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OPTIMAL COMPLEX SERVICESCOMPOSITION IN SOA SYSTEMS

One of the most important tasks in service oriergechitecture paradigm based systems is the task of
composition of the complex service. Aim of this pajis to focus on the very last phase of the coitipos
process, where proper atomic service versions mieg to execute the whole complex service. An exac
algorithm is proposed in this paper solving twdksabased on popular quality of service deliveryrapphes:
best-effort and differentiated services. The proceaf graph reduction has been introduced to géaspace of
possible solutions in such way that decision is enadmore efficient way. The graph-fold algorithraswtested

in simulation environment where its performance s@spared to five reference algorithms. Moreovaelitgtio
deliver quality at desired level has been tested.

1. INTRODUCTION

In systems based on SOA (Service-Oriented Architeftparadigm services delivered to end-
users (complex services) are composed with usetavhia services (services that have atomic
functionality). The functionality of a complex ser® is an aggregation of functionalities of atomic
services [5]. In general system is distributed, twhaans that applications acting as atomic services
can be installed on any machine with communicatigerface available. An user requesting a
service from the system formulates a request thapecifying functionality demanded. To deliver
requested functionality system uses service cortipnsprocedure which consists of choosing
proper atomic services with an execution ordetsty user requirement. Moreover, user is able to
formulate an additional terms of service delivelyiah involves non-functional aspect of delivering
the service — Quality of Service requirements. Scmimplex request for service is called SLA —
Service Level Agreement — and uniquely definestional and non-functional user needs.

1.1. SERVICE COMPOSITION TASK

In general, the task of complex service compositionsists of finding, for given ordered set
of required functionalities (stated in the SLA), @wler of atomic services versions execution such
that non-functional requirements are met. The taSkcomplex service composition can be
decomposed into three sequential subtasks (see figu

1.Complex service structure composition — transforomabf the SLA into set of required
functionalities and the precedence relations betwieem. The result of this task is complex service
structure represented as a directed graph (notectechin general) of required functionalities.
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2.Complex service scenario composition — transforomatif complex service structure graph
into single and consistent graph of required furdlities with precisely defined order of execution
of all atomic functionalities. Since it is possipthat single functionality is delivered by moreuth
one atomic service version, the scenario graplesgmts in fact a family of execution graphs where
member graphs differ in atomic service versiondiago deliver required atomic functionality.

3.Complex service execution plan composition — chat@articular atomic services in

complex service scenario graph such that non-fonatirequirements of complex service are met.

In order to deliver complex service with requedtatttionality and non-functional properties
various optimization tasks need to be solved orseoutive stages of complex service compaosition
task (i.e.: stages of complex service structurenago and execution plan composition) [9].
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Fig. 1.Decomposition of the process of complex servicepmsition

1.2. COMPLEX SERVICE EXECUTION PLAN

Aim of this paper is to focus on the complex sexvexecution plan determination. Order
constraints and atomic services selected under lexrgervice scenario determination process
should be processed further to select proper atgemace versions for execution. Atomic service
versions can be available at the distributed exacgystem in many versions (each version differs
from other in nonfunctional aspect) so choosingpproexecution plan can be treated as quality
optimization task with popular QoS criteria i.exgeution time, cost, security, etc.

2. THE COMPLEX SERVICE SCENARIO

At the third stage of complex service compositisacess it is assumed that a graph called
complex service execution scenario is given. Thenado defines unambiguously the order in
which atomic functionalities should be deliveredomdler to fulfill the user functional requirement.
The scenario is modeled as a grap@ = (VC,EC) whereVC is a vertex set where one vertex

represents functionality to be delivered aBf€ is a set of edges which defines the order of
delivering functionalities. Exemplary complex see/scenario is presented on the figure 2.
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Fig. 2. Exemplary scenario of complex serviced Whgoal is to make a cell phone call. Each of digtished
functionalities can be delivered by many versiohatomic services.

An exemplary complex service - which goal is to makcell phone call - consists of four
operations that have to be executed. Assuming ubat does not have money to execute this
service, first user has to get the money, for exarhp getting a loan. A loan can be given by many
institutions where each can be treated as anotberi@service version. Similar situation is with
buying a cell phone — user can buy same phone nymsi@res — and with sim card — many cellular
operators can offer user a sim card. Finally eser make a call using a newly bought cell phone
and sim card using various versions of callingisere.g. VolP call, gsm call, video call etc.

An user formulating its requirement for servicdimes a set of quality parameters that should
be delivered to satisfy the user. Of course thasgirements concern the whole process of
delivering a service and should be taken into aeration during the composition especially in the
execution plan determination stage.

3. PROBLEM FORMULATION

A task of execution plan determination is the task that needs to be solved in the complex
service composition procedure. In general the tdsttetermination of optimal execution plan of
complex service can be described as follows. Th&erys task is to pick one version of each atomic
service defined uniquely by the scenario in sucly,what quality requirements are satisfied.
Noteworthy is fact that picking two atomic servigersions defines also a communication path that
is going to be used to communicate between theasess — assuming that there is always chosen
the best possible path if there is more than oflce.task is similar to the task of finding an o@lm
path in graph considered in earlier work [4] b thfference is that in this approach the solutson
represented as a graph - not as a single path thandrmer algorithms can not be used. Formally
the task of finding optimal a complex service exeguplan can be formulated as follows:

For given:
* Scenario graplC = (VC, EC)
* Al-th service request represented by S\
» Complex service nonfunctional requiremépt

«  Quality criterionQ(G, ¥, )

Find:
* Such set of atomic services versions for scen&i0 that quality criterion is
minimized
as.,...,as;. = argmin Q(G({as_jk,...,asKjk}, E),LIJl)
aSpjy 1By
where:

* as; denotesj, -th version of k-th atomic service



The problem stated above can be easily transfoiimtedmulti-choice knapsack problem in
the following way. The task is to pick exactly oiem (atomic service version) from each group
(atomic service) in such way that quality of represed by picked items (complex service) is
optimal in sense of choosen quality criteri@n

The solution of the formulated problem is known aodhe algorithms solving such problem
has been presented i.e. in [7]. But the problemmidated at the beginning of this chapter can not be
directly transformated into multichoice knapsaclolppem because of scenario of execution of
complex service is given as a graph in generairdier to transformate problem of determination of
optimal execution plan into multi-choice knapsacklgpem, one has to reduce scenario graph into
connected directed graph having all vertices wighut and output degree no higher than one. In
order to solve stated problems the procedure gfhgraduction is proposed in next chapter of this
paper.

4. SCENARIO GRAPH REDUCTION PROCEDURE

The goal of scenario graph reduction procedureoigransform the scenario graph into
connected graph where all vertices have input amplub degree no higher than one. Transformation
of input graph scenario consists of determinatibsub graph - called a pattern - and defining a
result of reduction for this defined pattern. Moreoall versions of atomic services present within
this pattern should be aggregated in the new ragutertex in such way that latter distinguishirig o
the original versions in possible. The most impartpart of pattern reduction is to find an
aggregating function that aggregates values of urational parameters into new ones in newly
created vertex of the reduction process. The wippstecedure of pattern reduction has been
described below.

4.1. REDUCTION PROCEDURE

In order to reduce the scenario graph into fornt 8tated optimization problems can be
solved, the set of patterns with aggregation fmctias to be defined. On the figure 3 there has
been presented two scenario subgraph patternsigstéd a and c) with corresponding resulting
vertex (subfigures b and d respectively) obtaingidgiaggregation function. The original versions
of the atomic services are being merged into ne@s am the newly created vertex. The aggregation
functions for the examples given on the figure 8onsidering execution time as a nonfunctional
parameter - are sum and sum-max - respectivelyséoial reduction (subfigures a,b) and split
reduction (subfigures c,d). Therefore the resultwggsions of k-th atomic service obtained in
process of serial reduction has the following valoé execution timed(k,)=d(i —11)+d(i 1);

d(k,)=d(i -12)+d(i,2); d(k,)=d(i-12)+d(i1); d(k,)=d(i-12)+d(i,2); whered(i]l) denotes
execution time of first version of i-th atomic see. Respectively the execution times for split
reduction procedure can by calculated by followinghe following pattern:

d(k,) =d(i —12)+maxd(i1)....d(i + na)}; d(k,)=d(i-11)+maxd(i)...d(i +n,2)}; and for the
last m-th version of newly created servicé(k,)=d(i -12)+maxd(i,2)...d(i +n,2)};. The
number of versions in the newly created servicebsaoalculated using the equation 1



m= Ijsize(asj), (2)

where size(as;) denotes number of versions jeth atomic service and denotes count of atomic
services in the pattern.
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Fig. 3. Two subgraph patterns (serial - a and split - @ eorresponding results of reduction (b and d rethpaly).
Atomic service versions before reduction (a,c) mamsformed into new ones (b,d) which nonfunctiopatameters
values were also recalculated using proper agdoggainctions. In this example count of atomic segwersions in
serial reduction equals to 4 and in the split réidaccan be calculated using equation (1).
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Except of vertices patterns reduction one canmdjsish an edge reduction pattern which
leads to decrease of graph complexity. The reduretdge reduction pattern has been presented on
figure 4.
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Fig. 4. Possible edge reduction non violating precedenlziors between vertices of scenario graph; a)reeéulge
removal, b) after removing redundant edge.

Without loosing any information one can remove et@g®_,,as ;) because of transitivity of
precedence relatiomnas_; < as; Las <as,, = as_; <as,;. Of course one can distinguish other
patterns of edge removal if and only if one does cause loss of information in case of such
reduction.

The reductions defined formerly are basic onesar&can define more of such reductions to
cope with more complicated scenario graphs in nmeffeient way. The complete reduction
operations set should contain at least two mendiorstex reduction operations (serial and split)
and redundant edge reduction. This gives guaraatesgluce any graph into desired form.



4.2. THE GRAPH-FOLD REDUCTION ALGORITHM

In order to reduce the scenario graph to the fdmat ts appropriate for the multi-choice
knapsack problem one has to perform steps concealinvertex reduction patterns and all edge
reduction patterns. Assuming that each reducti@tgmiure reduces exactly one edge (in case of
edge reduction) or exactly one pattern (in caspattern reduction), the whole reduction process

makes maximun\C| +|EC] reductions.

Each reduction has also its computational compjextitich is influenced by: the complexity
of procedure of finding a pattern, complexity ofccdating the values of non-functional parameters
of newly created node, disconnecting removed \&stiend connecting newly created one. All of
mentioned procedures can have different implemiemistso complexities may vary. Trying to
estimate complexities of former operations theltedas been presented in table 1.

Operation Complexity Denotation
Finding an pattern O(kn) n= |VC|

Calculating new values of non- O(lﬂl‘] ] k — largest output degree pf
functional parameters m vertex in graph

M - number of vertices in the
reduction pattern

J,, — number of versions of m-th
atomic service

m=1

Disconnection and connection

! o(n)
of graph vertices
Finding and reducing
redundant edge

o(n*logn)

Table. 1 Estimation of calculation complexities of operasarsed in reduction procedure.

Noteworthy is fact that vertices that are discome@aan be removed and not considered
further, so value of nr(:|VC|) is decreasing during the process of reductiorcr&€sesing speed

depends on number of vertices that are being dmsgad during single reduction operation.

The general procedure consists of looped executioall reduction operations until the
vertices countn =1 (in case of reduction of all vertices of the graphinput and output degrees of
all vertices is no greater than 1.
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Fig. 5. Exemplary reduction process for scenario with simcfionalities (atomic services), each having tveosions.
After two split reductions and one serial reducttbe result is single atomic service with 64 vansioEvery newly
created scenario gets new number for ease of glissining.



Example of the reduction process has been presentéoe figure 5. Scenario graph used in
this example contains six vertices (functionaljtiegh precedence relations given as on subfigure 1
of figure 5. Each functionality in considered saem@raph has two versions of atomic service. In
the first step there is gplit-reduction pattern found and the result of reduction is preskmon
subfigure 2. In the second step situation repeasplit reduction pattern is found and reduced.
Notice that number of versions in the resultingtereiincrease. On subfigure 3 the serial reduction
pattern is found and reduced. The algorithm stopstep four where only one vertex is left
(subfigure 4). Resulting vertex has 64 versions.

5. PROBLEM SOLUTION

The problem of multi-choice knapsack problem foratedl in chapter 3 can be solved using
heuristic algorithms [2,7], but much more intenegtsolution can be obtained when scenario graph
has been reduced to single vertex. In case of gdiction one gets single atomic service with
versions. Moreover if there are used data strustlike AVL trees [3] as a collection of QoS value
for resultingm versions, the optimal solution of determinationcomplex service execution plan
problem can be found iB(logm) time.

Depending on optimization goal given by qualityetionQ, one can achieve different graph-
fold algorithm behavior. According to popular gtplof service delivery approaches - best-effort
approach and differentiated services approach candormulate such quality criterion that desired
algorithm behavior can be obtained.

5.1. COMPLEX SERVICE EXECUTION TIME MINIMIZATION

This solution bases on the best-effort approach fards minimum time of execution of
complex service. A complex service execution timma be minimized using graph-fold algorithm
when execution time is considered as a qualityrpater. In this case the following optimization
task should be solved:

k;, =argmind(k,), 2)

where d(k,,) denotes execution time afith version ofk-th atomic service obtained after graph

reduction procedure. According to assumption thatilting collection of atomic service versions is
ordered by thed(k_) value, the solution can be found @(1) and consist on picking the version

with the lowest execution time value.

5.2. COMPLEX SERVICE EXECUTION TIME GUARANTIES

This solution bases on the differentiated servaggsroach and finds optimal execution time
value with respect to given execution time requeatnin this case the following optimization task
should be solved:

Kk, = argmin(d(k,,)-d* ], (3)

with respect to the following constraint:
d(k;,)<d", (4)



whered” denotes execution time requirement given by usegording to assumption that resulting
collection of atomic service versions is orderedttiy d(k,) value, the solution can be found in

O(Iogm) and consist on picking the version with the higheesecution time value but not higher

than the user requirement. In case when there sohmion of this task, the request can be handled
in one of the following ways: the SLA contract sltblbbe renegotiated, the request should be
rejected and not executed in the system or caeitved as in the best-effort approach.

6. SIMULATION STUDY

In order to evaluate quality delivered by presenggdph-fold algorithm the simulation
environment has been developed in OMNeT++ simuldtiamework [8]. The simulator consists of
three distinguishable modules: generator modulsiratt Enterprise Service Bus and set of web
services representing atomic service versions.sielation run consisted of generating stream of
complex service requests with interarrival timeegivby exponential distribution with mean 0.1
second and random complex service execution sgenarhe generated request was processed in
abstract ESB module where the task of finding thintal execution plan was solved. There were
six algorithms for finding optimal execution plamepent in the system — five of those were
reference algorithms and sixth one was the grafth-étgorithm. Each atomic service version
present in the system had different performancexrgknerated from exponential distribution with
mean 10 measured in kilobytes per second that egmrdressed. Moreover request data size that
was going to be processed was also generated fxponential distribution with mean 10KB. The
number of atomic services was set to 8 (also maxirBuunctionalities were present in generated
scenario) each having 10 versions.

Using such configured simulation environment thesze two experiments performed. First
consisted of solving the complex service executiore minimization task and second of solving
the complex service execution time optimizationktawhere additionally the execution time
requirement has been set.

The results of the first experiment have been piteskeon figure 6. The experiment lasted for
1000 simulation seconds and consisted on deterimmat complex service execution plan at the
moment of request was entering the system. Thiedbservation shows that graph-fold algorithm
obtained the lowest execution time from all testlggbrithms. Moreover the execution time line on
the chart is very close to the constant value o8 seconds while rest of algorithms resulted in
higher variation of execution time. Second best best-avg algorithm which consisted of choosing
such version of atomic service that average exacuime was lowest. Other algorithms resulted in
worse complex service execution time.

The results of the second experiment have beemmexs on figure 7. The task of the graph-
fold algorithm was to keep complex service executime as close as possible to the requirement
which was set to 5 seconds. On the chart presemieiiure 7 one can notice, that the time of
execution calculated by the graph-fold algorithnmsvaéways lower or equal to the requirement. In
case when system was not able to provide requixedugion time (in the 800-1000 seconds of
simulation) lower value was assured. Analyzing ris complex service execution time curve on
the figure 7, some deviations might be noticed. fided execution time approaches required value
after 150simulation seconds and was kept within 5% errogeatill the end of simulation. The
deviation of real complex service execution timéwespect to the calculated time is caused by the



no ideal method of prediction of single atomic sgwersion execution time. The decision for each
request was made at the moment when request wasngnthe system so the values describing
execution time might have changed during the exacyirocess.
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Fig. 6. Simulation results for the six algorithnodving the problem of complex service executiongiiminimization.
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Fig. 7. Simulation results for the graph-fold aitfun solving the task of complex service executiare optimization.
The calculated completion time curve is one predidty the algorithm at the beginning of proces#igrequest.



7. CONCLUSION

The graph-fold algorithm presented in this paper g@od and precise approach for delivering
optimal complex service execution plan in the psscef complex service composition. The graph
reduction procedure proposed in this paper compléhe other approaches proposed in the
literature [1,2,6,7,10]. The most important weakesof proposed approach is the complexity of the
stated problem. The graph-fold algorithm was sigaiftly slower than the reference algorithms
what can cause growth of calculation time in cdssomplex service execution scenarios with large
amount of functionalities or large amount of atosecvice versions available.

The fact that presented method gives always thaga@nd optimal solution can be used as a
reference point for developed heuristic algorithiiereover in specific application of graph-fold
algorithm there can be other set of reduction dmera used which appears more often in input
scenario graphs. Such modification can decreasec#iheulation complexity for majority of
considered complex service scenarios.
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