
Modeling Variations in Load Intensity over Time

Jóakim v. Kistowski
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
joakim.kistowski
@student.kit.edu

Nikolas Herbst
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
herbst@kit.edu

Samuel Kounev
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
kounev@kit.edu

ABSTRACT
Today’s software systems are expected to deliver reliable
performance under highly variable load intensities while at
the same time making efficient use of dynamically allocated
resources. Conventional benchmarking frameworks provide
limited support for emulating such highly variable and dy-
namic load profiles and workload scenarios. Industrial bench-
marks typically use workloads with constant or stepwise
increasing load intensity, or they simply replay recorded
workload traces. Based on this observation, we identify
the need for means allowing flexible definition of load pro-
files and address this by introducing two meta-models at
different abstraction levels. At the lower abstraction level,
the Descartes Load Intensity Meta-Model (DLIM) offers a
structured and accessible way of describing the load inten-
sity over time by editing and combining mathematical func-
tions. The High-Level Descartes Load Intensity Meta-Model
(HLDLIM) allows the description of load variations using
few defined parameters that characterize the seasonal pat-
terns, trends, bursts and noise parts. We demonstrate that
both meta-models are capable of capturing real-world load
profiles with acceptable accuracy through comparison with
a real life trace.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Modeling Techniques

General Terms
Benchmarking, Workload, Modeling

Keywords
Load Intensity Variation, Load Profile, Open Workloads,
Meta-Modeling, Transformation, Model Extraction

1. INTRODUCTION
Today’s cloud and web-based IT services need to handle

huge numbers of concurrent users. Customers access services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LT ’14 Dublin, Ireland
Copyright 2014 ACM 0-12345-67-8/90/01 ...$15.00.

independently of one another and expect reliable quality-of-
service under highly variable and dynamic load intensities.
In this context, any knowledge about a service’s load inten-
sity profile is becoming a crucial information for managing
the underlying IT resource landscape.

Load profiles with large amounts of concurrent users are
typically strongly influenced by human habits, trends, and
events. This includes strong deterministic factors such as
time of the day, day of the week, common working hours
and planned events.

Common benchmarking frameworks such as Faban1, Rain
[2], and JMeter2 allow job injection rates to be configured
either to constant values, stepwise increasing rates (e.g., for
stress tests), or rates based on recorded workload traces. A
flexible, intuitive way of defining, interchanging and modi-
fying load profiles is to the best of our knowledge not avail-
able yet. For the purpose of benchmarking and comparing
the performance of cloud-based service offerings in a realis-
tic manner, a reference load profile or a set of load profiles
should become a defined or even standardized configuration
input.

Our work aims at closing the gap between highly dynamic
real-world load intensity profiles and the currently insuf-
ficient flexibility in handling variable load profiles in the
benchmarking and dynamic system management domains.
Specifically, we create load intensity models for two ma-
jor use-cases: Firstly, we support the creation of custom
load intensity behaviors, specifically designed to illicit cer-
tain system behavior. Secondly, we realize a (partly) au-
tomatic approximation of existing load intensity traces in
form of a model instance. We propose two meta-models at
different abstraction level: The High-Level Descartes Load
Intensity Meta-Model (HLDLIM) allows the description of
load variations using few defined parameters that charac-
terize the seasonal patterns, trends as well as bursts and
noise parts. At the lower abstraction level, the Descartes
Load Intensity Meta-Model (DLIM) offers a structured and
accessible way of describing load intensity profiles over time
by editing and combining mathematical functions. We are
working on a transformation from HLDLIM to DLIM model
instances for the support of further model refinements and
automatic DLIM calibration features that we envision for
future work. For the handling and instantiation of the pro-
posed load intensity models, we provide the LIMBO toolkit3

[9]. We demonstrate by using an example real life trace that

1Faban http://faban.org
2JMeter http://jmeter.apache.org
3LIMBO http://www.descartes-research.net/tools/

both meta-models are capable of capturing real-world load
profiles with acceptable accuracy.

2. FOUNDATIONS
Both DLIM and HLDLIM models capture load intensity

of open workloads by specifying, e.g., user, request, or job
arrival rates.

2.1 Open and Closed Workloads
Schroeder et al.[8] define open and closed workloads as

follows:
Closed workload: new job arrivals are only triggered by

job completions

Open workload: new jobs arrive independently of job com-
pletions

Our meta-models do not make any assumptions about the
completion times of the work units. Additionally, we assume
that users in a typical cloud environment are completely un-
aware of one another and access a software service without
having any knowledge of other users’ behavior. Further-
more, work units induce statistically indistinguishable re-
source demands on the underlying hardware. Accordingly,
DLIM or HLDLIM instances describe the intensity profile of
an open workload.

2.2 Load Intensity
In this work load intensity is the function describing ar-

rival rates of workload units over time. We define the arrival
rate r(t) at time t as follows:

r(t) = R′(t)
with R(t) = |{ut0|t0 ≤ t}|

where R(t) being the amount of all work units ut0, with their
respective arrival time t0, that have arrived up until time t.

3. RELATED WORK
Several models with the purpose to describe and generate

workloads with an variable intensity have been proposed so
far. However, these models differ from our approach in two
key aspects: They are either purely statistical or they the
key emphasis is put on the behavior and structure of the
actual units of work they dispatch (or both). Our model
tries to exclude both of these aspects by solely modeling the
variations in load intensity in a deterministic fashion. Thus,
we group related work in at least one of the following three
categories:
User behavior models: Hoorn et al.[10], Roy et al.[6],

and Beich et al.[2] create workload models that cap-
ture the behavior and tasks triggered by certain types
of users. Zakay et al.[12] partition workloads into users
types and then sample workload traces for each type in
order to describe user behavior. This has a direct im-
pact on the work type itself and differs greatly from our
approach of only modeling user arrival rates. Models
of this kind can be easily combined with DLIM, since
they model what the user does after his/her arrival as
modeled by DLIM.

Workload modeling with a focus on work units and re-
source demands: These models focus on the actual unit
of work and model it in a way that estimates a spe-
cific resource use. Casale et al.[3] do so with a focus
on burstiness, while Barford et al.[1] put focus on file
distribution and popularity.

Statistical models: These models try to extract workload
intensity into a few statistical numbers that describe
the workload. Feitelson[4] creates a statistical model
for parallel job schedulers, while Menascé et al.[5] ana-
lyze workloads on the Business, Session, Function, and
HTTP Request layer. These approaches differ from
our deterministic approach as they do not capture the
load intensity behavior changes over time.

4. DESCARTES LOAD INTENSITY MODEL
The Descartes Load Intensity Model (DLIM) describes

request arrival rates over time and is visualized in Fig. 1.
Specifically, the model is aimed at describing the abstract
variations of work unit arrival rates into characteristic load
intensity behaviors. DLIM offers a way to define a piece-wise
mathematical function, which is to be used for the approx-
imation of variable arrival rates, with support for (partial)
periodicity, flexibility for easy adaptations and incorporation
of unplanned events, composability of DLIM instances.

Figure 1: The Descartes Load Intensity Meta-Model
without the child implementations of the abstract
Noise, Burst, Seasonal, and Trend.

4.1 Sequence
The DLIM root element is the Sequence. The Sequence

holds an ordered List of TimeDependentFunctionContain-
ers, which describe the basic arrival rate functions (see sec-
tion 4.2). The TimeDependentFunctionContainers are ex-
ecuted in sequence. This execution repeats as many times
as indicated by the terminateAfterLoops attribute. Alter-
natively the sequence repeats for the time indicated by the
terminateAfterTime attribute. If both are set, we calculate
the final duration by

finalDuration =
min(terminateAfterLoops ∗ loopDuration,

terminateAfterT ime).

Infinite sequences are not allowed in order to guarantee ter-
mination.

4.2 TimeDependentFunctionContainer
The TimeDependentFunctionContainer contains functions

that describe the arrival rate on a basic mathematical level.
It contains one instance of a child of the abstract class
Function (note that Sequence also inherits from Function).
Any Function can be combined with other Functions using
a Combinator, which results in a TimeDependentFunction-
Container carrying an entire tree of functions. The TimeDe-
pendentFunctionContainer describes its arrival rates for a

set duration, after which the next TimeDependentFunction-
Container in the parent Sequence’s list is executed.

4.3 Function
The Function is the abstract parent class to mathemati-

cal functions contained within the TimeDependentFunction-
Container. A number of non-abstract children are provided
that can be used as an Function. The most notable concrete
Function is the Sequence, which effectively means that any
TimeDependentFunctionContainer may hold a Sequence in
its Function tree. The other concrete Functions fall into
one of the following categories (each represented by their
abstract super-class):
Seasonal: Functions that describe seasonal, recurring pat-

terns (such as sin).

Bursts: Functions that describe singular bursts that reach
a certain peak value at a peakTime and then return to
the base value, from which they started.

Noise: Functions that describe random noise.

Trends: Functions that describe monotonic trends. These
Functions are interpolated Functions, described by their
start and end values.

A Function holds a list of Combinators. A Combinator
allows the combination of this Function’s arrival rates with
the arrival rates generated by other concurrently running
Functions. The Combinator contains operators such as +, ∗.

5. HIGH-LEVEL DLIM
While DLIM offers a convenient way of structuring and

ordering functions for the description of load intensity vari-
ations, it offers little abstracted knowledge about those vari-
ations. HLDLIM addresses this issue by describing load
intensity variations with a limited number of parameters.
These parameters can then be used to quickly define and
characterize a load intensity model. Inspired by the time-
series decomposition approach in BFAST [11], it is split into
a Seasonal and Trend part. Additionally, it features a Burst
and Noise part

5.1 Seasonal Part
The Seasonal part describes the underlying dummy func-

tion that repeats after every seasonal duration (e.g. every
day in a month long load intensity description). HLDLIM
describes it using the following parameters:
Period: The duration of a single iteration of the seasonal

function.

Number of Peaks: The amount of arrival rate peaks within
a single iteration of the seasonal function.

Base Arrival Rate Level: The arrival rate at the begin-
ning and end of a seasonal function iteration.

Base Arrival Rate Level between Peaks: The local ar-
rival rate minimum between two peaks.

First Peak Arrival Rate and Last Peak Arrival Rate.
All other peak arrival rates are derived from First Peak
Arrival Rate and Last Peak Arrival Rate using linear
interpolation.

Interval with Peaks: The time interval during which the
peaks are defined. This interval is centered around
Period/2.

Seasonal Shape: The shape of the function interpolating
between peaks and base levels. The Shape can be any
DLIM Trend Function.

5.2 Trend Part
The Trend part describes the overarching function that

describes the change in load intensity variation over several
seasonal periods. In contrast to BFAST, the HLDLIM Trend
can be either additive or multiplicative. The Trend part is
defined using the following parameters:

Number of Seasonal Periods within one Trend:
The duration of each Trend segment. It must be a pos-
itive integer number. As a result, the Trend segments’
duration is always a multiple of the Seasonal Period.

Trend Shape: The mathematical function used to describe
the Trend segments. The shape can be any DLIM
Trend Function.

Operator: The operator with which the Trend is applied
to the Seasonal part.

List of Seasonal Arrival Rate Peaks: The arrival rate
at the beginning and end of the Trend segments. The
Trend segment functions are defined so that they al-
ways begin and end at the largest Seasonal Peak. As
a result, the values contained in this list define the
resulting maximum peak after Trend application at
the corresponding point in time. The point in time at
which each arrival rate in this list is defined is always
the time of the largest peak in a Seasonal iteration.

5.3 Burst Part
HLDLIM allows the definition of recurring bursts, which

are added onto the existing arrival rate behavior. The Burst
part is thus defined using the following parameters:

First Burst Offset: The time at which the first burst peaks.

Inter Burst Period: The time between two peaks.

Burst Peak Arrival Rate: The arrival rate added by the
burst at its peak time.

Burst Width: The time interval in which a burst is exe-
cuted. The peak takes place at BurstWidth/2.

5.4 Noise Part
HLDLIM allows the addition of a uniform distributed noise

function defined by its Minimum Noise Rate and Maxi-
mum Noise Rate. Other Noise distributions can easily be
added to DLIM instances.

6. EVALUATION
For our preliminary model accuracy evaluation we use the

page request trace of the German Wikipedia. We extract
DLIM and HLDLIM instances from the trace using a best-
effort approach. We then compare curve similarity based on
an error metric defined on the basis of the Dynamic Time
Warping algorithm (in our case, the fDTW implementation
[7]). We normalize the DTW distance by dividing it by the
number of samples and the maximum arrival rate. We ex-
tract the DLIM instance by modeling the days within the
Wikipedia trace as a seasonal dummy function. This func-
tion approximates the user request rate within one day. It is
lowest at night and peaks right before and after lunch break.
Next, we multiply a trend onto the seasonal function. This
trend interpolates between the highest daily peaks and tries
to fit seasonal function onto the trace’s arrival rates. Addi-
tional major deviations between model and trace are mod-
eled as additive bursts. Then, we fit the extracted DLIM
instance into the HLDLIM parameters. For this we use the

DLIM_wikipedia Arrival Rates

DLIM_wikipedia HLDLIM_wikipedia wikipedia_trace

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

time

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

a
rr

iv
a

l
ra

te

Figure 2: The arrival rates of the Wikipedia request trace and the extracted model instances.

median values of the respective properties in the DLIM in-
stance. The Inner Base Arrival Rate is the median arrival
rate of the arrival rate between the extracted peaks, while
the Inter Burst Period is the median wait time between two
bursts. The errors between the model instances and the
original trace are as follows:

mean median DTW based
error error curve difference

DLIM 16.08% 8.95% 0.0222
HLDLIM 16.25% 9.64% 0.0224

Overall, the extracted DLIM instance seems to fit the
trace’s arrival rates with acceptable accuracy. All major
error are caused by days which deviate from the median
pattern (which is extracted as our seasonal dummy). The
upside of the seasonal dummy approach however is increased
model instance utility. Amongst other things, it simplifies
the extraction of HLDLIM parameters.

On the other hand, while the accuracy of the HLDLIM
instance is remarkably close to the DLIM instance, we have
one particular observation: The Wikipedia trace does not
mesh well with recurring bursts. The burst at time-stamp
724 is by far the biggest deviation from the original trace.

7. CONCLUSIONS
This Paper addresses the need for modeling variable load

profiles for custom benchmarking or trace approximation.
With DLIM and HLDLIM we introduce two load intensity
models that address this need. DLIM offers a way of ex-
pressing load intensity profiles using piece-wise mathemat-
ical functions, while HLDLIM offers a concise way of ex-
pressing a profile’s characteristics. Future work entails the
creation of model-to-model transformations between these
two models, as well as automatic and reproducible model-
from-trace extraction processes. We also envision additional
future use-cases for load intensity models, such as load in-
tensity forecasting.

8. REFERENCES
[1] P. Barford and M. Crovella. Generating representative

web workloads for network and server performance
evaluation. In Proceedings of the 1998 ACM
SIGMETRICS, pages 151–160, New York, NY, USA,
1998. ACM.

[2] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and
D. A. Patterson. Rain: A workload generation toolkit
for cloud computing applications. Technical Report

UCB/EECS-2010-14, EECS Department, University
of California, Berkeley, Feb 2010.

[3] G. Casale, A. Kalbasi, D. Krishnamurthy, and
J. Rolia. Burn: Enabling workload burstiness in
customized service benchmarks. IEEE Transactions
on Software Engineering, 38(4):778–793, 2012.

[4] D. Feitelson. Workload modeling for performance
evaluation. In M. Calzarossa and S. Tucci, editors,
Performance Evaluation of Complex Systems:
Techniques and Tools, volume 2459 of Lecture Notes in
Computer Science, pages 114–141. Springer Berlin
Heidelberg, 2002.

[5] D. A. Menascé, V. A. F. Almeida, R. Riedi, F. Ribeiro,
R. Fonseca, and W. Meira, Jr. A hierarchical and
multiscale approach to analyze e-business workloads.
Perform. Eval., 54(1):33–57, Sept. 2003.

[6] S. Roy, T. Begin, and P. Goncalves. A complete
framework for modelling and generating workload
volatility of a vod system. In Wireless
Communications and Mobile Computing Conference
(IWCMC), 2013 9th International, pages 1168–1174,
2013.

[7] S. Salvador and P. Chan. Toward accurate dynamic
time warping in linear time and space. Intell. Data
Anal., 11(5):561–580, Oct. 2007.

[8] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open versus closed: a cautionary tale. In Proceedings
of the 3rd conference on Networked Systems Design &
Implementation - Volume 3, NSDI’06, pages 18–18,
Berkeley, CA, USA, 2006. USENIX Association.

[9] J. v. Kistowski. Modeling the Variation of Load
Intensities. Karlsruhe Institute of Technology,
Karlsruhe, Germany, April 2014. to appear.

[10] A. van Hoorn, M. Rohr, and W. Hasselbring.
Generating probabilistic and intensity-varying
workload for web-based software systems. In
Proceedings of the SIPEW’08, pages 124–143, Berlin,
Heidelberg, 2008. Springer-Verlag.

[11] J. Verbesselt, R. Hyndman, G. Newnham, and
D. Culvenor. Detecting trend and seasonal changes in
satellite image time series. Remote Sensing of
Environment, 114(1):106 – 115, 2010.

[12] N. Zakay and D. G. Feitelson. Workload resampling
for performance evaluation of parallel job schedulers.
In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE ’13,
pages 149–160, New York, NY, USA, 2013. ACM.

