
QPME - A Performance Modeling Tool Based on
Queueing Petri Nets

Samuel Kounev
Karlsruhe Institute of Technology
Department of Computer Science

76131 Karlsruhe, Germany

skounev@acm.org

Christofer Dutz
Technische Universität Darmstadt
Department of Computer Science

64289 Darmstadt, Germany

dutz@c-ware.de

ABSTRACT
Queueing Petri nets are a powerful formalism that can be
exploited for modeling distributed systems and analyzing
their performance and scalability. By combining the mod-
eling power and expressiveness of queueing networks and
stochastic Petri nets, queueing Petri nets provide a number
of advantages. In this paper, we present QPME (Queueing
Petri net Modeling Environment) - a tool that supports the
modeling and analysis of systems using queueing Petri nets.
QPME provides an Eclipse-based editor for designing queue-
ing Petri net models and a powerful simulation engine for
analyzing the models. After presenting the tool, we discuss
the ongoing work on the QPME project and the planned
future enhancements of the tool.

1. INTRODUCTION
QPME (Queueing Petri net Modeling Environment) is a

performance modeling tool based on the Queueing Petri
Net (QPN) modeling formalism. Introduced in 1993 by
Falko Bause [1], the QPN formalism has a number of advan-
tages over conventional modeling formalisms such as queue-
ing networks and stochastic Petri nets. By combining the
modeling power and expressiveness of queueing networks
and stochastic Petri nets, QPNs enable the integration of
hardware and software aspects of system behavior into the
same model. In addition to hardware contention and schedul-
ing strategies, QPNs make it easy to model simultaneous
resource possession, synchronization, asynchronous process-
ing and software contention. These aspects have signi�cant
impact on the performance of modern enterprise systems.
Another advantage of QPNs is that they can be used to
combine qualitative and quantitative system analysis. A
number of e�cient techniques from Petri net theory can be
exploited to verify some important qualitative properties of
QPNs. The latter not only help to gain insight into the
behavior of the system, but are also essential preconditions
for a successful quantitative analysis [3]. Last but not least,
QPN models have an intuitive graphical representation that
facilitates model development. In [11], we showed how QPNs
can be used for modeling distributed e-business applications.
Building on this work, we have developed a methodology for
performance modeling of distributed component-based sys-
tems using QPNs [9]. The methodology has been applied
to model a number of systems ranging from simple systems
to systems of realistic size and complexity. It can be used
as a powerful tool for performance and scalability analysis.
Some examples of modeling studies based on QPNs can be

found in [13, 14, 17]. These studies consider di�erent types
of systems including distributed component-based systems,
event-based systems and Grid computing environments.
While the QPN modeling paradigm provides many im-

portant bene�ts, there are currently few tools that support
the modeling and analysis of systems using QPNs. Based
on [21], apart from the QPME tool presented in this paper,
the only tool that is available is the HiQPN-Tool [2] devel-
oped at the University of Dortmund. HiQPN can be used to
build and analyze QPN models, however, it only supports
analytical solution techniques. As we demonstrated in [11],
due to the state space explosion problem, QPN models of
realistic systems are too large to be analyzable using ana-
lytical techniques. Another problem with HiQPN is that it
is only available on Sun-OS 5.5.x / Solaris 2, which signi�-
cantly limits its accessibility.
Recognizing the need for a tool to support the modeling

and analysis of realistically-sized systems using QPNs, we
have developed QPME - a QPN modeling environment with
a user-friendly graphical user interface. In this paper, we
present QPME, discussing its features and bene�ts. QPME
is made of two major components, a QPN Editor (QPE) and
a Simulator for QPNs (SimQPN). In the following sections,
we present an overview of these components. Further details
on their internal architecture and implementation can be
found in [8, 12]. QPME is available free-of-charge for non-
pro�t use (see [10]) and has been distributed to more than
70 universities and research organizations worldwide. The
current license is closed-source, however, there are plans to
make the tool open-source in the near future.
The rest of this paper is organized as follows: We start

with a brief introduction to QPNs in Section 2. Sections 3
and 4 provide an overview of the QPN editor and the sim-
ulation engine, respectively. Section 5 summarizes the on-
going and future work on QPME. Finally, some concluding
remarks are presented in Section 6.

2. QUEUEING PETRI NETS
The main idea behind the QPN modeling paradigm was

to add queueing and timing aspects to the places of Colored
Generalized Stochastic Petri Nets (CGSPNs) [1]. This is
done by allowing queues (service stations) to be integrated
into places of CGSPNs. A place of a CGSPN that has an in-
tegrated queue is called a queueing place and consists of two
components, the queue and a depository for tokens which
have completed their service at the queue. The behavior
of the net is as follows: tokens, when �red into a queueing
place by any of its input transitions, are inserted into the

queue according to the queue's scheduling strategy. Tokens
in the queue are not available for output transitions of the
place. After completion of its service, a token is immedi-
ately moved to the depository, where it becomes available
for output transitions of the place. This type of queueing
place is called timed queueing place. In addition to timed
queueing places, QPNs also introduce immediate queueing
places, which allow pure scheduling aspects to be described.
Tokens in immediate queueing places can be viewed as being
served immediately. Scheduling in such places has priority
over scheduling/service in timed queueing places and �ring
of timed transitions. The rest of the net behaves like a nor-
mal CGSPN. A formal de�nition of a QPN follows [1]:

Definition 1. A QPN is an 8-tuple
QPN = (P, T, C, I−, I+, M0, Q, W) where:

1. P = {p1, p2, ..., pn} is a �nite and non-empty set of
places,

2. T = {t1, t2, ..., tm} is a �nite and non-empty set of tran-
sitions, P ∩ T = ∅,

3. C is a color function that assigns a �nite and non-
empty set of colors to each place and a �nite and non-
empty set of modes to each transition.

4. I− and I+ are the backward and forward incidence
functions de�ned on P × T , such that
I−(p, t), I+(p, t) ∈ [C(t)→ C(p)MS], ∀(p, t) ∈ P × T 1

5. M0 is a function de�ned on P describing the initial
marking such that M0(p) ∈ C(p)MS.

6. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

• Q̃1 ⊆ P is the set of timed queueing places,

• Q̃2 ⊆ P is the set of immediate queueing places,
Q̃1 ∩ Q̃2 = ∅ and
• qi denotes the description of a queue2 taking all
colors of C(pi) into consideration, if pi is a queue-
ing place or equals the keyword `null', if pi is an
ordinary place.

7. W = (W̃1, W̃2, (w1, ..., w|T |)) where

• W̃1 ⊆ T is the set of timed transitions,

• W̃2 ⊆ T is the set of immediate transitions,
W̃1 ∩ W̃2 = ∅, W̃1 ∪ W̃2 = T and

• wi ∈ [C(ti) 7−→ R+] such that ∀c ∈ C(ti) :
wi(c) ∈ R+ is interpreted as a rate of a negative
exponential distribution specifying the �ring delay
due to color c, if ti ∈ W̃1 or a �ring weight spec-
ifying the relative �ring frequency due to color c,
if ti ∈ W̃2.

1The subscript MS denotes multisets. C(p)MS denotes the
set of all �nite multisets of C(p).
2In the most general de�nition of QPNs, queues are de�ned
in a very generic way allowing the speci�cation of arbitrar-
ily complex scheduling strategies taking into account the
state of both the queue and the depository of the queueing
place [1]. In QPME, we use conventional queues as de�ned
in queueing network theory.

For a more detailed introduction to the QPN modeling
formalism, the reader is referred to [1, 3]. To illustrate the
above de�nition, we present an example QPN model of a
simple Java EE system. The model was taken from [11] and
is shown in Figure 1.

:/6�&38 '%6�34 '%6�&38 '%6�,�2

'%6�3URFHVV�3RRO

&OLHQW

'7%$6(�6(59(5

W� W� W� W� W�

:/6�7KUHDG�3RRO

'%�&RQQ�3RRO[
[

[[[[[[[

�
F

[

�
F

�
W �
WWW W

SS S

FF F

UL

�
S �
S

UM

Figure 1: QPN Model of a Java EE System [11]

The system modeled is an e-business application running
in a Java EE environment consisting of a WebLogic Server
(Java EE application server) hosting the application com-
ponents and a backend database server used for persisting
business data. In the following, we describe the places of
the model:

Client Queueing place with IS scheduling strategy used to
represent clients sending requests to the system. Time
spent at the queue of this place corresponds to the
client think time, i.e., the service time of the queue is
equal to the average client think time.

WLS-CPU Queueing place with PS scheduling strategy used
to represent the CPU of the WebLogic Server (WLS).

DBS-CPU Queueing place with PS scheduling strategy used
to represent the CPU of the database server (DBS).

DBS-I/O Queueing place with FCFS scheduling strategy used
to represent the disk subsystem of the DBS.

WLS-Thread-Pool Ordinary place used to represent the thread
pool of the WLS. Each token in this place represents
a WLS thread.

DB-Conn-Pool Ordinary place used to represent the database
connection pool of the WLS. Tokens in this place rep-
resent database connections to the DBS.

DBS-Process-Pool Ordinary place used to represent the pro-
cess pool of the DBS. Tokens in this place represent
database processes.

DBS-PQ Ordinary place used to hold incoming requests at
the DBS while they wait for a server process to be
allocated to them.

The following types of tokens (token colors) are used in
the model:

Token 'ri' represents a request sent by a client for execu-
tion of a transaction of class i. For each request class
a separate token color is used (e.g., 'r1', 'r2', 'r3',...).
Tokens of these colors can be contained only in places
Client, WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/O.

Token 't' represents a WLS thread. Tokens of this color
can be contained only in place WLS-Thread-Pool.

Token 'p' represents a DBS process. Tokens of this color
can be contained only in place DBS-Process-Pool.

Token 'c' represents a database connection to the DBS.
Tokens of this color can be contained only in place
DB-Conn-Pool.

We now take a look at the life-cycle of a client request
in our system model. Every request (modeled by a token
of color 'ri' for some i) is initially at the queue of place
Client where it waits for a user-speci�ed think time. Af-
ter the think time elapses, the request moves to the Client
depository where it waits for a WLS thread to be allocated
to it before its processing can begin. Once a thread is al-
located (modeled by taking a token of color 't' from place
WLS-Thread-Pool), the request moves to the queue of place
WLS-CPU, where it receives service from the CPU of the WLS.
It then moves to the depository of the place and waits for
a database connection to be allocated to it. The database
connection (modeled by token 'c') is used to connect to the
database and make any updates required by the respective
transaction. A request sent to the database server arrives
at place DBS-PQ (DBS Process Queue) where it waits for a
server process (modeled by token 'p') to be allocated to it.
Once this is done, the request receives service �rst at the
CPU and then at the disk subsystem of the database server.
This completes the processing of the request, which is then
sent back to place Client releasing the held DBS process,
database connection and WLS thread.

3. QPE - QUEUEING PETRI NET EDITOR
QPE (Queueing Petri net Editor), the �rst major compo-

nent of QPME, provides a graphical tool for building QPN
models [8]. It o�ers a user-friendly interface enabling the
user to quickly and easily construct QPN models. QPE is
based on the Eclipse Rich Content Platform (RCP) and the
Graphical Editing Framework (GEF) [20]. The latter is an
open source framework dedicated to providing a rich, con-
sistent graphical editing environment for applications on the
Eclipse platform. As a GEF application, QPE is written in
pure Java and runs as a standalone RCP application on all
operating systems o�cially supported by the Eclipse plat-
form. This includes Windows, Linux, Solaris, HP-UX, IBM
AIX and Apple Mac OS among others, making QPE widely
accessible. The only thing required is a Java Runtime En-
vironment (JRE) 5.0. It is recommended to run QPE on
Windows since this is the platform it has been tested on.
Internally, being a GEF application, QPE is based on

the model-view-controller (MVC) architecture. The model
in our case is the QPN being de�ned, the views provide
graphical representations of the QPN, and �nally the con-
troller connects the model with the views, managing the
interactions among them. QPN models created with QPE
can be stored on disk as XML documents. QPE uses its
own XML schema based on the Petri Net Markup Language

(PNML) [5] with some changes and extensions to support
the additional constructs available in QPN models. Fig-
ure 2 shows the QPE main window which is comprised of
four views: Main Editor View, Outline View, Properties View
and Console View. The Main Editor View contains a Net Ed-

itor, Palette and Color Editor. The Net Editor displays the
graphical representation of the currently edited QPN, the
Palette displays the set of QPN elements that are used to
build QPN models and the Color Editor, shown in Figure 3, is
used to de�ne the token colors available for use in the places
of the QPN. The Properties View enables the user to edit
the properties of the currently selected element in the Net

Editor. Finally, the Console View is used to display output
from QPE extensions and plug-ins.

Figure 2: QPE Main Window

Figure 3: QPE Color Editor

A characterizing feature of QPE is that it allows token
colors to be de�ned globally for the whole QPN instead of
on a per place basis. This feature was motivated by the fact
that in QPNs typically the same token color (type) is used
in multiple places. Instead of having to de�ne the color
multiple times, the user can de�ne it one time and then
reference it in all places where it is used. This saves time,
makes the model de�nition more compact, and last but not

least, it makes the modeling process less error-prone since
references to the same token color are speci�ed explicitly.

Figure 4: QPE Incidence Function Editor

Figure 4 shows the Incidence Function Editor. The inci-
dence function speci�es the behavior of the transition for
each of its �ring modes in terms of tokens destroyed and/or
created in the places of the QPN. Once opened the Incidence
Function Editor displays the transition input places on the
left, the transition modes in the middle and the transition
output places on the right. Each place (input or output)
is displayed as a rectangle containing a separate circle for
each token color allowed in the place. The user can create
connections from token colors of input places to modes or
from modes to token colors of output places. If a connection
is created between a token color of a place and a mode, this
means that when the transition �res in this mode, tokens of
the respective color are removed from the place. Similarly,
if a connection is created between a mode and a token color
of an output place, this means that when the transition �res
in this mode, tokens of the respective color are deposited in
the place. Each connection can be assigned a weight inter-
preted as the number of tokens removed/deposited in the
place when the transition �res in the respective mode.

4. SIMQPN - SIMULATOR FOR QUEUE-
ING PETRI NETS

The second major component of QPME is SimQPN - a
discrete-event simulation engine specialized for QPNs. It is
very light-weight and has been implemented 100% in Java to
provide maximum portability and platform-independence.
SimQPN can be run either as Eclipse plugin in QPE or
as a standalone Java application. Thus, even though QPE
is limited to Eclipse-supported platforms, SimQPN can be
run on any platform on which Java SE 5.0 is available. This
makes it possible to design a model on one platform (e.g.,
Windows) using QPE and then analyze it on another plat-
form (e.g., Solaris) using SimQPN. SimQPN con�guration
parameters are stored as metadata inside the XML �le con-
taining the QPN model.
SimQPN simulates QPNs using a sequential algorithm

based on the event-scheduling approach for simulation mod-
eling. Being specialized for QPNs, it simulates QPN mod-
els directly and has been designed to exploit the knowledge

of the structure and behavior of QPNs to improve the e�-
ciency of the simulation. Therefore, SimQPN provides much
better performance than a general purpose simulator would
provide, both in terms of the speed of simulation and the
quality of output data provided.
SimQPN currently supports most, but not all of the QPN

features that are supported in QPE. The reason for not lim-
iting QPE to only those features supported by SimQPN is
that QPE is meant as a general purpose QPN editor and
as such the QPN features it o�ers should not be limited
to any particular analysis method. SimQPN currently sup-
ports three di�erent scheduling strategies for queues inside
queueing places: Processor-Sharing (PS), In�nite Server (IS)
and First-Come-First-Served (FCFS). A wide range of ser-
vice time distributions are supported including Beta, Bre-
itWigner, ChiSquare, Gamma, Hyperbolic, Exponential, Ex-
ponentialPower, Logarithmic, Normal, StudentT, Uniform,
VonMises and Empirical. Empirical distributions are sup-
ported in the following way. The user is expected to provide
a probability distribution function (PDF), speci�ed as an
array of positive real numbers (histogram) read from an ex-
ternal text �le. A cumulative distribution function (CDF)
is constructed from the PDF and inverted using a binary
search for the nearest bin boundary and a linear interpola-
tion within the bin (resulting in a constant density within
each bin). The next version of SimQPN will also include
support for deterministic distributions.
Timed transitions are currently not supported, however,

in most cases a timed transition can be approximated by
a serial network consisting of an immediate transition, a
queueing place and a second immediate transition. The
spectrum of scheduling strategies and service time distri-
butions supported by SimQPN will be extended. Support
for timed transitions and immediate queueing places is also
planned and will be included in a future release.

4.1 Data Collection Modes
SimQPN o�ers the ability to con�gure what data exactly

to collect during the simulation and what statistics to pro-
vide at the end of the run. This can be speci�ed for each
place (ordinary or queueing) of the QPN. The user can
choose one of four modes of data collection. The higher the
mode, the more information is collected and the more statis-
tics are provided. Since collecting data costs CPU time, the
more data is collected, the slower the simulation would run.
Therefore, by con�guring data collection modes, the user
can make sure that no time is wasted collecting unnecessary
data and in this way speed up the simulation. The modes
are de�ned as follows:

Mode 1 This mode which is used by default considers only
token throughput data, i.e., for each queue, place or
depository the token arrival and departure rates are
estimated for each color.

Mode 2 This mode adds token population and utilization
data, i.e., for each queue, place and depository the
following data is provided on a per-color basis:

• Minimum/maximum number of tokens.

• Average number of tokens.

• Mean color utilization, i.e., the fraction of time
that there is a token of the respective color inside
the queue/place/depository.

For queues, in addition to the above, the overall queue
utilization is reported (i.e., the fraction of time that
there is a token of any color inside the queue).

Mode 3 This mode adds residence time data, i.e., for each
queue, place and depository the following additional
data is provided on a per-color basis:

• Minimum/maximum observed token residence time.

• Mean and standard deviation of observed token
residence times.

• Estimated steady state mean token residence time.

• Con�dence interval (c.i.) for the steady state
mean token residence time at a user-speci�ed sig-
ni�cance level.

Mode 4 This mode provides all of the above and addition-
ally dumps observed token residence times to �les.

4.2 Steady State Analysis
SimQPN supports two methods for estimation of the steady

state mean residence times of tokens inside the queues, places
and depositories of the QPN. These are the well-knownmethod
of independent replications (in its variant referred to as repli-
cation/deletion approach) and the classical method of non-
overlapping batch means (NOMB). We refer the reader to
[15,18] for an introduction to these methods. Both of them
can be used to provide point and interval estimates of the
steady state mean token residence time. Details on the way
these methods were implemented in SimQPN can be found
in [12]. For users that would like to use di�erent methods for
steady state analysis (for example ASAP [19]), SimQPN can
be con�gured to output observed token residence times to
�les (mode 4), which can then be used as input to external
analysis tools. SimQPN utilizes the Colt open source library
for high performance scienti�c and technical computing in
Java, developed at CERN [7]. In SimQPN, Colt is primar-
ily used for random number generation and, in particular,
its implementation of the Mersenne Twister random number
generator is employed [16].
We have validated the analysis algorithms implemented

in SimQPN by subjecting them to a rigorous experimental
analysis and evaluating the quality of point and interval es-
timates [12]. In particular, the variability of point estimates
provided by SimQPN and the coverage of con�dence inter-
vals reported were quanti�ed. A number of di�erent models
of realistic size and complexity were considered. Our analy-
sis showed that data reported by SimQPN is very accurate
and stable. Even for residence time, the metric with high-
est variation, the standard deviation of point estimates did
not exceed 2.5% of the mean value. In all cases, the esti-
mated coverage of con�dence intervals was less than 2% be-
low the nominal value (higher than 88% for 90% con�dence
intervals and higher than 93% for 95% con�dence intervals).
For FCFS queues, SimQPN also supports indirect estima-
tion of the steady state token residence times according to
the variance-reduction technique in [6].
SimQPN includes an implementation of the method of

Welch for determining the length of the initial transient
(warm-up period). We have followed the rules in [15] for
choosing the number of replications, their length and the
window size. SimQPN allows the user to con�gure the �rst
two parameters and then automatically plots the moving

averages for di�erent window sizes. Simulation experiments
with SimQPN usually comprise two stages: stage 1 during
which the length of the initial transient is determined, and
stage 2 during which the steady-state behavior of the sys-
tem is simulated and analyzed. Again, if the user prefers
to use another method for elimination of the initialization
bias, this can be achieved by dumping collected data to �les
(mode 4) and feeding it into respective analysis tools.

4.3 Departure Disciplines
A novel feature of SimQPN is the introduction of the so-

called departure disciplines. This is an extension of the QPN
modeling formalism introduced to address a common draw-
back of QPN models (and of Petri nets in general), i.e.,
tokens inside ordinary places and depositories are not dis-
tinguished in terms of their order of arrival. Departure disci-
plines are de�ned for ordinary places or depositories and de-
termine the order in which arriving tokens become available
for output transitions. We de�ne two departure disciplines,
Normal (used by default) and First-In-First-Out (FIFO).
The former implies that tokens become available for out-
put transitions immediately upon arrival just like in con-
ventional QPN models. The latter implies that tokens be-
come available for output transitions in the order of their
arrival, i.e., a token can leave the place/depository only af-
ter all tokens that have arrived before it have left, hence
the term FIFO. For an example of how this feature can be
exploited and the bene�ts it provides we refer the reader
to [9]. An alternative approach to introduce token ordering
in an ordinary place is to replace the place with an imme-
diate queueing place containing a FCFS queue. The gener-
alized queue de�nition from [1] can be exploited to de�ne
the scheduling strategy of the queue in such a way that to-
kens are served immediately according to FCFS, but only
if the depository is empty [3]. If there is a token in the
depository, all tokens are blocked in their current position
until the depository becomes free. However, the generalized
queue de�nition from [1], while theoretically powerful, is im-
practical to implement, so, in practice, it is rarely used and
queues in QPNs are usually treated as conventional queues
from queueing network theory.

5. ONGOING AND FUTURE WORK
QPME's development is going to be continued as an open-

source project which will be started soon. Enhancements
along three di�erent dimensions are envisioned: i) user friend-
liness, ii) model expressiveness and iii) model analysis meth-
ods. In the following, we outline the major enhancements
that have been planned.

5.1 Improve User Friendliness
◦ Improve the presentation of analysis results providing
graphical views of data.

◦ Introduce modeling templates (e.g., for modeling com-
mon types of resources and workloads) to facilitate model
reuse.

◦ Introduce a wizard-like interface.

◦ Enhance the help system.

In addition to the above, we are currently working on a
model-to-model transformation from the Palladio Compo-
nent Model (PCM) [4] to QPN models. This will make it

possible to specify models at a higher level of abstraction
and will facilitate model reuse.

5.2 Improve Model Expressiveness
Support for the following features will be added:

◦ Tokens containing data properties.

◦ Timed transitions.

◦ Deterministic distributions.

◦ Further scheduling strategies for queues, e.g., priority
scheduling.

◦ Transition priorities and inhibitor arcs.

◦ Load-dependent resource demands.

5.3 Improve Model Analysis Methods
◦ Support for simulating hierarchical models.

◦ Support for parallel/distributed simulation to take ad-
vantage of multi-code processors.

◦ Support for deriving distributions of performance met-
rics in addition to the mean and standard deviation.

◦ Support for analytical model solution techniques.

◦ Further methods for simulation output data analysis.

◦ Further methods for determining the length of the sim-
ulation warm-up period.

6. SUMMARY
In this paper, we presented QPME, our tool for modeling

and analysis using queueing Petri nets. QPME provides a
user-friendly graphical interface enabling the user to quickly
and easily construct QPN models. It o�ers a highly opti-
mized simulation engine that can be used to analyze mod-
els of realistically-sized systems. In addition, being imple-
mented in Java, QPME runs on all major platforms and is
widely accessible. QPME provides a robust and powerful
tool for performance analysis making it possible to exploit
the modeling power and expressiveness of queueing Petri
nets to their full potential. The tool is available free-of-
charge for non-pro�t use. Further information can be found
at the QPME homepage [10].

7. REFERENCES
[1] F. Bause. Queueing Petri Nets - A formalism for the

combined qualitative and quantitative analysis of
systems. In Proc. of 5th Intl. Workshop on Petri Nets
and Perf. Models, Toulouse, France, Oct. 19-22, 1993.

[2] F. Bause, P. Buchholz, and P. Kemper. QPN-Tool for
the Speci�cation and Analysis of Hierarchically
Combined Queueing Petri Nets. In Quantitative
Evaluation of Computing and Communication
Systems, volume 977 of LNCS. Springer, 1995.

[3] F. Bause and F. Kritzinger. Stochastic Petri Nets - An
Introduction to the Theory. Vieweg Verlag, 2002.

[4] S. Becker, H. Koziolek, and R. Reussner. The Palladio
Component Model for Model-Driven Performance
Prediction: Extended version. Journal of Systems and
Software, 2008. In Press, Accepted Manuscript.

[5] J. Billington, S. Christensen, K. van Hee, E. Kindler,
O. Kummer, L. Petrucci, R. Post, C. Stehno, and
M. Weber. The Petri Net Markup Language:
Concepts, Technology, and Tools. In Proc. of 24th
Intl. Conf. on Application and Theory of Petri Nets,
June 23-27, Eindhoven, Holland, 2003.

[6] J. Carson and A. Law. Conservation Equations and
Variance Reduction in Queueing Simulations.
Operations Research, 28, 1980.

[7] CERN - European Organisation for Nuclear Research.
The Colt Distribution - Open Source Libraries for
High Performance Scienti�c and Technical Computing
in Java, 2004. http://dsd.lbl.gov/~hoschek/colt/.

[8] C. Dutz. QPE - A Graphical Editor for Modeling
using Queueing Petri Nets. Master thesis, Technische
Universität Darmstadt, Apr. 2006.

[9] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems using
Queueing Petri Nets. IEEE Transactions on Software
Engineering, 32(7):486�502, July 2006.

[10] S. Kounev. QPME Homepage, 2008. http://sdq.ipd.
uka.de/people/samuel_kounev/projects/QPME.

[11] S. Kounev and A. Buchmann. Performance Modelling
of Distributed E-Business Applications using Queuing
Petri Nets. In Proc. of the 2003 IEEE Intl. Symposium
on Performance Analysis of Systems and Software,
Austin, USA, March 20-22, 2003.

[12] S. Kounev and A. Buchmann. SimQPN - a tool and
methodology for analyzing queueing Petri net models
by means of simulation. Performance Evaluation,
63(4-5):364�394, May 2006.

[13] S. Kounev, R. Nou, and J. Torres. Autonomic
QoS-Aware Resource Management in Grid Computing
using Online Performance Models. In Proc. of 2nd Intl.
Conf. on Perf. Evaluation Methodologies and Tools -
VALUETOOLS, Oct. 23-25, Nantes, France, 2007.

[14] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. A
Methodology for Performance Modeling of Distributed
Event-Based Systems. In Proc. of 11th IEEE Intl.
Symp. on Object/Comp./Service-oriented Real-time
Distr. Computing (ISORC), Orlando, USA, May 2008.

[15] A. Law and D. W. Kelton. Simulation Modeling and
Analysis. Mc Graw Hill, Inc., 3rd edition, 2000.

[16] M. Matsumoto and T. Nishimura. Mersenne Twister:
A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Trans. on
Modeling and Comp. Simulation, 8(1):3�30, 1998.

[17] R. Nou, S. Kounev, F. Julia, and J. Torres.
Autonomic QoS control in enterprise Grid
environments using online simulation. Journal of
Systems and Software, to appear, 2008.

[18] K. Pawlikowski. Steady-State Simulation of Queueing
Processes: A Survey of Problems and Solutions. ACM
Computing Surveys, 22(2):123�170, 1990.

[19] N. Steiger, E. Lada, J. Wilson, J. Joines,
C. Alexopoulos, and D. Goldsman. ASAP3: a batch
means procedure for steady-state simulation analysis.
ACM Transactions on Modeling and Computer
Simulation, 15(1):39�73, 2005.

[20] The Eclipse Foundation. Graphical Editing Framework
(GEF). http://www.eclipse.org/gef/, 2006.

[21] University of Hamburg. Petri Net Tool Database.
http://www.informatik.uni-hamburg.de/TGI/
PetriNets/tools, 2008.

