
I/O Performance Modeling of
Virtualized Storage Systems

Qais Noorshams∗, Kiana Rostami∗, Samuel Kounev∗, Petr Tůma†, Ralf Reussner∗
∗Karlsruhe Institute of Technology, Germany

{noorshams, kounev, reussner}@kit.edu

kiana.rostami@student.kit.edu
†Charles University in Prague, Czech Republic

tuma@d3s.mff.cuni.cz

Abstract—Server virtualization is a key technology to share
physical resources efficiently and flexibly. With the increasing
popularity of I/O-intensive applications, however, the virtualized
storage used in shared environments can easily become a bottle-
neck and cause performance and scalability issues. Performance
modeling and evaluation techniques applied prior to system de-
ployment help to avoid such issues. In current practice, however,
virtualized storage and its effects on the overall system perfor-
mance are often neglected or treated as a black-box. In this paper,
we present a systematic I/O performance modeling approach
for virtualized storage systems based on queueing theory. We
first propose a general performance model building methodology.
Then, we demonstrate our methodology creating I/O queueing
models of a real-world representative environment based on
IBM System z and IBM DS8700 server hardware. Finally, we
present an in-depth evaluation of our models considering both
interpolation and extrapolation scenarios as well as scenarios
with multiple virtual machines. Overall, we effectively create
performance models with less than 11% mean prediction error
in the worst case and less than 5% prediction error on average.

Keywords-I/O; Storage; Performance; Prediction; Modeling

I. INTRODUCTION

Current technology trends like cloud and sky computing as

well as the increasing demand for greener IT have contributed

to the wide adoption of virtualization technology. In the next

years, the server virtualization market is expected to grow

annually by more than 31% until 2016 [1]. By sharing physical

resources with multiple virtual machines, server virtualization

offers both efficient data center operation and flexible, on-

demand resource provisioning.

In parallel to this development, the I/O resource demands of

modern IT systems have increased exponentially over the past

decades [2]. Until the year 2020, the amount of digital data is

expected to double annually, 40% of which is expected to be

either processed or stored in the cloud [3]. Moreover, video

streaming portals, online file storage services, social networking

applications, and traditional mail servers are already frequently

deployed in virtualized environments for maximum flexibility

and efficiency. Such services require explicit performance

modeling and evaluation techniques for capacity planning at

deployment time as well as to avoid performance bottlenecks

during operation due to workload changes.

In current practice, however, virtualized storage and its

effects on the overall system performance are often neglected

or treated as a black-box. A few explicit modeling approaches

considering I/O-intensive applications in virtualized environ-

ments have been proposed (e.g., [4]), however, with a focus on

consolidation scenarios only or with validation limited to basic

environments. The main obstacle is the increasing complexity

of modern virtualized storage systems posing significant

challenges for explicit performance modeling approaches to

create practically usable models with reasonable amount of

effort and associated costs. The multiple logical layers between

the running applications and the physical storage lead to

complex performance effects and call for a fine-grained analysis

coupled with a systematic modeling methodology.

To address these challenges, in this paper, we propose an

iterative performance modeling approach and show how it can

be used to capture the complex behaviour of a representative

virtualized storage system. More specifically, we first propose

a general performance model building methodology. Then, we

apply our methodology and create I/O queueing models of a

real-world representative environment based on IBM System z

and IBM DS8700 server hardware. The queueing models are

calibrated with response time measurements and do not require

hardware-level monitoring data. Finally, we evaluate the models

in different scenarios to assess their prediction accuracy. The

scenarios comprise interpolation and extrapolation scenarios as

well as scenarios where the workload is distributed on multiple

virtual machines. Using our approach, we effectively create

performance models with less than 11% mean prediction error

in the worst case, and less than 5% prediction error on average.

In summary, the contribution of this paper is two-fold: i) We

present a step-by-step I/O performance modeling approach for

virtualized storage systems that is calibrated with response time

measurements. ii) We present a comprehensive evaluation and

validation of the proposed approach in a real-world environment

based on the state-of-the-art server technology of the IBM

System z and IBM DS8700.

The remainder of this paper is organized as follows: Sec-

tion II introduces our system under study. In Section III,

we present our performance model building methodology.

Section IV applies our methodology to extract I/O performance

models of the considered system environment. In Section V,

we present the evaluation of our approach. Finally, Section VI

reviews related work and Section VII concludes.

2013 IEEE 21st International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems

1526-7539/13 $26.00 © 2013 IEEE

DOI 10.1109/MASCOTS.2013.20

121

IBM System z

IBM DS8700

CPU, RAM

Processors,
Memory

PR/SM (Hypervisor)

z/VM (Hypervisor)

z/Linuxz/OS

z/Linux

LPAR1 LPAR2

RAID Arrays SSD/
HDD

Storage Server
VC

NVC

Fibre
Channel

Switched
Fibre Channel

Fig. 1: IBM System z and IBM DS8700

II. SYSTEM UNDER STUDY

In this paper, we consider a representative virtualized environ-

ment based on the IBM mainframe System z and the storage

system DS8700. They are state-of-the-art high-performance

virtualized systems with redundant and hot swappable resources

for high availability. The System z combined with the DS8700

represents a typical virtualized environment that can be used as

a building block of cloud computing infrastructures. It supports

on-demand elasticity of pooled resources with a pay-per-use

accounting system (cf. [5]). The System z provides processors

and memory, whereas the DS8700 provides storage space. The

structure of this environment is illustrated in Figure 1.

The Processor Resource/System Manager (PR/SM) is a

hypervisor managing logical partitions (LPARs) of the machine

(therefore also called LPAR hypervisor) and enabling CPU

and storage virtualization. For memory virtualization and

administration purposes, IBM introduces another hypervisor,

z/VM. The System z supports the classical mainframe operating

system z/OS and special Linux ports for System z commonly

denoted as z/Linux. The System z is connected to the DS8700

via fibre channel. Storage requests are handled by the storage

server, which is equipped with a volatile cache (VC) and a

non-volatile cache (NVC). The storage server is connected via

switched fibre channel to SSD- or HDD-based RAID arrays.

As explained in [6], the storage server applies several pre-

fetching and destaging algorithms for optimal performance.

When possible, read requests are served from the volatile cache,

otherwise, they are served from the RAID arrays and stored

together with pre-fetched data in the volatile cache for future

accesses. Write-requests are propagated both to the volatile

and non-volatile cache and are destaged to the RAID arrays

asynchronously.

III. METHODOLOGY

To extract I/O performance models based on queueing theory,

we apply a systematic iterative approach as illustrated in

Figure 2. Our approach follows the common generic steps

in classical performance engineering including performance

model creation, calibration, and validation [7], [8], [9] and is

based on established approaches [8], [9], [10]. After a system

environment analysis and a preparation phase, we create an

initial model that we iteratively extend to account for more

complex scenarios.

During the system environment analysis, we define the

system setup and identify the performance-relevant system

aspects that need to be captured as part of the model. Typically,

these comprise hardware resources, however, it might be

required to include logical resources in the model explicitly,

e.g., operating system schedulers. Furthermore, we create a

typical workload characterization.

In the next phase, we develop an iterative model creation

plan and identify the minimal workload scenarios that should

be included in the model as a start. Based on the identified

workload scenarios, we define the request classes of the model.

Usually, different request types (e.g., read or write requests) are

mapped to different classes possibly also differentiating further

workload properties, e.g., sequential and random requests or

requests from different virtual machines.

Then, we iteratively create and calibrate the performance

model. Based on the resources that are accessed by the minimal

workload scenarios, we create a minimal topology for each

request class. This requires to identify the topology type

(e.g., open or closed model), the required queues and their

characteristics (e.g., the capacity and scheduling strategy), and

the connection and routing between the queues. For each queue,

the scheduling strategy is determined either empirically or based

on heuristics.

To calibrate the model, we quantify the service times of each

queue. This requires to estimate the service time distribution

as well as the server characteristics, e.g., number of load-

independent or load-dependent service stations. To conclude the

iteration, the goodness-of-fit of the resulting queueing model

is analyzed. If the model is acceptable, it can be extended

to cover further workload scenarios and respective system

components/layers involved in their processing. Such extensions

might require to refine the model topology and/or the request

classes, which in turn might require to re-calibrate the model.

Finally, we validate the performance model in a variety

of scenarios including both interpolation and extrapolation

scenarios to evaluate its accuracy and its predictive power for

scenarios that have not been used as input for the calibration.

We stop when the model is valid, i.e., when the performance

predictions by the model match the measurements on the

real system within a certain acceptable margin of error [7],

[9]. For response time, a relative error of 20% is generally

acceptable [9], [11]. Otherwise, the model needs to be refined

iteratively to better reflect the system behavior. Every time the

model is changed, it needs to be re-calibrated until it exhibits

a sufficient model accuracy.

A detailed discussion on model calibration and validation

techniques is available in [11].

IV. I/O PERFORMANCE MODELING

In this section, we apply our performance model building

methodology to the system under study following the steps

shown in Figure 2. For model solving, we use a simulation-

based approach.

A. System Environment Analysis

To model the I/O performance of the system under study, a

detailed analysis of the system structure and its performance

122

Phase 2: PreparationPhase 1: System Environment Analysis

Phase 3: Iterative Model Creation
Foreach
Request Class

Identification of
Performance-Relevant

System Aspects

Model
acceptable? NO

Identification of Request
Classes

Model
valid?

YES

Refinement of Topology and/or Request Classes

Analysis of Scenario

Propagation of
Changes

[AND/OR]

Refinement of
Topology

Refinement of
Request Classes

Estimation of Service Times
Foreach
Queue

Estimation of Service
Time Distribution

Estimation of Server
Characteristics

Model
finished?

NO

Identification of Minimal
Topology

NO

Identification of Minimal Topology

Identification of
Number of Queues

Identification of
Network Structure

Identification of
Queue

Characteristics

Identification of
Topology Type

System Setup Workload
Characterization Model Creation Plan

Identification of Minimal
Workload Scenarios

Minimal Set
of Used Resources by

the Workload

Analysis of
Goodness-of-Fit

Validation of Model

Refinement of Topology
and/or Request

Classes

Estimation of Service
Times

Extension of Workload
Scenarios

Refinement of Topology
and/or Request
Classes (revise)

YES

YES

Fig. 2: Performance Model Building Methodology in Three Phases (depicted as gray areas)

influences is required. We analyzed the system environment

in our previous work [12] and identified its performance-

influencing factors as illustrated in Figure 3. Below, we briefly

summarize the results of this analysis.

1) System Setup: In our system environment, the DS8700

contains 2 GB NVC and 50 GB VC with a RAID5 array con-

taining seven HDDs. Calibration and validation measurements

are obtained in a z/Linux virtual machine (VM) with 2 IFLs

(cores) and 4 GB of memory. We focus our measurements

on the storage performance using POSIX configuration and

explicitly take into account the cache of the storage system by

varying the overall size of data accessed in our workloads. As

a basis for our experimental analysis, we use the open source

Flexible File System Benchmark (FFSB)1 due to its fine-grained

configuration possibilities. FFSB runs at the application layer

and measures the end-to-end response time covering all system

layers from the application all the way down to the physical

storage. For a given configuration of a benchmark run, a set

of 16 MB files is created first. Then, the target number of

workload threads are launched and they begin reading from

and writing into the initial file set. For each workload thread,

1http://github.com/FFSB-prime (extension of http://ffsb.sf.net)

the read and write operations consist of 256 sub-requests of a

specified size directed to a randomly chosen file from the file

set. If the access pattern is sequential, the sub-requests access

subsequent blocks within the file. Each thread issues a request

as soon as the previous one is completed. For any configuration,

we run FFSB for five minutes. During this time, the benchmark

gathers millions of measurement samples, typically more than

two million.

2) Identification of Performance-Relevant System Aspects:
The performance-relevant hardware resources that should be

captured in the model can be deduced from the schematic

illustration in Figure 1. We model the storage server as a

cache queueing station and the RAID array as a separate

RAID queueing station. Moreover, a separate queueing station

is usually required to model the operating system’s I/O

scheduler. In case the NOOP scheduler is used, it does not

necessarily have to be modeled explicitly using a separate

queue, since this scheduler only splits and merges requests

without reordering. The I/O scheduler needs to be chosen

carefully as the default schedulers are not necessarily best suited

to virtualized environments [13]. In fact, in this paper, we use

the NOOP scheduler since it is the most reasonable scheduler

for our environment with the best performance, cf. [12]. Other

123

Storage-Performance-Influencing Factors

Workload

Requests

Type Pattern Size

Locality

System

Operating System

File System I/O Scheduler

Hardware

Fig. 3: Performance Influences (derived from [12])

schedulers performing significant optimizations, such as the

CFQ (Completely Fair Queueing) scheduler or the SFQ (Start-
time Fair Queueing) scheduler adopted in some hypervisors

for instance, usually need to be modeled either explicitly or

based on heuristics (cf. [4]).

3) Workload Characterization: The workload characteriza-

tion we consider is illustrated in Figure 3. We distinguish

the request type (i.e., read and write requests), the access

pattern (i.e., sequential or random requests), and the request

size. Furthermore, we explicitly consider the locality of the

requests by analyzing the overall size of the set of files that is

accessed in the workload. The request locality influences the

storage server caching effectiveness (cf. [12]).

B. Preparation

Before creating the performance models, we develop a model

creation plan describing the planned iterations. We then identify

the minimal workload scenarios that we integrate in the first

iteration. Finally, we identify the request classes to model the

workload scenarios.

1) Model Creation Plan: Based on the results from the

previous phase, we follow the model creation plan shown in

Figure 4 to create and iteratively refine the I/O performance

models that capture the performance-relevant system behav-

ior. Initially, we only model the cache resource. We create

homogeneous models considering read and write as well as

random and sequential requests. We start with a fixed request

size, which we vary in the next step. We then add the RAID

resource to the models and extend the workload scenarios

of the previous steps. In every step, we create the queueing

network topology and scale the load (i.e., the number of clients

= threads) stepwise for calibration.

2) Identification of Minimal Workload Scenarios: Initially,

we only distinguish the request type and the access pattern.

To analyze the behavior of the cache resource, we configure

the set of files accessed by the workload (i.e., the file set) to

1.25 GB so that it fits in the caches completely.

3) Identification of Request Classes: We use the following

four classes to encode the requests:

• Random read requests, Rr

• Sequential read requests, Rs

• Random write requests, Wr

• Sequential write requests, Ws

C. Iterative Model Creation: Iteration 1 & 2

In this section, we describe the first two iterations of our

model creation plan to model the cache resource. We identify

the queueing network topology and the service times.

Iteration 1
Modeled Resources:
- Cache Resource
Workload Scenarios:
- Read, Write
- Random, Sequential
- Fixed Size

Iteration 2
Modeled Resources:
- Cache Resource
Workload Scenarios:
- Read, Write
- Random, Sequential
- Variable Size

Iteration 3
Modeled Resources:
- Cache Resource
- RAID Resource
Workload Scenarios:
- Read, Write
- Random, Sequential
- Variable Size

Fig. 4: Model Creation Plan

1) Identification of Topology: We model our system environ-

ment as a closed network. Since, at this stage, we consider only

the storage server cache resource, we abstract the environment

as a single cache queue with unlimited capacity and First-
Come-First-Serve (FCFS) scheduling strategy. The resulting

queueing network topology is illustrated in Figure 6.

2) Estimation of Service Times: We estimate the service

times based on response time measurements. We start with a

fixed request size and extend the models to consider variable

request sizes in the next step.

Fixed Request Size. To estimate the service time distribution,

for every request class we run measurements under low work-

load intensity with only one workload thread and 4 KB request

size. We model the service times using a gamma-distribution
whose parameters are determined based on the measurements.

To estimate the service times and analyze the server under

resource contention, for every request class we scale the

workload up to 100 threads in steps of five. We observe a

strong correlation between the number of workload threads and

the mean response time with a coefficient of determination R2

of 0.9972 and 0.9987 for read and write requests, respectively.

Therefore, we model a load-dependent service station and

parametrize the mean service times depending on the number of

threads. This technique is routinely used in modeling complex

systems [14] and is inspired by the Flow Equivalent Server

(FES) method [9], [10], where the load-dependent service

station replaces a more complex sub-network.

Variable Request Size. As a next step, we parametrize the

service times according to the request size. We analyze request

sizes of 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB while scaling

the load up to 100 threads in steps of 10 for every request

class. We observe a strong correlation between the number of

workload threads t, the request size s and the mean response

time. For read requests, R2 is 0.9958 and 0.9966 for random

and sequential requests, respectively. For write requests, R2

is 0.9999 for random and sequential requests. Thus, using

the method of least squares [15], we parametrize the mean

of the gamma-distributed service times μ and fit them to the

measurements as follows:

μ(t, s) = c1 ts+ c2 t+ c3 s+ c4; ci ∈ R. (1)

3) Analysis of Goodness-of-Fit: Figure 5 shows the rela-

tive calibration error between the queueing models and the

measurements on the real system when the number of threads

varies between 10 and 100 by increments of 10. For larger read

requests (16 KB, 32 KB, 64 KB), the mean error (depicted

as small crosses) is less than 7.5%. For smaller read requests

(4 KB, 8 KB), the error is less than 18%, however, since

124

Read, Random Read, Sequential Write, Random Write, Sequential

0

5

10

15

20

25

0

5

10

15

20

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64
Request Size (KB)

E
rr

o
r

(%
)

Fig. 5: Relative Calibration Error for the Initial Model for Summarized Number of Threads along the Request Sizes

the measurements are in the range of a few milliseconds, the

absolute calibration error is very small. For write requests, the

calibration error is always less than 2.5%.

D. Iterative Model Creation: Iteration 3

Next, we describe the third iteration of our model creation

plan in which the RAID system is integrated into the queueing

models.

1) Extension of Workload Scenarios: To analyze the be-

havior of the RAID resource, we configure the file set to be

significantly larger (up to 180 GB) than the cache size so

that the RAID system needs to be accessed frequently. Since

the type of a request has an impact on the queueing network

topology and the service times, we show the extension stepwise

for every request class.

2) Random Read Requests (Rr): Refinement of Topology.
We extend the topology by a second queue with unlimited

capacity and FCFS scheduling strategy representing the RAID

resource. Initially, the requests arrive at the cache queue. After

being served by the cache, two alternatives are possible for

each request: Either the request arrives at the RAID queue

with probability p1 or the request is completed and leaves with

probability p2 = 1−p1. The topology is illustrated in Figure 8.

Recall that read requests are served by the 50 GB VC if

possible. The cache hit rate of the workload cannot be easily

estimated due to the complex pre-fetching algorithm. Therefore,

to estimate p1 and p2, we scale the workload up to 100 threads

in steps of 10 and the file set size between 80 GB and 180 GB

in steps of 20 GB. We observe two different situations, one

for number of threads between 1 and 30, and one for number

of threads between 40 and 100. If the number of threads is

between 1 and 30, we observe that the response times follow

two clearly separate distributions, one for requests served by

the cache and one for requests served by the RAID array. The

requests served by the cache are recognizable by response times

close to the response times when having a small, fully cached

file set. Separating the distributions and calculating the relative

number of requests for the two distributions leads to (p1, p2)
of (48.32%, 51.68%) on average with a standard deviation of

9.64%. If the threads are between 40 and 100, however, we

observe a significant change in the two distributions. If we

apply the separation strategy as above, we obtain for p1 a value

of 99.91% on average with a standard deviation of 0.03%. This

Cache

Fig. 6: Cache Resource Model

behavior is probably due to the increased contention and the

cache pre-fetching algorithm. If the load is higher, which is the

case for more than 30 threads, the requests served by the cache

and RAID resources are no longer clearly distinguishable solely

by the distribution of the response times. At this point, however,

we omit further refining the queueing network topology.

Estimation of Service Times. Before estimating the service

times, we analyze the influence of the request locality in a

preparation step. To this end, we scale the file set size between

60 GB and 180 GB in steps of 20 GB such that it exceeds the

volatile cache size. We then evaluate the mean response time

for 50 and 100 threads for request sizes of 4 KB and 8 KB.

For each number of threads and request size combination, we

observe a strongly natural logarithmic correlation between the

file set size and the mean response time. For 50 threads, we

observe an R2 of 0.9902 and 0.9932 for 4 KB and 8 KB

requests, respectively. For 100 threads, we observe an R2 of

0.9803 and 0.9957 for 4 KB and 8 KB requests, respectively.

To reflect this, we include the file set size in the service times

logarithmically as part of the next step.

To estimate the service times of the second queue, we

measure the response times under low workload intensity and

scale the intensity stepwise. Similar to the initial model, we

observe a load-dependent behavior. Thus, we model the second

server as a load-dependent server with gamma-distributed

service times.

For the calibration, we distinguish between the two situ-

ations explained above when discussing the topology. More

specifically, we distinguish between case s1, where the number

of threads is less than or equal to 30, and case s2, where the

number of threads is greater than 30. We analyze the response

time distributions for 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB

requests for 10, 30, 50, 80, and 100 threads, while scaling the

file set size between 80 GB and 160 GB in steps of 20 GB.

Note that the file set cannot be fully cached leading to regular

cache misses. We separate the response time distributions in

cache and RAID array response times. For each case s1, s2

125

Read, Random Read, Sequential Write, Random Write, Sequential

0

20

40

60

0

20

40

60

0

5

10

15

20

0

5

10

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64
Request Size (KB)

E
rr

o
r

(%
)

Fig. 7: Relative Calibration Error for the Refined Model for Summarized Number of Threads along the Request Sizes

and each queue, we fit the mean service times μ with file set

size f to the measurements of the form

μ(t, s, f) = c1 ts · ln(f) + c2 t · ln(f) + c3 s · ln(f)+ (2)

c4 ts+ c5 t+ c6 s+ c7 ln(f) + c8; ci ∈ R.

To simplify the service time parametrization, we prune insignif-

icant terms, i.e., if the p-value of a term in the parametrization

is greater than 0.05. We obtain R2 values of 0.9327, 0.9937,

0.9951, and 0.9917 for the cache(s1), cache(s2), RAID(s1),

and RAID(s2) queues and case si, respectively.

Analysis of Goodness-of-Fit. Figure 7 shows the calibration

error for 10, 30, 50, 80, and 100 threads and file set sizes

between 80 GB and 160 GB in steps of 20 GB. The mean

calibration error is between 8.01% and 10.21% depending on

the request size, thus, exhibiting a good fit.

3) Sequential Read Requests (Rs): Refinement of Topology.
To determine the topology for sequential read requests, we

repeat the analysis of the previous step and scale the file set size

starting from 1.25 GB and doubling until 160 GB. We observe

that the requests seem to be almost always served by the storage

server cache due to the effective pre-fetching algorithm. For

large file set sizes significantly exceeding the storage cache,

however, we observe a slight decrease in performance due to

some cache misses. Therefore, we model the system using two

cases s1 and s2 for the cache without pre-fetching (i.e., when

the file set is fully cached) and the cache with pre-fetching

and frequent RAID array accesses (i.e., when the file set size

exceeds the cache size significantly), respectively. We use two

queues representing each case. The queueing network topology

is illustrated in Figure 10.

Estimation of Service Times. To parametrize the model, we

analyze the mean response times for 4 KB, 8 KB, 16 KB,

32 KB, and 64 KB requests for 10, 30, 50, 80, and 100 threads,

while scaling the file set size as above up to 160 GB. The cases

s1 and s2 apply for cached data and data exceeding the cache

size significantly, respectively. For the queue in case s1, we fit

the mean service times of the server μ to the measurements

of the form in Equation (1). For the queue in case s2, we fit

the mean service time of the server μ to account for the cache

misses due to the file set size f as follows:

μ(t, s, f) = c1 ts+ c2 t+ c3 s+ c4 · ln(f) + c5; ci ∈ R. (3)

Cache RAID

p1

p2

p1 + p2 = 1

Fig. 8: Cache and RAID Resource Model for Rr

Again, we prune insignificant terms and obtain R2 values for the

queues in cases s1 and s2 of 0.9962 and 0.9954, respectively.

Analysis of Goodness-of-Fit. For the calibrated measurement

set, we obtain an error as illustrated in Figure 7. While for

4 KB requests, the mean calibration error is 17.56%, for larger

requests, the error is less than 10.84%. Again, the absolute

calibration error constitutes only a fraction of a millisecond

such that the models exhibit a reasonable fit.

4) Random Write Requests (Wr): Refinement of Topology.
Unlike read requests, write requests are always served by the

cache and stored asynchronously on the RAID array. To analyze

this effect, we measure the response times of random write

requests while scaling the file set size starting from 1.25 GB

and doubling until 160 GB. We observe that the cache is able

to buffer the requests for a file set size of up to 5 GB. If the

file set size is scaled further, the mean response time increases

logarithmically. This effect is similar to the observed effect for

sequential read requests. Therefore, we use the same queueing

network topology as illustrated in Figure 10. The cases s1 and

s2 define cached data (i.e., the file set size is up to 5 GB) and

uncached data with frequent destaging (i.e., the file set size is

greater than 5 GB), respectively.

Estimation of Service Times. Similarly as for the sequential

read requests, we parametrize the mean service times of the

queue in case s1 as in Equation (1). For the queue in case s2,

we use Equation (2). For both, we again prune insignificant

terms. For the queues in cases s1 and s2, we obtain R2 values

of 1 and 0.993, respectively.

Analysis of Goodness-of-Fit. Figure 7 shows a very good fit

of the model to the calibrated measurements with an average

error of 5.89% for 4 KB requests and less for larger requests.

5) Sequential Write Requests (Ws): Refinement of Topology.
Repeating the analysis of the previous section for sequential

write requests, we observe that the requests are almost entirely

buffered by the cache even when we scale the file set size up

to 160 GB. Therefore, we keep the queueing network topology

for sequential write requests as shown in Figure 6.

126

Determination of Workload Scenario

Read- or Write-
Dominant Workload?

Random or Sequential
Workload?

Determination of Caching Behavior

Read:
File Set > 60 GB?

Write:
File Set > 5 GB?

Specification of Prediction Scenario

Specify
Number of Clients

Specify
Request Size

[OR]

Specify
File Set Size

Determination of Relevant Model Specification of Model Input Parameters

Fig. 9: Performance Prediction Process

s1

s2

xor Cache

Cache with RAID access

Fig. 10: Cache and RAID Resource Model for Rs, Wr

Estimation of Service Times. We calibrate the system similar

to the random write requests and fit the service times to the

measurements of the form of Equation (3). We obtain an R2

of 1.0000.

Analysis of Goodness-of-Fit. We obtain a mean calibration

error for each request size of up to 2.55%, cf. Figure 7.

E. Prediction Process

Figure 9 illustrates the process when using the queueing

models for prediction. First the workload scenarios as well as

the caching behaviour has to be determined to use the relevant

model. Then, the prediction scenario has to be specified, which

is comprised by the parameters used as model input.

The workload scenario can be read or write and sequential

or random workload. The caching behaviour is determined by

the file set size. The empirically determined thresholds are

60 GB and 5 GB for read and write workloads, respectively.

If the workload scenario comprises random write requests for

instance, the relevant model is the Wr model as illustrated in

Figure 10 with the respective service time parametrization for

write requests. Furthermore, case s1 applies for the queueing

network if the file set size is less than or equal to 5 GB; case

s2 applies otherwise.

The parameters used as input for the model are the number

of clients, the request size, and the overall size of the file set

accessed by the clients. The model predicts the mean response

time for the specified prediction scenario.

V. EVALUATION

In this section, we evaluate the predictive power of our

I/O performance models in three scenarios: i) interpolation,

ii) extrapolation with respect to the number of clients, and

iii) extrapolation with respect to the number of VMs. We

present the results for the different request classes explicitly

distinguishing between cached and uncached data for random

access requests resulting in six different workload scenarios.

TABLE I: Parameter Ranges for Interpolation Scenarios

Parameter Range

Request type {read, write}
Access pattern {random, sequential}
Request size [4 KB, 64 KB]

rounded to multiples of 512 bytes
Number of threads [10, 100]
File set size [1.25 GB, 180 GB]

rounded to multiples of 16 MB

A. Interpolation

For every evaluated workload scenario, we compare mean

response time measurements of 200 completely random con-

figurations within the ranges indicated in Table I against

results obtained using the queueing models. Thus, in this

section, we evaluate 1200 completely random measurement

configurations in total. Depending on the configuration, mean

read and write measurements are in [0.51 ms, 30.58 ms] and

[0.68 ms, 36.05 ms], respectively. The prediction results are

shown in Figure 11a and Figure 11e and discussed next.

Random Read Requests. For cached data, i.e., if the file set

size is up to 60 GB, we observe a mean error of 8.40%. There

are a few higher error values occuring when the file set size is

close to 60 GB. We conclude that for some configurations, the

cache effect applies already for such file set sizes. For uncached

data, we obtain a mean error of 8.25%. A few higher error

values exist, mainly occuring for low load when the number

of threads is less than 20. For such configurations, every small

absolute deviation constitutes a high relative error. Overall, the

mean response times are predicted very well on average.

Sequential Read Requests. For the requests, the mean error

is 5.00% and all requests are predicted very well.

Random Write Requests. For cached data, i.e., if the file set

size is up to 5 GB, the model performs very well with a mean

error of 0.97%. For uncached data, the model also exhibits

high prediction quality. The mean error is 5.19%. Overall, the

prediction accuracy is very high.

Sequential Write Requests. For all requests, the model

exhibits an excellent accuracy with a mean error of 1.02%.

Summary. On average, the performance models exhibited

high interpolation quality given the fact that the configurations

considered in the evaluation were chosen completely randomly.

The mean error was 4.81%. More specifically, read requests

were predicted slightly worse than write requests with a mean

error of 7.22% and 2.39%, respectively. Furthermore, random

127

TABLE II: Parameter Values for Extrapolation Scenarios

Parameter Extrapolation Clients Extrapolation 2 VMs Extrapolation 3 VMs

Request type {read, write} {read, write} {read, write}
Access pattern {random, sequential} {random, sequential} {random, sequential}
Request size {4 KB, 8 KB, 16 KB, 32 KB, 64 KB} {4 KB, 8 KB, 16 KB, 32 KB, 64 KB} {4 KB, 8 KB, 16 KB, 32 KB, 64 KB}
Number of threads {125, 150} {50, 75, 100} {33, 50, 100}
File set size {2.5 GB, 40 GB, 80 GB, 160 GB} {2.5 GB, 40 GB, 80 GB, 160 GB} / #VMs, rounded to multiples of 16 MB

Read, Random Read, Sequential Write, Random Write, Sequential

0

25

50

75

100

0

5

10

15

20

0

5

10

15

0

2

4

6

Cached Uncached All Cached Uncached All
Data

E
rr

o
r

(%
)

(a) Interpolation Error

Read, Random Read, Sequential Write, Random Write, Sequential

0

5

10

15

0

5

10

15

0.0

2.5

5.0

7.5

0.0

0.5

1.0

1.5

Cached Uncached All Cached Uncached All
Data

E
rr

o
r

(%
)

(b) Extrapolation Error (Clients)

Read, Random Read, Sequential Write, Random Write, Sequential

0

5

10

15

20

0

5

10

15

20

0

5

10

15

0.0

0.5

1.0

1.5

Cached Uncached All Cached Uncached All
Data

E
rr

o
r

(%
)

(c) Extrapolation Error (2 VMs)

Read, Random Read, Sequential Write, Random Write, Sequential

0

10

20

0

5

10

15

20

0

10

20

0

1

2

3

Cached Uncached All Cached Uncached All
Data

E
rr

o
r

(%
)

(d) Extrapolation Error (3 VMs)

Rr Rr Rs Wr Wr Ws Arithmetic

Scenario Cached Uncached All Cached Uncached All Mean – 1
6
Σ

Interpolation 8.40 8.25 5.00 0.97 5.19 1.02 4.81
Extrapolation Clients 7.98 4.41 5.76 0.60 4.11 0.60 3.91
Extrapolation 2 VMs 8.01 10.65 7.69 0.55 5.66 0.47 5.51
Extrapolation 3 VMs 10.02 4.59 8.55 0.68 6.98 0.72 5.26

(e) Mean Error (%)

Fig. 11: Evaluation

read requests exhibited the highest prediction error with a mean

error of 8.32%, however, still a very good value.

B. Extrapolation with Respect to the Number of Clients

In this section, we increase the workload intensity and

set the number of threads to 25% and 50% above the

calibrated range. More specifically, we compare 160 mean

response time measurements for all combinations of parameters

shown in Table II against results obtained using the queueing

models. Depending on the configuration, mean read and write

measurements are in [2.74 ms, 44.86 ms] and [5.29 ms,

59.05 ms], respectively. The prediction results are illustrated

in Figure 11b and Figure 11e and discussed next.

Random Read Requests. For cached data, the mean error is

7.98%. In general, the model exhibits a higher accuracy for

larger request sizes. Still, for small request sizes, the absolute

error is less than 1 ms. For uncached data, the model also

exhibits a very high prediction quality. The mean error is 4.41%.

Overall, the models predict the system performance very well.

Sequential Read Requests. For the requests, the model

exhibits a high accuracy with a mean error of 5.76%. Also,

the model exhibits a higher accuracy for larger request sizes.

Random Write Requests. For cached data, the model again

exhibits a high prediction accuracy. The mean error is 0.60%.

For uncached data, we obtain a mean error of 4.11%.

Sequential Write Requests. Overall, the model exhibits an

excellent accuracy with a mean error of 0.60%.

Summary. When extrapolating the number of threads, the

performance models exhibited very high quality. The mean

error was 3.91%. Similar to the interpolation scenario, read

128

requests were predicted slightly worse than write requests with

a mean error of 6.05% and 1.77%, respectively. While random

read requests exhibited the highest prediction error with a

mean error of 6.19%, the error was just slightly worse than

for sequential read requests.

C. Extrapolation with Respect to the Number of VMs

By using two and three virtual machines, we increase the

load on the system up to 300% of the calibrated range. More

specifically, we compare 480 mean response time measurements

for all combinations of the parameters shown in Table II against

results obtained using the queueing models. Depending on

the configuration, mean read and write measurements are in

[2.12 ms, 90.33 ms] and [4.10 ms, 148.20 ms], respectively.

The prediction results are depicted in Figure 11c, Figure 11d,

and Figure 11e and discussed in the following.

Random Read Requests. For cached data, the model exhibits

a high accuracy with a mean error of 9.01%. For uncached

data, the model predicts also well with a mean error of 7.62%.

Sequential Read Requests. Again, the model exhibits a

consistently high accuracy. The mean error is 8.12%.

Random Write Requests. For cached data, the model exhibits

an excellent prediction accuracy with a mean error of 0.62%.

For uncached data, the mean error is 6.32%.

Sequential Write Requests. Here, the model exhibits an

excellent prediction accuracy with a mean error of 0.59%.

Summary. Even when using two and three virtual machines

and scaling the load up to 300% of the calibrated range, the

performance models exhibited a very high prediction accuracy

with a mean error of 5.38%. Similar to the previous scenarios,

the prediction for read requests was not as accurate as for write

requests with a mean error of 8.25% and 2.51%, respectively.

While the prediction accuracy was consistent for read requests,

write requests were predicted best for sequential requests and

random requests on cached data.

VI. RELATED WORK

Many modeling approaches for storage systems in native

environments exist, e.g., [16], [17], [18], [19], [20], however,

they are only shortly mentioned here as such approaches

strongly rely on low-level instrumentation and monitoring data,

e.g., allocation of data to disk sectors, disk seek times, disk

rotation time, or single disk utilization. In typical virtualized

environments, such information is hardly available for storage

users, if available at all, hampering the reliable parametrization

of these models.

The work closely related to the approach presented in

this paper can be classified into two groups. The first group

is focused on modeling storage performance in virtualized

environments. Here, Kraft et al. [4] present two approaches

based on queueing theory to predict the I/O performance of

consolidated virtual machines. Their first, trace-based approach

simulates the consolidation of homogeneous workloads. The

environment is modeled as a single queue with multiple servers

having service times fitted to a Markovian Arrival Process

(MAP). In their second approach, they predict storage perfor-

mance in heterogeneous workload consolidation scenarios. They

create linear estimators based on mean value analysis (MVA).

Furthermore, they create a closed queueing network model,

also with service times fitted to a MAP. Both methods use

monitored measurements on the block layer that is lower than

typical applications run. Moreover, both methods are focused

on performance prediction of consolidation scenarios only

without considering the performance effects due to changes

in the workload intensity. In [21], Ahmad et al. analyze

the I/O performance of VMware’s ESX Server virtualization.

They compare virtual to native performance using benchmarks.

They further create mathematical models for the virtualiza-

tion overhead. The models are used for prediction of I/O

throughput degradation. To analyze performance interference

in a virtualized environment, Koh et al. [22] manually run

CPU bound and I/O bound benchmarks. While they develop

mathematical models for prediction, they explicitly focus on

the consolidation of different types of workloads, i.e., CPU and

I/O bound. By applying different machine learning techniques,

Kundu et al. [23] use artificial neural networks and support

vector machines for dynamic capacity planning in virtualized

environments. Further, Gulati et al. [24] present a study on

storage workload characterization in virtualized environments,

but perform no performance analysis.

The second group of related work deals with benchmarking

and performance analysis of virtualized environments not specif-

ically targeted at storage systems. Hauck et al. [25] propose a

goal-oriented measurement approach to determine performance-

relevant infrastructure properties. They examine OS scheduler

properties and CPU virtualization overhead. Huber et al. [26]

examine performance overhead in VMware ESX and Citrix

XenServer virtualized environments. They create regression-

based models for virtualized CPU and memory performance.

In [27], Barham et al. introduce the Xen hypervisor comparing

it to a native system as well as other virtualization platforms.

They use a variety of benchmarks for their analysis to quantify

the overall Xen hypervisor overhead. Iyer et al. [28] analyze

resource contention when sharing resources in virtualized

environments. They focus on modeling cache and core effects.

VII. CONCLUSION

Summary. We proposed a generic iterative performance

model building methodology for virtualized storage systems

and created I/O queueing models of a real-world representative

environment based on IBM System z and IBM DS8700 server

hardware. We analyzed the system environment in detail and

created the models in three iterations. First, we modeled the

storage server cache for requests with a fixed size on fully

cached data. Then, we parametrized the service time of the

service stations with the request size. Finally, we included

the storage RAID array in the model to consider requests on

uncached data. We evaluated the models in interpolation and

extrapolation scenarios as well as scenarios where the workload

was distributed on multiple virtual machines. Using our

approach, we effectively created performance models with high

129

predictive power. In the worst case, the prediction error was less

than 11%. On average, the prediction error was less than 5%

and 4% for interpolation and extrapolation, respectively. Even

in scenarios where the workload was distributed on multiple

virtual machines and scaled up to 300% of the calibration

range, the prediction error was less than 6% on average.

Lessons Learned. Our main insight is the identification of

an abstraction level for I/O performance models that allows

easy parametrization yet enabling excellent prediction for a

complex virtualized environment. More specifically: i) Our

approach using iterative refinement captured the performance

characteristics of the considered complex virtualized systems

using only few load-dependent queueing stations. ii) Our fine-

grained analysis revealed interesting relationships between the

workload factors and the system performance. iii) We could

effectively calibrate the performance models using end-to-end

response time data, which is normally easy to obtain.

Approach Application. Generally, our approach is targeted

as a generic systematic methodology for modeling the per-

formance of virtualized storage systems. The models created

in this paper assume a typical environment, where some of

the I/O requests are handled by a storage cache and some

by a RAID array. In virtualized environments, a user cannot

control and hardly track where the data is stored and how it

is allocated, therefore, the models do not depend on low-level

system information or monitoring still providing predictions

for average I/O performance. Once the relationships between

the workload factors and the system performance are identified,

the calibration for using the models requires only a small set of

measurement points. Therefore, in a similar environment, the

performance models can be created with approximately only

as many measurements as needed to estimate the calibration

coefficients and the workload scenario thresholds. Our current

performance models support (predominantly) homogeneous

workloads, e.g., logging, backup, and archiving services as

well as media streaming applications and digital libraries. They

can be used in different scenarios for capacity planning when

the number of clients and the workload intensity increases.

Furthermore, the models can be applied to evaluate deployment

decisions and virtual machine consolidation scenarios.

Future Work. Next, we plan to extend the workload scenarios

and the models to account for mixed workloads and more com-

plex scenarios. Moreover, we plan to evaluate our performance

modeling approach in further system environments.

ACKNOWLEDGMENTS

This work was funded by the German Research Foundation

(DFG) under grant No. RE 1674/5-1 and KO 3445/6-1, and

the Czech Science Foundation (project GACR P202/10/J042).

We especially thank the Informatics Innovation Center (IIC) –

http://www.iic.kit.edu/ – for providing the system

environment of the IBM System z and the IBM DS8700.

REFERENCES

[1] TechNavio, “Global Server Virtualization Market 2012-2016,”
http://www.technavio.com/content/global-server-virtualization-market-
2012-2016, 2013, last accessed: Mar 2013.

[2] S. Oliveira, K. Furlinger, and D. Kranzlmuller, “Trends in computation,
communication and storage and the consequences for data-intensive
science,” in IEEE HPCC-ICESS’12, pp. 572 –579.

[3] J. Gantz and D. Reinsel (IDC), “THE DIGITAL UNIVERSE IN 2020:
Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East,”
http://idcdocserv.com/1414, 2012, last accessed: Mar 2013.

[4] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick,
“Performance Models of Storage Contention in Cloud Environments,”
SoSyM, 2012.

[5] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, 2009.

[6] B. Dufrasne, W. Bauer, B. Careaga, J. Myyrrylainen, A. Rainero, and
P. Usong, “IBM System Storage DS8700 Architecture and Implementa-
tion,” http://www.redbooks.ibm.com/abstracts/sg248786.html, 2010.

[7] S. Kounev, “Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets,” IEEE TSE,
vol. 32, no. 7, July 2006.

[8] D. Menascé and V. Almeida, Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall, 2000.

[9] D. Menascé, V. Almeida, L. Dowdy, and L. Dowdy, Performance by
Design: Computer Capacity Planning by Example, ser. Prentice Hall
science explorer. Prentice Hall, 2004.

[10] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, ser. Wiley-Interscience publication. Wiley, 2006.

[11] D. Menascé, V. Almeida, and L. Dowdy, Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems. New
Jersey: Prentice-Hall, 1994.

[12] Q. Noorshams, S. Kounev, and R. Reussner, “Experimental Evaluation
of the Performance-Influencing Factors of Virtualized Storage Systems,”
in EPEW ’12, ser. LNCS, vol. 7587. Springer, 2012.

[13] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling
passe,” SIGOPS Oper. Syst. Rev., vol. 44, no. 1, 2010.

[14] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, “Estimating
service resource consumption from response time measurements,” in
VALUETOOLS ’09.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed., ser. Springer
Series in Statistics. Springer, 2011.

[16] J. S. Bucy, J. Schindler, S. W. Schlosser, G. R. Ganger, and Contributors,
The DiskSim Simulation Environment - Version 4.0 Reference Manual,
Carnegie Mellon University, Pittsburgh, PA, 2008.

[17] P. Harrison and S. Zertal, “Queueing models of RAID systems with
maxima of waiting times,” Performance Evaluation, vol. 64, 2007.

[18] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt, “Analytical and
Simulation Modelling of Zoned RAID Systems,” The Computer Journal,
vol. 54, 2011.

[19] E. K. Lee and R. H. Katz, “An analytic performance model of disk
arrays,” SIGMETRICS Perform. Eval. Rev., vol. 21, no. 1, 1993.

[20] E. Varki and S. X. Wang, “A performance model of disk array storage
systems,” in Int. CMG Conference, 2000.

[21] I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija, “An
analysis of disk performance in VMware ESX server virtual machines,”
in WWC-6, 2003.

[22] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
Analysis of Performance Interference Effects in Virtual Environments,”
in ISPASS ’07.

[23] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling
Virtualized Applications using Machine Learning Techniques,” in VEE
’12.

[24] A. Gulati, C. Kumar, and I. Ahmad, “Storage workload characterization
and consolidation in virtualized environments,” in VPACT ’09.

[25] M. Hauck, M. Kuperberg, N. Huber, and R. Reussner, “Ginpex: deriving
performance-relevant infrastructure properties through goal-oriented
experiments,” in QoSA-ISARCS ’11.

[26] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and
Modeling Virtualization Performance Overhead for Cloud Environments,”
in CLOSER ’11.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, 2003.

[28] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and D. Newell, “VM3:
Measuring, modeling and managing VM shared resources,” Computer
Networks, vol. 53, 2009.

130

