertex has 64 versions.

5. PROBLEM SOLUTION

The problem of multi-choice knapsack problem formulated in chapter 3 can be solved using
heuristic algorithms [2,7], but much more interesting solution can be obtained when scenario graph
has been reduced to single vertex. In case of such reduction one gets single atomic service with m
versions. Moreover if there are used data structures like AVL trees [3] as a collection of QoS value
for resulting m versions, the optimal solution of determination of complex service execution plan
problem can be found in ()mO log time.

Depending on optimization goal given by quality criterionQ , one can achieve different graph-
fold algorithm behavior. According to popular quality of service delivery approaches - best-effort
approach and differentiated services approach - one can formulate such quality criterion that desired
algorithm behavior can be obtained.

5.1. COMPLEX SERVICE EXECUTION TIME MINIMIZATION

This solution bases on the best-effort approach and finds minimum time of execution of
complex service. A complex service execution time can be minimized using graph-fold algorithm
when execution time is considered as a quality parameter. In this case the following optimization
task should be solved:

()m
kk

m kdk
m,...,

*

1

minarg= , (2)

where ()mkd denotes execution time of m-th version of k-th atomic service obtained after graph

reduction procedure. According to assumption that resulting collection of atomic service versions is
ordered by the ()mkd value, the solution can be found in ()1O and consist on picking the version

with the lowest execution time value.

5.2. COMPLEX SERVICE EXECUTION TIME GUARANTIES

This solution bases on the differentiated services approach and finds optimal execution time
value with respect to given execution time requirement. In this case the following optimization task
should be solved:

()()2*

,...,

*

1

minarg dkdk m
kk

m
m

−= , (3)

with respect to the following constraint:
() ** dkd m ≤ , (4)

where *d denotes execution time requirement given by user. According to assumption that resulting
collection of atomic service versions is ordered by the ()mkd value, the solution can be found in

()mO log and consist on picking the version with the highest execution time value but not higher
than the user requirement. In case when there is no solution of this task, the request can be handled
in one of the following ways: the SLA contract should be renegotiated, the request should be
rejected and not executed in the system or can be served as in the best-effort approach.

6. SIMULATION STUDY

In order to evaluate quality delivered by presented graph-fold algorithm the simulation
environment has been developed in OMNeT++ simulation framework [8]. The simulator consists of
three distinguishable modules: generator module, abstract Enterprise Service Bus and set of web
services representing atomic service versions. The simulation run consisted of generating stream of
complex service requests with interarrival time given by exponential distribution with mean 0.1
second and random complex service execution scenarios. The generated request was processed in
abstract ESB module where the task of finding the optimal execution plan was solved. There were
six algorithms for finding optimal execution plan present in the system – five of those were
reference algorithms and sixth one was the graph-fold algorithm. Each atomic service version
present in the system had different performance index generated from exponential distribution with
mean 10 measured in kilobytes per second that can be processed. Moreover request data size that
was going to be processed was also generated from exponential distribution with mean 10KB. The
number of atomic services was set to 8 (also maximum 8 functionalities were present in generated
scenario) each having 10 versions.

Using such configured simulation environment there were two experiments performed. First
consisted of solving the complex service execution time minimization task and second of solving
the complex service execution time optimization task, where additionally the execution time
requirement has been set.

The results of the first experiment have been presented on figure 6. The experiment lasted for
1000 simulation seconds and consisted on determination of complex service execution plan at the
moment of request was entering the system. The first observation shows that graph-fold algorithm
obtained the lowest execution time from all tested algorithms. Moreover the execution time line on
the chart is very close to the constant value of about 3 seconds while rest of algorithms resulted in
higher variation of execution time. Second best was best-avg algorithm which consisted of choosing
such version of atomic service that average execution time was lowest. Other algorithms resulted in
worse complex service execution time.

The results of the second experiment have been presented on figure 7. The task of the graph-
fold algorithm was to keep complex service execution time as close as possible to the requirement
which was set to 5 seconds. On the chart presented on figure 7 one can notice, that the time of
execution calculated by the graph-fold algorithm was always lower or equal to the requirement. In
case when system was not able to provide required execution time (in the 800-1000 seconds of
simulation) lower value was assured. Analyzing the real complex service execution time curve on
the figure 7, some deviations might be noticed. The real execution time approaches required value
after 150 simulation seconds and was kept within 5% error range till the end of simulation. The
deviation of real complex service execution time with respect to the calculated time is caused by the

no ideal method of prediction of single atomic service version execution time. The decision for each
request was made at the moment when request was entering the system so the values describing
execution time might have changed during the execution process.

Fig. 6. Simulation results for the six algorithms solving the problem of complex service execution time minimization.

Fig. 7. Simulation results for the graph-fold algorithm solving the task of complex service execution time optimization.
The calculated completion time curve is one predicted by the algorithm at the beginning of processing the request.

7. CONCLUSION

The graph-fold algorithm presented in this paper is a good and precise approach for delivering
optimal complex service execution plan in the process of complex service composition. The graph
reduction procedure proposed in this paper completes the other approaches proposed in the
literature [1,2,6,7,10]. The most important weak side of proposed approach is the complexity of the
stated problem. The graph-fold algorithm was significantly slower than the reference algorithms
what can cause growth of calculation time in case of complex service execution scenarios with large
amount of functionalities or large amount of atomic service versions available.

The fact that presented method gives always the precise and optimal solution can be used as a
reference point for developed heuristic algorithms. Moreover in specific application of graph-fold
algorithm there can be other set of reduction operations used which appears more often in input
scenario graphs. Such modification can decrease the calculation complexity for majority of
considered complex service scenarios.

8. REFERENCES

[1] M. ALRIFAI AND T. RISSE, Combining global optimization with local selection for efficient QoS-aware

service composition, WWW '09: Proceedings of the 18th international conference on World wide web, pp.881-
890, ACM 2009.

[2] BERBNER, R., SPAHN, M., REPP, N., HECKMANN, O., AND STEINMETZ, R. Heuristics for QoS-aware
Web Service Composition. In Proceedings of the IEEE international Conference on Web Services (September 18
- 22, 2006). ICWS. IEEE Computer Society, Washington, DC, 72-82

[3] CORMEN T. ET.AL. Introduction to Algorithms, MIT Press, Cambridge, MA, Second edition, (2001)
[4] GRZECH A. RYGIELSKI P. ŚWIĄTEK P., QoS-aware infrastructure resources allocation in systems based on

service-oriented architecture paradigm. Performance modelling and evaluation of heterogeneous networks, 6th
Working International Conference HET - NETs 2010, Zakopane, January 14th-16th, 2010 s. 35-47.

[5] GRZECH A. AND ŚWIĄTEK P., Parallel processing of connection streams in nodes of packet-switched
computer communication systems. Cybernetics and Systems. 2008, vol. 39, nr 2, pp. 155-170

[6] MICHAEL C. JAEGER, GERO MÜHL, SEBASTIAN GOLZE, QoS-Aware Composition of Web Services: An
Evaluation of Selection Algorithms in On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE (2005), pp. 646-661.

[7] SHAHADAT KHAN AND KIN F. LI AND ERIC G. MANNING, The Utility Model For Adaptive Multimedia
Systems In International Conference on Multimedia Modeling, 1997 pp.111-126.

[8] OMNeT++ Web page: http://www.omnetpp.org/
[9] RYGIELSKI P., ŚWIĄTEK P., QoS-aware Complex Service Composition in SOA-based Systems, in “SOA

Infrastructure Tools: Concepts and Methods”, Springer-Verlang, Berlin 2010.
[10] YU TAO, ZHANG YUE AND KWEI-JAY LIN, Efficient algorithms for Web services selection with end-to-end

QoS constraints, ACM Trans. Web 2007, Vol. 1, No. 1, Article. 6.

