
Automated Simulation-Based Capacity Planning for
Enterprise Data Fabrics

Samuel Kounev, Konstantin Bender,
Fabian Brosig and Nikolaus Huber

∗

Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany

{kounev,fabian.brosig,nikolaus.huber}@kit.edu

Russell Okamoto
VMware, Inc.

1260 NW Waterhouse Ave., Suite 200
Beaverton, Oregon 97006
russell@vmware.com

ABSTRACT
Enterprise data fabrics are gaining increasing attention in
many industry domains including financial services, telecom-
munications, transportation and health care. Providing a
distributed, operational data platform sitting between ap-
plication infrastructures and back-end data sources, enter-
prise data fabrics are designed for high performance and
scalability. However, given the dynamics of modern appli-
cations, system sizing and capacity planning need to be done
continuously during operation to ensure adequate quality-of-
service and efficient resource utilization. While most prod-
ucts are shipped with performance monitoring and analysis
tools, such tools are typically focused on low-level profil-
ing and they lack support for performance prediction and
capacity planning. In this paper, we present a novel case
study of a representative enterprise data fabric, the Gem-
Fire EDF, presenting a simulation-based tool that we have
developed for automated performance prediction and capac-
ity planning. The tool, called Jewel, automates resource
demand estimation, performance model generation, perfor-
mance model analysis and results processing. We present an
experimental evaluation of the tool demonstrating its effec-
tiveness and practical applicability.

1. INTRODUCTION
Enterprise data fabrics are becoming increasingly popular

as an enabling technology for modern high-performance data
intensive applications. Conceptually, an enterprise data fab-
ric (EDF) represents a distributed enterprise middleware
that leverages main memory and disk across multiple dis-
parate hardware nodes to store, analyze, distribute, and
replicate data. EDFs are relatively new type of enterprise
middleware. Also referred to as “information fabrics” or
“data grids”, EDFs can dramatically improve application
performance and scalability. However, given the dynam-

∗This work was partially funded by the German Research
Foundation (DFG) under grant No. KO 3445/6-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ACM ...$10.00.

ics of modern applications, to ensure adequate quality-of-
service and efficient resource utilization, capacity planning
needs to be done on a regular basis during operation. In to-
day’s data centers, EDFs are typically hosted on dedicated
server machines with over-provisioned capacity to guarantee
adequate performance and availability at peak usage times.
Servers in data centers nowadays typically have average uti-
lization ranging from 5-20% [26,29] which corresponds to
their lowest energy-efficiency region [3]. To improve energy
efficiency and reduce total-cost-of-ownership (TCO), capac-
ity planning techniques are needed that help to estimate the
amount of resources required for providing a given quality-
of-service level at a reasonable cost. Such techniques should
help to answer the following questions that arise frequently
both at system deployment time and during operation:

◦ How many servers are needed to meet given response
time and throughput service level agreements (SLAs)?

◦ How scalable is the EDF over N number of server nodes
for a given workload type?

◦ What would be the average throughput and response
time in steady state? What would be the utilization of
the server nodes and of the network?

◦ What would be the performance bottleneck for a given
scenario?

◦ How much would the system performance improve if
the servers are upgraded?

◦ As the workload increases, how many additional servers
would be needed?

Answering such questions requires the ability to predict
the system performance for a given workload scenario and
capacity allocation. While many modeling and prediction
techniques for distributed systems exist in the literature,
most of them suffer from two significant drawbacks [17].
First, performance models are expensive to build and pro-
vide limited support for reusability and customization. Sec-
ond, performance models are static and maintaining them
manually during operation is prohibitively expensive. Un-
fortunately, building a predictive performance model manu-
ally requires a lot of time and effort. Current performance
analysis tools used in industry mostly focus on profiling and
monitoring transaction response times and resource con-
sumption. Such tools often provide large amounts of low-
level data while important information needed for building
performance models is missing, e.g., service resource de-
mands.

Given the dynamics of modern EDFs, techniques for au-
tomated model extraction are highly desirable. Such tech-
niques would enable proactive run-time resource manage-
ment by making it possible to predict the system perfor-
mance (e.g., response times and resource utilization) for an-
ticipated workload and configuration scenarios. For exam-
ple, if one observes a growing customer workload, a perfor-
mance model can help to determine when the system would
reach its saturation point. This way, system operators can
react to the changing workload before the system has failed
to meet its performance objectives, thus avoiding a violation
of SLAs. Furthermore, performance models can be exploited
to implement autonomic run-time performance and resource
management [17,22].

In this paper, we present a novel case study of a rep-
resentative EDF, the GemFire Enterprise [12], presenting
a simulation-based tool that we have developed for auto-
mated performance prediction and capacity planning. The
tool automates resource demand estimation, performance
model generation, performance model analysis and results
processing. Given a system configuration and a workload
scenario, the tool generates a report showing the predicted
system throughput, server and network utilization, and op-
eration response times. Both, the modeling approach and
the model extraction technique are evaluated to demonstrate
their effectiveness and practical applicability.

To the best of our knowledge, no performance modeling
case studies of EDFs exist in the literature. The research
value of the proposed modeling approach is that it presents a
set of adequate abstractions for capturing the performance-
relevant aspects of GemFire, as a representative EDF, that
have been validated and shown to provide a good balance
between modeling effort, analysis overhead and accuracy.
Developing a simulation model using a general-purpose sim-
ulation language is a time-consuming and error-prone task,
and there is no guarantee that the resulting model will pro-
vide the required accuracy at reasonable cost (simulation
time). The abstractions we propose do not require any pro-
gramming, they are compact yet expressive, and provide
good accuracy at low cost. Furthermore, the proposed mod-
els can be generated automatically based on easily available
monitoring data. In summary, the contributions of the pa-
per are: i) a modeling approach for EDFs coupled with a
technique for automatic model extraction based on moni-
toring data, ii) a simulation-based tool for automated per-
formance prediction and capacity planning, iii) An experi-
mental evaluation of the modeling and automation approach
demonstrating its practical applicability.

The rest of this paper is organized as follows: In Section 2,
we present a brief introduction of the GemFire EDF. Fol-
lowing this, in Sections 3 and 4 , we present our modeling
approach and capacity planning framework, respectively. In
Section 5, we evaluate our approach by considering a case
study. We discuss future work and planned enhancements
of our tools in Section 6. Finally, we review related work
in Section 7 and wrap up with some concluding remarks in
Section 8.

2. GEMFIRE ENTERPRISE DATA FABRIC
GemFire [12] is an in-memory distributed data manage-

ment platform from GemStone Systems which was recently
acquired by VMware. It is implemented as a distributed
hash table where data is scattered over a network of ma-

Each node holds
a data portion

Data

Machine 1

Machine 3

Machine 2

Machine 4

Network

Mittwoch, 16. Juni 2010

(a) Data Fabric

Application

Data Management

Membership
& Discovery Distribution

Communication

Host Network

G
em

F
ir

e

(b) GemFire Architec-
ture

Figure 1: GemStone Data Fabric

chines connected in a peer-to-peer fashion as illustrated in
Figure 1. GemFire is typically used to cache large amounts
of operational data, not fitting into the memory of a single
node.

GemFire is implemented as a middleware library sitting
between the application and a host network. It provides
the three middle layers shown in Figure 1. The GemFire
middleware connects each application process in a peer-to-
peer fashion and enables them to share data by putting
key/value pairs into hierarchical regions which essentially
are distributed hash tables. The following basic topologies
are possible: i) peer-to-peer: application processes are con-
nected in a peer-to-peer fashion storing application data in
their heap memory, ii) client-server: two types of processes
exist, application processes executing the application logic,
and server processes storing the application data, iii) multi-
site: local peer-to-peer or client/server configurations are
connected through a WAN.

The basic building block of GemFire is a region: a dis-
tributed hash map holding key/value pairs. Regions have
names and can be organized hierarchically. They are com-
parable to folders in a disk file system, where file names
represent keys and file contents represent values. Regions
can be local, distributed or partitioned. A local region is
stored in the heap memory of the owning process and is not
visible to other system nodes. A distributed region is also
stored in the heap memory of the owning process, however,
it is visible to all nodes. Finally, a partitioned region is a dis-
tributed region whose data is partitioned into buckets that
are scattered over all nodes where every node holds a portion
(one or more buckets) of the region’s data.

GemFire provides a vast number of built-in statistics as
well as a Statistics API for defining custom statistics [13]. In
addition, a set of tools for monitoring, administration and
statistics analysis are provided. The most important one is
the Visual Statistics Display (VSD) - a tool for analyzing
statistics, recorded by GemFire during operation.

3. MODELING GEMFIRE
In this paper, we consider the most typical usage sce-

nario for GemFire: partitioned data distributed over a set
of servers in a client/server topology. Every server has one
or more clients, which send GET and PUT requests to the

servers. The semantics of both operations are defined by the
Java Map interface, which is essentially a hash table with
two operations: get(key) and put(key, value). For every
GET request, the server returns the corresponding VALUE.
For every PUT request, the server returns an acknowledge-
ment (ACK). Because data is partitioned and distributed
over multiple servers, a particular key-value pair can either
reside locally or on a remote server. If the key-value pair is
stored locally, the server immediately returns the VALUE
(or ACK). If the key-value pair is located on a different
server, the server forwards the request to the remote server,
and waits for the VALUE (or ACK) from the remote server,
which it then forwards to the client. In other words, the
server to which the client is connected acts as a proxy for-
warding all requests for which the target data is not available
locally to the corresponding servers. The server has two
main thread pools: Client-Thread-Pool (CTP) and Peer-
Thread-Pool (PTP). Requests coming from clients are pro-
cessed by CTP-threads, while requests coming from servers
(peers) are handled by PTP-threads. Each key is repre-
sented as a number of type long, wrapped in an object of
type Key, while the value is represented by a byte array of
configurable length, wrapped in an object of type Value.
Physically, every GemFire server is deployed on a dedicated
machine and the machines are connected by a GBit LAN.
The performance metrics of interest are: response time,
throughput, CPU utilization and network traffic.

Queueing

Place

Subnet

Place

Queue Depository

Ordinary

Place

Nested QPN

oo o o o o

Transition Token

o
o o

Figure 2: QPN Notation

3.1 Generalized System Model
We now present our modeling approach which is based

on Queueing Petri Nets (QPNs) [4]. QPNs can be seen as
an extension of stochastic Petri nets that allow queues to
be integrated into the places of a Petri net. A place that
contains an integrated queue is called a queueing place and
is normally used to model a system resource, e.g., CPU,
disk drive or network link. Tokens in the Petri net are used
to model requests or transactions processed by the system.
Arriving tokens at a queueing place are first served at the
queue and then they become available for firing of output
transitions. When a transition fires it removes tokens from
some places and creates tokens at others. Usually, tokens
are moved between places representing the flow-of-control
during request processing. QPNs also support so-called sub-
net places that contain nested QPNs. Figure 2 shows the
notation used for ordinary places, queueing places and sub-
net places. For a detailed introduction to QPNs, the reader
is referred to [16].

ClientCPUi

OTPi

OperationQueueiOperationEmitteri

ClientIni

ClientOuti

ReturnThreadi

CreateOperationi StartOperationi NetworkOut

NetworkIn

-/M/∞/IS

-/M/4/PS

Montag, 21. Juni 2010

(a) Client Model

PTPiCTPi

ServerIni

ServerOuti

NetworkOut

NetworkIn

ServerCPUi

-/M/4/PS

(b) Server Model

NetworkIn NetworkOutNetworkDelay NetworkTransfer

-/M/!/IS -/M/1/FCFS

(c) Network Model

Figure 3: Client, Server and Network Submodels

As demonstrated in [7], QPNs provide greater modeling
power and expressiveness than conventional queueing net-
work models and stochastic Petri nets. By supporting the
integration of hardware and software aspects of system be-
havior [7, 16], QPNs allow us to easily model blocking ef-
fects resulting for example from thread contention. Both
analytical and simulation techniques for solving QPN mod-
els exist including product-form solution techniques and ap-
proximation techniques [5, 6, 19]. For the tool presented in
this paper, we used simulation since it is the least restrictive
method in terms of scalability, however, given that service
times in our models were all exponentially distributed, an-
alytical techniques can be used for smaller scenarios. The
advantage of using QPNs as opposed to a general-purpose
simulation model is that highly optimized simulation tech-
niques for QPNs exist that exploit the knowledge of their
structure and behavior for fast and efficient simulation [19].

The QPN model we propose does not require any pro-
gramming, it is compact yet expressive, and, as will be
shown later, provides good accuracy at low cost. The model
can be divided into three parts: the client, the network and
the server. Every request or response goes through the net-
work. Requests, responses and threads are modeled by to-
kens of different colors. Table 1 defines the token colors we
use. The three submodels are shown in Figure 3. We now
look at each of them in turn.

Every client is represented in the model by a set of four
places: OperationEmitter, OperationQueue, ClientCPU and
OTP. The OperationEmitter generates GET and PUT re-
quests at a given rate. These requests are placed in the
OperationQueue where they wait for a thread. After ac-
quiring a thread from the Operation-Thread-Pool (OTP),
the GET or PUT requests consume some CPU time in the
ClientCPU and are then placed into the NetworkIn place
of the network submodel. The servers process the requests

Client
CPUn

OTPn

Operation
Queuen

Operation
Emittern

PTP1CTP1

ServerCPU1

NetworkIn

NetworkTransfer

NetworkOut

NetworkDelay

Client
CPU2

OTP2

Operation
Queue2

Operation
Emitter2

-/M/∞/IS -/M/4/PS

-/M/∞/IS -/M/4/PS

-/M/∞/IS

-/M/1/FCFS

-/M/4/PS

PTPnCTPn

ServerCPUn
-/M/4/PS

...

PTP2CTP2

ServerCPU2
-/M/4/PS

Client
CPU1

OTP1

Operation
Queue1

Operation
Emitter1

-/M/∞/IS -/M/4/PS

...

Dienstag, 20. Juli 2010

Figure 4: QPN Model of the System

Table 1: Token Colors
T Thread
Gi GET request from client i to server i
Pi PUT request from client i to server i
Vi VALUE from server i to client i for a GET request
Ai ACK from server i to client i for a PUT request
gi,j Forwarded GET request from server i to server j
pi,j Forwarded PUT request from server i to server j
vi,j VALUE from server i to server j for a forw. GET
ai,j ACK from server i to server j for a forw. PUT

and send VALUE or ACK responses back over the network,
where they become available to the client in the NetworkOut

place. The VALUE and ACK responses are then fired into
the ClientCPU, where they again consume some CPU time
and are destroyed after releasing the OTP thread. The OTP
and the OperationQueue are modeled with ordinary places,
while the OperationEmitter and ClientCPU are modeled
with queueing places. The OperationEmitter has an Infinite-
Server (IS) queue with an initial population of one GET
request and one PUT request token. The transition Create-
Token is configured to fire those GET and PUT tokens into
the OperationQueue while at the same time firing a GET
or a PUT token back into the OperationEmitter. This is a
common way to model a client that generates requests at a
given rate [16].

Each server is modeled with a queueing place ServerCPU

and two ordinary places CTP and PTP representing the client
and peer thread pools, respectively. The logic lies in the
transitions and handling of the token colors. The following
four cases are distinguished:

1. The server receives a GET (or PUT) request from the
client, data is available locally. In this case, the server
acquires a thread from place CTP and sends a VALUE
(or ACK) response back to the client, releasing the CTP-
thread.

2. The server receives a GET (or PUT) request from the
client, data is stored on another server. In this case, the
server acquires a thread from place CTP and forwards the
GET (or PUT) request to the corresponding server.

3. The server receives a VALUE (or ACK) response from
another server for a previously forwarded GET (or PUT)
request to that server. In this case, the server forwards
the VALUE (or ACK) response back to the client, re-
leasing the CTP-thread.

4. The server receives a GET (or PUT) request from any
of the other servers. In this case, the data is always
available locally, the server acquires a thread from the
PTP and sends a VALUE (or ACK) response to the re-
questing server, releasing the PTP-thread.

Finally, the network is modeled with four places NetworkIn,
NetworkDelay, NetworkTransfer and NetworkOut. The or-
dinary places NetworkIn and NetworkOut serve as entry and
exit points of the network. The queueing place NetworkDelay
models the network delay using an integrated IS queue.
The queueing place NetworkTransfer contains an integrated
FCFS queue that models the network transfer time. The ser-
vice time of the queue is dependent on the size of the message
being transferred and is configured according to the network
bandwidth.

The overall system model for n servers obtained by com-
bining the submodels from Figure 3 is shown in Figure 4.

Client
CPUX

OTPX

Operation
QueueX

Operation
EmitterX

PTP1CTP1

ServerCPU1

NetworkIn

NetworkTransfer

NetworkOut

NetworkDelay

-/M/∞/IS -/M/4/PS

-/M/∞/IS

-/M/1/FCFS

-/M/4/PS

PTPXCTPX

ServerCPUX
-/M/4/PS

Client
CPU1

OTP1

Operation
Queue1

Operation
Emitter1

-/M/∞/IS -/M/4/PS

Dienstag, 20. Juli 2010

Figure 5: Simplified QPN Model of the System

3.2 Simplified System Model
The modeling approach described in the previous section

allows to simulate any number of clients, where the load
on the servers and other parameters, such as number of
cores, resource demands can be configured for each client
and server, individually. In many customer deployments,
however, it is typical that identical hardware is used for
the servers and GemFire tries to distribute the data evenly
among the server nodes. Moreover, it can be assumed that
clients are also evenly distributed among the servers. In
such a scenario, the proposed model can be simplified sig-
nificantly by considering the interaction of one client-server
pair with the rest of the system which is modeled as one
fat client/server pair configured to have the same process-
ing power as all the other client/server pairs together. This
allows the use of the same model structure for any number
of client/server pairs. Figure 5 shows the simplified model.

For the fat client/server pair X, three cases are distin-
guished when a GET or PUT request from client X arrives:
i) data is stored locally, ii) data is stored on server 1, iii) data
is stored on another server within X. Cases 1 and 2 are han-
dled exactly in the same way as in the generalized system
model. In case 3, however, server X forwards the request to
itself (imaginary server Z), handles the forwarded request,
returns a VALUE (or ACK) response to itself, and forwards
the response back to client X. This workaround emulates
the CPU and network usage for all cases, where any of the
servers 2 . . . n forward GETs or PUTs to any of the other
servers 2 . . . n.

4. AUTOMATED PERFORMANCE PREDIC-
TION AND CAPACITY PLANNING

To automate the process of performance prediction and
capacity planning, we implemented a tool called Jewel that
automates resource demand estimation, model generation,
model analysis and results processing. Given a system con-
figuration and a workload scenario, the tool generates a re-
port showing the predicted system throughput, server uti-
lization and operation response times. Jewel is a command-
line tool written in Ruby. It uses the SimQPN simulation
engine [19] for solving the generated QPN models. The only
thing required to run Jewel is a Java Runtime Environment

and a Ruby installation. For technical details on the tool,
we refer the reader to [9].

Specify server

configuration

and target

workload

Measure

resource

demands

Generate model

skeleton

Increase

capacity

QoS requirements met?

Parameterize

model

Generate model

instance

Analyze model

using SimQPN

Process results

Determine

bottleneck

resource

NO

YES

Figure 6: Generic Capacity Planning Process

Operating System

Controller

Client

Switch

Server A

Server B

Operating System

Ruby

Jewel

SSH

Server
JavaVM

GemFire

JavaVM

GemFire
NTP

SimQPN

Figure 7: Setup for Resource Demand Estimation

A common use case for Jewel is a scenario where a Gem-
Stone customer would like to know how many servers and
what bandwidth he would need in order to sustain a given
workload while ensuring that performance requirements are
satisfied. The client provides estimated workload data, such
as number of key/value pairs, data type and size, and re-
quest arrival rates. As a first step, Jewel is used to esti-
mate the resource demands for the specified data type and
size. The resource demands are measured in a small test-
ing environment comprising three nodes as depicted in Fig-

ure 7. Several experiments under different workload mixes
are executed and GemFire’s internal statistics are used to
estimate the resource demands. The whole process is com-
pletely automated and the only thing required is to provide
the names of the machines where the measurement experi-
ments should be executed. After the resource demands have
been estimated, Jewel can be used to automatically gen-
erate an instance of the performance model presented in
the previous section for a given number of servers and net-
work bandwidth. The model is analyzed and used to predict
the expected throughput, the server and network utilization,
and the expected request response times. The process can
be repeated multiple times for increasing number of servers
and/or network bandwidth until a point is reached where
the predicted performance meets the customer requirements,
e.g., network and CPU utilization are below 80% and the re-
sponse time R < Rmax. The result of the analysis process
is the required number of servers and network bandwidth
as well as the expected throughput, server and network uti-
lization, and the request response times. The process is
illustrated in Figure 6.

5. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of

our modeling approach. Our experimental environment con-
sists of 12 machines connected by a Gigabit LAN as shown
in Figure 8. Each machine has an Intel Core 2 Quad Q6600
CPU, 2.4 Ghz, 8 GB RAM and Ubuntu 8.04 installed. Ex-
periments are initiated and controlled by an additional de-
velopment machine.

Gigabit Switch

PC07

PC12

PC11

PC10

PC09

PC08

PC01

PC05

PC04

PC03

PC02

PC06

Development Machine

6 Clients
6 Servers

G
ig

a
b

it
 L

A
N

G
ig

a
b

it
 L

A
N

E
a

c
h

 m
a

c
h

in
e

 e
q

u
ip

p
e

d
 w

it
h

In
te

l
C

o
re

 2
 Q

u
a

d
 Q

6
6

0
0

2
.4

G
H

z
,
8

 G
B

 R
A

M

U
b

u
n

tu
 8

.0
4

Figure 8: Experimental Environment

In the following, we will be using the following notation:

◦ Client CPU demands Cget+value and Cput+ack in ms

◦ Server CPU demands Sget, Sput, sget+value, and sput+ack

in ms

◦ Message sizes Mget/put/value/ack in Bytes

◦ Throughput Xget/put in requests/sec

◦ Response times Rget/put in ms

◦ CPU utilization Uclient/server in %

◦ Network utilization Unetwork in %

5.1 Resource Demand Estimation
We first analyze the effect of extracting resource demands

under different workload intensities. The resource demands
are extracted using Jewel in an environment with 1 client
machine and 2 server machines. Figure 9 shows the results
from a series of experiments where the workload intensity
was varied between 5000 and 40000 requests/sec. The maxi-
mum throughput level reached was about 35000 requests/sec
and the server CPU utilization did not exceed 80%. As
we can see, although the extracted CPU resource demands
under higher workload intensity are slightly lower, the dif-
ference is negligible. As a rule of thumb, we recommend
extracting resource demands at moderate server utilization
of 40%-60%. The resource demands used in the case study
presented here were extracted under moderate workload in-
tensity with server utilization around 50%.

0.
00

0.
05

0.
10

0.
15

0.
20

Throughput [1000 GETs/sec]

R
es

ou
rc

e
D

em
an

ds
 [m

s]

10 15 20 25 30 35

● ● ● ● ● ●

●

Legend

Cget+value
Sget
Sget+value

0.
00

0.
05

0.
10

0.
15

0.
20

Throughput [1000 PUTs/sec]

R
es

ou
rc

e
D

em
an

ds
 [m

s]

10 15 20 25 30 35

● ● ● ●
● ●

●

Legend

Cput+ack
Sput
Sput+ack

● ● ●
●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

Throughput [1000 GETs/sec]

R
es

po
ns

e
T

im
e

[m
s]

10 15 20 25 30 35

Legend

Rget

● ● ●
●

●
●

0.
0

0.
5

1.
0

1.
5

2.
0

Throughput [1000 PUTs/sec]

R
es

po
ns

e
T

im
e

[m
s]

10 15 20 25 30 35

Legend

Rput

Throughput [1000 GETs/sec]

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

10 15 20 25 30 35

0%
25

%
50

%
75

%
10

0%

●

●

●

●

●

●
●

Legend

Uclient
Userver
Unetwork

Throughput [1000 PUTs/sec]

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

10 15 20 25 30 35

0%
25

%
50

%
75

%
10

0%

●

●

●

●

●

●
●

Legend

Uclient
Userver
Unetwork

Figure 9: Resource demand estimation under vary-
ing workload intensity.

5.2 Model Validation
We now consider several workload and configuration sce-

narios and compare performance predictions obtained with
Jewel against measurements on the real system. The goal

Uclient
4 pairs

Userver
4 pairs

Unetw.
4 pairs

Uclient
6 pairs

Userver
6 pairs

Unetw.
6 pairs

measured
predicted

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

0%
25

%
50

%
75

%
10

0%

Uclient
4 pairs

Userver
4 pairs

Unetw.
4 pairs

Uclient
6 pairs

Userver
6 pairs

Unetw.
6 pairs

measured
predicted

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

0%
25

%
50

%
75

%
10

0%

Rget
4 pairs

Rput
4 pairs

Rget
6 pairs

Rput
6 pairs

measured
predicted

R
es

po
ns

e
T

im
e

[m
s]

0.
0

0.
5

1.
0

1.
5

Rget
4 pairs

Rput
4 pairs

Rget
6 pairs

Rput
6 pairs

measured
predicted

R
es

po
ns

e
T

im
e

[m
s]

0.
0

0.
5

1.
0

1.
5

Figure 10: Scenarios with 4 and 6 client/server pairs
under two moderate workload mixes 50:50 (left) and
80:20 (right).

is to evaluate the effectiveness and accuracy of our perfor-
mance modeling and prediction approach. We first consider
a set of scenarios where we vary the number of client/server
pairs, on the one hand, and the workload type, on the other
hand. Configurations with 4 and 6 client-server pairs un-
der two different workload mixes are analyzed. The ratio
of GET vs. PUT operations is 50:50 in the first workload
and 80:20 in the second. We consider two different workload
intensities: moderate load and heavy load. The two sets of
results are shown in Figure 10 and Figure 11, respectively.
Note that the workload intensity is increased when increas-
ing the number of servers in order to ensure that the system
is reasonably loaded. As we can see, the model is very accu-
rate in predicting the client, server and network utilization
with modeling error below 10%. The response time predic-
tions are slightly less accurate, however, still acceptable for
capacity planning purposes.

We now consider a scenario with 6 clients and 6 servers
in which the workload intensity is increased from 12000
requests/sec to 72000 requests/sec. Again two workload
mixes are analyzed, with a GET vs. PUT ratio of 50:50
and 80:20, respectively. The results are presented in Fig-
ure 12. We can see that the higher the workload intensity,
the more accurate the predictions for server CPU utilization
are. This is expected since, as discussed earlier, the resource
demands slightly decrease when increasing the workload in-
tensity. Given that we extracted resource demands under
moderate workload conditions, the modeling error is much
lower for moderate to high workload intensity (server uti-
lization beyond 50%) which is the focus of our study. As
previously, the predictions of client and network utilization
are very accurate with modeling error below 10%. As to
response times, the modeling error goes up to 36% when in-
creasing the workload intensity, however, considered as an
absolute value the difference is only 0,5ms in the worst case.

Uclient
4 pairs

Userver
4 pairs

Unetw.
4 pairs

Uclient
6 pairs

Userver
6 pairs

Unetw.
6 pairs

measured
predicted

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

0%
25

%
50

%
75

%
10

0%

Uclient
4 pairs

Userver
4 pairs

Unetw.
4 pairs

Uclient
6 pairs

Userver
6 pairs

Unetw.
6 pairs

measured
predicted

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

0%
25

%
50

%
75

%
10

0%

Rget
4 pairs

Rput
4 pairs

Rget
6 pairs

Rput
6 pairs

measured
predicted

R
es

po
ns

e
T

im
e

[m
s]

0.
0

0.
5

1.
0

1.
5

Rget
4 pairs

Rput
4 pairs

Rget
6 pairs

Rput
6 pairs

measured
predicted

R
es

po
ns

e
T

im
e

[m
s]

0.
0

0.
5

1.
0

1.
5

Figure 11: Scenarios with 4 and 6 client/server pairs
under two heavy workload mixes 50:50 (left) and
80:20 (right).

In addition to the scenarios, presented in this paper, we
studied a number of different scenarios varying the type of
workload (type and size of stored data), the workload inten-
sity, as well as the number of servers and network capacity.
The results were of similar accuracy to the ones presented
here. Overall, our experiments showed that predictions of
network and server utilization were quite accurate indepen-
dent of the load level, however, predictions of response times
were reasonably accurate only in the cases where the aver-
age server utilization was lower than 75%. If the server is
loaded beyond this level, response times grow faster than
the model predictions although the predicted server utiliza-
tion is correct. This is due to synchronization effects in-
side the server which are not captured in the model. While
it would be interesting to consider integrating these effects
into the model, this would result in overly complex model
dramatically increasing the overhead for the model analysis.
Therefore, to keep the model compact, we refrained from
doing this. Given that the model provides reliable predic-
tions of server and network utilization, it can be used to
estimate the amount of resources needed to ensure that the
average server utilization does not exceed 75%. For these
cases, measured response times never exceeded 2ms and the
model predictions were reasonably accurate.

5.3 Analysis Overhead
To analyze the scalability of the proposed capacity plan-

ning framework, we evaluated the analysis overhead for sce-
narios with increasing number of client/server pairs. We
scaled the number of client/server pairs from 1 to 256 while
at the same time scaling the workload to ensure that the sys-
tem is reasonably loaded. Each server was injected 6000 GET
and 6000 PUT requests/sec. The results are shown in Fig-
ure 13. While the client utilization is constant, the server
utilization increases slightly for up to 10 servers and stabi-

Throughput (Xget+put) [1000 Requests/sec]

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

12 24 36 48 60 72

0%
25

%
50

%
75

%
10

0%

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Legend

Uclient (M)
Uclient (P)
Userver (M)
Userver (P)
Unetwork (M)
Unetwork (P)

Throughput (Xget+put) [1000 Requests/sec]

C
P

U
/N

et
w

or
k

U
til

iz
at

io
n

12 24 36 48 60 72

0%
25

%
50

%
75

%
10

0%

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Legend

Uclient (M)
Uclient (P)
Userver (M)
Userver (P)
Unetwork (M)
Unetwork (P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Throughput (Xget+put) [1000 Requests/sec]

R
es

po
ns

e
T

im
e

[m
s]

12 24 36 48 60 72

●
●

●

●
●

●

● ● ● ●
●

●

●

●

Legend

Rget (M)
Rget (P)
Rput (M)
Rput (P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Throughput (Xget+put) [1000 Requests/sec]

R
es

po
ns

e
T

im
e

[m
s]

12 24 36 48 60 72

●

●

●

●

●

●

● ● ● ●
●

●

●

●

Legend

Rget (M)
Rget (P)
Rput (M)
Rput (P)

Figure 12: Scenarios with 6 client/server pairs under increasing workload intensity and two workload mixes
50:50 (left) and 80:20 (right).

lizes after that. The total time for the analysis was below
15 min for up to 64 servers and increased up to 160 minutes
for 256 servers. Thus, the analysis overhead is acceptable for
capacity planning purposes and the proposed approach can
be applied for scenarios of reasonable size. We are currently
working on further optimizing the analysis by parallelizing
the simulation to take advantage of multi-core processors.

Number of client/server pairs

C
P

U
 U

til
iz

at
io

n

2 4 8 16 32 64 128 256

0%
25

%
50

%
75

%
10

0%

●

●
● ● ● ● ● ●

●

Legend

Uclient (P)
Userver (P)

● ● ● ● ●

●

●

●

0
20

00
60

00
10

00
0

Number of client/server pairs

A
na

ly
si

s
T

im
e

[s
ec

]

2 4 8 16 32 64 128 256

Figure 13: Analysis overhead for increasing number
of client/server pairs.

6. FUTURE ENHANCEMENTS
As part of our future work, we plan to extend our ap-

proach to support advanced GemFire features such as re-
dundancy, replication and publish/subscribe-based messag-
ing. Furthermore, we plan to study virtualized execution

environments and extend our models to allow modeling vir-
tual resources and their mapping to physical resources. This
will allow predictions for scenarios where GemFire servers
are running on virtual machines, possibly migrating from
one machine to another, depending on their load. In such
a scenario, our performance prediction framework could be
used to predict the effect of migrating a GemFire instance
between physical machines and, for example, to determine
which nodes to run on which machines and how much re-
sources to allocate to virtual machines.

To give an example, lets consider the scenario from Sec-
tion 4 and assume that the service provider is running Gem-
Fire in a virtualized data center environment (e.g., private
cloud). By means of our capacity planning framework, the
system resource requirements are analyzed and an initial
sizing is determined. The initial deployment includes one
JVM per machine and each JVM is running inside a vir-
tual machine (VM) allowing VMs to be migrated from one
physical machine to another. Now, while the system is run-
ning in production, the service provider observes a workload
change. With the help of an automatically extracted perfor-
mance model, he would be able to predict the effect of mi-
grating and combining multiple underutilized VMs on one
machine, while moving overloaded VMs to machines with
more power. He could also be able to predict the effect of
scaling the number of virtualized CPUs, CPU speed and
network bandwidth. Figure 14 illustrates the described sce-
nario. One VM, marked red, is overloaded and is migrated
to another machine with sufficient processing power and ca-
pacity. Taking this one step further, an algorithm can be

implemented that automates this process and automatically
finds an optimal configuration ensuring both, satisfaction of
customer SLAs and efficient resource utilization.

Machine Y

Hypervisor

Hardware

JVM

GemFire

OS

VM

JVM

GemFire

OS

VM

Hypervisor

Hardware

Machine X

JVM

GemFire

OS

VM

JVM

GemFire

OS

VM

JVM

GemFire

OS

VM

Hypervisor

Hardware

Machine Z

JVM

GemFire

OS

VM

JVM

GemFire

OS

VM

VM Overloaded,

Migrate & Resize

Heterogeneous

Server Cloud

Figure 14: GemFire running in a heterogeneous
server cloud where one VM is overloaded and needs
to be migrated to another machine.

7. RELATED WORK
EDFs are related to peer-to-peer systems for which there

is plenty of literature, however, mostly focused on analyz-
ing the performance and scalability of distributed hashing
and routing algorithms (e.g., [1, 20, 25]). To the best of our
knowledge, no techniques exist in the literature for auto-
mated model extraction of EDFs and we are not aware of
any performance modeling case studies of EDFs.

Regarding the use of QPNs for performance modeling
of distributed systems, in [18] QPNs were used to model
a real-world distributed e-business application, the SPEC-
jAppServer2002 benchmark. However, since the QPN model
was too large to be analyzable using the tools available at
that time, some simplifications had to be made reducing the
model accuracy. Later in [16], a more complex and realistic
model of the SPECjAppServer2004 benchmark was studied
and analyzed by means of the SimQPN simulation engine
which was introduced in [19].

In [22], automatically generated QPN models were used to
provide online performance prediction capabilities for Grid
middleware. The authors present a novel methodology for
designing autonomic QoS-aware resource managers that have
the capability to predict the performance of the Grid com-
ponents which they manage, and allocate resources in such a
way that SLAs are honored. However, the resource demands
for the generated QPN models are simply approximated by
measured service response times. In our approach, the re-
source demands are estimated based on measured resource
utilization and throughput data with the Service Demand
Law [11,21].

Rolia et al. [28] and Pacific et al. [23, 24] characterize
resource demands by formulating a multivariate linear re-
gression problem. Average resource and throughput data,

measured at different time intervals, serves as input for lin-
ear systems of equations, which are based on the Utilization
Law. This allows estimating resource demands when dif-
ferent workload classes run concurrently. To overcome the
problem of collinearity, i.e., a strong correlation between the
regression variables making it difficult to estimate the indi-
vidual regression coefficients reliably, a new technique for
estimating resource demands was presented in [27]. The au-
thors claim that “in contrast to regression, it does not suf-
fer from the problem of multicollinearity, it provides more
reliable aggregate resource demand and confidence interval
predictions” [27]. However, such estimation techniques are
not required in our approach, since resource demands are
measured directly by running one workload class at a time.
Another method to quantify resource demands based on
Kalman filters is proposed in [30]. This approach estimates
parameters during operation whereas in our approach we
extract resource demands offline.

Techniques for the automated extraction of structural in-
formation of performance models are presented in [14, 15]
and [10]. They are based on monitoring data that is gath-
ered by instrumentation. While in [14,15], layered queueing
networks are extracted without providing resource consump-
tion data, an end-to-end method for the semi-automated ex-
traction of performance models from enterprise Java appli-
cations is presented in [10]. The method extracts instances
of the Palladio Component Model (PCM) [8] based on trace
data reflecting the observed call paths during execution, in-
cluding resource demands that are quantified based on mea-
sured response times as well as throughput and resource
utilization data. In [2], a different approach for the perfor-
mance prediction of component-based software systems is
proposed. Asymptotic bounds for system throughput and
response time are derived from the software specification
without deriving explicit performance models. However,
only coarse-grained bounds can be calculated. For instance,
concerning service response times in an open workload sce-
nario, only lower bounds are provided.

8. CONCLUDING REMARKS
We presented a novel case study of a representative state-

of-the-art EDF, the GemFire EDF, presenting a tool that we
have developed for automated performance prediction and
capacity planning. The tool, called Jewel, automates re-
source demand estimation, performance model generation,
performance model analysis and results processing. Given
a system configuration and a workload scenario, the tool
generates a report showing the predicted system through-
put, server and network utilization, and operation response
times. Both, the modeling approach and the model extrac-
tion technique were evaluated to demonstrate their effective-
ness and practical applicability. To the best of our knowl-
edge, no performance prediction techniques for EDFs or case
studies exist in the literature. The proposed technique pro-
vides a framework for performance prediction and capacity
planning that can be used both at deployment time and dur-
ing operation to ensure that systems are allocated enough
resources to meet their quality-of-service requirements.

9. REFERENCES
[1] R. Baldoni, L. Querzoni, and A. Virgillito. Distributed

event routing in publish/subscribe communication
systems: a survey. Technical report, 2005.

[2] S. Balsamo, M. Marzolla, and R. Mirandola. Efficient
performance models in component-based software
engineering. In EUROMICRO-SEAA, pages 64–71,
2006.

[3] L. A. Barroso and U. Hölzle. The Case for
Energy-Proportional Computing. IEEE Computer,
40(12):33–37, 2007.

[4] F. Bause. Queueing Petri Nets - A formalism for the
combined qualitative and quantitative analysis of
systems. In Proc. of the 5th Intl. Workshop on Petri
Nets and Performance Models, 1993.

[5] F. Bause and P. Buchholz. Queueing Petri Nets with
Product Form Solution. Performance Evaluation,
32(4):265–299, 1998.

[6] F. Bause, P. Buchholz, and P. Kemper. QPN-Tool for
the Specification and Analysis of Hierarchically
Combined Queueing Petri Nets. In H. Beilner and
F. Bause, editors, Quantitative Evaluation of
Computing and Communication Systems, volume 977
of LNCS. Springer-Verlag, 1995.

[7] F. Bause, P. Buchholz, and P. Kemper. Integrating
Software and Hardware Performance Models Using
Hierarchical Queueing Petri Nets. In Proc. of the
9. ITG / GI - Fachtagung Messung, Modellierung und
Bewertung von Rechen- und Kommunikationssystemen
(MMB 1997), 1997.

[8] S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3 –
22, 2009.

[9] K. Bender. Automated Performance Model Extraction
of Enterprise Data Fabrics. Master’s thesis, Karlsruhe
Institute of Technology, Karlsruhe, Germany, May
2010.

[10] F. Brosig, S. Kounev, and K. Krogmann. Automated
Extraction of Palladio Component Models from
Running Enterprise Java Applications. In Proc. of the
1st Intl. Workshop on Run-time mOdels for
Self-managing Systems and Applications (ROSSA
2009), Pisa, Italy, October 19, 2009., Oct. 2009.

[11] P. J. Denning and J. P. Buzen. The operational
analysis of queueing network models. ACM Computing
Surveys, 10(3):225–261, 1978.

[12] GemFire Homepage.
http://www.gemstone.com/products/gemfire/.

[13] Gemstone Systems Inc. GemFire Enterprise - System
Administrator’s Guide, version 6.0 edition, 2009.

[14] C. E. Hrischuk, C. M. Woodside, J. A. Rolia, and
R. Iversen. Trace-based load characterization for
generating performance software models. IEEE Trans.
Software Engineering, 25(1):122–135, 1999.

[15] T. A. Israr, D. H. Lau, G. Franks, and M. Woodside.
Automatic generation of layered queueing software
performance models from commonly available traces.
In Proc. of the 5th Intl. Workshop on Software and
Performance (WOSP), pages 147–158. ACM, 2005.

[16] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems using
Queueing Petri Nets. IEEE Transactions on Software
Engineering, 32(7):486–502, July 2006.

[17] S. Kounev, F. Brosig, N. Huber, and R. Reussner.
Towards self-aware performance and resource

management in modern service-oriented systems. In
Proceedings of the 7th IEEE Intl. Conf. on Services
Computing (SCC 2010), 2010.

[18] S. Kounev and A. Buchmann. Performance Modeling
of Distributed E-Business Applications using
Queueing Petri Nets. In Proc. of the 2003 IEEE Intl.
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 143–155, 2003.

[19] S. Kounev and A. Buchmann. SimQPN - a tool and
methodology for analyzing queueing Petri net models
by means of simulation. Performance Evaluation,
63(4-5):364–394, 2006.

[20] P. Kumar, G. Sridhar, and V. Sridhar. Bandwidth and
latency model for dht based peer-to-peer networks
under variable churn. In Proc. of the 2005 Systems
Communications (ICW’05), pages 320–325, Aug. 2005.

[21] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy.
Capacity planning and performance modeling: from
mainframes to client-server systems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1994.

[22] R. Nou, S. Kounev, F. Julia, and J. Torres.
Autonomic QoS control in enterprise Grid
environments using online simulation. Journal of
Systems and Software, 82(3):486–502, Mar. 2009.

[23] G. Pacifici, W. Segmuller, M. Spreitzer, and
A. Tantawi. Dynamic Estimation of CPU Demand of
Web Traffic. In Proc. of the 1st Intl. Conference on
Performance Evaluation Methodolgies and Tools
(VALUETOOLS 2006), page 26, 2006.

[24] G. Pacifici, W. Segmuller, M. Spreitzer, and
A. Tantawi. Cpu demand for web serving:
Measurement analysis and dynamic estimation.
Perform. Eval., 65(6-7):531–553, 2008.

[25] I. Rai, A. Brampton, A. MacQuire, and L. Mathy.
Performance modelling of peer-to-peer routing. In
IEEE Intl. Symp. on Parallel and Distributed
Processing (IPDPS 2007), pages 1–8, March 2007.

[26] K. Rangan. The Cloud Wars: $100+ Billion at Stake.
Tech. Rep., Merrill Lynch, May 2008.

[27] J. Rolia, A. Kalbasi, D. Krishnamurthy, and
S. Dawson. Resource demand modeling for multi-tier
services. In Proc. of the 1st Joint WOSP/SIPEW Intl.
Conf. on Performance Engineering, pages 207–216,
2010.

[28] J. Rolia and V. Vetland. Parameter estimation for
performance models of distributed application
systems. In Proc. of the 1995 Conf. of the Centre for
Advanced Studies on Collaborative Research
(CASCON), page 54, 1995.

[29] L. Siegele. Let It Rise: A Special Report on Corporate
IT. The Economist, Oct. 2008.

[30] T. Zheng, C. Woodside, and M. Litoiu. Performance
Model Estimation and Tracking Using Optimal
Filters. IEEE Transactions on Software Engineering,
34(3):391–406, May-June 2008.

