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Abstract. The evaluation of intrusion detection systems (IDSes) is an
active research area with many open challenges, one of which is the gener-
ation of representative workloads that contain attacks. In this paper, we
propose a novel approach for the rigorous evaluation of IDSes in virtual-
ized environments, with a focus on IDSes designed to detect attacks lever-
aging or targeting the hypervisor via its hypercall interface. We present
hInjector, a tool for generating IDS evaluation workloads by injecting
such attacks during regular operation of a virtualized environment. We
demonstrate the application of our approach and show its practical use-
fulness by evaluating a representative IDS designed to operate in virtual-
ized environments. The virtualized environment of the industry-standard
benchmark SPECvirt sc2013 is used as a testbed, whose drivers generate
workloads representative of workloads seen in production environments.
This work enables for the first time the injection of attacks in virtualized
environments for the purpose of generating representative IDS evaluation
workloads.

Keywords: Intrusion detection systems · Virtualization · Evaluation ·
Attack injection

1 Introduction

Virtualization has been receiving increasing interest as a way to reduce costs
through server consolidation and to enhance the flexibility of physical infrastruc-
tures. It allows the creation of virtual instances of physical devices, such as net-
work and processing units. In a virtualized system, governed by a hypervisor,
resources are shared among virtual machines (VMs).
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Although virtualization provides many benefits, it introduces new security
challenges; that is, the introduction of a hypervisor introduces new threats.
Hypervisors expose several attack surfaces such as device drivers, VM exit
events, or hypercalls. Hypercalls are software traps from a kernel of a partially or
fully paravirtualized VM to the hypervisor. They enable the execution of severe
attacks. For instance, triggering a vulnerability of a hypercall handler (i.e., a
hypercall vulnerability) may lead to crash of the hypervisor or to altering the
hypervisor’s memory (see, for example, [1,2]).

The research and industry communities have developed security mechanisms
that can detect hypercall attacks. These include intrusion detection systems
(IDSes), such as Xenini [3] and the de-facto standard host-based IDS OSSEC
(Open Source SECurity),1 as well as access control systems, such as XSM-
FLASK (Xen Security Modules - FLux Advanced Security Kernel), which is dis-
tributed with the Xen hypervisor, and McAfee’s VM protection system.2 Under
hypercall attack, we understand any malicious hypercall activity, for example,
triggering a hypercall vulnerability or covert channel operations [4].

The rigorous evaluation of IDSes designed to detect hypercall attacks is cru-
cial for preventing breaches in virtualized environments. For instance, one may
compare multiple IDSes in terms of their attack detection accuracy in order to
identify the optimal IDS. Workloads that contain hypercall attacks are a key
requirement for evaluating the attack detection accuracy of IDSes designed to
detect hypercall attacks. However, the generation of such workloads is challeng-
ing since publicly available scripts that demonstrate hypercall attacks are very
rare [5,6]. An approach towards addressing this issue is attack injection, which
enables the generation of representative IDS evaluation workloads. Attack injec-
tion is controlled execution of attacks during regular operation of the environ-
ment where an IDS under test is deployed. The injection of attacks is performed
with respect to attack models constructed by analysing realistic attacks. Attack
models are systematized activities of attackers targeting a given attack surface.

In this paper, we propose an approach for evaluating IDSes using attack
injection. As part of the proposed approach, we present hInjector, a tool for
injecting hypercall attacks. We designed hInjector to achieve the challenging
goal of satisfying the key criteria for the rigorous, representative, and practically
feasible evaluation of an IDS using attack injection: injection of realistic attacks,
injection during regular system operation, and non-disruptive attack injection
(e.g., prevention of potential crashes due to injected attacks). The approach we
propose may be conceptually applied not only for evaluating IDSes designed to
detect hypercall attacks, but also attacks involving the execution of operations
that are functionally similar to hypercalls. Such operations are, for example, the
ioctl (input/output control) calls that the KVM hypervisor supports.

Our approach uses live IDS testing, since existing IDSes designed to detect
hypercall attacks perform on-line monitoring. Further, it enables the evaluation

1 http://www.ossec.net/; OSSEC can be configured to analyze in real-time log files
that contain information on executed hypercalls.

2 http://www.google.com/patents/US8381284.

http://www.ossec.net/
http://www.google.com/patents/US8381284
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of IDSes that do and do not require training (i.e., it involves IDS training, which
is needed for evaluating IDSes that require training). We demonstrate the appli-
cation and practical usefulness of the approach by evaluating Xenini [3], a rep-
resentative IDS designed to detect hypercall attacks. We inject realistic attacks
triggering publicly disclosed hypercall vulnerabilities and specifically crafted eva-
sive attacks. We extensively evaluate Xenini considering multiple configurations
of the IDS. Such an extensive evaluation would not have been possible before
due to the previously mentioned issues.

This paper is organized as follows: in Sect. 2, we provide the essential back-
ground and discuss related work; in Sect. 3, we present an approach for evaluating
IDSes; in Sect. 4, we introduce the hInjector tool; in Sect. 5, we demonstrate the
application of the proposed approach; in Sect. 6, we discuss future work and
conclude this paper.

2 Background and Related Work

Paravirtualization and Hypercalls. Paravirtualization, an alternative to full
(native) virtualization, is a virtualization mode that enables the performance-
efficient virtualization of VM components based on collaboration between VMs
and the hypervisor. VM components that may be paravirtualized include disk
and network devices, interrupts and timers, emulated platform components (e.g.,
motherboards and device buses), privileged instructions, and pagetables.

With recent advances in hardware design, paravirtualizing privileged instruc-
tions and pagetables often does not provide performance benefits over full virtu-
alization. However, paravirtualizing the other VM components mentioned above
is beneficial. As a result, multiple virtualization modes have emerged, many of
which involve paravirtualizing VM components of fully virtualized VMs. Hyper-
calls are operations that VMs use for working with paravirtualized components.
They are software traps from a kernel of a VM to the underlying hypervisor.

The Hypercall Attack Surface. The hypercall interface is an attack surface
that can be used for executing attacks targeting the hypervisor or breaking the
boundaries set by it. This may result in unauthorized information flow between
VMs or executing malicious code with hypervisor privilege (see [1,2]).

In a previous work [5], we have analyzed 35 publicly disclosed hypercall
vulnerabilities and identified patterns of activities for triggering the considered
vulnerabilities. We categorized the identified patterns into the following attack
models: setup phase (optional) — execution of one or multiple regular hypercalls
(i.e., hypercalls with regular parameter value(s) that may be executed during
regular system operation) setting up the virtualized environment as necessary
for triggering a given hypercall vulnerability; attack phase — execution of a single
regular hypercall, or a hypercall with specifically crafted parameter value(s); or,
execution of a series of regular hypercalls in a given order. In this work, we use
these models for injecting hypercall attacks.

Intrusion Detection. Given the high severity of hypercall attacks, the research
and industry communities have developed IDSes that can detect such attacks.
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Examples are Collabra [7], Xenini [3], C2(Covert Channel) Detector [4], Wiz-
ard [8], MAC/HAT (Mandatory Access Control/Hypercall Access Table) [6],
RandHyp [9], and OSSEC. Most of these IDSes have the following characteris-
tics in common:

– monitoring method and attack detection technique — they perform on-line
(i.e., real-time) monitoring of VMs’ hypercall activities and use a variety
of anomaly-based attack detection techniques, which require training using
benign (i.e., regular) hypercall activities;

– architecture — they have a module integrated into the hypervisor, intercepting
invoked hypercalls and sending information relevant for intrusion detection to
an analysis module deployed in a designated VM.

Current IDSes designed to detect hypercall attacks analyze the following prop-
erties of VMs’ hypercall activities, which we refer to as detection-relevant prop-
erties: (i) hypercall identification numbers (IDs) and values of parameters of
individual, or sequences of, hypercalls, and (ii) hypercall call sites (i.e., memory
addresses from where hypercalls have been executed).

IDS Evaluation and Attack Injection. The accurate and rigorous evaluation
of IDSes is crucial for preventing security breaches. IDS evaluation workloads
that contain realistic attacks are a key requirement for such an evaluation. In
Sect. 1, we stated that IDSes designed to detect hypercall attacks currently can-
not be evaluated in a rigorous manner due to the lack of publicly available
attack scripts that demonstrate hypercall attacks. Attack injection is a method
addressing this issue, which is in the focus of this work.

To the best of our knowledge, we are the first to focus on evaluating IDSes
designed to operate in virtualized environments, such as IDSes designed to detect
hypercall attacks. Further, we are the first to consider the injection of hypercall
attacks and of attacks targeting hypervisors in general. Pham et al. [10] and Le et
al. [11] focus on injecting generic software faults directly into hypervisors. This is
not suitable for evaluating IDSes — IDSes do not monitor states of hypervisors
since they are not relevant for detecting attacks in a proactive manner.

Fonseca et al. [12] present an approach for evaluating network-based IDSes,
which involves injection of attacks. They built Vulnerability Injector, a mecha-
nism that injects vulnerabilities in the source code of web applications, and an
Attack Injector, a mechanism that generates attacks triggering injected vulner-
abilities. There are fundamental differences between our work and the work of
Fonseca et al. [12], which is focussing on attack injection at application level.
This includes the characteristics of the IDSes in focus, the required attack mod-
els, and the criteria for designing procedures and tools for injecting attacks.

3 Approach

Figure 1a shows our approach, which has two phases: planning and testing. The
planning phase consists of: (i) specification of an IDS monitoring landscape
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Fig. 1. (a) Approach for evaluating IDSes; (b) IDS monitoring landscape

(i.e., specifying a virtualized environment where the IDS under test is to be
deployed), (ii) characterization of benign hypercall activities (i.e., making rele-
vant observations about the benign hypercall activities), and (iii) specification
of attack injection scenarios (Sect. 3.1). The testing phase consists of: (i) IDS
training, (ii) attack injection, and (iii) calculation of metric values (Sect. 3.2).
The activities of the testing phase are performed based on observations made in
the planning phase. IDS training needs to be performed only when evaluating
an IDS that requires training (i.e., an anomaly-based IDS).

3.1 Planning

Specification of an IDS Monitoring Landscape. A typical IDS designed to
detect hypercall attacks monitors the hypercall activity of one or multiple VMs
at the same time. VM characteristics influence the hypercall activity:

– virtualization mode influences which hypercalls can be executed,
– workloads influence which system calls can be executed, many of which map

to hypercalls, and
– system architecture and hardware influence the VM’s interface, and the type

and frequency of hypercalls needed (e.g., page table update operations, which
take place when page swapping occurs due to insufficient memory).

The aggregate of these characteristics across all VMs on a hypervisor is the
monitoring landscape of an IDS designed to detect hypercall attacks. Figure 1b
depicts an IDS monitoring landscape. The first activity of the planning phase of
our approach is to specify an IDS monitoring landscape by defining the charac-
teristics above for the test system. By defining workloads, we mean specifying
drivers generating workloads in an automated and repeatable manner. By defin-
ing hardware, we mean allocating an amount of hardware resources to VMs that
is fixed over time (i.e., disabling CPU or memory ballooning). We discuss more
on the importance of specifying an IDS monitoring landscape in Sect. 3.2.

Characterization of Benign Hypercall Activities. Characterization of a
VM’s benign hypercall activity is crucial for answering two major questions: How
long should the IDS under test be trained? and What injected attacks should be
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used for the purpose of rigorous IDS testing? It consists of two parts: (i) esti-
mation of benign hypercall activity steady-state and (ii) calculating relevant
statistics. These activities are best performed when hypercall activities are cap-
tured in traces for processing off-line.

Estimation of benign hypercall activity steady-state: Steady-state of the
benign hypercall activity of a VM can be understood with respect to the sum of
first-time occurring variations of a detection-relevant property at a given point
in time. We define St at time t where St is an increasing function such that
limt→∞ St = const. The estimation of steady-state is crucial for determining an
optimal length of the period during which an IDS under test should be trained
in the testing phase (i.e., for avoiding IDS under-training).

In order to estimate steady-state, an IDS evaluator should first initialize the
IDS monitoring landscape; that is, bring the VMs in the landscape to the state
after their creation and start workloads in the VMs. Then the steady-state of
the benign hypercall activities of a VM may be estimated by setting a target for
the slope of a growth curve depicting St until a given time tmax. The slope of
such a curve, when observed over a given period, indicates the rate of first-time
occurring variations of the detection-relevant property in the period. Letting σ
be a target for the slope of a growth curve over a period ts = ts2 − ts1, we have
0 <= Sts2−Sts1

ts
<= σ. This process may be repeated multiple times for different

values of tmax to experimentally determine σ for each VM.3 Attacks should be
injected from a VM until time tmax, but only after the VM’s hypercall activity
has reached steady-state.

The IDS under test should operate in learning mode when steady-state is
estimated. This helps to create operating conditions of the overall virtualized
environment, which are (almost) equivalent to those when the IDS will be trained
in the testing phase. Note that an IDS may have an impact on the time needed for
hypercall activities to reach steady-state due to incurred monitoring overhead.

Calculating relevant statistics: Two key statistics need to be calculated: (i)
the average rate of occurrence of the detection-relevant property — this statistic
should be calculated using data collected between ts1 and tmax, and (ii) the
number of occurrences of each variation of the detection-relevant property — this
statistic should be calculated using data collected while the system is progressing
towards a steady state. These statistics help calculate metric values in the testing
phase and create realistic attack injection scenarios as discussed next.

Specification of Attack Injection Scenarios. Two characteristics distinguish
each attack injection scenario: attack content and attack injection time.

Attack content is the detection-relevant property of a hypercall attack in the
context of a given IDS evaluation study (e.g., a specific sequence of hypercalls).
Specification of attack content enables the injection of attacks that conform to
representative attack models (see Sect. 2). In addition, it enables the injection
of evasive attacks, for example, attacks that closely resemble common regular

3 This raises the question whether hypercall activities are repeatable. We discuss this
topic in Sect. 3.2.
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activities — these attacks may be highly effective “mimicry” attacks. Crafting
“mimicry” attacks is done based on knowledge on what, and how frequently,
detection-relevant properties occur during regular operation of the IDS mon-
itoring landscape (i.e., during IDS training); this is the statistic ‘number of
occurrences of each variation of the detection-relevant property’.

Attack injection time is the point(s) in time when a hypercall attack con-
sisting of one or more hypercalls is injected. This allows for the specification of
arbitrary temporal distributions of attack injection actions. It also allows for the
specification of the following relevant temporal properties of malicious activities:

– Base rate: Base rate is the prior probability of an intrusion (attack). The error
occurring when the attack detection accuracy of an IDS is assessed without
taking the base rate into account is known as the base rate fallacy [13]. The
specification of attack injection times provides a close estimation of the actual
base rate in the testing phase. As we demonstrate in Sect. 5, base rate can
be estimated by considering the number of injected attacks and the number
of variations of the detection-relevant property that have occurred during
attack injection. The latter is estimated based on the statistic ‘average rate
of occurrence of the detection-relevant property’.

– IDS evasive properties: Specification of the attack injection time enables the
injection of “smoke screen” evasive attacks. In the context of this work, the
“smoke screen” technique consists of delaying the invocation of the hypercalls
comprising an attack such that a given amount of benign hypercall activity
occurs between each hypercall invocation. This is an important test since some
IDSes have been shown to be vulnerable to such attacks (e.g., Xenini; see [14]).

3.2 Testing

IDS Training. IDS training is the first activity of the testing phase. We require
reinitialization of the IDS monitoring landscape between the planning and test-
ing phases (see Fig. 1a). The rationale behind this is practical: many parame-
ters of the existing IDSes designed to detect hypercall attacks (e.g., length of
IDS training period, attack detection threshold) require a priori configuration.
These parameters are tuned based on observations made in the planning phase
(see Sect. 3.1). This raises concerns related to the non-determinism of hypercall
activities, a topic that we discuss in paragraph ‘on repeatability concerns’.

Attack Injection. For this critical step, we developed a new tool called hInjec-
tor. Section 4 introduces this tool and describes how it is used.

Calculation of Metric Values. After attack injection is performed, values of
relevant metrics can be calculated (e.g., true and false positive rate). This also
raises concerns related to the non-determinism of hypercall activities, which we
discuss next.

On Repeatability Concerns. Observations and decisions made in the plan-
ning phase might be irrelevant if hypercall activities are highly non-deterministic
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and therefore not repeatable. For example, the benign hypercall activities occur-
ring in the testing phase may not reach steady-state at a point in time close to
the estimated one in the planning phase.

In addition, metric values reported as end-results of an evaluation study,
where workloads that are not fully deterministic are used, have to be statistically
accurate. This is crucial for credible evaluation. Principles of statistical theory
impose metric values to be repeatedly calculated and their means to be reported
as end-results. Therefore, we require repeated execution of the testing phase
(see Fig. 1a). However, this may be time-consuming if the number of needed
repetitions is high due to high non-determinism of hypercall activities.

Specifying an IDS monitoring landscape as we define it (see Sect. 3.1) alle-
viates the above concerns; that is, it helps to reduce the non-determinism of
hypercall activities by removing major sources of non-determinism, such as non-
repeatable workloads. This is in line with Burtsev [15], who observes that, given
repeatability of execution of VMs’ user tasks is preserved, VMs always invoke
the same hypercalls. We acknowledge that achieving complete repeatability of
hypercall activities by specifying VM characteristics is infeasible. This is mainly
due to the complexity of the architectures and operating principles of kernels.

In Sect. 5, we empirically show that, provided an IDS monitoring landscape is
specified, a VM’s hypercall activities exhibit repeatability to an extent sufficient
to conclude that: (i) the decisions and observations made in the planning phase
are of practical relevance when it comes to IDS testing, and (ii) the number of
measurement repetitions needed to calculate statistically accurate metric values
is small. This is in favor of the practical feasibility of our approach, which involves
repeated initialization of an IDS monitoring landscape.

4 hInjector

hInjector is a tool for injecting hypercall attacks. It realizes the attack injection
scenarios specified in the planning phase (see Sect. 3.1). The current implementa-
tion of hInjector is for the Xen hypervisor, but the techniques are not Xen-specific
and can be ported to other hypervisors.

hInjector supports the injection of attacks crafted with respect to the attack
models that we developed (see Sect. 2). We extend these attack models with a
model involving different hypercall call sites. Hypercall call sites are one of the
detection-relevant properties that existing IDSes designed to detect hypercall
attacks analyze. We consider that hypercalls can be executed from regular or
irregular call sites. The latter is typically a hacker’s loadable kernel module
(LKM) used to mount hypercall attacks.

Our design criteria for hInjector are injection of realistic attacks, injection
during regular system operation, and non-disruptive attack injection. These cri-
teria are crucial for the representative, rigorous, and practically feasible IDS
evaluation. We discuss more in Sect. 4.2.

Availability. hInjector is publicly available at https://github.com/hinj/hInj.

https://github.com/hinj/hInj
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4.1 hInjector Architecture

Figure 2 depicts the architecture of hInjector. It shows the primary components:
Injector, LKM, Filter, Configuration, and Logs. We refer to the VM from where
hypercall attacks are injected as the malicious VM (MVM). We also depict a
typical IDS designed to detect hypercall attacks, with components in the hyper-
visor and a secured VM (SVM), co-located with MVM (see Sect. 2). The IDS
monitors the MVM’s hypercall activity by monitoring virtual CPU registers and
the virtual memory of MVM using its hypervisor component.

The Injector component, deployed in the MVM’s kernel, intercepts at a given
rate hypercalls invoked by the kernel and modifies hypercall parameter values
on-the-fly (i) making them specifically crafted for triggering a vulnerability, or
(ii) replacing them with random, irregular values that an IDS may label as
anomalous. The Injector injects hypercalls invoked from a regular call site (i.e.,
from the kernel address space). We discuss more on Injector in Sect. 4.3.

The LKM component, a module in MVM’s kernel, invokes hypercalls with
regular or specifically crafted parameter value(s), including a series of hypercalls
in a given order. The LKM injects hypercalls invoked from an irregular call site
(i.e., from a loadable kernel module).

The Filter component, deployed in the hypervisor’s hypercall handlers, iden-
tifies hypercalls injected by the Injector or the LKM, blocks the execution of the
respective hypercall handlers, and returns valid error codes. The Filter identi-
fies injected hypercalls based on information stored by the Injector/LKM in the
shared info structure, a memory region shared between a VM and the hypervi-
sor. To this end, we extended shared info with a string field named hid (hypercall
identification), which contains identification information on injected hypercalls.
We discuss more about the Filter when we discuss the design criterion ‘non-
disruptive attack injection’ in Sect. 4.2.

The Configuration component is a set of user files in XML containing config-
uration parameters for managing the operation of the Injector and the LKM. It
allows specifying, for example, parameter values for a given hypercall (relevant
to the Injector and the LKM), ordering of a series of hypercalls (relevant to the
LKM), and temporal distribution of injection actions.
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The Logs are user files containing records about invoked hypercalls that
are part of attacks; that is, hypercall IDs and parameter values, as well as
timestamps. The logged data serves as reference data (i.e., as “ground truth”)
used for distinguishing false positives from injected attacks and calculating IDS
attack detection accuracy metrics, such as true and false positive rate.

We now present an example of the implemented hypercall attack injection pro-
cedure. Figure 2 depicts the steps to inject a hypercall attack by the LKM: (1)
the LKM crafts a parameter value of a given hypercall as specified in the config-
uration; (2) the LKM stores the ID of the hypercall, the number of the crafted
parameter, and the parameter value in hid; (3) the LKM passes the hypercall to
MVM’s vCPU, which then passes control to hypervisor; (4) the Filter, using the
data stored in hid, identifies the injected hypercall when the respective hypercall
handler is executed; (5) the Filter updates hid indicating that it has intercepted
the injected hypercall, then returns a valid error code to block execution of the
handler; (6) after the error code arrives at MVM’s kernel, the LKM first verifies
whether hid has been updated by the Filter and then logs the ID and parameter
values of the injected hypercall.

4.2 hInjector Design Criteria

Injection of Realistic Attacks. The injection of realistic attacks is crucial for
the representative IDS evaluation. In order to inject realistic hypercall attacks,
hInjector requires representative hypercall attack models. hInjector supports the
injection of attacks crafted with respect to arbitrary attack models, for example,
the models that we developed [5] (see Sect. 2).

We developed proof-of-concept code for triggering the hypercall vulnerabili-
ties that we analyzed [5].4 The proof-of-concept code enables granularization of
the attack models. For example, we can specify specific parameter values or the
order of a series of hypercalls that trigger a hypercall vulnerability. This enables
the injection of realistic hypercall attacks, crafted to trigger publicly disclosed
hypercall vulnerabilities. In Fig. 3a, we show how we triggered the vulnerabil-
ity CVE-2012-3495 of the Xen hypervisor in a testbed environment. In Fig. 3b,
we present the configuration of hInjector for injecting an attack triggering CVE-
2012-3495. Configuration files for injecting attacks that trigger publicly disclosed
hypercall vulnerabilities are distributed with hInjector.

Injection During Regular System Operation. Benign activities, mixed with
attacks, are needed to subject an IDS under test to realistic attack scenarios.
hInjector is designed to inject hypercall attacks during regular operation of guest
VMs. Thus, provided that during an IDS evaluation experiment representative
user tasks run in the VMs in the IDS monitoring landscape, the presence of
representative benign hypercall activities is guaranteed.

4 We developed proof-of-concept code based on reverse-engineering the released
patches fixing the considered vulnerabilities.
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Fig. 3. (a) Triggering CVE-2012-3495 [the hypercall physdev op is executed 18 times:
the value of its first parameter is 23 (PHYSDEVOP get free pirq); the value of the field
type of its second parameter (struct physdev get free pirq) is 1]; (b) Configuration of
hInjector for injecting an attack triggering CVE-2012-3495

Non-disruptive Attack Injection. The state of the hypervisor or the VM(s)
from where attacks are injected may be altered by the attacks injected by hIn-
jector. This may cause crashes obstructing the execution of the IDS evaluation
process. Filter prevents crashes by blocking the execution of the hypervisor’s
handlers that handle the injected hypercalls. This preserves the states of the
hypervisor and of the VM(s) from where attacks are injected, and, in addition,
it ensures that injected attacks do not impact the operation of the IDS under
test, which normally has components in the hypervisor and in a VM (see Sect. 2).
After blocking the execution of hypervisor’s handlers, Filter returns valid error
codes. This allows the control flow of the kernel of the VM from where hypercall
attacks are injected to properly handle failed hypercalls that have been executed
by it and have been modified by the Injector on-the-fly.

4.3 Injector: Performance Overhead

The rate at which the kernel invokes hypercalls is high (i.e., in some cases more
than 30000 hypercalls per second, see Sect. 5). Therefore, Injector, which manip-
ulates hypercalls on-the-fly, can easily incur intolerable system performance over-
head. We made the following observation when developing Injector: manipulating
orders of series of hypercalls is very performance-expensive; therefore, Injector
can manipulate only hypercall parameter values. Further, we measured the over-
head incurred by Injector on the execution rate of hypercalls, relative to this rate
when Injector is inactive, when replacing regular hypercall parameter values with
random, irregular values. In Fig. 4, we depict this overhead, which we measured
as follows. We deployed Injector in the kernel of a Debian 8.0 operating system
running on top of Xen 4.4.5. We invoked the mmuext op hypercall 40000 times
using a loadable kernel module. We measured the time, in microseconds (μs),
needed for the invoked hypercalls to complete their operation (‘Execution time’
in Fig. 4) in scenarios where: (i) Injector is inactive (‘Base’ in Fig. 4), and (ii)
Injector manipulates the value of the second parameter of mmuext op at the
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rate of 1:50 (i.e., Injector manipulates parameter value once in 50 invocations of
mmuext op), 1:100, 1:500, 1:1000, and 1:10000. We repeated the measurements
30 times and averaged the results.

Based on the results from the above experiment, we conclude that a user
should constrain the rate at which Injector manipulates hypercall parameter
values to a value such that the incurred overhead is not higher than 2 %. This is
important since we observed that overheads higher than 2 % often cause notice-
able system slowdowns or crashes. We showed that Injector normally incurs
overheads higher than 2 % when it manipulates hypercall parameter values
approximately once in less than 500 hypercall invocations (see Fig. 4). Note
that overheads incurred by Injector for hypercalls other than mmuext op do
not significantly differ from those depicted in Fig. 4 since the implementation of
Injector is the same for all hypercalls.

E
xe

cu
ti

on
ti

m
e

(µ
s)

800

1600

2400

Base

[10 %]

1:50

[4.953%]

1:100

[1.606%]

1:500

[0.395 %]

1:1000

[0.257 %]

1:10000

Fig. 4. Overhead incurred by Injector [measurements of the incurred overhead are
depicted in square brackets]

5 Case Study

We now demonstrate the application of our approach by evaluating Xenini [3]
following the steps presented in Sect. 3. Xenini is a representative anomaly-based
IDS. It uses the popular Stide [16] method. Xenini slides a window of size k over
a sequence of n hypercalls and identifies mismatches (anomalies) by comparing
each k-length sequence with regular patterns learned during IDS training. Xenini
records the number of mismatches as a percentage of the total possible number
of pairwise mismatches for a sequence of n hypercalls (i.e., (k − 1)(n − k/2)).
We call this percentage anomaly score. When the anomaly score exceeds a given
threshold th ∈ [0; 1], Xenini fires an alert. For the purpose of this study, we con-
figured Xenini such that its detection-relevant property is sequences of hypercall
IDs of length 4 (i.e., k = 4; n = 10).

It is important to emphasize that we focus on demonstrating the feasibility
of attack injection in virtualized environments for IDS testing purposes and not
on discussing the behavior of Xenini in detail or comparing it with other IDSes.
We specify arbitrary attack injection scenarios and evaluate Xenini with the sole
purpose of demonstrating all steps and functionalities of the proposed approach.
We refer the reader to Sect. 5.3 for an overview of further application scenarios.
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5.1 Case Study: Planning

Specification of an IDS Monitoring Landscape. We use the SPECvirt
sc2013 benchmark to specify an IDS monitoring landscape.5 SPECvirt sc2013 is
an industry-standard virtualization benchmark developed by SPEC (Standard
Performance Evaluation Corporation). Its complex architecture matches a typ-
ical server consolidation scenario in a datacenter — it consists of 6 co-located
front- and back-end server VMs (i.e., web, network file, mail, batch, application,
and database server VM) and 4 workload drivers that act as clients generating
workloads for the front-end servers. The workload drivers are heavily modified
versions of the drivers of the SPECweb 2005, SPECimap, SPECjAppServer2004,
and SPECbatch (i.e., SPEC CPU 2006) benchmarks. They generate workloads
representative of workloads seen in production virtualized environments.

In Fig. 5, we depict the deployment of SPECvirt sc2013 as an IDS monitoring
landscape. The workload drivers generate workloads that map to hypercalls. We
used Xen 4.4.1 as hypervisor and we virtualized the VMs using full paravirtu-
alization.6 To each server VM, we allocated 8 virtual CPUs pinned to separate
physical CPU cores of 2 GHz, 3 GB of main memory, and 100 GB of hard disk
memory. In Fig. 5, we depict the operating systems and architectures of the
server VMs, and the server software we deployed in the VMs.7
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workload driver
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workload driver
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Fig. 5. SPECvirt sc2013 as an IDS monitoring landscape [IMAP stands for Internet
Message Access Protocol; J2EE stands for Java 2 Enterprise Edition]

Characterization of Benign Hypercall Activities. We now estimate steady-
states of the benign hypercall activities of the server VMs and calculate the rel-
evant statistics (see Sect. 3.1). We initialized the IDS monitoring landscape and
deployed Xenini before the characterization. We used xentrace, the tracing facility
of the Xen hypervisor, to capture hypercall activities in trace files.
5 http://www.spec.org/virt sc2013/.
6 We did not use any other virtualization mode because of a technical limitation; that

is, the xentrace tool, which we use to capture benign hypercall activities in files for
processing off-line, currently supports only full paravirtualization. However, support
for other virtualization modes is currently being implemented.

7 An overview of the software and hardware requirements for deploying and running
SPECvirt sc2013 is available at https://www.spec.org/virt sc2013/docs/SPECvirt
UserGuide.html.

http://www.spec.org/virt_sc2013/
https://www.spec.org/virt_sc2013/docs/SPECvirt_UserGuide.html
https://www.spec.org/virt_sc2013/docs/SPECvirt_UserGuide.html
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Table 1. Benign workload characterization

Run 1 Run 2

Server VM ts (sec.) r (occ./sec.) ts (sec.) r (occ./sec.)

Web 5350 19644.5 5357 19627.3

Network file 5343 10204.9 5360 10231.3

Mail 5391 3141.5 5382 3148.7

Batch 5315 633.4 5330 623.8

Application 5367 31415.9 5377 31437.5

Database 5285 27294.9 5273 27292.3

Figure 6 a–f show growth curves depicting St until time tmax = 5500 s for each
server VM (see the curves entitled ‘Run 1’). We set the target σ to 15 over a time
period of 100 s for the slope of each growth curve. In Table 1, column ‘Run 1’,
we present ts (in seconds – sec.), which is the time at which the VMs’ hypercall
activities reach steady-state. We also present r (in number of occurrences per
second – occ./sec.), which is the average rate of occurrence of the detection-
relevant property. We also calculated the statistic ‘number of occurrences of each
variation of the detection-relevant property’ (not presented in Table 1), which
we use to craft “mimicry” attacks (see Sect. 5.2).

We now empirically show that, provided an IDS monitoring landscape is spec-
ified, VMs’ hypercall activities exhibit repeatability in terms of the characteristics
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of interest to an extent sufficient for accurate IDS testing (see Sect. 3.2). We per-
formed the above characterization campaign twice and compared the results. In
Fig. 6 a–f, we depict the obtained growth curves (see the curves entitled ‘Run 1’
and ‘Run 2’). These curves are very similar, which indicates that the character-
istics of the VMs’ hypercall activities of interest are also similar. In Table 1, we
present ts and r for each server VM (see column ‘Run 1’ and ‘Run 2’). We observe
a maximum difference of only 17 sec. for ts and 26.4 occ./sec. for r. We repeated
this process over 30 times and calculated maximum standard deviation of only
8.036 for ts and 15.95 for r. These small deviations indicate that benign hypercall
activities exhibit non-repeatability to such a small extent that it has no significant
impact on metric values, which we repeatedly calculate for statistical accuracy (see
Sect. 3.2).

Specification of Attack Injection Scenarios. We now specify attack injec-
tion scenarios that we will realize in separate testing phases. We focus on inject-
ing attacks triggering publicly disclosed hypercall vulnerabilities. However, the
injection of any malicious hypercall activity using hInjector is possible (e.g.,
covert channel operations as described in [4]), in which case an IDS evaluation
study would be performed following the same process we demonstrate here.

Scenario#1 :Wewill first evaluate the attack coverage ofXeniniwhen config-
ured such that th = 0.3. We will evaluate Xenini’s ability to detect attacks trigger-
ing the vulnerabilities CVE-2012-5525, CVE-2012-3495, CVE-2012-5513, CVE-
2012-5510, CVE-2013-4494, and CVE-2013-1964. We thus demonstrate injecting
realistic attacks that conform to the attack models that we constructed [5]. We
will inject attacks from the web and mail server VM using the LKM component of
hInjector.

Attack contents: In Fig. 7 (a)–(e), we depict the contents of the considered
attacks (the content of the attack triggering CVE-2012-3495 is depicted in
Fig. 3a; we will inject this attack from the web server VM). The semantics of
these figures is the same as that of Fig. 3a — we depict the hypercalls executed as
part of an attack and relevant hypercall parameters; that is, integer parameters
defining the semantics of the executed hypercalls (e.g., XENMEM exchange),
and, where applicable, parameters with values specifically crafted for triggering
a vulnerability, which are marked in bold.

Attack injection times: After the hypercall activities of both the web and mail
server VM have reached a steady state, we will inject the considered attacks, with
10 s of separation between each attack, and, where applicable, with no delays
between the invocation of the hypercalls comprising an attack.

Scenario #2 : We will investigate the accuracy of Xenini at detecting the
attacks considered in Scenario #1, however, modified such that they have IDS
evasive characteristics (i.e., they are “mimicry” and “smoke-screen” attacks). We
will inject from the database server VM, using the LKM component of hInjector,
both the unmodified attacks that consist of multiple hypercalls (i.e., we exclude
the attack triggering CVE-2012-5525) and their modified counterparts as part
of three separate testing phases. Therefore, we will observe how successful the
modified attacks are at evading Xenini.
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Web server VM Hypervisor
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Fig. 7. Injecting attacks that trigger: (a) CVE-2012-5525; (b) CVE-2012-5513; (c)
CVE-2012-5510; (d) CVE-2013-4494 [invoking hypercalls from two virtual CPUs
(vCPUs)]; (e) CVE-2013-1964 [this vulnerability can also be triggered by invoking
hypercalls from one VM]

Attack contents: The contents of the unmodified attacks and the “smoke-
screen” attacks we will inject are depicted in Figs. 3a and 7 (b)–(e). To craft
“mimicry” attacks, we place each individual hypercall that is part of an attack
in the middle of a sequence of 20 injected hypercalls (i.e., at position 10). We
built this sequence by starting with the most common detection-relevant prop-
erty we observed in the planning phase — iret, iret, iret, iret. We then added
16 hypercalls such that sliding a window of size 4 over the sequence provides
common detection-relevant properties seen during IDS training (i.e., while the
hypercall activity of the database server VM has been progressing towards a
steady state); we were able to perform this because we calculated the statistic
‘number of occurrences of each variation of the detection-relevant property’ (see
Sect. 3.1). Therefore, we obscure attack patterns making them similar to regular
patterns. For example, in Fig. 8a, we depict the content of the “mimicry” attack
triggering CVE-2013-1964.

Fig. 8. Injecting IDS evasive attacks triggering CVE-2013-1964: (a) “mimicry” attack;
(b) “smoke screen” attack [the hypercalls triggering CVE-2013-1964 are marked in bold]
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Attack injection times: We craft “smoke screen” attacks by specifying attack
injection times (see Sect. 3.1). We will inject a “smoke screen” attack by delay-
ing for 0.5 s the invocation of the hypercalls comprising the attack. Since the
average rate of occurrence of the detection-relevant property for the database
server VM is 27294.9 occ./sec. (see Table 1, column ‘Run 1’), we obscure attack
patterns by making Xenini analyze approximately 13647 benign occurences of
the detection-relevant property before encountering a hypercall that is part of an
attack. For example, in Fig. 8b, we depict the “smoke screen” attack triggering
CVE-2013-1964.

After the hypercall activities of the database server VM have reached a steady
state, we begin three separate attack injection campaigns: unmodified attacks,
“mimicry” attacks, and “smoke screen” attacks. Each campaign injects 6 attacks,
with 10 s of separation between each attack.

5.2 Case Study: Testing

We now test Xenini with respect to the scenarios presented in Sect. 5.1.

Scenario #1

IDS Training. We deployed and configured Xenini and hInjector. We initalized
the IDS monitoring landscape and we trained Xenini until time ts = 5391 s. This
is the time period needed for the hypercall activities of both the web and mail
server VM to reach steady-state (see Table 1, column ‘Run 1’).

Attack Injection and Calculation of Metric Values. We injected the con-
sidered attacks over a period of tmax − ts = 109 s and then calculated metric
values, that is, true and false positive rate. These are calculated as ratios between
the number of true, or of false, alerts issued by Xenini, and the total number
of injected attacks, or of benign variations of the detection-relevant property
occuring during attack injection, respectively. We estimate the latter based on
the statistic ‘average rate of occurrence of the detection-relevant property’. We
repeated the testing phase only 3 times in order to calculate statistically accurate
metric values with a relative precision of 2 % and 95 % confidence level.8

Performing repeated measurements is important for calculating a statistically
accurate value of the false positive rate. This is because the number of issued
false alerts and the total number of benign variations of the detection-relevant
property occuring during attack injection vary between measurements due to
the non-determinism of benign hypercall activities. We observed that the true
positive rate normally does not vary, since the number and properties of injected
attacks (i.e., the attacks’ contents and attack injection times) are fixed.

8 In addition, we repeated the testing phase over 30 times observing that the obtained
metric values negligibly differ from those we present here. This is primarily because
of the high repeatability of hypercall activities and it indicates that only a small
number of repetitions is needed to calculate statistically accurate metric values.
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In Table 2, we present Xenini’s attack detection score. It can be concluded
that Xenini exhibited a true positive rate of 0.5 when configured such that
th = 0.3. We now consider multiple IDS operating points (i.e., IDS configura-
tions which yield given values of the false and true positive rate). In Fig. 9, we
depict a ROC (Receiver Operating Characteristic) curve, which plots operating
points for different values of th. We executed separate testing phases to quantify
the false and true positive rate exhibited by Xenini for each value of th. We quan-
tified these rates by comparing the output of Xenini with the “ground truth”
information recorded by hInjector. We considered the total number of true and
false alerts issued by Xenini (i.e., 6 and 6), injected attacks, and occurences of
the detection-relevant property during attack injection, originating from both
the web and mail server VM. The results depicted in Fig. 9 match the expected
behavior of Xenini (i.e., the lesser the value of th, the more sensitive the IDS,
which results in higher true and false positive rates; see [3]). This shows the
practical usefulness of our approach.

Table 2. Detection score of Xenini [�: detected/x: not detected, th = 0.3]

Targeted vulnerability (CVE ID) Detected

CVE-2012-3495 �
CVE-2012-5525 x

CVE-2012-5513 �
CVE-2012-5510 �
CVE-2013-4494 x

CVE-2013-1964 x
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We now calculate values of the ‘expected cost’ metric (Cexp) developed
by Gaffney and Ulvila [17], which expresses the impact of the base rate (see
Sect. 3.1). This metric combines ROC curve analysis with cost estimation by
associating an estimated cost with each IDS operating point. The measure of
cost is relevant in scenarios where a response that may be costly is taken when
an IDS issues an alert. Gaffney and Ulvila introduce a cost ratio C = Cβ/Cα,
where Cα is the cost of an alert when an intrusion has not occured, and Cβ is
the cost of not detecting an intrusion when it has occurred. To calculate values
of Cexp, we set C to 10 (i.e., the cost of not responding to an attack is 10 times
higher than the cost of responding to a false alert; see [17]).

We estimate the base rate as follows. We have injected 6 attacks consisting of
115 hypercalls over 109 s. Further, the average rate of occurence of the detection
relevant property originating from the web and mail server VM during attack
injection is estimated at 19644.5+3141.5 = 22786 occ./sec. (see Table 1, column
‘Run 1’). Therefore, the base rate is 115

(22786×109+3)=0.5 × 10−4.
We calculated the actual base rate by calculating the actual average rate of

occurence of the detection relevant property during attack injection. We observed
that the difference between the actual and estimated base rate is negligible and
has no impact on values of Cexp. This is primarily because the difference between
the actual and estimated value of the average rate of occurence of the detection
relevant property is small. Further, the ratio between the number of injected
attacks and the number of occurences of the detection-relevant property during
attack injection is very low due to the typical high value of the latter. This
indicates the practical relevance of the planning phase.

In Fig. 9, we depict in square brackets values of Cexp associated with each
IDS operating point. The ‘expected cost’ metric enables the identification of an
optimal IDS operating point. An IDS operating point is considered optimal if it
has the lowest Cexp associated with it compared to the other operating points.
We mark in Fig. 9 the optimal operating point of Xenini.

Scenario #2

IDS Training. We deployed and configured Xenini and hInjector. We initalized
the IDS monitoring landscape and, since we will inject attacks from the database
server VM, we trained Xenini over a period of 5285 s.

Attack Injection and Calculation of Metric Values. We injected the
unmodified, the “mimicry”, and the “smoke screen” attacks as part of three
separate testing phases. In Table 3, we present the anomaly scores reported by
Xenini for the injected attacks. We thus quantify the success of the “mimicry”
and “smoke screen” attacks at evading Xenini. Their evasive capabilities are
especially evident in the case of the attacks triggering CVE-2012-3495 and CVE-
2012-5510. That is, these attacks, when unmodified, can be very easily detected
by Xenini (see the high anomaly scores of 1.0 in Table 3). However, when trans-
formed into “mimicry” attacks, the detection of these attacks is significantly
challenging (see the low anomaly scores of 0.17 and 0.14 in Table 3).



490 A. Milenkoski et al.

Table 3. Anomaly scores for the injected non-evasive and evasive attacks

Targeted vulnerability (CVE ID) Anomaly scores

Unmodified “Mimicry” “Smoke screen”

CVE-2012-3495 1.0 0.17 0.25

CVE-2012-5513 0.32 0.107 0.28

CVE-2012-5510 1.0 0.14 0.31

CVE-2013-4494 0.21 0.14 0.14

CVE-2013-1964 0.25 0.14 0.14

The results presented in Table 3 match the expected behavior of Xenini when
subjected to evasive attacks (i.e., Xenini reports lower anomaly scores for the
evasive attacks than for the unmodified attacks; see [14]). This shows the prac-
tical usefulness of our approach and the relevance of the observations made in
the planning phase, which we used to craft evasive attacks.

5.3 Further Application Scenarios

Besides evaluating typical anomaly-based IDSes, such as Xenini, our approach,
or hInjector in particular, can be used for:

– evaluating hypercall access control (AC) systems — an example of
such a system is XSM-FLASK. By evaluating AC systems, we mean verifying
AC policies for correctness. This is performed by first executing hypercalls
whose execution in hypervisor context should be prohibited and then verify-
ing whether their execution has indeed been prohibited. hInjector can greatly
simplify this process since it allows for executing arbitrary hypercall activi-
ties and recording relevant information (e.g., information on whether invoked
hypercalls have been executed in hypervisor context, see Sect. 4.1);

– evaluating whitelisting IDSes — by whitelisting IDS, we mean IDS that
fires an alarm when it observes an activity that has not been whitelisted, either
by an user or by the IDS itself while being trained. For example, OSSEC can
be configured to whitelist the hypercall activities it observes during training —
our approach involves both rigorous IDS training and execution of arbitrary
hypercall activities (see Sect. 3); RandHyp [9] and MAC/HAT [6] detect and
block the execution of hypercall invocations that originate from untrusted
locations (e.g., a loadable kernel module) — hInjector supports the injection
of hypercall attacks both from the kernel and a kernel module (see Sect. 4.1).

6 Conclusion and Future Work

We presented an approach for the live evaluation of IDSes in virtualized environ-
ments using attack injection. We presented hInjector, a tool for generating IDS
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evaluation workloads that contain virtualization-specific attacks (i.e., attacks
leveraging or targeting the hypervisor via its hypercall interface — hypercall
attacks). Such workloads are currently not available, which significantly hinders
IDS evaluation efforts. We designed hInjector with respect to three main cri-
teria: injection of realistic attacks, injection during regular system operation,
and non-disruptive attack injection. These criteria are crucial for the represen-
tative, rigorous, and practically feasible evaluation of IDSes. We demonstrated
the application of our approach and showed its practical usefulness by evaluating
a representative IDS designed to detect hypercall attacks. We used hInjector to
inject attacks that trigger real vulnerabilities as well as IDS evasive attacks.

Our work can be continued in several directions:

– We plan to explore the integration of VM replay mechanisms (e.g.,
XenTT [15]) in our approach. This may help to further alleviate concerns
related to the repeatability of VMs’ hypercall activities;

– We intend to establish a continuous effort on analyzing publicly disclosed
hypercall vulnerabilities in order to regularly update hInjector’s attack library
(see Sect. 4.2). This is an important contribution since the lack of up-to-date
workloads is a major issue in the field of IDS evaluation;

– We plan to extensively evaluate a variety of security mechanisms (see Sect. 5.3)
and work on applying our approach for injecting attacks involving operations
that are functionally similar to hypercalls, such as KVM ioctl calls.

We stress that robust IDS evaluation techniques are essential not only to
evaluate specific IDSes, but also as a driver of innovation in the field of intrusion
detection by enabling the identification of issues and the improvement of existing
intrusion detection techniques and systems.
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