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Elasticity is one of the main features of cloud computing allowing customers to scale their resources based on
the workload. Many autoscalers have been proposed in the past decade to decide on behalf of cloud customers
when and how to provision resources to a cloud application based on the workload utilizing cloud elasticity
features. However, in prior work, when a new policy is proposed, it is seldom compared to the state-of-the-art,
and is often compared only to static provisioning using a predefined QoS target. This reduces the ability of
cloud customers and of cloud operators to choose and deploy an autoscaling policy as there is seldom enough
analysis on the performance of the autoscalers in different operating conditions and with different applications.
In our work, we conduct an experimental performance evaluation of autoscaling policies, using as workflows, a
commonly used formalism for automating resource management for applications with well-defined yet complex
structures. We present a detailed comparative study of general state-of-the-art autoscaling policies, along with
two new workflow-specific policies. To understand the performance differences between the seven policies,
we conduct various experiments and compare their performance in both pairwise and group comparisons. We
report both individual and aggregated metrics. As many workflows have deadline requirements on the tasks, we
study the effect of autoscaling on workflow deadlines. Additionally, we look into the effect of autoscaling on
the accounted and hourly-based charged costs, and evaluate performance variability caused by the autoscaler
selection for each group of workflow sizes. Our results highlight the trade-offs between the suggested policies,
how they can impact meeting the deadlines, and how they perform in different operating conditions, thus
enabling a better understanding of the current state-of-the-art.
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1 INTRODUCTION

Cloud computing emerged as a computing model where computing services and resources are
outsourced on an on-demand pay-per-use basis. To make this model useful for a variety of customers,
cloud operators try to simplify the process of obtaining and managing the provided services. To this
end, cloud operators make available to their customers various autoscaling policies (autoscalers,
AS), which are essentially parametrized cloud-scheduling algorithms that dynamically regulate the
amount of resources allocated to a cloud application based on the load demand and the Quality-of-
Service (QoS) requirements typically set by the customer. Many autoscalers have been proposed
in the literature, both general autoscalers for request-response applications [5, 11, 22, 43, 53] and
autoscalers for more task- and structure-oriented applications such as workflows [3, 9, 13, 16, 19, 46].
The selection of an appropriate autoscaling policy is crucial, as a good choice can lead to significant
performance and financial benefits for cloud customers, and to improved flexibility and ability to meet
QoS requirements for cloud operators. Selecting among the proposed autoscalers is not easy, which
raises the problem of finding a systematic, method-based approach to comprehensively evaluate
and compare autoscalers. The lack of such an approach derives in our view from ongoing scientific
and industry practice. For the past decade, much academic work has focused on building basic
mechanisms and autoscalers for specific applications, with very limited work spent in comparisons
with the state-of-the-art. In industry settings, much attention has been put on building cloud
infrastructures that enable autoscaling as a mechanism, and relatively less on providing good
libraries of autoscalers for customers to choose from. (The authors’ own prior work reflects this
situation [26, 45].) To alleviate this problem, in this work we propose and use the first systematic
experimental method to evaluate and compare the performance of autoscalers using workflow-based
workloads running in cloud settings as a use-case application.

Modern workflows have different structures, sizes, task types, run-time properties, and performance
requirements, and thus raise specific and important challenges in assessing the performance of
autoscalers: How does the performance of general and of workflow-specific autoscalers depend
on workflow-based workload characteristics? Among the many application types, our focus on
workflow-based workloads is motivated by three aspects. First, there is an increasing popularity [49,
50] of workflows for science and engineering [1, 33, 35], big data [36], and business applications [51],
and by the ability of workflows to express complex applications whose interconnected tasks can be
managed automatically on behalf of cloud customers [32]. Second, although general autoscalers focus
mainly on QoS aspects, such as throughput, response-time and cost constraints, some autoscalers
take into account application structure [39]. One of the main questions we want to answer with this
work is: How does the performance of general and of workflow-specific autoscalers differ?

Another interesting aspect that arise with workflow scaling is the effect of the autoscalers on
workflow deadlines. Many of the workloads have deadlines, basically a bound on the tolerated time
by the user between the workflow submission and when the computation results are available. Having
enough capacity in the system for the workflows to finish their processing before the deadline can be
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severely affected by the presence of autoscalers. For that we enforce per-workflow and per-workload
deadlines which allow us to see: How does each autoscaler affect deadline violations?

One of the core properties of an autoscaler is the ability to minimize operational costs while keeping
the required performance level. We calculate the incurred costs for each considered autoscaler which
allow us to answer the questions: How do the autoscalers affect charged and accounted costs?, and
How do the autoscalers find a balance between performance and cost?

Towards addressing the aforementioned questions, our contribution is three-fold:

(1) We design a comprehensive method for evaluating and comparing autoscalers (Sections 2—4).
Our method includes a model for elastic cloud platforms (Section 2), identifying a set of
relevant metrics for assessing autoscaler performance (Section 3), and a taxonomy and
survey of exemplary general and workflow-specific autoscalers (Section 4).

(2) Using the method, we comprehensively and experimentally quantify the performance of 7
general and workflow-specific autoscalers, for more than 15 performance metrics (Section 5).
We show the differences between various policy types, analyze parametrization effects,
evaluate the influence of workload characteristics on individual performance metrics, and
explain the reasons for the performance variability we observe in practice.

(3) We also compare the autoscalers systematically (Section 8), through 3 main approaches:
a pair-wise comparison specific to round-robin tournaments, a comparison of fractional
differences between each system and an ideal system derived from the experimental results,
and a head-to-head comparison of several aggregated metrics.

This article extends of our previous work on evaluating the performance of autoscalers for work-
flows [28]. In this article, we provide a deeper analysis of our previous experimental results for
the same set of autoscalers. We include additional user-oriented metrics, explore cost models that
distinguish accounted from charged CPU-hours, introduce enforced deadline-based SLAs with two
types of soft deadlines, add the analysis of performance variability of user-oriented metrics, and
extend the competitions for grading the autoscalers.

2 A MODEL FOR ELASTIC CLOUD PLATFORMS

Autoscaling is an incarnation of the dynamic provisioning problem that has been studied in the
literature for over a decade [10]: many autoscalers in essence try to solve the problem of how
much capacity to provision given a certain QoS, state-of-the-art algorithms published make different
assumptions on the underlying environment, mode of operation, or workload used. It is thus important
to identify the key requirements of all algorithms, and establish a fair cloud system for comparison.

2.1 Requirements

In order to improve the QoS and decrease costs of a running application, an ideal autoscaler
proactively predicts and provisions resources such that: a) there is always enough capacity to handle
the workload with no under-provisioning affecting the QoS requirements; b) the cost is kept minimal
by reducing the number of resources not used at any given time, thus reducing over-provisioning;
and c) the autoscaler does not cause consistency and/or stability issues in the running applications.
Since there are no perfect predictors, no ideal autoscaler exists. There is thus a need to have better
understanding of the capabilities of the various available autoscalers in comparison to each other. For
our work, we classify autoscaling algorithms in two major groups: general and workflow-specific.
Examples of general autoscalers include algorithms for allocating virtual machines (VMs) in data-
centers. They are general because they mostly take their decisions using only external properties
of the controlled system, e.g., workload arrival rates, or the output from the system, e.g., response
time. In contrast, workflow-specific autoscalers base their decisions on detailed knowledge about the
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running workflow structure, job dependencies, and expected runtimes of each task [41]. Often, the
autoscaler is integrated with the task scheduler [39].

Although many autoscaling algorithms targeting different use case scenarios have been proposed
in the literature, they are rarely compared to previously published work. In addition, they are usually
tested on a limited set of relatively short traces. Many autoscaling-related articles seldom go beyond
meeting some predefined QoS bound, e.g., with respect to response time or throughput, that is often
set (artificially) by the authors. Although the performance of many autoscalers is very dependent on
how they are configured, this configuration is rarely discussed. To the best of our knowledge, there
are no major comparative studies that analyse the performance of various autoscalers in realistic
environments with complex applications. Our work aims to fill this gap.

2.2 Architecture Overview

Keeping the diversity of used cloud applications and underlying computing architectures in mind, we
setup an elastic cloud platform architecture (Figure 1), which allows for comparable experiments by
providing relatively equal conditions for different autoscaling algorithms and different workloads.
The equal size of the virtual computing environment, which is agnostic to the used application type,
is the major common property of the system in our model. We believe that our architecture represents
modern elastic cloud platforms properly and reflects approaches used in many commercial solutions.

While our experiments should be valid for any cloud platform, we decided not to run any exper-
iments on public clouds for two main reasons. First, scientific workflows have been shown to be
cost-inefficient on public clouds [30, 55]. Secondly, as this project aims to fairly benchmark the
performance of autoscalers, public clouds will introduce variability due to the platforms as public
cloud VM performance can vary considerably [30].

The core of our system is the autoscaling service (Component 1 in Figure 1) that runs independently
as a REST service. The experimental testbed consists of a scheduler (Component 2) and a virtual
infrastructure service (Component 3) which maintains a set of computing resources. A resource
manager (Component 4) monitors the infrastructure and controls the resource provisioning. Users
submit their complex jobs directly to the scheduler which maintains a single job queue (Component 5).
The tasks from the queued jobs are mapped on the computing resources in accordance to the task
placement policy (Component 6). The scheduler periodically calls the autoscaling service providing
it with monitoring data from the last time period. We refer to this period as the autoscaling interval.

The autoscaling service implements an autoscaling policy (Component 7) and has a demand
analyzer (Component 8) which uses information about running and queued jobs to compute the
momentary demand value. The supply analyzer (Component 9) computes the momentary supply
value by analyzing the status of computing resources. The autoscaling service responds to the
scheduler with the predicted number of resources which should be allocated or deallocated. Before
applying the prediction, the resource manager filters it trimming the obtained value by the maximal
number of available resources. To avoid error accumulation, the autoscaling interval is usually chosen
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so that the provisioning actions made during the autoscaling interval has already taken effect. Thus it
is guaranteed that the provisioning time is always shorter than the autoscaling interval. In case when
the provisioning time is longer than the autoscaling interval, the resource manager should apply the
prediction only partially considering the number of “straggling” resources. In practice, it means that
the resource manager should consider booting VMs as fully provisioned resources.

2.3 Workflows as Main Applications

For our experiments, we use complex workflows as our system workload. A workflow is a set of
tasks with precedence constraints among them. Alternatively it can be represented as a Directed
Acyclic Graph (DAG). Each workflow task can start execution when all of its input constraints are
satisfied (e.g., when input files are ready). Each task can have multiple inputs and multiple outputs.
The precedence constraints make workflow scheduling non-work-conserving as there may be idle
processors in the system while there are no waiting tasks with all their dependencies satisfied. This
property is one of the reasons we selected workflows for our experiments, since it puts an autoscaling
algorithm in more stringent conditions. Additionally, depending on the DAG structure, workflows
can also reflect the behavior of other popular job types such as web-requests, bags-of-tasks, or
parallel applications. One whole workflow in our setup is considered as a job. The size of a workflow
is defined by its number of tasks. We assume that every workflow has a single entry node and a
single exit node. The critical path of a workflow is the longest path from its entry node to its exit
node. The critical path length is the sum of all task runtimes and inter-task communication times
along the critical path. We focus on workflows where tasks require a single processor core only.

2.4 Deadlines for Workflows

Scheduling of workflows is often time critical and involves meeting deadlines for the processing
times. For example, workflows for processing satellite data should handle the received information
while the satellite makes a turn around the planet [18, 47]. Such workflows should finish before a new
batch of information is received. Another example is the case of modern cloud services where the user
pays per time slot and the deadlines are bounded to the lengths of these time slots [40]. We assume
that deadlines for workflows is set per-workflow and per-workload basis. Per-workflow deadlines
are unique for every workflow and are normally assigned based on user (statistical) estimates of
the possible workflow runtimes. Per-workload deadlines are common when processing batches of
workflows. In this case, a per-workload deadline applies to all the workflows in the workload. We
consider soft deadlines which can be violated without affecting the execution of a workflow. Soft
deadlines is a measure that can additionally reflect induced infrastructure costs for users.

3 PERFORMANCE METRICS FOR ASSESSING AUTOSCALERS

We use both system- and user-oriented evaluation metrics to assess the performance of the autoscalers.
The system-oriented metrics quantify over-provisioning, under-provisioning, and stability of the
provisioning, all of which are commonly used in the literature [5, 6, 26, 27]. All the considered
system-oriented metrics are based on the analysis of discrete supply and demand curves. The
user-oriented metrics assess the impact of autoscaler usage on the workflow execution speed.

3.1 Supply and Demand

The resource demand induced by a load is understood as the minimal amount of resources required for
fulfilling a given performance-related service level objective (SLO). In the context of our workflow
model, a resource can only process one task at a time. We thus define the momentary demand as the
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quantified in the number of resources (areas U and O).

number of eligible and running tasks in all the queued workflows. Extending the model to include
resource sharing is trivial by using the average number of tasks processed by a resource instead.

Accordingly, the supply is the monitored number of provisioned resources that are either idle,
booting or processing tasks. Figure 2 shows an example of the two curves. If demand exceeds supply,
there is a shortage of available resources (under-provisioning) denoted by intervals A and areas U in
the figure. In contrast, over-provisioning is denoted by intervals B and areas O.

3.2 Accuracy

Let the resource demand at a given time ¢ be d;, and the resource supply s;. The average under-
provisioning accuracy metric ay is defined as the average fraction by which the demand exceeds
the supply. Similarly, over-provisioning accuracy ao is defined as the average fraction by which the
supply exceeds the demand. Both metrics can be computed as:

T T
1 1
- 5 (d; - St)+, ao ‘= —— (s = dt)+,
TR TR

where T is the time horizon of the experiment expressed in time steps, R is the total number of
resources available in the current experimental setup, and (d; — s;)* := max(d; — s;,0), i.e., only the
positive values of d; —s;. The intuition behind the two accuracy metrics is shown in Figure 2. Under-
provisioning accuracy ay is equivalent to summing the areas U where the resource demand exceeds
the supply normalized by the duration of the measurement period T. Similarly, the over-provisioning
accuracy metric ap is the sum of areas O where the resource supply exceeds the demand.

It is also possible to normalize the metrics by the actual resource demand, obtaining therefore a
normalized, and more fair indicator In particular, the two metrics can be modified as:

Z (dy —s:)* 2 Z (st —
max(d;, €)’ max(dt, 5)
with £ > 0; in our setting we selected ¢ = 1. The normalized metrlcs are particularly useful when the
resource demand has a large variance over time, and it can assume both large and small values. In
fact, under-provisioning of 1 resource unit when 2 resource units are requested is much more harmful
than under-provisioning 1 resource unit when 1000 resource units are requested. Therefore, this type
of normalization allows a more fair evaluation of the obtainable performance.

Since under-provisioning results in violating SLOs, a customer might want to use a platform that
minimizes under-provisioning ensuring that enough resources are provided at any point in time, but at
the same time minimizing the amount of over-provisioned resources. The defined separate accuracy

metrics for over- and under-provisioning allow providers to better communicate their autoscaling
capabilities and customers to select an autoscaler that best matches their needs. In the context of
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workflows, over-provisioning accuracy can also be represented in the number of idle resources (i.e.
the resources which were excessively provisioned and currently are not utilized).

In ideal situation when an autoscaler perfectly follows the demand curve, there should be no
idle resources as the system will always have enough eligible tasks to run. Although, intuitively it
seems that over-provisioned resources should always be idle, in situations when the actual demand
exceeds the estimated demand (from the autoscaler’s perspective), the over-provisioned resources
may not necessarily be idle. Since ap and ap metrics do not particularly distinguish the amount of
idle resources in the system, we present an additional over-provisioning accuracy metric my which
measures the average number of idle resources during the experiment time. If u; is the number of
idle resources at time ¢, my can be defined as:

1 T
my = ﬁ Zu;,

t=1

3.3 Wrong-Provisioning Timeshare

The accuracy metrics do not distinguish cases when the average amount of under-/over-provisioned
resources results from a few large deviations between demand and supply or rather by a constant
small deviation. To address this, the following two metrics provide insights about the fraction of time
in which under- or over-provisioning occurs. As visualized in Figure 2, the following metrics t; and
to are computed by summing the total amount of time spent in an under- A or over-provisioned B
state normalized by the duration of the measurement period. Letting sgn (x) be the sign function of
x, the overall timeshare spent in under- or over-provisioned states can be computed as:

T T
1 1
o= Disgn(d =)' to:= = D (sgn (s - dp)".
t=1 t=1

3.4 Instability of Elasticity

Although the accuracy and timeshare metrics characterize important aspects of elasticity, plat-
forms can still behave differently while producing the same metric values for accuracy and wrong-
provisioning timeshare. We define two instability metrics k and k” which capture this instability and
inertia of the autoscalers. A low stability increases adaptation overheads and costs (e.g., in case of
instance-hour-based pricing), whereas a high level of inertia results in a decreased SLO compliance.
Letting Ad; := d; — d;—1, and As; := s; — s;_1, the instability metric k which shows the average
fraction of time of over-provisioning trends in the system is defined as:
1 &
k := T—1 Z Lsgn(as,)>sgn(Ad,)s
=2
where by over-provisioning trends we mean situations when supply increases while demand is stable
or when supply increases while demand decreases or when supply is stable while demand decreases.
Similarly, we define k” which shows the average fraction of time of under-provisioning trends:

T
1
t=

where under-provisioning trends are situations when demand increases while supply is stable or
when demand increases while supply decreases or when demand is stable while supply decreases.

Both metrics k and k” do not capture neutral situations when both supply and demand move in the
same direction (have the same sign) or both stay stable. Thus, if supply follows demand perfectly
then both instability metrics are equal to zero.
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3.5 User-oriented Metrics

To assess the performance of autoscaling policies from the time perspective, we employ the (average)
elastic slowdown as a main user metric together with a set of traditional metrics. The (average)
elastic slowdown is defined in steps as follows.
e The wait time T,, of a workflow is the time between its arrival and the start of its first task.
e The makespan T,, of a workflow is the time between the start of its first task until the
completion of its last task.
o The response time T, of a workflow is the sum of its wait time and its makespan: T, := T,, + Tp,.
e The elastic slowdown S, of a workflow is its response time in a system which uses an
autoscaler (where the workflow runs simultaneously with other workflows) normalized by
its response time T, in a system of the same size without an autoscaler (where the workflow
runs simultaneously with the same set of other workflows and where a certain amount of
resources is constantly allocated): S, := T, / T}.

In ideal situation, where jobs do not experience slowdown due to the use of an autoscaler, the
optimal value for S, is 1. When S, is less than 1, then the workflow is accelerated by the autoscaler.
The schedule length ratio (SLR) [7] normalizes the response time of a workflow in a busy system
with an autoscaler (as in the elastic slowdown) by the minimal possible critical path length of a
workflow. The minimal possible critical path length is calculated using known a priori workflow task
runtime estimates and the time required to transfer files between every two neighboring workflow
tasks (also known as link weight). SLR, especially for the case without an autoscaler, shows how the
system and the used scheduling policy slow down a workload. We also calculate the average task
throughput T which is defined as the number of tasks processed per time unit.

For each workflow, we define its deadline proximity ratio D, as D, := T,/D, where T, is the
completion time of a workflow and D is the deadline. D, is calculated for each workflow after the
completion of its last task.

3.6 Cost-oriented Metrics

We define the average number of resources V as

_ 1 <&
V= ?;st,

which is the number of resources allocated during the experiment to compute the gain of using an
autoscaler. Though V shows th average e resource consumption of the autoscaler, it does not reflect
cost in relation to common cloud pricing models.

We thus introduce the used CPU hours metric. To calculate the CPU hours, we distinguish between
two different pricing models: accounted CPU hours and charged CPU hours. Figure 3 shows both
pricing models where the orange blocks represent the charged CPU hours and the green blocks are

the accounted CPU hours. The accounted CPU hours hj for a VM j can be defined as
T
h j = Z St,j»
t=1
where s; ; is the number of supplied resources at time ¢ for the VM j. Hence, h; represents the
effective used CPU hours. Accordingly, we can compute the average accounted CPU hours per VM

that is defined as h := W Z}l‘:/fw 'n ;, where |[VM]| is the number of VMs. Therefore, we define the

runti_me speedup R as R := E,, /Ea, where Ea is the consumed CPU hours when using the autoscaler
and h, the CPU hours when all resources are running throughout the experiment. If R is greater
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Fig. 3. This example shows which CPU hours are accounted and which CPU hours are charged.

Source of Information Timeliness of Information
Long-term Current/Recent
Server (General) Hist, Reg, ConPaaS React, Adapt
Job (WF-specific) Plan Token

Table 1. The two-dimensional taxonomy of the considered autoscalers.

than 1 the autoscaler saves CPU hours, otherwise it uses equal or more CPU hours than the no
autoscaling scenario.
In contrast to the accounted CPU hours, the charged cost C; represents the opened CPU hours

that have to be paid for the virtual machine j. The charged cost C; for a VM j, is defined as:
N
Cj:= — 1K j,
J ; Pl
where N is the number of scaling events, A, ; is the time elapsed between two supply events i and
i—1for the VM j, P; ; is the charge period for VM j, and K ; is the charge cost for VM j. Notice that
P; ; and K; ; can vary over time, but here we consider them as constants for the sake of simplicity.
In the following, we selected P; ; = 60 minutes, and K; ; = 1. The average charged CPU hours per

VM C := W ZJIZ?/I\ Cj, with |[VM| being the number of VMs. Similarly to the accounted CPU
hours, we can compute the charged speedup C as C := C,, /C,, where C,, is the average charge cost
of the autoscaler and C,, is the average charge cost when all the resources are running throughout the
experiment. If C is greater than 1 the autoscaler saves costs, otherwise it spends equal or more costs

than the no autoscaling scenario.

4 AUTOSCALING POLICIES

For evaluation, we select five representative general autoscalers and propose two workflow-specific
autoscalers. We classify them using a taxonomy along two dimensions and summarize the survey
of common autoscaling policies across these dimensions in Table |. The taxonomy allows us to
ensure the proper coverage of the design space. We identify four groups of autoscalers, which differ
in the way they treat the workload information. The first group consists of general autoscalers Hist,
Reg, and ConPaa$S which require server-specific information and use historical data to make their
predictions. The second group consists of React and Adapt autoscalers which also require server-
specific information for their operation but they do not use history to make autoscaling decisions.
The last two groups use job-specific information (e.g., structure of a workflow) and also differ in a
way they deal with the historical data: Plan needs detailed per-task information while Token needs
far less historical data and only requires a runtime estimate for the whole job. Further, we present all
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Fig. 4. The Plan autoscaling algorithm.

the autoscalers in more detail. When introducing each autoscaler we additionally indicate in the title
of the section to which dimensions of the taxonomy it belongs.

4.1 General Autoscaling Policies

As different autoscalers exhibit varying performance, five existing general autoscalers have been
selected. By a general autoscaler, we refer to autoscalers that have been published for more general
workloads including multi-tier applications, but that are not designed particularly for workflow
applications. The five autoscalers can be used on a wide range of scenarios with no human tuning.
We implement four state-of-the-art autoscalers that fall in this criteria. In addition, we acquire
the source codes of one open-source state-of-the-art autoscaler. The selected methods have been
published in the following years 2008 [53] (with an earlier version published in 2005 [52]), 2009 [11],
2011 [31], 2012 [3, 5], and 2014 [22]. The selected autoscalers are well-cited representatives of the
autoscaler groups identified in the extensive survey [37].

4.1.1 General Autoscalers for Workflows. All of the chosen general autoscalers have been
designed to control performance metrics that are still less commonly used for workflow applications,
namely, request response time, and throughput. The reason is that historically, workflow applications
were rather big or were submitted in batches [50]. However, emerging workflow types require quick
system reaction such as the usage of workflows in areas where they were less popular, e.g., for
complex web requests, making the use of general autoscalers more promising.

The autoscalers aimed to control the response time are designed such that they try to infer a
relationship between the response time, request arrival rates, and the average number of requests that
can be served per VM per unit time. Then, based on the number of request arrivals, infer a suitable
amount of resources. This technique is widely used in the literature [24, 37] due to the non-linearity
in the relationship between the response time and allocated resources.

A similarity does exist though between workflows and other cloud workloads. A task in a
workflow job can be considered as a long running request. The number of tasks becoming eligible
can be considered as the request arrival rate for workflows. Therefore, we have adapted the general
autoscalers to perform the scaling based on the number of task arrivals per unit time.

4.1.2 The React Policy (Server, Current). Chieu et al. [11] present a dynamic scaling
algorithm for automated provisioning of VM resources based on the number of concurrent users, the
number of active connections, the number of requests per second, and the average response time per
request. The algorithm first determines the current web application instances with active sessions
above or below a given utilization. If the number of overloaded instances is greater than a predefined
threshold, new web application instances are provisioned, started, and then added to the front-end
load-balancer. If two instances are underutilized with at least one instance having no active session,
the idle instance is removed from the load-balancer and shutdown from the system. In each case the
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technique Reacts to the workload change. For the remainder of this article, we refer to this technique
as React. The main reason we are including this algorithm in the analysis is that this algorithm is the
baseline algorithm in our opinion since it is one of the simplest possible workload predictors. We
have implemented this autoscaler for our experiments.

4.1.3 The Adapt Policy (Server, Recent). Ali-Eldin et al. [3, 5] propose an autonomous
elasticity controller that changes the number of VMs allocated to a service based on both monitored
load changes and predictions of future load. We refer to this technique as Adapt. The predictions are
based on the rate of change of the request arrival rate, i.e., the slope of the workload, and aims at
detecting the envelope of the workload. The designed controller Adapts to sudden load changes and
prevents premature release of resources, reducing oscillations in the resource provisioning. Adapt
tries to improve the performance in terms of number of delayed requests, and the average number of
queued requests, at the cost of some resource over-provisioning.

4.1.4 The Hist Policy (Server, Long-term). Urgaonkar et al. [53] propose a provisioning
technique for multi-tier Internet applications. The proposed methodology adopts a queuing model
to determine how many resources to allocate in each tier of the application. A predictive technique
based on building Histograms of historical request arrival rates is used to determine the amount of
resources to provision at an hourly time scale. Reactive provisioning is used to correct errors in the
long-term predictions or to react to unanticipated flash crowds. The authors also propose a novel
datacenter architecture that uses VM monitors to reduce provisioning overheads. The technique is
shown to be able to improve responsiveness of the system, also in the case of a flash crowd. We refer
to this technique as Hist. We have implemented this autoscaler for our experiments.

4.1.5 The Reg Policy (Server, Long-term). Igbal et al. propose a regression-based autoscaler
(hereafter called Reg) [31]. The autoscaler has a reactive component for scale-up decisions and a
predictive component for scale-down decisions. When the capacity is less than the load, a scale-up
decision is taken and new VMs are added to the service in a way similar to React. For scale-down,
the predictive component uses a second order regression to predict future load. The regression model
is recomputed using the complete history of the workload when a new measurement is available. If
current load is less than the provisioned capacity, a scale-down decision is taken using the regression
model. This autoscaler was performing badly in our experiments due to two factors; first, building
a regression model for the full history of measurements for every new monitoring data point is a
time consuming task. Second, distant past history becomes less relevant as time proceeds. After
contacting the authors, we have modified the algorithm such that the regression model is evaluated
for only the past 60 monitoring data points.

4.1.6 The ConPaaS Policy (Server, Long-term). ConPaaS, proposed by Fernandez et al. [22].
The algorithm scales a web application in response to changes in throughput at fixed intervals of
10 minutes. The predictor forecasts the future service demand using standard time series analysis
techniques, e.g., Linear Regression, Auto Regressive Moving Average (ARMA), etc. The code for
this autoscaler is open source. We downloaded the authors’ implementation.

4.2 Workflow-Specific Autoscaling Policies

In this section, we present two workflow-specific autoscalers designed by us. Their designs are
inspired by previous work in this field and adapted to our situation. The presented autoscalers differ
in a way they use workflow structural information and task runtime estimates.

4.2.1 The Plan Policy (Job, Long-term). This autoscaler makes predictions by constructing
and analyzing a partial execution Plan of a workflow. Thus it uses the workflow structure and
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workflow task runtime estimates. The idea is partially based on static workflow schedulers [2]. On
each call, the policy constructs a partial execution plan considering both workflows with running
tasks and workflows waiting in the queue. The maximal number of processors which are used by this
plan is returned as a prediction. The time duration of the plan is limited by the autoscaling interval.
The plan is two-dimensional, where one dimension is time and another is processors (VMs).

The policy employs the same task placement strategy as the scheduler. In our case, the jobs from
the main job queue are processed in first-come, first-served (FCFS) order and the tasks are prioritized
in ascending order of their identifier (each task of a workflow is supposed to be assigned with a
unique numeric identifier). For already running tasks, the runtimes are calculated as a remaining
time to their completion. The algorithm operates as follows. On each call it initializes an empty plan
with start time 0. Then it sequentially tries to add tasks in the plan in such as their starting times
are minimal. The algorithm adds a task to the plan only if it is eligible or its parents are already in
the plan. The plan construction lasts until there are no tasks which can be added in the plan or until
the minimal possible task start time equals or exceeds the planning threshold (which is equal to the
autoscaling interval), or until the processor limit is reached. If the processor limit is reached then
this is returned as the prediction. Otherwise, the prediction is calculated as the maximal number of
processors ever used by the plan within the planning interval.

Figure 4 shows an example of the operation of the algorithm. In Figure 4a, we show the job queue
at the moment when the autoscaler is called. The queue contains two workflows A and B, where A
is at the head of the queue. Each workflow task is represented by a circle with an identifier within
it and runtime in time units on the right. Tasks A:0 and A:1 are already running, finished tasks are
not shown. The autoscaling interval (a threshold) is equal to 15 time units and is represented by a
vertical red dashed line. Figure 4b shows an example of an unlimited plan where the processor limit
is not reached. In this case the maximal number of processors used within the 15 time units interval
is 5 which equals to the number of green rectangles in the figure (A:0, A:1, B:1, B:2, B:3). Figure 4c
shows a plan where the number of available processors is limited by 4 (the horizontal red dashed
line). In this case, the algorithm stops constructing the plan after placing task B:2 and returns the
prediction, which simply equals to the maximal number of available processors (i.e., 4).

4.2.2 The Token Policy (Job, Recent). The Token policy uses structural information of a DAG
and does not directly consider task runtimes to make predictions and instead requires an estimated
execution time of the whole workflow. It uses tokens to estimate the Level of Parallelism (LoP) of a
workflow [29] by simulating an execution “wave” through a DAG. The operation of the algorithm is
illustrated in Figure 5. The algorithm processes the workflows in the queue in the FCFS order. In the
beginning, the algorithm picks a workflow from the queue and places tokens in all of its entry tasks.
Then in successive steps it moves these tokens to all the nodes all of whose parents already hold a
token or were earlier tokenized. After each step, the number of tokenized nodes is recorded. For
each workflow, the number of propagation steps is limited by a certain depth &, which is defined as
6 = (At - N)/L, where At is the autoscaling interval, N is the number of tasks on the critical path of

(a) Token propagation steps. (b) Two real LoPs.
Fig. 5. The token-based LoP approximation.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems



An Experimental Performance Evaluation of Autoscalers for Complex Workflows 13

the workflow, and L is the total duration of the tasks on the critical path of the workflow. Thus, the
intuition is to evaluate the number of “waves” of tasks (future eligible sets) that will finish during the
autoscaling interval. When ¢ or the final task of a workflow is reached, the largest recorded number
of tokenized nodes is the approximated LoP value. The algorithm stops when the prediction value
exceeds the maximal total number of available processors or when the end of the queue is reached.
The final prediction is the sum of all of the separate approximated LoPs of the considered workflows.

The token-based algorithm does not guarantee the correct estimation of the LoP. The quality of
the estimation depends on the DAG structure. In Figure 5a the estimated LoP of 3 is lower than the
maximal possible LoP of 4 in Figure 5b. However, in our previous work [29], we showed that this
method provides meaningful results for popular workflow structures.

5 EXPERIMENTAL EVALUATION

In this section, we present the workloads and the configuration of the cloud infrastructure we use
for the experimental evaluation of the unified cloud system introduced in Section 2. To design our
workloads, we use a set of representative scientific workflows. We take an experimental approach
to evaluate chosen autoscaling algorithms with an extensive set of experiments in a virtualized
environment deployed on our multi-cluster system.

5.1 Setup of Workflow-based Workloads

We choose three popular scientific workflows from different fields, namely Montage, LIGO, and
SIPHT. The main reason for our choice is the existence of validated models for these workflow types.
Montage [33] is used to build a mosaic image of the sky on the basis of smaller images obtained from
different telescopes. LIGO [1] is used by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) to detect gravitational waves. SIPHT [35] is a bioinformatics workflow used to discover

08 ‘ ‘ ‘ ‘ 1" 2 Property Workload I Workload 2

£ 06 g s A A Ll £ Mean task runtime 33.52s 33295

= 04 - TZA a - = ° 2 410° 5 Median task runtime 2.15s 2.65s

£02 o° : xzitizti ; 1;‘; o ;::‘CZ {102 € o of task runtime 65.40's 87.19s

0.0 ‘ — T 10! @ Mean job execution time 2,325s 2,309s

0 100 200 300 400 500 600 Median job execution time 1357 1939

Workflow size o of job execution time 3,859s 1,219

Fig. 6. The distribution of job sizes in the work-  Total task runtime 465,095s  461,921s
loads (histogram, left vertical axis) and the depen-  Mean workflow size 69 tasks
dency between the job size and its execution time ~ Median workflow size 35 tasks
(glyphs, right vertical axis). The right vertical axis ¢ of workflow size 98 tasks

Total number of tasks 13,876 tasks

is in log scale.

Table 2. Statistical characteristics of the work-
loads, o stands for standard deviation.

We generate synthetic workflows using the workflow generator by Bharathi et al. [8, 34]. Each
workflow is represented by a set of task executables and a set of input files. We use two workloads: a
primary Workload 1 and a secondary Workload 2 each consisting of 200 workflows of different sizes
in range from 30 to 600. Each workload contains an equal mixture of all of the three considered
workflow types. As with many other workloads in computer systems, in practice, workflows are
usually small, but very large ones may exist too [44]. Therefore, in our experiments we distinguish
small, medium, and large workflows, which constitute fractions of 75%, 20%, and 5% of the
workload. The size of the small, the medium, and the large workflows is uniformly distributed on
the intervals [30, 39], [40, 199], and [200, 600], respectively. The distribution of the job sizes in the
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Fig. 7. The distribution of task runtimes in the Fig. 8. The distribution of job execution times in
workloads (the horizontal axes have different the workloads (all the axes have different scales).
scales, and the vertical axes are in log scale).

workloads is presented in Figure 6. Figure 7 shows the distribution of task runtimes. Figure 8 shows
the distribution of job execution times T, in the workloads. Note, that the histogram of job execution
times shows the fotal execution time of a job which is the sum of all the job’s task runtimes. The job
will be running this amount of time if and only if all of its tasks are executed sequentially. However,
normally workflows have both parallel and sequential parts. Thus the job execution times reported in
Figure 8 should not be confused with the actual observed makespans T,,, of workflows running in a
parallel system.

For Workload 1, we use the original job execution time distribution from the Bharathi generator.
For Workload 2, we keep the same job structures as in Workload 1, but change the job execution times
using a two-stage hyper-Gamma distribution derived from the model presented in [38]. The shape
and scale parameters («, f§) for each Gamma distribution are set to (5.0, 323.73) and (45.0, 88.291),
respectively. Their proportions in the overall distribution are 0.7 and 0.3. Table 2 summarizes the
properties of both workloads.

5.2 Setup of the Private Cloud Deployment

To schedule and execute workflows, we use the experimental setup in Figure | (Section 2). The
KOALA scheduler is used for scheduling workflow tasks [20] on the DAS-4' cluster deployed at
TU Delft. Our cluster consists of 32 nodes interconnected through QDR InfiniBand with 8-core
2.4GHz CPU and 24GB of RAM each. As a cloud middleware, OpenNebula is used to manage
VM deployment, and configuration. The implementation and the VM images are available upon
request. The REST interface between the scheduler and general autoscalers in our architecture makes
it extendable and allows to use other autoscaling policies. The workflow-specific autoscalers are
implemented within KOALA, though other custom policies can also be added.

The execution environment for a single workflow consists of a single head VM and multiple
worker VMs. The head VM uses a single CPU core and 4GB of RAM, while each worker VM uses a
single core and 1GB of RAM. Tasks are then scheduled on the VMs. The workload generator with the
workflow runners run on a dedicated node. The workflow runner coordinates the workflow execution
by following the task placement commands from the scheduler. The runner is also responsible for
copying files (task executables, input and output files) to and from the VMs in the virtual cluster.
For data storage and transfer, we use a Network File System (NFS). This implies that if the head
VM and worker VM are located on the same physical node, the data transfer time between them is
negligible. In other cases, data transfer delays occur. The measured mean NFS write speed for 10
tests of transferring 1 GB is 280 MB/s. We use this value to calculate critical path lengths for the
SLR metric.

http://www.cs.vu.nl/das4
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Compared to job execution times, file transfer delays and the scheduling overheads are negligible.
All tasks write their intermediate results directly to the shared storage reducing data transfer delays
for all workflows. A task can run as soon as all of its dependencies are satisfied. The runner copies all
input files for a workflow to the virtual cluster before starting the execution. Thus, the impact from
file transfer delays between tasks on performance is negligible. Tasks are scheduled using greedy
backfilling as it has been shown to perform well when task execution times are unknown a priori [29].
During the experiment, only the autoscaler has access to the information about job execution times
and task runtimes. Note, that for all considered autoscalers, we do not perform any task preemptions.
If an autoscaler requires to stop a certain number of VMs, the scheduler only releases those VMs
which are idle. The scheduler first releases the VMs which are idle the longest.

5.3 Experiment Configuration

To configure the general autoscalers we use the average number of tasks a single resource (VM) is
able to process per autoscaling interval (hereafter called service rate). The autoscaling interval, or
the time between two autoscaling actions, is set to 30 seconds for all of our experiments.

We test with three different configurations in our experiments, where we change the value of
the service rate parameter or the VM provisioning latency. The service rate in a request-response
system is usually the average number of requests that can be served per VM. This parameter is either
estimated online, e.g., using an analytical model to relate response time, as the one used in Hist [52],
or offline [17, 24]. For a task-based workload, there are multiple options including using the mean
task service time, the median task service time, or something in between.

In the first configuration, we assume that a VM serves on average 1 task per autoscaling interval,
i.e., 2 tasks per minute. We derive this value by rounding the service rate calculated based on the
mean task runtimes to the nearest integer (Table 2). This service rate allows us to perform additional
comparison between general and workflow-specific autoscalers as the demand curves have the same
dimension. In the second configuration, we use the median task runtime of Workload 1 which gives
a service rate equal to 14 (also rounding to the nearest integer) tasks per autoscaling interval, i.e., 28
tasks per minute. The general autoscalers using the second configuration are marked with a star (%)
symbol. While in the first two configurations we guarantee that all the provisioned VMs are booted
at the moment when the autoscaler is invoked, in the third configuration the VM booting time of 45 s
exceeds the autoscaling interval of 30 s. This configuration is also used to test workflow-specific
autoscalers. The autoscalers using the third configuration are marked with a diamond (o).

For all the configurations and for both workloads the workload player periodically submits
workflows to KOALA to impose the average load on the system about 40%. The workflows submitted
to the system arrive according to a Poisson process. The mean inter-arrival interval is 117.77 s
which results into arrival rate of 30.57 jobs per hour. Thus, the minimal duration of each experiment
is approximately 6.5 h. If the autoscaler tends to under-provision resources or the provisioning
time in the system is rather large then the experiment can take longer. We choose this relatively
low utilization level on purpose to decrease the number of situations when the demand exceeds the
maximum possible supply ceiling. Additionally, as workflow scheduling is non-work-conserving the
system can saturate even at low utilizations. Thus, low utilization allows us to see better the dynamic
behavior of the autoscalers by minimizing the number of extreme cases.

We are aware that in computing clouds the job arrivals are often affected by the time of the day
and various external influences resulting in burstiness [21]. Even for a datacenter which serves
requests from all around the globe the intensity of job arrivals could vary as the distribution of world
population is not even across different time zones, etc. We leave the experiments with other job
arrival patterns to future work. However, the arrival of workflow tasks is non-Poissonian and depends
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au ao ay ao ty to k kK my
Type AS % % % % % % % % %
React 2 6 5 50 15 84 20 32 7
React® 6 5 13 40 32 64 21 32 6
Adapt 4 4 8 27 23 51 21 34 5
Hist 1 60 1 737 2 97 17 43 60
Reg 3 8 6 51 17 51 20 31 8
General ConPaaS 2 33 5 273 11 76 20 40 34
React* 0 19 o0 179 2 98 19 64 0
Adapt* 0 16 1 150 4 96 19 63 0
Hist* 0 25 1 463 5 95 20 60 1
Reg* 0 12 1 78 5 94 20 62 0
ConPaaS* 0 44 1 1092 1 98 21 45 7
Plan 3 4 7 24 20 43 20 32 5
WF-specific Plan® 7 3 16 17 35 33 20 34 4
Token 3 6 7 35 16 53 20 33 7
None No AS 0o 73 0 869 0O 100 17 43 73

Table 3. Calculated autoscaling metrics for the main set of experiments with Workload 1. The diamond
symbol (¢) marks the experiments where the VM booting time is longer than the autoscaling interval
and service rate parameter is set to 1.0. The star symbol (x) marks general autoscalers configured
with service rate 14.0. All the other general autoscalers are configured with service rate 1.0. Best
values in each column are highlighted in bold, except the No AS case.

on the workflow structure and on the distribution of task runtimes within a workflow. Thus, the
diversity of the workflow structures, workflow sizes, and task runtime distributions which we use,
allows us to suppose that our setup is representative. Furthermore, for the considered duration of the
experiment of approximately 6.5 h, we can simply claim that our emulated system serves requests
from multiple independent users.

5.4 Experimental Results

The main findings from our experiments are the following:

(1) Workflow-specific autoscalers perform slightly better than general-autoscalers but require
more detailed job information.

(2) General autoscalers show comparable performance but their parametrization is crucial.

(3) Autoscalers reduce the average number of used resources, but slow down the jobs.

(4) Although autoscalers tend to reduce the accounted resource runtime, the charged time can
easily be higher compared to not using autoscaling.

(5) Long VM booting times negatively affect the autoscalers’ performance, and mostly affect
small and medium job sizes.

(6) Over-provisioning could partially contribute for better fairness between different job sizes.

(7) Autoscalers with better autoscaling metrics show higher variability of deadline violations.

(8) No autoscaler outperforms all other autoscalers with all configurations and/or metrics.

5.4.1 Analysis of Elasticity. To show the trade-offs between the autoscalers, we use the metrics
described in Section 3. While calculating the system-oriented metrics, we exclude periods where
the demand exceeds 50 VMs, the total number of available VMs. Since system-oriented metrics are
normalized by time, this approach does not bias the results.

The aggregated metrics for all experiments are presented in Table 3, Table 4, and Table 5. Con-
sidering the cases where VMs are booting faster than the autoscaling interval, Table 3 shows that
the autoscalers under-provision between 1% (using Hist) and 8% (using Adapt) less resources from
the demand needs. Hist’s superior under-provisioning with respect to others comes at the cost of on
average provisioning 7 times the actual demand, compared to 24% over-provisioning for Plan.
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Type AS Se  Se(S) SeM) S.(L) SLR T v h c R e
frac.  frac. frac. frac.  frac. taskss/h VMs CPU-h CPU-h frac. frac.
React 123 124 1.20 .21 371 2,071 2389 3.30 36.68 2.02 0.19
React® 1.57 160 1.52 1.33 459 2,066 24.01 3.56 3338 1.87 0.21
Adapt 128 1.32 1.20 1.15 382 2,071 2286 3.22 48.14 2.00 0.15
Hist 1.05  1.05 1.04 1.02 317 2,076 44381 6.21 9.90 1.08 0.71
Reg 129 132 1.20 1.11 389 2,071 2442 336 38.08 198 0.18
General ConPaaS 1.18  1.22 1.07 1.06 35 2,071  34.50 4.72 41.28 142 0.17

React* 1732 20.69 8.76 406 4566 2,011 20.13 291 506 230 1.38
Adapt* 20.06 2325 1226 6.08 52774 2,026 2049 3.14 754 213 092

Hist* 1293 1530 7.00 324 3488 2,016 20.87 3.15 7.14 212 092
Reg* 25.57 30.04 1438 722 69.84 1,997 20.11 2.93 5.76 229 1.21
ConPaaS* 2.11  2.12 2.26 1.25 590 2,061 25.15 3.70 4120 1.81 0.17
Plan 127  1.29 1.23 .11 3.77 2,071 2334 351 4426 190 0.16
WEF-specific Plan® 148 154 1.35 1.15 4.3 2,066 22.13 3.38 38.04 198 0.18
Token 125 1.28 1.20 1.20  3.71 2,071 23.88 3.31 4634 2.02 0.15
None No AS 1.00  1.00 1.00 1.00  3.07 2,076 50.00 6.68 7.00 1.00 1.00

Table 4. Calculated user-oriented and cost-oriented metrics for the main set of experiments with
Workload 1. The diamond symbol (¢) marks the experiments where the VM booting time is longer
than the autoscaling interval and service rate parameter is set to 1.0. The star symbol (x) marks
general autoscalers configured with service rate 14.0. All the other general autoscalers are configured
with service rate 1.0. The metric S, as well presented for small (S), medium (M), and large (L) job
sizes. Best values in each column are highlighted in bold, except the No AS case.

Type AS ay ap ay ao tu to k kK my S Se(S) SeM) S, (L) T 14

Do B % % % % % % % frac. frac. frac. frac.  tasks/h VMs
React 2 7 4 36 17 81 21 32 7 1.11 1.08 1.19 1.21 1,905 22.33
Hist 1 46 1 338 5 94 19 41 46 1.05 1.03 1.10 1.16 1,905 40.82
WF-specific Plan 3 4 7 13 22 39 21 32 4 1.12 1.10 1.18 1.13 1,905 21.32
None NoAS 0 66 0 563 0 10019 41 66 1.00 1.00 1.00 1.00 1,910 50.00

Table 5. Calculated autoscaling and user-oriented metrics for the additional set of experiments with
Workload 2. The metric S, as well presented for small (S), medium (M), and large (L) job sizes. Best
values in each column are highlighted in bold, except the No AS case.

General

The React® and Plan® policies with longer booting VMs in Table 3 show slightly different results
compared to the runs with faster booting VMs. We picked only these two policies to have one
from each group of autoscalers. Both React® and Plan® tend to under-provision more when the VM
provisioning time is longer. The job slowdowns in Table 4 are also higher. From Figure 10 we can
clearly see that for (o) autoscalers the supply curve is always lagging behind the demand. Thus,
we can conclude that longer provisioning times decrease the number of available resources for the
workload. We can also notice that the average number of idle VMs decreases for React® and for
Plan® as the tasks more fully utilize provisioned VMs.

For the general policies configured with service rate 1.0 and for workflow-specific policies in
Table 4 and Table 5 job elastic slowdowns show low variability. We can conclude that the resources
either significantly over-provisioned (Hist and ConPaaS) or already provisioned resources are
underutilized (React, Adapt, Reg, Plan, and Token). The non-zero values of my metric in these cases
confirm our assumption.

5.4.2 The Influence of Different Workloads. The difference is also visible between the two
used workloads. While Workload 1 has the majority of short jobs, Workload 2 has a more equal
distribution of job execution times and is thus less bursty. Elastic job slowdowns in both tables
confirm this tendency. For Workload 2 they slightly increase (the Plan policy in Table 5 is an
exception) while going from small to large job sizes. We do not run Workload 2 with service rate
different from 1.0 as we expect that the trend will be the same as for Workload 1.
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Fig. 9. The average number of used VMs during the experiment and the average throughput degrada-
tion (compared with the no autoscaler case). All results are given for Workload 1.

The system-oriented metrics do not vary much between the workloads. For example, compare
React in Table 3 and Table 4 with React in Table 5. Only Hist over-provisions less while running
with Workload 2 as can be explained by lower burstiness of the workload.

5.4.3 The Dynamics of Autoscaling. Figure 10 shows the system dynamics for each autoscal-
ing policy while executing Workload 1. Some of the autoscalers have a tendency to over-provision
resources (Hist and ConPaaS). The other policies appear to be following the demand curve more or
less closely. Note, that the demand curve has different shape for each autoscaler as the autoscaling
properties affect the order in which workflow tasks become eligible.

The workflow-specific Plan policy follows the demand curve quite well and shows results similar
to general autoscalers React, Adapt, and Reg running with service rate of 1.0. However, if a policy
follows the demand too close that increases job slowdowns as seen in Table 4. This trade-off is
intuitive. The best policy when it comes to reducing slowdown is to always have more capacity than
needed as this will allow any task to run as soon as it becomes eligible.

5.4.4 The Influence of Service Rate Parameter on the Autoscaling Dynamics. The most
noticeable differences in the results are between general autoscalers running with service rate 1.0
and with service rate 14.0, the median service rate based on the mean task runtime. Figure 11 shows
general autoscalers running with the same Workload 1 as in Figure 10. The demand curves in these
two figures look very different, except for ConPaaS and ConPaaS*. In addition, the supply curves
do not follow the demand curves closely anymore. Although the service rate chosen is the median,
it does not reflect the temporal properties of the workload when it comes to the length of running
tasks. If longer jobs occur in parallel, a queue of tasks will build up resulting in enormous system
slowdowns. This is clear from Table 4 where the slowdown between the two service rates is 10 to
15 times larger when using a larger service rate. The k’ metric also increases for service rate 14.0
as the autoscalers need to estimate more while computing the next predicted supply value and thus
the curves are not so well synchronized. On the one hand, using a larger service rate significantly
reduces the average charged CPU hours, potentially reducing the costs of operations for a user to
almost one sixths of running with lower service rate.

5.4.5 The Trade-off Between Resource Usage and Performance. Here, we study the
influence of the number of used VMs on the throughput. We evaluate only two user-oriented metrics:
the throughput degradation in tasks per hour compared with the no autoscaler case and the number of
used resources (VMs). The values of these metrics are plotted in Figure 9. For example, for React
the throughput degradation of —24 tasks per hour contributes only to 1.16% of the hourly throughput.
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Fig. 10. The experimental dynamics of five general autoscaling policies (Workload 1, service rate 1.0)
and two workflow-specific policies during the cropped period of 7,000 s. The horizontal dashed line
indicates the resource limit of 50 VMs. The diamond symbol (¢) marks the experiments where the VM
booting time is longer than the autoscaling interval.

In Figure 9, we can see that T is definitely affected by the V. The variation of T depends on the
properties of the workload such as task durations, the total number of tasks in the workload, and the
number of tasks per job.

From these results we can conclude the following. Hist over-provisions quite a lot and achieves
low throughput degradation. ConPaaS also over-provisions but the throughput is not much affected
because its supply curve is very volatile. ConPaaS* over-provisions less than ConPaaS as it “supposes’
that the system needs less active VMs to process the same workload. Accordingly, the throughput
degradation for ConPaaS™ is also bigger. Reg, React, and Adapt configured with service rate 1.0
as well as Token and Plan show almost similar results. Plan and Token policies show good balance
between the number of used VMs and the throughput. Parametrization with the service rate of 14.0
(based on the median task runtime) decreases the performance by allocating less VMs. We can also
see that longer booting VMs (React® and Plan®) negatively affect the throughput.

]

5.5 Performance of Enforced Deadline-based SLAs

In this section, we analyze how enforced deadline-based SLAs perform for the considered autoscalers.
We use Workload 1 and configure the general autoscalers with service rate 1.0. We look at two cases.
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Fig. 11. The experimental dynamics of all the five considered general autoscaling policies (Workload 1,
service rate 14.0) during the cropped interval of 7,000 s. The horizontal dashed line indicates the
resource limit of 50 VMs.
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Fig. 12. The deadline proximity ratio for the three types of enforced per-workload deadlines (Work-
load 1).

In the first case, the deadlines for each workflow are set on per-workload basis, in the second case
the deadlines for each workflow are calculated individually, thus set on per-workflow basis. In both
cases, we use response times of workflows in a system without an autoscaler as the reference.

In the first case, for all the workflows we assign the same deadline which is based on the statistical
characteristics of the whole workload. This approach imitates a situation where only high level
statistics of the workload profile are available for calculating the deadlines. Although, in our case
we use the whole workload, in other situations the size of the observed period (or the number of
considered workflows) could be different and limited by the practicability, e.g., when the execution
statistics are not available a priori and should be collected automatically on-the-fly [14]. We use
three scenarios to assign per-workload based deadlines:

(1) The longest response time of a workflow in the system without an autoscaler (1,247 s).
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(2) The mean response time of workflows in the system without an autoscaler (459 s).
(3) The median response time of workflows in the system without an autoscaler (295 s).

Figure 12a shows deadline proximity ratios for all the three scenarios of enforced per-workload
deadlines. Figure 12b shows the variability of deadline proximity ratios for small, medium, and large
workflows for two selected autoscalers: React and Plan.

In the second case, we use per-workflow deadlines. Each workflow is assigned with a unique
deadline which is equal to its response time in a system without an autoscaler. We vary the per-
workflow deadlines by multiplying them by a certain error factor which we select from the following
list of values [0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2, 1.3]. Note, for the error factor 1.0 the deadline
proximity ratio coincides with the elastic slowdown. By altering the deadlines, we can observe how
the incorrectly set deadlines, due to inaccuracies in estimation methods [12, 21], affect deadline
violations.

Figure 13 shows the variability of deadline proximity ratios for all the workflows in Workload 1.
Figure 14 shows the variability of deadline proximity ratios between three considered groups of
workflow sizes for React and Plan policies.

Varying per-workload deadlines using the similar approach as for per-workflow deadlines does not
show significant difference in the results. Interestingly, Figure 12a shows low variability between
different autoscalers within the same deadline type. The main reason is that the majority of jobs
in Workload 1 are rather short. Thus, when the per-workload deadline is applied to each separate
workflow, it leaves enough free space to allow the workflow to meet its deadline (despite the possible
negative effects of elastic slowdown). Comparing different scenarios of per-workload deadlines, we
can definitely see that the per-workload deadline which is based on the longest response time, allows
almost all workflows to finish before the deadline. The mean-based per-workload deadline also shows
good results since mean deadline violation ratio is very close to 1. The median-based per-workload
deadline is not the best solution as it increases deadline violations, shifts median deadline proximity
ratio up to 1 and leads to higher variability in the deadline violations.

Comparing the deadline violations between React and Plan autoscalers in Figure 12b we can see
that for the same job sizes, e.g., React (S) and Plan (S) deadline proximity ratios are almost identical.
We can conclude that for per-workload deadlines the influence of autoscalers is less pronounced
because each workflow has enough time to meet the deadline even despite the elastic slowdown.
The general trend between different scenarios in Figure 12b is similar to Figure 12a, i.e., longest
deadline scenario shows the best results and Median the worst. Table 6 additionally shows numerical
variability characteristics for the selected per-workload and per-workflow scenarios, also for (¢) and
(%) autoscaler configurations.

Intuitively, the further the deadline, the lower the deadline violation ratio. Figure 13 confirms
this proposition and indicates how varying per-workflow deadlines affects the deadline proximity
ratio. Notably, the considered autoscalers show different variability in deadline proximity ratios.
Comparing error factors 0.8 and 1.3, the variability increases when more deadlines are violated.
However, the difference in variability of deadline proximity ratios between the autoscalers stays
stable. For example, we can see that for all the error factors Adapt stably shows slightly higher
variability in deadline violations and shows comparable to Reg mean deadline proximity ratios. Hist
and ConPaa$S which over-provision more exhibit better deadline proximity ratios.

Comparing Figure 14 with Figure 12b we can notice that with per-workload deadlines more
medium and large jobs do not meet deadlines while with per-workflow deadlines more smaller
jobs do not meet their deadlines. This is due to the method for calculating per-workflow deadlines.
Workload 1 has the majority of small workflows. Smaller workflows get smaller “safety margin”
after multiplying their response time in a system without an autoscaler by the error factor.
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S D, D,

Type AS ¢ per-workload, mean scenario | per-workflow, err. factor 1.0
o Y1 Y2 mean o 2 Y2 mean o 2 Y2

React 042 293 913 1.06 0.77 063 -079 123 042 293 9.3

React® 1.12 3.65 1485 1.17 0.77 056 08 157 1.12 3.65 14.85

Adapt 055 3.65 16.14 1.08 0.78 0.63 -0.77 128 055 3.65 16.14

Hist 014 42 206 1.01 077 062 -082 1.05 014 42 206

Reg 059 33 11.04 1.08 077 061 -081 129 059 33 11.04

General ConPaaS 049 519 3185 106 08 066 -0.75 1.18 049 519 31.85

React* 3475 281 6.76 4 1.56 0.08 -0.77 1732 3475 281 6.76

Adapt* 25.12 264 575 465 148 -06 0.18 2006 38.67 251 492

Hist* 38.67 251 492 323 1.18 -045 -0.15 1293 25.12 264 5.5

Reg* 4591 213 299 546 132 0.17 -043 2557 4591 213 299

ConPaaS* 343 747 6258 127 079 044 -089 211 343 747 6258

Plan 047 284 7.82 108 0.78 0.63 -0.79 127 047 284 782

WF-specific Plan® 096 5.05 3626 1.15 0.78 058 -0.77 148 096 5.05 36.26

Token 044 3.04 1128 1.08 0.79 0.67 -0.69 125 044 3.04 11.28
None No AS 0 0 -3 1 0.77 0.64 -0.81 1 0 0 -3

Table 6. Additional variability characteristics of S. and D,, metrics for per-workload and per-workflow
cases for Workload 1. Best values in each column are highlighted in bold, except the No AS case.
o is standard deviation, y; is skewness and y; is kurtosis.
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Fig. 13. The effect of changing enforced per-workflow deadlines on the deadline proximity ratio (for all

workflows in Workload 1).
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Fig. 14. The effect of changing enforced per-workflow deadlines on the deadline proximity ratio for
React and Plan autoscalers plotted separately for (S) small, (M) medium, and (L) large workflow sizes
in Workload 1.

6 ANALYSIS OF PERFORMANCE VARIABILITY

We analyze in more detail the performance variability of user metrics and focus only on Workload 1
since Workload 2 does not show significant differences in the results.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems



An Experimental Performance Evaluation of Autoscalers for Complex Workflows 23

e e
Adapt }— B

Hist ‘*

Reg —e

ConPaaS B

Plan HOe

Plan® T e——

Token *—

CoPas | e — J J

o

—
[N
w
W~

ot
(=2}

React* >—‘ T

Adapt*

<
Hist* |{ETm——
O X

Reg*

0 50 100 150 200
Se
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React T O T T [ T O T ] r T T o X
React® HT > 3 H — . 3 A
Adapt HH>A B O 1 - X A
Hist HK - K 1 - = —
Reg < + [im 2] . o [V QR
ConPaaS >4 - HE— g - (53] -
Plan HIb< - H _ L o«
Plan® T p— - HL—¥— . - |H
Token HL pé— - {4 i - WX
ConPaaS* ) H T F———— 5 ) HIT—1F—K L ) ) | HI A

0.0 0.6 1.2 1.8 2.4 0.0 0.5 1.0 1.5 20 0.0 0.3 0.6 0.9 1.2
React* [HCIT—F+— ' X | ' Frer——x 7 "1 F - - ~
Adapt* | T 3— X F——T +— X . B —1— X .
Hist* |HI 33— X iy — ] . - HR— 1
Reg* | m—M/—TF+——— ) X, P T ¢ A B T3, X | A

0 8 16 24 32 0 4 8 12 16 0 2 4 6 8

S.(9) S, (M) 5. (L)

Fig. 16. Variability of elastic slowdowns for (S) small, (M) medium, and (L) large workflow sizes in
Workload 1.

6.1 Overall

Figure 15 shows variability of elastic slowdowns for all the workflows in Workload 1. From the shape
of the violin plots we can conclude that all the distributions are long-tailed. For autoscalers configured
with service rate 1.0 the distributions are unimodal, and for autoscalers React*, Adapt*, Hist*, and
Reg* the distributions have second small peak on the right side of the S, axis. Interestingly, heavy
over-provisioning by Hist decreases elastic slowdown variability. Policies configured with service
rate 14.0 show significantly higher variability and for this reason are plotted separately. ConPaa$S,
which over-provisions 2-3 times less than Hist, but still more than all the other autoscalers within the
same configuration, shows variability comparable to e.g., React and Token. Increased VM booting
time not only increases the mean value of the elastic slowdown but also doubles the variability. Adapt
and Reg, while showing almost identical mean slowdowns, differ in the values which are below 1.
Reg speeds up more workflows than Adapt does. The reason is probably related to the smoother
downturns in the supply curve after demand decreases (Figure 10).

Additionally, in Table 6 we report numerical variability characteristics for all the policies with
Workload 1: standard deviation (o), skewness (y;), and kurtosis (y;) for S, and for D, for both
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deadline cases. For per-workload D, we report only values for the scenario when the per-workload
deadline is set based on the mean response time in a system without an autoscaler (Mean scenario,
Section 5.5). For per-workflow D, we present the situation when the error factor is 1.0. For both D,
cases we additionally report their mean values for all the policies with Workload 1. Note, S, means
are reported in Table 4. Skewness allows us to see how symmetric the distribution is. The sign of
skewness shows in which direction the distribution is tilted. Comparing slowdowns in Table 6 with
Figure 15, we can observe that positive skewness basically means that the tail of the distribution is
located on the right from its mean. Higher kurtosis shows that the distribution has infrequent extreme
outliers. Negative kurtosis means that the distribution is more “flat” and has “thinner tails”, e.g., a
uniform distribution.

6.2 Performance Variability per Workflow Size

Figure 16 depicts variability of elastic slowdowns per size group for (S) small, (M) medium, and (L)
large workflows in Workload 1. We do not show the distributions in Figure 16 as it is long-tailed and
similar to Figure 15. To better show the interquartile ranges we do not plot the outliers.

For all the autoscalers configured with service rate 1.0 large workflows show the lowest elastic
slowdown variability, while small workflows suffer more. This trend is similar to the differences in
deadline violation ratios between the same groups of job sizes in Figure 12b and Figure 14.

For longer booting VMs (o) the variability of elastic slowdowns for large jobs is comparable to
similar configurations with shorter VM booting times. Small- and medium-sized jobs are more
affected by the longer booting VMs. General autoscalers with service rate 14.0 (x) show much worse
results and have many outliers which shift the mean values to the right. This confirms the importance
of look into the variability of elastic slowdowns, especially when comparing the autoscalers.

7 AUTOSCALER CONFIGURATION AND CHARGING MODEL

Configuring autoscalers in public clouds is key to cost savings. Understanding the pricing model and
how an autoscaler can affect the total costs is important. To give an example, we compare accounted
costs, where the actual resource usage is paid for, and hourly-charged costs having a constant hourly,
fixed-price scheme, e.g., like the one used by Amazon AWS for on-demand instances. Figure 17
shows accounted cost for each autoscaler and Figure 18 shows charged cost for each autoscaler.

Besides average accounted and charged cost per VM, we analyze the charged speedup C and
runtime speedup R compared to the scenario without autoscaling (see Table 4). While comparing
average accounted CPU hours per VM h of the different autoscaler policies from Figure 17, it can be
concluded that each autoscaling policy reduces the average accounted CPU hours per VM, i.e., the
autoscalers e.g., React, Adapt, Reg, Plan, and Token have values between 3 and 4 CPU-h, whereas
the no autoscaling scenario has 6.68 CPU-h. This result is more clear when we compute R. Here, the
autoscaler Token and React use 2.02 times less VMs compared to the scenario where all VMs are
running throughout the whole experiment. As the (x) autoscalers adapt the system based on another
resource demand, these autoscalers use less VMs than the others. Indeed, the achieved user metrics
are worse compared to the other autoscalers.

Following the hourly pricing scheme, where the autoscalers start and stop VMs with no regard to
the per-hour billing model, all autoscalers use more average charged CPU hours per VM C than the
no autoscaling scenario (7 CPU-h), see Figure 18 or Table 4. This shows the danger of misconfiguring
an autoscaler on a public cloud. One can end up paying between 50% to 600% more than when not
using an autoscaler at all.
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Fig. 17. Accounted cost in CPU-hours for all the considered autoscalers running Workload 1. For
each policy, per VM costs are displayed with a slight random horizontal shift to avoid excessive
superimposing.
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Fig. 18. Charged cost in CPU-hours for the autoscalers running Workload 1. For each policy, per VM
costs are displayed with a slight random horizontal shift to avoid excessive superimposing.

8 WHICH POLICY IS THE BEST?

Considering all the computed metrics and all the autoscalers, there are many trade-offs when picking
an autoscaler. Comparing for example only the average number of virtual machines V and average
throughput T metrics could be insufficient. Definitely, there is no single best and the final choice of
a policy depends on many factors: application choice, optimization goals, etc. In this section, we
try to show some possible procedures to allow the comparison of autoscalers in such a multilateral
evaluation. For all the assessments presented in this section we use the set of experiments with
Workload 1. To include all the computed metrics into consideration, we utilize two ranking methods
based on pairwise and fractional difference comparisons. Additionally, we aggregate elasticity and
user metrics to scores normalized to a reference as done in benchmarking contexts.

8.1 Pairwise Comparison

In this section, we rank the autoscalers using the pairwise comparison method [15]. In this method,
for each algorithm we pairwise compare the value of each metric with the value of the same metric
of all the other autoscalers. When a metric’s smaller value is better, for a pair of autoscalers A and B,
autoscaler A accumulates one point if the value of this metric is lower than the value for autoscaler
B. In case when bigger is better, autoscaler B gets the point. If both values are equal then both
autoscalers get half point each. This method provides some ranking of the autoscalers, but its results
do not fully capture the trade-offs as an autoscaler can get a point for being marginally better than
another autoscaler in one metric, while being considerably worse than all of them in another metric.

We consider system metrics (ay, ao), (tu, to), (k, k’), and user metrics S., the standard deviation
of S, and h. T and D, are excluded since they correlate with S.. We do not consider ay and ao,
as well as my due to redundancy with the selected accuracy metrics. The usage of h allows us to
exclude V from the consideration. For all the metrics smaller value is better. The results of the
comparison are given in Table 7. The bigger the number of points the better. The maximal number
of points which each autoscaler can ever obtain is limited by the product of the number of considered
metrics and the number of compared autoscalers.
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Pairwise Fractional Elasticity User Overall

AS : =

points frac. i u; 0;
React 79.5 2.46 2.20 1.28 1.68
React® 49 5.30 1.99 1.09 1.47
Adapt 63.5 3.5 2.38 1.27 1.74
Hist 69.5 2.83 1.07 1.01 1.04
Reg 69 2.89 2.26 1.24 1.67
ConPaaS 61 3.12 1.34 1.10 1.21
React* 59 30.45 1.41 0.36 0.72
Adapt* 60 23.22 1.49 0.33 0.7
Hist* 53.5 33.62 1.3 04 0.73
Reg* 54.5 40.28 1.65 0.3 0.7
ConPaaS* 44 4.69 1.15 0.93 1.03
Plan 75 2.96 2.67 1.22 1.81
Plan® 61 5.42 2.28 1.16 1.62
Token 74 2.6 2.37 1.27 1.74
No AS 72.5 2.89 1 1 1

Table 7. The pairwise and fractional comparison, the aggregated elasticity and user metrics. The
winners in each category (except No AS) are highlighted in bold.

8.2 Fractional Difference Comparison

In this section, we rank the autoscalers using the fractional difference method comparing all the
autoscalers with an ideal case. For ideal case, we construct an empirical ideal system that achieves the
best performance for all the metrics we consider. Note, this system does not exist in practice. Thus,
the ideal system is a system which compiles all the optimal values for the considered metrics (here
we use the same metrics as for Pairwise Comparison in Section 8.1), including the No Autoscaler
case. For each metric m;, we compute its best value b; which is either minimum or maximum value
from the set of metric’s values, depending on the metric (e.g., among our metrics only for T the
biggest value is the best). For each autoscaler the score p for the metric j is computed as following:

Z |m; — b
max(b;, €)’
where M is the total number of considered metrlcs, and ¢ > 0, which is here set to ¢ = 1. The final
score of an autoscaler is the average of all the individual p; scores. The final score shows the fraction

by which the autoscaler differs from the empirically established ideal system. Thus, the smaller the
final score the better. The results of the comparison are given in Table 7.

8.3 Elasticity and User Metrics Scores

In this section, we aggregate elasticity and user metrics to scores as proposed by Fleming et al. [23].
As commonly done in the benchmarking domain, we select a baseline as reference to compute
speedup ratios and in a second step compute the averages of the speedups using an unweighted
geometric mean. We choose the metric results with no active autoscaler as baseline. The unitless
scores allow for a consisted ranking of autoscalers with 1 as reference value. The larger the score,
the better the rating. The scoring could be extended by user-defined weights.

For each autoscaler i we group the set of elasticity metrics based on the covered aspects into
three groups: (I) accuracy as a; = ay,; + ao,;, (II) wrong provisioning timeshare t; = ty ; + to,i,
and (III) instability x; = k; + k;. For the elasticity scores, we do not consider ay and ap, and my
metrics to avoid redundancy in elasticity aspects. The user score comprises the average runtime of
VM instances h; and the elastic slowdown Se,i as speedup ratios for each autoscaler i. The average
throughput T is not considered as it is inversely dependent on the elastic slowdown S, .

The elasticity scores s; and user scores u; are computed with respect to the baseline No Autoscaler
scenario b for each autoscaler i. The overall score o; is the geometric mean of elasticity scores s, and
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The resulting ranking is presented in Table 7. Using the described metric aggregation approach
and concerning the elasticity s; and overall o; scores, Plan outperforms the general autoscalers. The
React policy shows the best results from a user perspective in u;, while our Token policy and the
general Adapt policy follow React with a small score difference of 0.01. Hist and ConPaaS perform
slightly better than a system without an autoscaler in this context. Strong impact on the autoscalers
has the service rate parameter (%), a smaller impact can be observed for the experiments with longer
provisioning time (o).

user SCores u.:

9 THREATS TO VALIDITY

The limitations of the study are mainly expressed in the constrained number of considered job
types and autoscalers. Improvements can be achieved by adding extra workloads with different
characteristics to ideally consider wider spectrum of major job types that benefit from autoscaling.
For example, data analytics workflows, streaming workflow applications, and workflows requiring
quick reaction time [54]. Additionally, it is possible to report the job slowdown per workflow type.
To make the study more applicable to cloud environments, one can extend the set of workflow-related
autoscalers with algorithms which consider job deadlines and costs [13, 41].

One interesting aspect is the possible interpretations of the metric values. While our metrics are
application-agnostic, their interpretation is not. They can be viewed as raw metrics which, in a proper
service-level agreement, can be assigned with certain thresholds and interpretation.

The experimental setup used in this article could also be improved. Despite the fact that our private
OpenNebula environment is rather representative, the number of concurrent users in Amazon EC2
and Microsoft Azure is much higher than in our case. Thus, it would be beneficial to consider public
clouds to capture possible performance effects which could arise there. In addition, avoiding interval-
based autoscaling in real setups could improve the quality of predictions by reacting to changes in the
demand more quickly. We parametrize general autoscalers (computed service rate parameter) using
the statistical properties of the whole workload as we have an access to this information. However,
in the case when the workload properties are unknown different demand estimation methods can
be used [48]. We do not analyze CPU utilization and RAM usage as for the considered workloads
CPU and RAM information has low value as we primarily assign one task per VM and focus on
performance characteristics from the perspective of job execution times.

The fractional difference comparison does not have upper bound for its scores. The comparison
method can be improved by, for example, normalizing the set of values for the single metric by the
maximum value from that set, but this could make the results incomparable with results obtained in
other environments in the future. Another issue is related to the selection of metrics for tournaments
to have a proper balance between autoscaling-, user-, and cost-oriented metrics within a single
competition. The same stands for using the weights for prioritizing the considered metrics. The
choice of metrics and weights solely depends on the goals which should be achieved. For this reason,
since we are performing general comparison of divers autoscalers and we are not inclined towards
certain metrics, we use multiple types of tournaments. It depends on the reader’s preferences how
the metrics and tournament results will be interpreted.

10 RELATED WORK

Our work provides the first comprehensive comparative experimental study of autoscaling for
workflows. We are unaware of any similar study in terms of the methodology taken, the number
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of policies compared, the number of performance metrics, and the size of experiments run. The
importance of comparing different autoscaling algorithms has been recently discussed in the literature
but mostly from a theoretical point of view [37, 45]. One exception is a tool that tries to utilize the
differences between different autoscaling policies to achieve better QoS for customers by selecting
a policy based on the workload [4]. That work, nevertheless, does not include any experimental
comparison or deep analysis between the performance of the autoscalers as we do in our work.

The problem of scaling workflows has been studied in the literature with a focus on designing new
autoscaling policies. Malawski et al. [39] discuss the scheduling problem of ensembles of scientific
workflows in clouds while considering cost- and deadline-constraints. Mao et al. [42] optimize the
performance of cloud workflows within budget constraints. They propose two algorithms, namely,
scheduling-first and scaling-first. Cushing et al. [13] deal with prediction-based autoscaling of
scientific data-centric workflows. Buyn et al. [9] try to achieve cost-optimized provisioning of elastic
resources for workflow applications. They use the Balanced Time Scheduling (BTS) algorithm to
calculate the minimal required number of resources which will allow to execute the workflow within a
given deadline. Dornemann et al. [19] consider scheduling of Business Process Execution Language
(BPEL) workflows in Amazon’s elastic computing cloud. Their main findings include the methods
to automatically schedule workflow tasks to underutilized hosts and to provide additional hosts in
peak situations. The proposed load balancer uses the overall system load to take scaling decisions in
contrast to other systems where the throughput is more important. Heinis et al. [25] propose a design
and evaluate the performance of a workflow execution engine with self-tuning capabilities.

11 CONCLUSION AND ONGOING WORK

In this work, we propose a comprehensive method for comparing autoscalers when running workflow-
based workloads in cloud environments. Our method includes a model for elastic cloud platforms,
a set of over 15 relevant metrics for evaluating autoscalers, a taxonomy and survey of exemplary
general and workflow-specific autoscalers, and experimental and analysis steps to conduct the
comparison. Using our method, we evaluate 7 general and workflow-specific autoscalers, and several
autoscaler variants, when used to control the capacity for a workflow-based workload running in a
realistic cloud environment. Our results across the diverse metrics highlight the trade-offs of using
the different autoscalers. At the best of our knowledge, the efficiency of general autoscalers was
previously unknown for workflows. We show that although workflow-specific autoscalers have the
privilege of knowing the workflow structure in advance, it is possible for properly configured general
autoscalers to achieve similar performance. Our results demonstrate that a correct parametrization
of general autoscalers is very important. In our case, the service rate parameter is not the only one
to affect the performance of general autoscalers. In particular, VM booting times and the choice of
the autoscaling interval are also crucial, as many general autoscalers are designed to stably operate
when VM booting times do not exceed a certain threshold. Finding optimal values for parameters
could be even impossible (as they could be implementation-related) and will probably require more
experiments. Remarkably, our workflow-specific Plan autoscaler shows comparable results to the
general React autoscaler and wins 2 out of 5 competitions while providing a good balance between
operational costs and performance. The correct choice of an autoscaler is important but significantly
depends on the application type. Thus, no single universal solution exists. In such a situation,
the multilateral ranking methods which we use gain more importance. For the future, we plan to
extend this work to consider other application models, such as request-response services and media
streaming workloads, use other workflow arrival patterns, introduce deadline- and cost-awareness
to workflow-specific autoscalers, and to conduct through the SPEC Research Group vendor-driven
experiments.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems



An Experimental Performance Evaluation of Autoscalers for Complex Workflows 29

12

ACKNOWLEDGMENTS

We thank Laurens Versluis and Mihai Neacsu from Vrije Universiteit Amsterdam for their thorough
validation of our autoscalers, and anonymous reviewers for their helpful comments.

REFERENCES

[1]
[2]
[3]
[4]
[5]

[6

=

[7]

[8]
[9

[10
(11]

[12]
[13
[14]

[15]
[16

[17

[18

[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

(28]

B. Abbott and others. 2008. Search for Gravitational Waves from Binary Inspirals in S3 and S4 LIGO Data. Physical
Review D 77 (2008), 062002.

Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H. J. Epema. 2012. Cost-Driven Scheduling of Grid Workflows
using Partial Critical Paths. JEEE TPDS 23 (2012), 1400-1414.

Ahmed Ali-Eldin and others. 2012. Efficient Provisioning of Bursty Scientific Workloads on the Cloud using Adaptive
Elasticity Control. In ScienceCloud Workshop.

Ahmed Ali-Eldin and others. 2013. Workload Classification for Efficient Auto-Scaling of Cloud Resources. Technical
Report. Umea University, Lund University.

Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. 2012. An Adaptive Hybrid Elasticity Controller for Cloud
Infrastructures. In IEEE NOMS.

Guillermo A. Alvarez and others. 2001. Minerva: An Automated Resource Provisioning Tool for Large-scale Storage
Systems. ACM TOCS 19 (2001), 483-518.

Hamid Arabnejad and Jorge Barbosa. 2012. Fairness Resource Sharing for Dynamic Workflow Scheduling on Heteroge-
neous Systems. In /EEE ISPA.

Shishir Bharathi and others. 2008. Characterization of Scientific Workflows. In WORKS Workshop.

Eun-Kyu Byun and others. 2011. Cost Optimized Provisioning of Elastic Resources for Application Workflows. FGCS
27 (2011), 1011-1026.

Jeffrey S Chase and others. 2001. Managing Energy and Server Resources in Hosting Centers. In ACM SIGOPS.

T.C. Chieu and others. 2009. Dynamic Scaling of Web Applications in a Virtualized Cloud Computing Environment. In
IEEE ICEBE.

Artem M. Chirkin and others. 2017. Execution Time Estimation for Workflow Scheduling. FGCS (2017).

Reginald Cushing and others. 2011. Prediction-Based Auto-Scaling of Scientific Workflows. In MGC Workshop.
Rafael Ferreira Da Silva and others. 2015. Online Task Resource Consumption Prediction for Scientific Workflows.
Parallel Processing Letters 25 (2015).

Herbert A. David. 1987. Ranking from Unbalanced Paired-Comparison Data. Biometrika 74 (1987), 432-436.

Elias De Coninck and others. 2016. Dynamic Auto-Scaling and Scheduling of Deadline Constrained Service Workloads
on TaaS Clouds. JSS 118 (2016), 101-114.

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient and QoS-Aware Cluster Management.
ACM SIGPLAN Notices 49 (2014), 127-144.

Qiu Dishan and others. 2013. A Dynamic Scheduling Method of Earth-observing Satellites by Employing Rolling
Horizon Strategy. The Scientific World Journal (2013).

Tim Dornemann, Ernst Juhnke, and Bernd Freisleben. 2009. On-Demand Resource Provisioning for BPEL Workflows
using Amazon’s Elastic Compute Cloud. In IEEE/ACM CCGrid.

Lipu Fei and others. 2014. KOALA-C: A Task Allocator for Integrated Multicluster and Multicloud Environments. In
IEEE Cluster.

Dror G. Feitelson. 2015. Workload Modeling for Computer Systems Performance Evaluation. Cambridge University
Press.

Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. 2014. Autoscaling Web Applications in Heterogeneous
Cloud Infrastructures. In IEEE IC2E.

Philip J. Fleming and John J. Wallace. 1986. How Not to Lie with Statistics: The Correct Way to Summarize Benchmark
Results. ACM Communications 29 (1986), 218-221.

Anshul Gandhi and others. 2012. Autoscale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers.
ACM TOCS 30 (2012).

Thomas Heinis and others. 2005. Design and Evaluation of an Autonomic Workflow Engine. In /EEE ICAC.

Nikolas Herbst and others. 2016. Ready for Rain? A View from SPEC Research on the Future of Cloud Metrics.
Technical Report. SPEC Research Group, Cloud Working Group.

Nikolas Herbst, Samuel Kounev, and Ralf Reussner. 2013. Elasticity in Cloud Computing: What it is, and What it is
Not. In ICAC.

Alexey Ilyushkin and others. 2017. An Experimental Performance Evaluation of Autoscaling Policies for Complex
Workflows. In ACM/SPEC ICPE.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems



30

[29]
[30]
[31]
(32]
(33]
[34]
(35]

[36
[37]

[38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]
[47]

(48]
[49]
[50]
[51]
[52]
[53]
[54]

[55]

A. llyushkin et al.

Alexey Ilyushkin, Bogdan Ghit, and Dick Epema. 2015. Scheduling Workloads of Workflows with Unknown Task
Runtimes. In IEEE/ACM CCGrid.

Alexandru Iosup and others. 2011. Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE TPDPS (2011).

Waheed Igbal and others. 2011. Adaptive Resource Provisioning for Read Intensive Multi-Tier Applications in the
Cloud. FGCS 27 (2011), 871-879.

Mohammad Islam and others. 2012. Oozie: Towards a Scalable Workflow Management System for Hadoop. In ACM
SIGMOD Workshop SWEET.

Joseph C. Jacob and others. 2010. Montage: An Astronomical Image Mosaicking Toolkit. Astrophysics Source Code
Library 1 (2010), 10036.

Gideon Juve and others. 2017. Synthetic Workflow Generators. https://github.com/pegasus-isi/WorkflowGenerator.
(2017).

Jonathan Livny. 2012. Bioinformatic Discovery of Bacterial Regulatory RNAs Using SIPHT. In Bacterial Regulatory
RNA.

Dionysios Logothetis and others. 2010. Stateful Bulk Processing for Incremental Analytics. In SoCC.

Tania Lorido-Botran and others. 2014. A Review of Auto-Scaling Techniques for Elastic Applications in Cloud
Environments. Journal of Grid Computing 12 (2014), 559-592.

Uri Lublin and Dror G Feitelson. 2003. The Workload on Parallel Supercomputers: Modeling the Characteristics of
Rigid Jobs. JPDC 63 (2003), 1105-1122.

Maciej Malawski and others. 2012. Cost-and Deadline-Constrained Provisioning for Scientific Workflow Ensembles in
TaaS Clouds. In ACM/IEEE Supercomputing.

Maciej Malawski and others. 2015. Scheduling Multilevel Deadline-constrained Scientific Workflows on Clouds based
on Cost Optimization. Scientific Programming (2015).

Ming Mao and Marty Humphrey. 2011. Auto-Scaling to Minimize Cost and Meet Application Deadlines in Cloud
Workflows. In ACM/IEEE Supercomputing.

Ming Mao and Marty Humphrey. 2013. Scaling and Scheduling to Maximize Application Performance within Budget
Constraints in Cloud Workflows. In IEEE IPDPS.

Athanasios Naskos and others. 2015. Dependable Horizontal Scaling Based on Probabilistic Model Checking. In
IEEE/ACM CCGrid.

Simon Ostermann and others. 2008. On the Characteristics of Grid Workflows. In CoreGRID Integration Workshop.
A. V. Papadopoulos and others. 2016. PEAS: A Performance Evaluation Framework for Auto-Scaling Strategies in
Cloud Applications. Tail Response Time Modeling and Control for Interactive Cloud Services. ACM TOMPECS (2016).
Mayank Pundir and others. 2016. Supporting On-demand Elasticity in Distributed Graph Processing. In /EEE IC2E.
Mustafizur Rahman, Xiaorong Li, and Henry Palit. 2011. Hybrid Heuristic for Scheduling Data Analytics Workflow
Applications in Hybrid Cloud Environment. In /[EEE IPDPSW.

Simon Spinner and others. 2015. Evaluating Approaches to Resource Demand Estimation. Performance Evaluation 92
(2015), 51 -71.

Domenico Talia. 2013. Toward Cloud-based Big-data Analytics. IEEE Computer Science (2013), 98-101.

Ian J. Taylor and others. 2014. Workflows for e-Science: Scientific Workflows for Grids. Springer.

Sachin  Tilloo.  2017. Running  Arbitrary  DAG-based =~ Workflows in  the  Cloud.
http://www.ebaytechblog.com/2016/04/05/running-arbitrary-dag-based-workflows-in-the-cloud. (2017).

Bhuvan Urgaonkar and others. 2005. An Analytical Model for Multi-Tier Internet Services and its Applications. In
ACM SIGMETRICS.

Bhuvan Urgaonkar and others. 2008. Agile Dynamic Provisioning of Multi-Tier Internet Applications. ACM TAAS 3
(2008), 1:1-1:39.

Naga Vydyanathan and others. 2008. A Duplication Based Algorithm for Optimizing Latency under Throughput
Constraints for Streaming Workflows. In ICPP.

Katherine Yelick and others. 2011. The Magellan report on cloud computing for science. US Department of Energy,
Washington DC, USA, Tech. Rep (2011).

Received June 2017

ACM Transactions on Modeling and Performance Evaluation of Computing Systems



	Abstract
	1 Introduction
	2 A Model for Elastic Cloud Platforms
	2.1 Requirements
	2.2 Architecture Overview
	2.3 Workflows as Main Applications
	2.4 Deadlines for Workflows

	3 Performance Metrics for Assessing Autoscalers
	3.1 Supply and Demand
	3.2 Accuracy
	3.3 Wrong-Provisioning Timeshare
	3.4 Instability of Elasticity
	3.5 User-oriented Metrics
	3.6 Cost-oriented Metrics

	4 Autoscaling Policies
	4.1 General Autoscaling Policies
	4.2 Workflow-Specific Autoscaling Policies

	5 Experimental Evaluation
	5.1 Setup of Workflow-based Workloads
	5.2 Setup of the Private Cloud Deployment
	5.3 Experiment Configuration
	5.4 Experimental Results
	5.5 Performance of Enforced Deadline-based SLAs

	6 Analysis of Performance Variability
	6.1 Overall
	6.2 Performance Variability per Workflow Size

	7 Autoscaler configuration and charging model
	8 Which Policy is the Best?
	8.1 Pairwise Comparison
	8.2 Fractional Difference Comparison
	8.3 Elasticity and User Metrics Scores

	9 Threats to Validity
	10 Related Work
	11 Conclusion and Ongoing Work
	12 Acknowledgments
	References



