WORKLOAD CLASSIFICATION & FORECASTING 1

This is the peer reviewed version of the following article:

Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn. Self-Adaptive
Workload Classification and Forecasting for Proactive Resource Provisioning. Concurrency

and Computation - Practice and Experience, John Wiley and Sons, Ltd., 26(12):2053-2078,
2014.

, which has been published in final form at http://dx.doi.org/10.1002/cpe.3224.

This article may be used for non-commercial purposes in accordance With Wiley Terms and
Conditions for self-archiving.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

http://dx.doi.org/10.1002/cpe.3224

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 00:2-28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning

Nikolas Roman Herbst!*, Nikolaus Huber!, Samuel Kounev', and Erich Amrehn?

L Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany
2IBM Research & Development, Schoenaicher Str. 220, 71032 Boeblingen, Germany

SUMMARY

As modern enterprise software systems become increasingly dynamic, workload forecasting techniques are
gaining in importance as a foundation for online capacity planning and resource management. Time series
analysis offers a broad spectrum of methods to calculate workload forecasts based on history monitoring
data. Related work in the field of workload forecasting mostly concentrates on evaluating specific methods
and their individual optimisation potential or on predicting Quality-of-Service (QoS) metrics directly. As
a basis, we present a survey on established forecasting methods of the time series analysis concerning
their benefits and drawbacks and group them according to their computational overheads. In this paper,
we propose a novel self-adaptive approach that selects suitable forecasting methods for a given context
based on a decision tree and direct feedback cycles together with a corresponding implementation. The
user needs to provide only his general forecasting objectives. In several experiments and case studies based
on real-world workload traces, we show that our implementation of the approach provides continuous and
reliable forecast results at run-time. The results of this extensive evaluation show that the relative error of
the individual forecast points is significantly reduced compared to statically applied forecasting methods,
e.g. in an exemplary scenario on average by 37%. In a case study, between 55% and 75% of the violations
of a given service level objective can be prevented by applying proactive resource provisioning based on the
forecast results of our implementation. Copyright © 2014 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Workload Forecasting, Arrival Rate, Time Series Analysis, Proactive Resource
Provisioning, Assurance of Service Level Objectives

1. INTRODUCTION

Virtualization allows to dynamically assign and release resources to and from hosted applications
at run-time. The amount of resources consumed by the executed software services are mainly
determined by the current workload intensity. They both typically vary over time according to
the user’s behavior. The flexibility that virtualization enables in resource provisioning and the
variation of the resource demands over time raise a dynamic optimisation problem. Mechanisms that
continuously provide appropriate solutions to this optimisation problem could exploit the potential
to use physical resources more efficiently resulting in cost and energy savings as discussed for
example in [1, 2].

Commonly, mechanisms that try to continuously match the amounts of demanded to provisioned
resources are reactive as they use threshold based rules to detect and react on resource shortages.
However, such reactive mechanisms can be combined with proactive ones that anticipate changes in

*Correspondence to: Nikolas Roman Herbst, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe,
Germany, E-mail: herbst@kit.edu

Copyright © 2014 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

WORKLOAD CLASSIFICATION & FORECASTING 3

resource demands and proactively reconfigure the system to avoid resource shortages. For building
such proactive mechanisms, the time series analysis offers a spectrum of sophisticated forecasting
methods. But as none of these methods is the overall best performing one, we work on the idea to
intelligently combine the benefits of the individual forecasting methods to achieve higher forecast
accuracy independent of the forecasting context.

Related research in the field of proactive resource provisioning as it can be found in [3, 4, 5, 6, 7,
8] mostly concentrates on single forecasting methods of the time series analysis and their individual
optimisation potential. This way, reliable forecast results are achieved only in certain situations. In
addition, the forecasting methods are applied in the majority of cases on monitored QoS metrics
that depend on both the recent workload intensity and the system state. Therefore, these forecast
results do not allow to directly estimate the amount of arriving work for near-future online resource
provisioning.

In this paper, we present a survey of forecasting methods offered by the time series analysis that
base their computations on periodically monitored arrival rate statistics. We group the individual
forecasting methods according to their computational overhead, their benefits and drawbacks as well
as their underlying assumptions. Based on this analysis, we design a novel forecasting methodology
that dynamically selects at run-time a suitable forecasting method for a given context. This selection
is based on a decision tree that captures the users’ forecasting objectives, requirements of individual
forecasting methods and integrates direct feedback cycles on the forecast accuracy as well as
heuristics for further optimisations using data analysis techniques. Users need to provide only
their general forecasting objectives concerning forecasting frequency, forecast horizon, accuracy
requirements and overhead limitations and are not responsible to dynamically select appropriate
forecasting methods. Our implementation of the proposed Workload Classification and Forecasting
(WCF) approach is able to continuously provide time series of point forecasts of the workload
intensity with confidence intervals and forecast accuracy metrics in configurable intervals and with
controllable computational overhead during run-time.

In summary, the contributions of this paper are: (i) We identify the characteristics and components
of an observed workload intensity behavior and define metrics to quantify these characteristics
for the purpose of automatic classification and selection of a forecasting method. (ii) We provide
a survey of state-of-the-art forecasting approaches based on time series analysis (including
interpolation, decomposition and pattern identification techniques) focusing on their benefits,
drawbacks and underlying assumptions as well as their computational overheads. (iii) We propose
an novel forecasting methodology that self-adaptively correlates workload intensity behavior classes
and existing time series based forecasting approaches. (iv) We provide an implementation of the
proposed WCF approach as part of a new WorkloadClassificationAndForecasting
(WCF) system' specifically designed for run-time usage. (v) We evaluate our WCF approach using
our implementation in the context of multiple different experiments and case studies based on real-
world workload intensity traces.

The results of our extensive experimental evaluation considering multiple different scenarios
show that the dynamic selection of a suitable forecast method significantly reduces the relative
error of the workload forecasts compared to the results of statically selected fixed forecasting
methods, e.g. in the presented exemplary scenario on average by 37%. Even when limiting the
set of forecasting methods considered in the dynamic selection, our self-adaptive approach achieves
a higher forecast accuracy with less outliers than individual methods achieve in isolation. In the
presented case study, we apply rule-based proactive resource provisioning interpreting the forecast
results of the introduced WCF approach. This way, we manage to prevent between 55% and 75% of
the violations of a given service level objective (SLO).

The remainder of the paper is structured as follows: In Section 2, we define several concepts
and terms that are crucial for understanding the presented approach. In the next step, we analyze
characteristics of a workload intensity behavior (WIB) and give a compact survey on existing
workload forecasting methods based on time series analysis. We present our self-adaptive approach

Thttp://www.descartes-research.net/tools/

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

4 N. R. HERBST ET AL.

for workload classification and forecasting (WCF) in Section 3. Section 4 shortly summarizes the
component-based architecture of the WCF implementation. In Section 5, we evaluate the WCF
approach by presenting and discussing an exemplary experiment and a case study. We review related
work in Section 6, and present some concluding remarks in Section 7.

2. FOUNDATIONS

In this section, we start by defining crucial terms in the context of software services, workload
characterization and performance analysis that are helpful to build a precise understanding of the
presented concepts and ideas and are used in the rest of the paper:

We assume that software services are offered by a computing system to a set of users which can
be humans or other systems. In our context, a software service can be seen as a deployed software
component.

Each request submitted to the software service by a user encapsulates an individual usage of the
service.

A request class is a category of requests that are characterized by statistically indistinguishable
resource demands.

A resource demand in units of time or capacity is a measure of the consumption of physical or
virtual resources incurred for processing an individual request.

The term workload refers to the physical usage of the system over time comprising requests of
one or more request classes. This definition deviates from the definition in [9], where workload is
defined as a more general term capturing in addition to the above the respective applications and
their SLOs.

A workload category is a coarse-grained classification of a workload type with respect to four
basic application and technology domains as defined in [9]: (i) Database and Transaction Processing,
(ii) Business Process Applications, (iii) Analytics and High Performance Computing, (iv) Web
Collaboration and Infrastructures.

A time series X is a discrete function that represents real-valued measurements x; € R for every
time point ¢; in a set of n equidistant time points ¢ = ¢y, to, ..., t,: X = x1, X2, ..., T, as described in
[10]. The elapsed time between two points in the time series is defined by a value and a time unit.

A time series of request arrival rates is a time series whose values represent n; € N unique
request arrivals during the corresponding time intervals [¢;, t;41).

A workload intensity behavior (WIB) is an abstract description of a workload’s characteristic
changes in intensity over time describing the shape of seasonal patterns and trends as well as the
level of noise and bursts as further described in the following section. The WIB can be extracted
from a corresponding time series of request arrival rates.

2.1. Workload Intensity Behavior

In Paper [11] from 1985, the authors use polynomial regression to identify the variation in time
of workload arrival patterns and describe typical daily workload patterns. The search for invariants
in web-server workloads focusing on characteristics of request classes and their typical resource
demands is covered in Paper [12] from 1996. In [13], the authors discuss and evaluate the two basic
ways to model different workload types either in an open or a closed workload model. Modeling
intensity variations of workloads for generating realistic benchmarking scenarios is addressed in
[14]. In Report [15], the research focuses on establishing a relationship between workload intensity
characteristics and a suitable elasticity controlling mechanisms.

The above listed research work on workload classification and modeling identifies central
characteristics of workload intensity behaviors (WIBs) in general, but the focus is not to establish
any connection between a certain characteristic and a suitable forecasting method. As WIBs and the
corresponding time series of request arrival rates are closely connected, the components of the time
series itself and its properties are central to our further analysis.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 5

According the theory of time series analysis [16, 17, 18], a time series can be decomposed in an
additive or multiplicative manner into the following three components, whose relative weights and
shapes characterise the respective WIB:

The trend component can be described by a monotonically increasing or decreasing function (in
most cases a linear function) that can be approximated using common regression techniques. A
break within the trend component is caused by system extrinsic events and therefore, it cannot be
forecast based on historic observations but detected retrospectively. It is possible to estimate the
likelihood of a change in the trend component by analysing the durations of historic trends.

The season component captures recurring patterns that are composed of one or more frequencies,
e.g. daily, weekly or monthly patterns. These predominant frequencies can be identified by using a
Fast Fourier Transformation (FFT) or by auto-correlation techniques.

The noise component is an unpredictable overlay of various frequencies with different amplitudes
changing quickly due to random influences on the time series. The noise can be reduced by applying
smoothing techniques like weighted moving averages (WMA), by using lower sampling frequency,
or by a low-pass filter that eliminates high frequencies. Finding a suitable trade-off between the
amount of noise reduction and the respective potential loss of information can enhance forecast
accuracy.

A time series decomposition into the components mentioned above is illustrated in Figure 1. This
decomposition of a time series has been presented in [19]. The authors offer an implementation
of their approach for time series decomposition and detection of breaks in trends or seasonal
components (BFAST)*. In the first row, the time series input data is plotted. The second row contains
detected (yearly) seasonal patterns, whereas the third row shows estimated trends and several breaks
within these trends. The remainder in the undermost row is the non-deterministic noise component
computed by the difference between the original time series data and the sum (or product) of the
trend and the seasonal components.

o
D
IS}
T 8 [
o o
o
~
S — 3
© [}
[
2 g
[0 o
3 <
o
T T o
| \ -
'8] | !
o 1
g [: [
g 1 1 1 =
IS ol
o 0
—1 ©
-‘g IS}
T H
IS U8
g ?
2000 2002 2004 2006 2008
Time

Figure 1. Time Series Decomposition into Season, Trend and Noise Components as presented in [19]

A nearly complete decomposition of a time series into its three main components as described
above by using the BFAST approach [19] induces a high computational burden. Hence, fast
computable measures that characterise a time series are crucial for efficient workload classification

Thttp://bfast.r-forge.r-project.org/

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

6 N. R. HERBST ET AL.

at run-time. Table I summarizes the following set of measures, we apply for online WIB
characterisation and classification:

The burstiness index is a measure for the impact of fluctuations within the time series and
commonly calculated by the ratio of the maximum observed value to the median within a sliding
window.

The length of the time series mainly influences the accuracy of approximations for the
components mentioned above and limits the space of applicable forecasting methods.

The relative monotonicity is maximum number of consecutive monotonic values either upwards
or downwards within a sliding window related to the length of the sliding window and indirectly
characterises the influence of the noise and seasonal components. A respective small value can be
seen as a sign of a high noise level and therefore as a hint to apply a time series smoothing technique.

The maximum, the median and the quartiles are important indicators for the spread of the
distribution of the time series data and can be unified in the quartile dispersion coefficient (QDC)
defined as the distance of the quartiles divided by the median value.

The standard deviation and the mean value are combined in the coefficient of variation (COV)
which also characterizes the spread of the distribution as a dimensionless quantity.

Absolute positivity of a time series is another important characteristic. Numeric stability of several
forecasting methods is not given if a time series contains zero values. As arrival rates are per se non-
negative values, a time series that is not absolutely positive should be subjected to a simple filter
that eliminates the negative values or analyzed using specialized forecasting method.

The frequency of a time series represents the number of time series values that form a period of
interest (in most cases simply the next bigger time-unit). These values are an important input as they
are used as starting points for the search for seasonal patterns.

We define a relative gradient as the absolute gradient of the latest quarter of a time series
period minus the median of this quarter. It captures the steepness of the latest quarter period as
a dimensionless value. A positive relative gradient shows that the last quarter period changed less
than the median value, a negative value indicates a steep section within the time series, e.g. the limb
of a seasonal pattern or burst. Simple trend interpolation methods tend to over- or underestimate the
development in these steep intervals.

The presented metrics are sufficient to capture the most important characteristics of a WIB,
though they have low computational complexity. Hence, they are of major importance for our online
workload classification process.

2.1.1. Real-World WIBs: Commonly, human users trigger software services either directly in an
interactive manner or indirectly (e.g. scheduled batch tasks). Thus, real-world WIB traces are likely
to show strong recurring patterns in daily periods possibly overlaid by far longer seasonal periods
of weeks, months or years. The typical shape of a daily seasonal pattern characterises the WIB of
a software service. These patterns are directly influenced by common human habits like working
hours, lunch time and common sleeping hours. A calendar that defines working days, weekends
and holidays may also have an strong impact on the WIB. As a variety of factors, e.g. the weather,
influences human usage behavior, real-world WIBs usually contain unpredictable parts.

A high weight of a trend component within a WIB trace is rarely seen at the scale of hours and days
and more likely to be found in aggregated data at the scale of weeks, month or years. Therefore, the
trend component is of major importance for long term forecasts. At the scale of seconds, minutes
and hours sudden bursts in the WIB (either induced by planned events or anomalies) can have a
strong impact by overlaying the normal daily pattern.

2.2. Survey of Forecasting Methods

In this section, we compare the most common forecasting approaches based on the time series
analysis and highlight their requirements, advantages and disadvantages presenting a short summary
based on [16, 17, 20, 18, 21, 22, 23]. All considered forecasting methods have been implemented

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING

iors

Behav

1ty

d Classification of Workload Intens

1sation an

Table 1. Means for Character

((szo
‘suJayied |euoseas pue ‘G'0 ‘GT°0) 40199A 1Y3I9M puE € = 9ZIS MOPUIM :UOI3dNPaJ 8SIou |nyaJed 1oy 3°3) (VIN) se8esany
puaJ] se syusuodwod 211S1UlWIDISP UO UOIIeW.IOJUI Ydonw 001 SUISO| 30U pue s1sung 4o | ‘julod sa1ias swiy A1aAs 1oy a8esane pa1ySiam e 91e|ndjed 01 J01I3A JYSIam e pue azIs Suinon
sjuauodwod 3SI0uU 3N0 Yjoows 03 anbiuydal ajdwis e aue sabpianybuinop paIysiapm mopuim uanig e jo mopuim Suipls e ui paijdde aue (VIN) Saboianybuinop pa1ysiam pa1ysism
‘duelleA y3iy sa1edipul T ueyy 49331
10 9S0|2 JUBI21}J20 B ‘DIUBLIEA MO| S9IBIIPU| 0JSZ 0} ISO|I JUBIDIYS02 *(uosedwod ‘anjeA FUETRIITE e}
9|qeua 011/un B INOYLM) UOISIadSIP JO 24NSEIW BANR|DI B S| JUSIILf20D3IUDIIDA BYL ueaw ayl Aq papIAIp UOIIDIAPIDPUD]S BY) S PaUIRP S| JU3IINJ20D3IUbIIDA BYL aauenepn
*San|eA g 1Ses| 1. UIelU0D p|noys 13s pazAjeue sy ‘wopaaly Jo saaidap
“JUN B Y3IM UoISIadsIp JO ainseaw e 310)aJay3 SU31 0] UOIIB3J Ul SN|EA UBSW 3Y] 0] SAJUBISIP PaJenbs Jo wns ay) s dduelieA uoneinag
S| pue anjeA ueaw ay) 0} dduelsip aSesane sy} salauenb uoIDINGGPIDPUD]S BY L a|dwes ay] "aouelieA ajdwes ay3 Jo 1004 aienbs ay3 sI U0/IDINGGPIDPUDIS Y | piepueis
‘paiwi| 8q pInoys sa18a1e.1s 15823404 9|d WIS 4O 9I10YD Y3 9SeD SIY3 U]
*(3uauodwod |euoseas e Jo qui| 8y} "8'3) Sa1IAS aWIl BY1 UIYIM UOIDDS
daais e sa1edipul anjeA aAlleSau e ‘anjea upipaj) 3y ueyy ssa| pasueyd polad Jayenb
1Se| 33 1Y) SMOYS 1U3IPDIDIAIIDI3Y SAINSOd B — UDIPaJA 94} 0} paie|ad si 3 se ‘Jun ‘ubIpapy |yl uoneal jLipesn
e INOYUM poLIad Ja1ienb 1531e| ay) Jo ssaudaals ay) saunided Jualippinaniinay ayL ul poliad e Jo Jarienb 1sa1e| 8y JO 1uaIpeIS 31N|0SqR BY] S| JUSIPDIDINIIDIAY YL anneay
(NOLSOYD) A831e41s 1sEI9.04 |BI1D3dS B Ajdde pue puewsp JusRIWIRIUI
UB 3WINSSE P|N0J BUO P|OYysaJyl B uey) Jaysiy S| 91 aY) §| '910J9q PIAOWI dJe 'S91I9S dWI} AY)
SaNn|eA 043z Y3 3104349Y3 pue Indul Se SaN|eA 0J9Z-UOU Pa3u S91391..41S 15823104 1SOIA| 40 Y18ua| pazAjeue ay3 01 UOIIB|3. Ul SOJDZ JO JaqUINU 3Y3 S| SaNIDA0J3ZJ0a10Y 3yl | SanjepoJazi01ey
"aouelieA ySiy sa1edipul T ueyl (Dav) uaniyya0)
128819 10 9502 1UBI21JJ20 B ‘IUBLIEA MO| $31BIIPUI 049Z 0} SO|I JUSIJIHD0D e ‘Uledy ‘an|eA ubipaj 3yl Aq uoisiadsig
"uo|sJadsip JO SINSeawW dAIIe[3J JBYIOUE S| JUBIIH[0)U0ISIadsIgal134onD 3YL | PIPIAIP $3/1240ND Y1 JO SJURISIP BY3 SB PAULSP SI JUBIIIfa0)u0ISIadsIda|134onD YL ?|nJenp
'SaN|eA 8y} JO % 0S SI9A0D ey} [BAIDIUI
/ ueds ay1 JueJ3|01 J31|IN0 $BZIIBIdRIRYD S3[1/pNYD Jaddn pue Jamo| 3yl Jo 3|dni 8yl | °San|eA Jo 18s Pa1I0s 3yl JO Jjey Jaddn syl 40 J9MO| BY3 JO SUBLIPIIAl Y] BJe $3/13/DND anJenp
‘uJalied |eUOSES UMOU) B JO
*SpOLIad € JO Y1BuaT S3143S WY B ISe3)| 1B PasU ‘syusuodwod | uollednp ay3 03 spuodsaliod Jo Hun awi} J3881q IXau Syl Se U3SoYDd uao S| porad v
|euoseas JaA0D 1ey) saldajeuls 1sedauoy xajdwo) ‘paljdde aq pjnoys sai8a1eu1s ‘poriad e JaA09 1ey) sjuiod Sa149S SwWll JO JUNOWE 3y} saulap anjeA Aouanbai4 ay | Aduanbauy
15823.04 3AeU Ajuo ‘(g MO|3q pUB) POLIa4 U0 MO|3q S| Y1BUIT S1I3S SWIL 3Y3 §| 1$3149s W} Y3 Jo sanJadoud aue sanjea Aouanba.4 pue polad pue pouad
‘(sanjea
‘ueds aw] pazAjeue ayj JOAO SaLISS S|pPpIW OM) 3Y1 JO UBSW 2113WY3LIE Y] JO) 3|PPIW 3yl Ul SN[BA 3Y) S| UDIPAA YL
Wi e JO [9A3] 3seq ay3 saljiauenb ey ainseaw 1Uela|0l J3IJIN0 Ue S| UDIP3AA BYL ‘ueds $a149s awil pazAjeue ayi JO SaN|eA JO 13 ay3 1105 uelpajn
‘ueds awi} pazAjeue ay3 ul 1sinq [EWIXEW 3Y) JO [9A3| 0} SPUOdSaII0d Wwnuwixpyy 9yl | -ueds salas awil pazAjeue ay3 JO SaN|eA JO 135 By} Ul dN|BA WNWIXDA 3Y) 10 Y24eas wnwixel

‘Ayilenb poo8

10 S1INsaJ aAeY ued $31891eJ1S 1SBIDI0) DAIBU UDAS 35D SIY] Ul — SJUaU0dwod [euoseas
JO 3SI0U JO 92UdSge Y3 SIILIIPUI T 0} 3SOJD 1ed \ Syusauodwod [euoseas Asuanbauy
y31y Jo 3sIou JO [9A3] YSIY e S31edIPUl 049Z 03 3SO|I d}eJ Y "SILISS dWI1 BY3 JO JOIABYD(]

‘ueds s9143s awI13 pazAjeue ay3 o y16ua7 Y3 01 pale|al 9sayl
JO WNWIXew 3y} si A1/21U0IOUOIAIIAIIDI3Y Y] "PAIUNOD S (SpJemumop Jo dn) sanjea

Adi1uojouoin

pua.J1 8y} paziialdeieyd jeyl el e s| yigua| ay3 UoIIe|as Ul A312IUOIOUONAAIIDIAY BY L 21UOJOUOW DAIINIISUOD JO JICUWINU BY3 SAN|BA SIS S} dY3 YSnoJy uoiesai Ag anne|ay

"e1eP S31JIS AW}
4O JUNOWE WINWIUIW By} Ul J3441p Sjudwalinbal 113y} se ‘sa18a1e3s 15833104 O SadI0YD *a8pajmous|

3Y3 S}WI| J01IBY SIY] ‘SPIOYSIY] UIBIIDD UBY] JD[BLIS S| SIS dWI] 3] JO Y26UT 3L §| 21103s1Y Y3 sayiuenb 1eyy Apadoud e si salias awiy e Jo y16uaT ULl dY L yisual
*9S0|2 10 T S| BN|BA Xapul By}

41'5354nQ OU — S354NQ JO [9A3] YSIY 104 SPUBIS 04SZ 0} ISO|D JO BN|BA XIPUI UE SEIIIYM ead aaisod e s 3sing v xapu|

(s354nq o Aduanbauy ay3 Jou) s3sing 4O [AS]| DY} SIZIIDIDBIRYD XPU|SSauIISINg dY | ‘ueipaw ay3 Aq PapIAIP SIN|BA WNWIXEW 3Y} SB PaUlYdP S| Xapu[ssaulising ay | ssaunsing

Ssauanissaldx3 uoijejndje) aweN

10.1002/cpe

Pract. Exper. (2014)
DOI

Concurrency Computat.

Copyright © 2014 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

N. R. HERBST ET AL.

Table II. Forecasting Methods based in Time Series Analysis

S|eAsaiul Ayijeuoseas
(ELE] 92U3PIU0I awn [s9‘01] 'S|eAI9)UI BIUBPIJUOI PUE S1SEIDI0) UM s Jomawiely
95/0U d1eJpOW 9502 SaAaIYdy | uoneindwod ul | jo Adusnbauy juiod apiroad 03 eIep BY3 03 PaNIl) UBY] SI [SPOW YIAIIYY Pa323I3s YL |9pow ssa20.d
‘(Aduanbauy ‘|spow (snnippe Avjiqenena ysiy 91enbape "90eds [9pow JueA3|aJ e Sulsianed] J0j 34npadoid 2115eY201S
JUe)SU0) uonewnss | 4o aanedldinw) ‘sanjeA 00T ue yum eyep 9sIm-dals e yam uoneuiquiod ul (J]y 9yl a1f) suola1Ld uonewlojul | sadesane Suinow
jusuodwiod u1juauodwod uey} ssa 4oy S9LI9S AW (sulod G <) | ue pue sisey 100J4-3un Suisn Ag [ppow “(p‘a‘d)(b‘p‘d)vINIgY pajesdajul
|euoseas Jea|d Uosesas pue puaJy SpU02as 0g 0} ui spolsad 1582240§ W3} a1elidoidde ue Jo uorewss xa|dwod e yim syieis agexyded 9AISSaJ3a4-03ne
YIIM SB35 Saull} ‘asiou Sulinyded | dn ;juswiiadxe g1sea|ie | Suoj o) wnipaw [3uilsedaJo) Y ayi Jo $$3204d UOIIBBS [POW YIAIYY Palewolne syl VINIYY
|9A3] 3siou 'SUOIIBWIISD POOYI[RY!|-WNWIXEW 10} POYIaW Mau e uisn peaysano | [og] siusuodwod
91esopow Ajuo | uonisodwodsp SpuaJ] pue awn [s9‘01] jeuoneindwod panosdw| uolisodwiodap SaBS BwWIll 4o} 144 [|euosess + puany
‘syuauodwiod pue | suianed |euosess | uoneindwooul | jo Aduanbaiy Aq suianed sal1as awily [euoseas xa|dwod JO UOIILIIIIUBP! S3|qRUD ‘510413 YINYY
|euoseas pue | 3ullspow Salds BuiAeiano | Aupiqenien ysiy alenbape UOIIe|NWLIO J1JJ3WOUO0S1I] "UOI1I3.110D JOLID YIAYY PUB SIUBID1Y300 ‘uoljewlojsuely
puaJy xa|dwod | awiy Joj ssedoud pue Jagaul ‘sanjen ue yum ejep BuiAien awn yum suonejuasaidal J31N04 ‘UOIBWIO)SURIY XOD-XOg X0)-Xog
Ajqissod inq x3|dwod -uou ‘xajdwod 00¢ ueyl ssa| S91I9S W} (sulod g <) | sasn pue (Ayjeuoseas Jadajul-uou/Adusnbaiy ydiy/sidinw) sauas ‘|apow |euoseas
Jeajd aJow Jo auo ‘s9149s AW Jo Aujigeded Spu02as 8T 0} ui spolsad 1582240) W3] | Bwi) |euoseas xa|dwod jo Buijspow sasndoj yoeoidde adeds ajeis Jl13Wouos
Y2M S3143S Saull} annisod Ajuo Surjpow | dn :juswiadxa g 1sea[1e | Suoj o3 wnipaw | suoneaouul jo jJomawel) Suljapow ssa20.d 213SEYI0IS S1vE) BYL Slval
[EE)l awn [s90T] YIomawe.y [3pow
9510U 9jeJIpOW |opow aAnippe | uoneindwod up Jo Aouanbauy S)|nsaJ Jo uoljeulqwod pue §3s Suisn Ajuapuadapul syusuodwod [anseydols adeds
uauodwod J0 aAied!|dinw Avjigeuea ydiy 91enbape UOSEdS pue pudJ} ‘[aA3| Joj SISeIa.04 Julod Jo uonendled :dals e [33els uonerouul
|euoseas e ul jusuodwod ‘sanjen 00g ue yum exep sjuauodwod _mcom%mm (s13)
pue puaJ} uoseas ueY) SS9| 40} S9149s AW (sauiod € <) | pue puai) ‘asiou 1dljdxa Ue Joj sia)sweled Jo uonewnss :dais |z Suiyroows
a|dwis pue Jeajo EEIERET pue puaJ} ‘asiou SpU02as §T 0} ul spouad 1582910} W3] (N) pajapow 10u Jo (A1) aAnedldinw Jo ‘(y) aAnIppe Jayie |ennuauodx3y
YIIM $B1I3S Saul} annisod Ajuo | 3o11dxe Suunided | dn :juswiadxs £ ses|1e | Suoj o0} wnipaw | 3Je sjusUOdWOI UOSeas pue puaJ} ‘asiou :uoiew}ss [apow :dals T papuaix3y
3SI0U MO| (jopow (0T <) ‘[9pow 2135ey203s SulA|zapun Jua1sISUOI Ou 0] [zzl s3s
“dwod |euoseas 2115842015 sanjeA 0Jaz anp paIndwod aJe S|eAId]Ul 9IUBPIUOD ON "SISO} Juspuadapul | Suisn Sunsedssioy
Buou1s ou ‘spuan ou) sjeasaul sanjea 00T 8ujureuod OM] 9y} JO uoneulqwod pue S35 Suisn 1seIao) juspuadapul puewsp
yum sporiad ERIVETJIoR] Salas | ueylssa|Jojsw | ‘suoleAsasqo (sjurod G >) 'San|eA 0437 JO S|EAJDIUI SWI] BY) SUIRIUOD 1Y) U WL
aAinoe ‘spouad | ou ‘Quauodwiod | swil panjer-013z | OOT “SAe mojaq 2103S1Y JO 1582240} | puOI3s B pue S31IBS BWI} Pan|eA 0Jaz-uou e :s3duanbas ajeledss poyilaN
panjeA oJaz uoseas ou [jo uonisodwodsp Juawiadxa | Jaquinu jjews WJ3) MO0Ys | OM) 03Ul S3N|A 0J9Z SUIRIUOD JeY) S3LI3S aWi} 8y} Jo uoiisodwodag 5,U03504)
JolAeyaq [euoSeas FEPESENTH ‘paJapIsSuod
ou ing ‘puasy annisod Ajuo sanjea (s<) Ayjeuosess ou pue (uoijesdaul ou) pawnsse s| ssa204d d13seyaols | saSesane uinow
ulyum sagueyd ‘pajapow 158) ‘(SO ueyl 00T uey ss9| SUO[1BAIDS]O (sautod g >) | Aseuoness e ased siy1 uj *ssad0ud (b)yIA 40 JapJo se T = b ‘uonessaqul pajesdaul
pue asiou awos u1 jusuodwod |nyaJed alow) [JojswQL Mojeq 2LI03S1Y JO 1582240} | jo JapJo se = p ‘ssad0.d (d)yy JO 43pJo se T = d yum paziialaweled 9AISSaJ3a4-01ne
Y3IM S31I3S aW1} uoseas ou [‘uonewiyss puasy Juswiadxs | Jaquinu jjeuws wJa) Moys | douejsul [9pow ssed04d 213SeYI0IS WINIMY Ue S TOT VIANIYY TOT VINIYY
9|qissod (Aoeunaoe "90eds JalaweJled pajollsal
San|eA 15e22.0} panoidwi e yyum [apow ssac04d 213SeYI0IS zZ0 VINIMY ue 03 paddew aq
|9A3] 3siou | aAnedau ‘(sadpa uoljouny ou) sanjea (s<) ued poylaw saulds 21gnd 3y ‘sia1aweled SuIyl00WS JO UOIIRWISS COVNIYY =
MO| ‘JoIAeYaq dajs) susened 15e29404 Jeaul| | Q€ ueyl ssa| 4oy SUOIeAIDSqO (sjutod g >) | 4oy yoeoisdde pooyi@yl e Jo dsn Ag pa3dNIISUOI Be S|eAsdlul [12] (s2)
|euoseas Joulw |euoseas e Aq puaiy ayy SwOOT Mojaq 210381y JO 15e2240§ | UONDIPaId "UOIdUN 1SEI3J0) JE3Ul| pue 3JewNse pualt) e uleiqo saulids
1nq ‘spuaJy 3uoJis 9AI1}ISUS J0 uonjejodesixa Juawiladxa | Jaquinu jjews WJa) Moys | 0} elep Salias Wil [eUOISUBWIP-dUO 3y} 0} pallly aJe sauljds aign) | Suiyioows 2ign)
JolAeyaq |euoseas | uonejodiaiul ou VIN ueyy TT0 VARNY =
ouing ‘puasy ‘ Buidwep Ajuo sjuawdo|anap sanjea (s<) 1582240} Julod se sagelane paiysiam Jo uonelndjed :dais al (s35)
ulyam sadueyd ‘pPajapow 13310 Jo spualy 00T uey3 ss9| SuoI1eAIBSqO (saurod g >) uonouny “dxa/syysiam 4o} sia1aweled Jo uoiewnss :dals’ T Suiyroows
pue 350U BWos jusuodwod Uo uoijoeal | JojswQg Mojaq 2110351y JOo 15822104 'San|eA Jua2aJ aJow 03 3yS1am Jaysiy aAI3 03 uonduNy |enuauodxy
Y3IM S31I3s aw1} uoseas ou 3|qIX34 30w Juswadxe | Jaquinu jjews wJ3) Moys | |ernuauodxa ayy 01 Sulpiodde sydiam Suisn Ag yIAl JO uonezijesausn ajdwis
9SI0U SUYM 1uauodwod (syutod TO0 VNIYY =
MO| YlIM S31eJ | [BUOSESS ‘SpUdJ} ((u)3o))0 | suoneaiasqo Z-T) 3523404 *SUOI1BAIDSCO JUBIJ JSOW (VIN)
|eALLIE JURISUOD 0} 9A1}ISU3S Ayaijdwis Mo| AJaA om) | wua1oys AJan | x ay) Jo mopuim Suipljs B UIYIIM Ueaw d1jawyilie ue Jo uojiendje) | aesany Suino
Sujuoisinoud
aAioeoud | poylaw soualayas (syurod "julod 1583210} 1X3U By}
sajed Joj anje ‘palinbas (1)0 uoIeAIdSqO 7-T) 3sedau0y | Joy Ayijiqeqoud 3saySiy ay3 sey anjea siy3 1eyl Suliwnsse uoleAIaSqo 00T VNIV =
|eALLIE JURISUOD OU <- 3AlRU e1ep 21103s1y ou auou Apeau 9|3uls | wJs) Moys AJan | JusdaJ 3souw 8y} Jo dnjeA 3y} AjUo SISPISUOD 1SBIBJO) BAlRU BY| 15822404 dAIEN
oleudds [ewndo S95SaUNEIM syiduainis peaysang sjuawauinbay uozIIOH apo Sunesado aweN

10.1002/cpe

DOI

Concurrency Computat.: Pract. Exper. (2014)

Copyright © 2014 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

WORKLOAD CLASSIFICATION & FORECASTING 9

by Hyndman in the R forecast package® and documented in [20]. The implemented forecasting
methods are based either on the state-space approach [17] or the ARIMA (auto-regressive integrated
moving averages) approach for stochastic process modeling [16]. These two general approaches for
stochastic process modeling have common aspects, but are not identical as in both cases there exist
model instances that have no counterpart in the other approach and both have different strength and
weaknesses as discussed, e.g., in [20].

In Table II, we briefly describe the considered forecasting approaches which are ordered
according to their computational complexity. The first two below listed forecasting methods are
very basic ones, whereas the third to seventh method include the capability to estimate trends and
can be considered as instances of the ARIMA or ETS stochastic process modeling frameworks
not covering any modeling of seasonal patterns. The last three forecast methods listed are capable
to additionally capture seasonal patterns in different peculiarity. These three stochastic process
modeling frameworks come together with model estimation procedures as described in [20].

2.2.1. Naive Forecasting Method: The naive method has no inherent complexity as it is based on
the assumption that the last observed value is the most likely one to be observed in the next step.
This method is usually taken as the reference method to enable normalized comparability with other
forecasting methods. It can be combined with a random-walk factor or a drift. This method induces
no computational overhead beside the calculation of a confidence interval and requires only a single
time series point to be applicable. The naive method is identical to the moving averages method
with a sliding window size of one.

2.2.2. Moving Averages Method: The moving average (MA) of a sliding window can be computed
and used as a point forecast for the next interval. Compared to the naive method this method is able
to smooth out a certain noise level by averaging over a sliding window. The computational overhead
is negligible.

2.2.3. Simple Exponential Smoothing: The simple exponential smoothing (SES) method extends
the moving averages approach by weighting more recent values in a sliding window with
exponential higher factors. In the first step, the parameters of this exponential function are adapted
to the given time series data in an iterative optimisation process beginning with recommended
start parameters, before in the second step, point forecasts and confidence intervals are computed
iteratively. This method smooths out a certain noise level and reacts more flexible as the arithmetic
mean method. Experiments showed that the SES method returns a result below 80 milliseconds
when applied on less than 100 values. This computational overhead is mainly induced by the
parameter estimation step. SES is suitable for short-term forecasts and can be applied already at
a small time series size. In the SES method no seasonal component is considered, but it is extended
to do so in the ETS method. The SES method is equal to an application of the ARIMA((p, d, q) =
(0,1,1)) model as described in 2.2.9.

2.2.4. Cubic Smoothing Splines: As demonstrated and discussed in [22], cubic smoothing splines
(CS) can be fitted to univariate time series data to obtain a linear forecast function that estimates
the trend. The smoothing parameters are estimated using a likelihood approach enabling the
construction of confidence intervals. This method is an instance of the ARIMA((p, d, q) = (0, 2,2))
model as described in 2.2.9 with a restricted parameter set that does not impair the forecast accuracy.
This approach tends to better estimate trends than the SES method, but still seasonal patterns are not
captured. This method tends to overestimate trends in steep parts of a time series. The computational
overhead stays below 100 milliseconds when applied on the last 30 values. It has been observed that
the computation time rises for more values without an observable improvement in forecast accuracy.

Shttp://robjhyndman.com/software/forecast/

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

10 N. R. HERBST ET AL.

2.2.5. ARIMA(1,0,1) Stochastic Process Model: The ARIMA((p,d,q) = (1,0,1)) model is an
instance of the ARIMA (auto-regressive integrated moving averages) framework as described in
Section 2.2.9 and assumes a stationary stochastic process (constant mean value) as it does not make
use of integration as in SES and CS, where d is not zero in the corresponding ARIMA models.
Therefore, it can also be called an ARMA((p, ¢) = (1, 1)) process model as explained in the Book
[18]. This method is not as sensitive as the CS method to steep parts in a time series. As the SES
and CS methods, the application of ARMA((p,q) = (1,1)) includes a parameter estimation that
induces the major computational effort. Experiments showed that this method returns results below
70 milliseconds when applied on the last 100 values.

2.2.6. Croston’s Method for Intermittent Time Series: Croston’s method is presented in [23] and is
specialized for forecasting of intermittent time series. In contrast to the other methods, this method is
applicable to time series that contain zero values. Internally, the original time series is decomposed
into a time series without zero values and a second one that captures durations of zero valued
intervals. These two time series are then independently forecast using the SES method and unified
afterwards. As this method has no consistent underlying stochastic model, confidence intervals
cannot be computed. As this method is based on the SES method, the computational overhead
is slightly higher with 100 milliseconds computation time on 100 values.

2.2.7. Extended Exponential Smoothing: As presented in [17] and [20], the extended exponential
smoothing (ETS) bases on the innovation state space approach and can explicitly model a trend, a
season and a trend component in individual SES equations that are combined in the final forecast
result in either additive or multiplicative (or neglected) manner. In addition, damping the influence
of one of these components is possible. The forecasting process starts in the first step by selecting
an optimized model instance, before the parameters of the single SES equations are estimated.
Having the model and the parameters adapted to the time series data, point forecasts and confidence
intervals are computed. This method is able to detect and capture sinus like seasonal patterns that
are contained at least three times in the time series data. In this case, the ETS has a computation time
of 15 seconds on 200 time series values. In the presence of complex seasonal patterns, the ETS often
fails to model those and returns quicker with a worse forecast accuracy compared to the following
two methods.

2.2.8. tBATS Innovation State Space Modelling Framework: The tBATS innovation state space
modelling framework has been presented in 2011 in [21] and recently been integrated into the R
forecasting package. It further extends the ETS state space model for a better handling of more
complex seasonal effects by making use of a trigonometric representation of seasonal components
based on a Fourier transformations, by the incorporation of Box-Cox transformations and by use of
ARMA error correction. tBATS relies on a new method that reduces the computational burden of
the maximum likelihood estimation. In experiments, processing times of up to 18 seconds have been
observed on 200 values, but in several cases the processing time of five to seven seconds resulted in
more appropriate forecast accuracy compared to the ETS method.

2.2.9. ARIMA Stochastic Process Modelling Framework: The ARIMA (auto-regressive integrated
moving averages) stochastic process modelling framework is extensively presented in the Book [16].
The ARIMA model space is defined by seven parameters (p,d,q) and (P, D, @),,, whereas the
first triple defines the model concerning trend and noise component, the second vector is optional
and defines a model for the seasonal component. The parameter m stands for the frequency of the
seasonality. P or p stands for the order of the AR(p) process, D or d for the order of integration
(needed for the transformation into a stationary stochastic process) and) or ¢ for the order of
the M A(q) process. This model space is theoretically unlimited as the parameters are positive
integers or zero. The model selection is a difficult process that can be realised via space limitation
and intelligent model space traversion using different unit-root tests (KPSS, HEGY or Canova-
Hansen) and Akiake’s information criterion (AIC). Hyndman proposes an process for automated

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 11

model selection in [20] that is implemented in the auto.arima () function of the R forecast
package. A selected ARIMA model is then fitted to the time series data to compute point forecasts
and confidence intervals. A high computational effort is induced by the model selection and further
fitting: Up to 50 seconds on 200 values, but with a high variance as the model selection process
depends also on the data characteristic itself and not only on the amount of data to base the
forecast result on. Experiments also showed that this ARIMA approach in most cases achieves
closer confidence intervals than the tBATS approach.

Besides from [20], detailed information on the implementation, parameters and model estimation
of the individual methods can be taken from cited sources within Table II. Capturing the complexity
in common O-notation in most cases is infeasible except for the two first simple cases. The shape of
seasonal patterns contained in the data as well as the used optimisation thresholds during a model
selection and fitting procedures strongly influence the computational costs. The length of time series
size represents only one part of the problem description. Therefore, the computational complexity
of the individual methods has been evaluated based on experiments with a representative amount of
forecasting method executions on a machine with a Intel Core i7 CPU (2.7 GHz). The forecasting
methods make use of only a single core as multi-threading is not yet fully supported by the existing
implementations.

3. APPROACH FOR WORKLOAD CLASSIFICATION AND FORECASTING

In this section, we present a self-adaptive workload classification and forecasting (WCF) process
which can be used for selecting suitable forecasting methods at run-time.

Over time, a Workload Intensity Behavior (WIB) may change and develop in a way that affects its
characteristics, i.e., the class of the WIB is not fixed and needs to be updated periodically. Therefore,
our classification process must be self-adaptive. Therefore, it must consider changes of the WIB and
of given forecasting objectives to adapt the assignment of appropriate forecasting methods to given
WIBs.

. ~\
Ot‘/fr:eesatd Forecasting Forecasting
Group Period Forecasting Accuracy
Objectives Feedback
Forecasting ‘
Objectives Workload Forecast
Intensity
Forecast Confidence Behavior Accu racy
Horizon Level Trace Feedback
_ J
___________ Classification Phase ..
Forecasting Method Overhead Groups Decision Tree \“.‘
. Forecasting A
COMPLEX H H H
. INITIAL) Decomposition H AN Phase s
Naive, Moving ; .
. & Seasonal N
Averages Interpolation patterns A & /. T
""""" WIB Trace, WIB Class,
Forecasting Objectives
Figure 2. Overview of the workload classification and forecasting (WCF) process.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

Prepared using cpeauth.cls DOLI: 10.1002/cpe

12 N. R. HERBST ET AL.

An overview of the WCF process is sketched in Figure 2. Input of the WCF process are a
trace of a WIB, a set of forecasting objectives, and possible feedback about the accuracy of the
previous forecast. Essentially, we distinguish two phases in this process, the CLASSIFICATION phase
and the FORECASTING phase. In the CLASSIFICATION phase, we extract the characteristics of a
given WIB trace. Based on the identified characteristics, we use a decision tree (cf. 3) to classify
the Workload Intensity Behavior and to select suitable forecasting methods. The assignment of
forecasting methods also defines the class of the WIB. Then, in the FORECASTING phase, we apply
the assigned forecasting method according to the given forecasting objectives. Our process also
supports evaluating the accuracy of forecasts and uses the evaluation results as feedback for the
next classification cycle. The classification and forecasting phases are executed iteratively, with a
frequency that can be specified by the user. Thereby, our approach is able to continuously adapt
the classification of the WIB based on its evolution. However, the two phases must not necessarily
follow each other iteratively. They can also be executed in parallel, i.e., the classification of the WIB
can be updated while it is also forecast. In the following, we explain in further details the individual
parts of our self-adaptive WCF approach.

3.1. Forecasting Objectives

Time series forecasts can be used for a variety of purposes like short term proactive resource
provisioning or long term capacity planning. Depending on the purpose, different forecasting
methods with different configuration might provide better or quicker results. Our approach employs
forecasting objectives which guide forecast result processing and control the overhead. Our
approach supports specifying the following parameters as forecasting objectives:

1. The Highest Overhead Group parameter is a value of the interval [1,4] that specifies the
highest overhead group the WCF approach can choose from. This value refers to the overhead
groups we introduce in Subsection 3.2.

2. The Forecast Horizon parameter is a tuple of two positive integer values quantifying the
number of time series points to be forecast. The first value of the tuple defines the Start
Horizon and defines the number of time series points to be forecast at the beginning. The
second value defines the Maximum Horizon, i.e., the maximum number of time series points
to be forecast. The start value can then dynamically increased stepwise up to the maximum
value. This is necessary because of the significant differences of the forecasting methods in
terms of processing times and feasibility for long term forecasts.

3. The Confidence Level parameter can be a value « € [0,100) and defines the percentage of
how many of the calculated confidence intervals have to include the forecast mean value.

4. The Forecasting Period parameter is a positive integer i specifying how often in terms of
the number of time series points a forecasting method is executed. For example, if i =1 a
forecast is executed for every new time series point that is added to the time series. If i = 10,
the forecast is executed every tenth time series point.

By specifying this parameters according to the characteristics of the considered forecasting
scenario, one can influence the classification and forecasting process in finding a suitable forecasting
method for the given WIB. For example, assume an offline capacity planning scenario, where there
is a lot of time to analyze the WIB and forecast a relatively long time period. Then, one can set the
objectives to the highest overhead group and to the desired maximum forecast horizon. Furthermore,
if high forecasting confidence is required, one could also set a = 95 to specify a high confidence
level. Proposed settings and further explanations can be found in Table III.

3.2. Forecasting Methods Overhead Groups

In Section 2.2, we have presented a survey of different time series forecasting methods and discussed
their computational overhead. In the following, we divide these forecasting methods into the
following groups.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 13

Table III. Forecasting Objectives Parameters

Parameter Parameter Proposed Explanation
Name Range Configuration
Forecasting [1;max_int] | [1; Frequency] This objective defines how often a forecast is executed in times of new time series points.
Period For a value of 1 a forecast result is requested every new time series point and can be

dynamically increased by the HorizonFactors in the classification setting (Tab. 5) to reach the
configured MaximumHorizon. This value should be equal or smaller than the StartHorizon
objective (if continuous or even overlapping forecasts are needed)

Highest [1;4] [2;4] This objective defines the highest overhead group from which the forecast methods will be
Overhead chosen. A value of 2 may be sufficient if the time series data have strong trend components
Group that are not overlaid by seasonal patterns, as the strength of group 2 methods is the trend

extrapolation. For time series with seasonal patterns, a setting of 3 for a maximum forecast
computation time of 30 seconds and 4 for forecast computation times below 1 minute is

recommended.
ConfidencelLevel [0;100) may be given The confidence level a of the returned forecast confidence intervals is defined by this
by a forecast objective.
interpreter
StartHorizon [1;max_int] | [1;1/8x The StartHorizon defines the number of time series points to be forecasted at the beginning
Frequency] and can be dynamically increased by HorizonFactors in the classification setting (Tab.5) up
to the MaximumHorizon setting. This value should be equal or higher than the
ForecastPeriod objective (if continuous or even overlapping forecasts are needed).
Maximum [1;max_int] | Frequency The value of MaximumHorizon setting defines the maximum number of time series points to
Horizon be forecasted. A recommendation for this setting is the value of the Frequency attribute of

the time series, as a higher horizon setting may lead to broad confidence intervals.

Group 1 - Negligible Overhead
This group contains methods with almost no overhead, which are the Moving Average (MA)
and the Naive forecasting methods.

Group 2 — Low Overhead
This group contains methods with low overhead and contains the fast forecasting methods
Simple Exponential Smoothing (SES), Cubic Spline Interpolation (CS), the predefined
ARIMA10I model and the specialized Croston’s Method for intermittent time series. The
processing times of forecasting methods in this group are below 100 ms for a maximum of
100 time series points.

Group 3 — Medium Overhead
This group stands for medium overheads and contains the forecasting methods Extended
Exponential Smoothing (ETS) and tBATS. The processing times are below 30 seconds for
less than 200 time series points.

Group 4 - High Overhead
This group stands for high overheads and contains again tBATS and additionally the ARIMA
forecasting framework with automatic selection of an optimal ARIMA model. The processing
times for methods in this group are below 60 seconds for less than 200 time series points.

3.3. Partitions of the Classification Process

In addition to groups of computational overhead, we distinguish three major partitions of forecasting
methods. Each partition contains forecasting methods which are applicable in different situations
during run-time workload classification and forecasting process. When a time series of request
arrival rates is added for classification and no historic data of its WIB is available yet, the only
option is to apply fast and naive forecasting methods to get a basic forecast. At a later point in time,
when more observations become available, it may be useful to apply methods that can interpolate
the trends within the time series. And again at a later point in time, when about three periods within
the time series have already been observed, it is possible to detect deterministic seasonal patterns
by using complex time series analysis, decomposition and forecasting methods.

Therefore, our classification process distinguishes three partitions according to the amount of
historic data available in the time series: an initial partition, a fast partition, and a complex partition.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 N. R. HERBST ET AL.

These partitions are related to the overhead groups of the forecasting methods. Having a short time
series, i.e. for the initial partition, only forecasting methods in the Overhead Group I can be applied.
A medium length of a time series may allow application of methods contained in the Overhead
Group 2 and a long time series (complex partition) enables the use of the methods in Overhead
Group 3 and 4. The two thresholds that define when a time series is short, medium or long can be
set as parameters in the setting of the classification process. Based on the experience gained from
experiments, we recommend to set the threshold for the transition from initial to fast to a value
7 € [5, §] observations (five being the minimal amount of observations needed for Cubic Spline
Interpolation and p being the length of a period in time series points). The fast to complex threshold
should be set to a value 7 > 3p because most methods in the respective overhead group need at least
three pattern occurrences to identify them. A short summary of the capabilities of this three different
classification strategies (initial, fast and complex) can be found in Table I'V. How these capabilities
are realised, is discussed in detail in the following sections.

Table IV. Classification Strategies and their Capabilities

Classification Overhead Group Capabilities
Strategy
Initial 1-nearly none This classification strategy only checks via the estimated and observed MASE
metrics whether the arithmetic mean is a better forecast estimate than the naive
approach.
Fast 2 - very low This classification strategy observes the noise level and can apply the moving

averages for smoothing, heuristically selects the Croston’s method or the cubic
spline interpolation, evaluates the result plausibility and the forecast accuracy via
the estimated and observed MASE metrics to adjust the current classification.
Complex 3 — medium, This classification strategy observes the noise level and can apply the moving
4 - high averages for smoothing, heuristically selects the Croston’s method if necessary and
evaluates the result plausibility and the forecast accuracy via the estimated and
observed MASE metrics to adjust the current classification. Either strategies from
overhead class 3 or class 4 are selected.

3.4. Evaluating Forecasting Accuracy

In an online scenario, WIBs are not stationary, i.e., their characteristics can change over time.
Accordingly, the most appropriate forecasting method can also change and must be adapted at run-
time. It is the responsibility of the classification process to detect such changes and adjust the WIB
class to the forecasting method that yields the most accurate results for the given WIB, considering
given forecast objectives.

To evaluate the accuracy of a forecasting method, a number of metrics assessing the differences
between forecast results and corresponding observations have been proposed (cf. [24] for an
overview). As also extensively discussed by [24], the Mean Absolute Scaled Error (MASE) is the
metric of choice that enables consistent comparisons of forecasting methods across different data
samples. The MASE metric for an interval [m,n] € T is defined as follows:

ETTOoT

1 n
MASE[m, n] = ——— >

))

b[m,n]

t=m

whereas error; is defined as
errory = forecast; — observation, t € [m,n]

and by, ,,) as the average change within the observation

n
E |observation; — observation;_1| .
1=m-+1

1

n—m

bpm,n) =

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 15

Essentially, the MASE metric compares the forecast accuracy with the accuracy of the naive
forecasting method. If the MASE value is close to one or even bigger, the computed forecast
results are not valuable for further processing because their accuracy is equal or even worse than
using the naive forecasting method. This means that one could use monitoring data for resource
provisioning, directly. In turn, the closer the metric value is to zero, the better the accuracy of the
selected forecasting method.

In our classification process, we select the forecasting method providing the lowest MASE value
for the given WIB. The best point in time during the WCF process to precisely calculate the MASE
metric is just before the next forecast execution is triggered, i.e., when both the observation values
as well as the forecast results are available. This result is used as forecast accuracy feedback in the
classification phase. However, in an online scenario where we need forecast results for proactive
resource provisioning, no observations are available to assess the quality of the forecasts. In such
situations when no observations are available, the MASE metric can also be used to assess the
accuracy of different forecasting methods by comparing them with the naive forecast.

Thus, we execute two or more forecasting methods in parallel during the forecasting phase and
compare their accuracy in configurable intervals using the MASE metric to ensure that the currently
chosen WIB class still produces the most accurate results compared to other approaches. This
comparison of forecasting method is also triggered when the evaluation of forecast results with
observations seems implausible or shows low accuracy (M ASE[m,n] > 1).

3.5. Non-Absolutely Positive Workloads

The workloads considered in this work contain time series of request arrival rates. These time series
are non-negative, as there cannot be a negative number of requests per time period. However, the
time series might contain zero values, as there might exist time periods where no requests arrive.
The problem is that the majority of forecasting methods assume absolutely positive time series
as input (cf. 2.2). Such forecasting methods are not numerically stable, i.e., they interrupt after a
division by zero and thus cannot return a forecast result. Therefore, we need to eliminate zeros
from the time series before passing it to the forecasting method. However, if zero values appear
regularly in the time series, it is better to use Croston’s forecasting method for intermittent demands
which is developed for such time series. This method decomposes the time series into two different
time series. A strictly positive time series and another time series containing the period duration
when the time series was zero. The forecast is then executed independently for both time series and
combined later on. The classification of a WIB would be highly sensitive to zero values if only a
few observations of zero values immediately caused a switch to the Croston’s forecast method. To
configure this sensitivity, we introduced a threshold for the rate of zero values. We recommended
set this threshold to a reasonable value between 20% and 40%.

3.6. Decision Tree

The decision tree depicted in Figure 3 is the core element for selecting a suitable forecasting method.
To determine a suitable forecasting method for a given workload, one follows the branches by
evaluating the identified WIB characteristics (cf. I). The thresholds in the conditions of the branches
are parameterized. The values of these thresholds are either derived from the forecasting objectives
or based on empirical values obtained during our experiments. The leaves of the decision tree
contain one or several recommended forecasting methods. In case a leave contains more than one
suitable forecasting method, the forecasting phase executes all of them and evaluates their estimated
forecast accuracy using the MASE metric to select the more accurate result. Before the next iteration
of the forecasting phase, i.e., when real system observations are available, we can also determine
the accuracy of the forecast values compared to the real observations using the MASE metric. These
results are then employed in the decision tree in the next iteration of the classification phase.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

N. R. HERBST ET AL.

16

uonaqg

‘wesed

‘dw3

POYLIAI
Sunsedaloy

JnsuaeIRY)

a9im

:puasda

ISVIN

TOTVINIYY
+S3S

/\I&m>

ISVIN

(elvin
Suiyroows

juaIpesn
3 ssaunsing

KoN

oN
€< AOD 8 AGD
VINIEY
SO,
+siyar oA é 8 Kip1uoiouo
® ssaullsing
oN

N2
Siva:
B S13

v

ISVIA

PoyIBIN

S,U01504)
7N
S9A

0197
9% X<

S9149§ dwil|
30 Auaisod

|

SOA

peaysano

AOD 3200

13 Aj1d1uojouo|n koN

3 ssaunsing

<
Suoq

(elvn
Suiyzoows

0137
% X <

saA-)

s ,uojsos)

POy

EEET
Jo Aunnisod

~
S9A

T<
peay4ano

wnipapy

Suoq
‘wnipain
‘Uoys

EESENT

jo yiduay [

ON

1oys-} VIAl '8 anteN

ISVIN

Figure 3. Decision tree for workload classification and selection of appropriate forecasting methods.

DOI: 10.1002/cpe

Concurrency Computat.: Pract. Exper. (2014)

Copyright © 2014 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

WORKLOAD CLASSIFICATION & FORECASTING 17

4. WCF ARCHITECTURE AND IMPLEMENTATION

We implemented our self-adaptive workload classification and forecasting process in Java. We
refer to this implementation as WCF System in the following. For workload forecasting, we used
the implementations provided by the forecasting package ¥ for R, a language and environment
for statistical computing [25]. Figure 4 depicts the architecture of our WCF System as a UML
component diagram.

<<Interface>> <<System>>
WCFSystemManagement WCFSystem
o= <<BasicComponent>> &]
N5 <<CompositeComponent>> £ {/ WIBClassification
50— WCFM N
o CFManager {\ <<BasicComponent>> £]

Forecasting

<<Interface>> ﬁ ((l?

ForecastResult

<<BasicComponent>> %]
RServerBridge

?

<<ExternalSystem>> 2]
RServer

Figure 4. Architecture of the WCF System.

4.1. Architecture

The central component of the WCF System is the WCFManager. It is responsible for accepting
and managing the WIB traces to be classified and forecast and the respective configuration settings.
The WCFManager periodically triggers the classification and forecasting processes according to
the forecasting objectives. In addition, it also implements management functionality to persist the
given WIB traces, configurations, and results. A more detailed description of how to interact with
the WCF Sy stem using its interfaces follows below.

The WIBClassification component realizes the classification phase of the WCF process
and implements the previously presented decision tree. This component receives a WIB trace from
the WCFManager and selects a forecasting method for this WIB according to the decision tree. It
returns the result, i.e., the selected WIB class, to the WCFManager component.

The Forecasting component implements the forecasting phase of our WCF process. It
executes the forecasting method that has been selected by the WIBClassification component.
To obtain forecasting results, the Forecasting component uses an external system, the
RServer. This is basically a TCP/IP server which allows other programs to use the facilities of R,
a language and environment for statistical computing [25]. To communicate with the RServer, the
Forecasting component uses the RServerBride. This is a wrapper which encapsulates the
controlling of R and that processes the results from the R environment.

4.2. Interfaces

The WCFSystem provides two interfaces. The WCFSystemManagement interface offers
management functionality to register new or remove existing WIBs, and to read and update the
ForecastingObjectives of a WIB. By setting the forecasting objectives (cf. 3.1), the user can

Yhttp:/robjhyndman.com/software/forecast/

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

18 N. R. HERBST ET AL.

influence the execution and thus the results of the classification and forecast processes. In addition,
the WCFSystemManagement interface can be used to trigger executions of a classification or a
forecast manually.

The second interface provided by WCFSystem is the ForecastResult interface, which is
used for data exchange. By default, data is read from and written to buffers, to support the integration
of the WCFSystem into a pipes-and-filters architecture. The reason for this design decision is
that our WCF system should be able to process data provided at tun-time as an input stream by
monitoring frameworks. In this case, input data are newly monitored arrival rate values of the
registered WIBs, which are provided constantly and in fixed but configurable periods. The output
data of the WCF Sy st em are forecast results, which are written into a buffer, too. This buffer can then
be used by a resource provisioning system or system adaptation component for further processing.
Another option supported by the WCFSystem is to write the forecast results to a file for manual
result interpretation. More details on the integration of the WCF Sy st em in a model-based adaptation
process and system monitoring framework follows below.

4.3. Control Flow

The UML sequence diagram in Figure 5 illustrates the control flow of an exemplary use case of the
WCFSystem. Note that we omitted the RServerBridge in this diagram as it simply acts as a
wrapper for the interface of the RServer.

To register a new WIB, a user can invoke the registerWIB(ts, forecast-
ing_objectives) method of the WCFSystemManagement interface. This triggers the WCF -
Manager to create a new record for this WIB. The parameters of this method are a reference to the
time series buffer as well as the forecasting objectives for this time series.The referred time series
buffer in this context is the entity that continuously provides new monitoring data for the time series.

While the WCFManager is active, it periodically triggers the classification and forecasting
of its registered WIBs, depending on the specified time periods. For classification, the
WCFManager invokes the classify method of the WIBClassification component.
Arguments are a reference to the time series (ts) that shall be classified and the given
forecasting.objectives. The WIBClassification then classifies the given WIB
according to the process we specified in Section 3 and returns the result wib_class to the
WCFManager component.

To obtain workload forecasts, the WCFManager calls the createForecaster (wib_
class) method of the Forecasting component. This creates a Forecaster object
which acts as a proxy for the forecasting method specified by the wib_class argument and
implemented in the RServer. Then, the WCFManager can pass the time series ts and the
forecasting_objectives to the created Forecaster to trigger the forecasting process
using the forecast method. The Forecaster then uses the RServerBride to communicate
with the RServer and start the forecast. When finished, it receives the results from the RServer,
processes and passes them to the WCFManager. The WCFManager stores the results in the
configured location and notifies the user that new forecasting results are available. To remove a
WIB from the classification and forecasting process, the user can invoke removeWIB (ts). Then,
the WCFManager component will trigger no further classifications or forecasting.

4.4. Integration

An important requirement for the architecture of the WCF system is that it can be integrated
into a pipes-and-filters architecture. The reason is that data must be processed at system run-time.
According to [26, p. 53], “the pipes-and-filters architectural pattern provides a structure for systems
that process a stream of data. Each processing step is encapsulated in a filter component. Data is
passed through pipes between adjacent filters.”

Similarly, in the context of model-based system adaptation (realizing a MAPE-K control loop
[29]), the MONITOR phase continuously provides new workload data that must be processed at
run-time by our WCFSystem and directly provided to the ANALYZE phase. Figure 6 sketches a
possible integration of the WCFSystem into a model-based adaptation control loop [28]. In this

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING

notifyUser()

> writeResults()

:WCFManager :WIBClassification :Forecasting :RServer
]]]]
| | | |
| I I |
M registerWIB(ts,] | | ™
forecasting_objectives) } }
| |
> createWIs() ! !
I I
| |
while(active) } }
/ | |
| |
t t
if(classification_periocy classify(ts, forecasting_objectives) } }
»L |
I
|
I
wib_class }
|
Kommmmmmmm e] |
I I
| |
t t
| |
T T
if(f ti iod| J ! |
iforecasting_period) createForecaster(wib_class) |
] | createForecaster()
T
|
|
forecast(ts, forecasting_objectives)
H forecast(ts)
fc_result fc_result

removeWIB(ts)

> destroyWIB()

Figure 5. UML sequence diagram illustrating an exemplary use case of the WCF system.

|
|
|
|
|
l
S 1o
|
|
|
|
|
|
|
|
|
[l
|
|
|
|
|
|
|
|
|

MONITOR

ANALYZE

Kieker

WCFSystem

2 |
ModelAnalyzer

Figure 6. Integration of the WCF Sy stem with an exemplary monitoring framework [27] and a model-based
adaptation approach [28].

example, Kieker, a framework for monitoring and analyzing a software system’s run-time behavior
[27], continuously delivers monitoring data of the service’s request arrival rates. These data are
piped into our WCFSystem that processes the data at run-time and delivers its forecasts to the

ModelAnalyzer that can use the forecasts to detect problems for the workload forecasts.

Copyright © 2014 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

20 N. R. HERBST ET AL.

5. EVALUATION

In this section, we present results of an extensive evaluation of our WCF approach based on
real-world scenarios. Due to the space constraints, we focus on presenting a selected experiment
focusing on a forecast accuracy comparison and an exemplary case study where the forecast results
are interpreted for proactive resource provisioning. In general, real-world WIB traces are likely to
exhibit strong seasonal patterns with daily periods due to the fact that the users of many software
services are humans. The daily seasonal patterns are possibly overlaid by patterns of a longer periods
such as weeks or months. Deterministic bursts within a WIB trace are often induced by planned
batch tasks (for example in transaction processing systems). In addition, a WIB trace can exhibit
non-deterministic bursts that cannot be foreseen by any time series analysis technique due to system
extrinsic influences. For the evaluation of the WCF approach we used multiple real-world WIB
traces with different characteristics representing different types of workloads. The results presented
in this paper are based on the following two WIB traces:

(i) Wikipedia Germany Page Requests: The hourly number of page requests at the webpage of
Wikipedia Germany has been extracted from the publicly available server logs/ for October 2011.

(i) CICS transaction processing monitoring data was provided by IBM of an real-world
deployment of an IBM z10 mainframe server. The data reports the number of started transactions
during one week from Monday to Sunday in 30 minute windows.

5.1. Exemplary Scenario

In the presented exemplary scenario, the WCF system uses forecasting methods from all four
overhead groups and is compared to the fixed use of the Extended Exponential Smoothing (ETS)
method. Additionally, the Naive forecasting method (which is equivalent to system monitoring
without forecasting) is compared to the other forecasting methods to quantify and illustrate the
benefit of applying forecasting methods against just monitoring the request arrival rates. The
individual forecasting methods have been executed with identical exemplary forecast objectives on
the same input data and are therefore reproducible. The forecast results are provided continuously
over the experiment duration, which means that at the end of an experiment there is for every
observed request arrival rate a corresponding forecast mean value with a confidence interval.
This allows to evaluate whether the WCF system successfully classifies the WIB. A successful
classification would mean that the forecasting method that delivers the highest accuracy for a
particular forecasting interval is selected by the WCF system. To quantify the forecast result
accuracy, a relative error is calculated for every individual forecast mean value:

| forecastV alue,—observedArrival Ratey |

TGZQtlU@ET’TOTt = observedArrival Ratey

The distributions of these relative errors are illustrated using cumulative histograms which have
inclusive error classes on the x-axis and the corresponding percentage of all forecast points on
the y-axis. In other words, an [z, y] tuple expresses that y percent of the forecast points have a
relative error between 0% and x%. Accordingly, given that the constant line y = 100% represents
the hypothetical optimal error distribution, in each case the topmost line represents the best case of
the compared alternatives with the lowest error. We chose to illustrate the error distribution using
cumulative histograms to obtain monotone discrete functions of the error distribution resulting in
less intersections and therefore in a clearer illustration of the data. To improve readability, the
histograms are not drawn using bars but simple lines connecting the individual [x,y] tuples. In
addition, statistical key indices like the arithmetic mean, the median and the quartiles as well as
the maximum were computed to enable direct comparison of the relative error distributions and
rank the forecasting methods according to their achieved forecast accuracy. Finally, directed paired
t-tests from common statistics were applied to ensure the statistical significance of the observed
differences in the forecast accuracy of the different forecasting methods.

Ihttp://dumps.wikimedia.org/other/pagecounts-raw/

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 21

This experiment compares the forecast accuracy of the WCF approach with the ETS method
and the Naive method during a learning process which means that at the beginning there is no
historical data available to the individual forecasting methods that are compared. Concerning the
forecasting objectives, the forecast horizon (in this scenario identical to the forecasting frequency)
for all forecasting methods is configured to increase stepwise as shown in Table V. The maximum
overhead group is set to 4 for an unrestricted set of forecasting methods. The confidence level is set
to 95%, but not further interpreted in this scenario.

Table V. Exemplary Scenario

Experiment Focus Comparison of unrestricted WCF
to static ETS and Naive
Forecasting Methods WCE(1-4), ETS(3), Naive(1)
(overhead group)
Input Data CICS transactions, Monday to Friday,
WIB trace 240 values in transactions per 30 minutes,

frequency = 48,

5 periods as days

Forecast Horizon (h) h =1 for 15 half period,

(= Forecasting Frequency) | h =2 until 3" period complete,
h = 12 for 4" and 5 period

500

Tuesday Wednesday Thursday Friday

-> overhead group 2, horizon 2 -> overhead group 4, horizon 12

«=-ETS
Mo — -WCF

Vv\: ——Observation

H

1000 x CICS transactions per 30 minute interval

g
:

%

!

Figure 7. Exemplary Scenario: Comparison Chart of WCF and ETS

R
@

-100

The cumulative error distribution for each of the methods are shown in Figure 8 as well as in
Figure 9 which demonstrate that the WCF method achieves significantly better forecast accuracy
compared to ETS and Naive. ETS can only partially achieve slightly better forecast accuracy than
the Naive method, however, it induces processing overheads of 715 ms per forecasting method
execution compared to 45 ms for the Naive method (computation of the confidence intervals). The
WCF method has an average processing overhead of 61 ms during the first three periods of the
WIB trace. In the fourth and fifth period (Thursday and Friday), when forecasting methods of the
overhead group 4 are selected, WCF’s processing overhead per forecasting method execution is on
average 13.1 seconds. The forecast mean values of the individual methods and the respective actual
observed request arrival rates in the course of time are plotted in Figure 7. In this chart it is visible
that the ETS method forecast values have several bursts during the first three periods and therefore
do not remain as close to the actual observed values as the WCF forecast values do. During the

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

22 N. R. HERBST ET AL.

Cumulative Percentage Error Distribution
Comparison of WCF to ETS and Naive forecasting methods
CICS transactions (5 days, 48 frequency, 240 forecast values)
100%

90% ,————/,/‘/,
80% / /
70%
-
/ |-
60% / —
-
50% =

a0% /
/ //
30% a1
20% //'
10% z

percentage error class [0%, x%]
5% | 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | 80% | 85% | 90% | 95% | 100% | >
—Naive| 10% | 19% | 23% | 28% | 34% | 41% | 46% | 49% | 51% | 56% | 59% | 62% | 67% | 68% | 69% | 71% | 79% | 80% | 85% | 87% | 100%

= -ETS 12% | 19% | 30% | 36% | 43% | 46% | 50% | 53% | 56% | 61% | 63% | 66% | 71% | 73% | 74% | 75% | 76% | 79% | 79% | 81% | 100%
e WCF | 13% | 25% | 34% | 46% | 56% | 64% | 66% | 68% | 70% | 72% | 76% | 79% | 82% | 82% | 83% | 86% | 88% | 89% | 90% | 91% | 100%

percent of forecast values

0%

Figure 8. Exemplary Results: Cumulative Error Distribution of WCF, ETS and Naive

Naive
1

ETS
I

WCF
I

Figure 9. Exemplary Results: Box & Whisker Plots of the Error Distributions

last eight forecast executions the WCF approach successfully detects the daily pattern early enough
to achieve better results than ETS. As in this exemplary scenario, we did not observe in any of
our experiments with real-world dynamic WIBs that the WCF converges to statically select a single
forecasting method .

The WCF approach shows the lowest median error value of 20.7% and the lowest mean error
value of 47.4%. In addition, WCF has a significantly smaller maximum error value. Though the
ETS method is a sophisticated procedure on its own, the results of the presented exemplary scenario
demonstrate that the application of ETS on its own leads to poor forecast accuracy with average
errors almost as high as for the Naive method and even higher maximal errors.

5.2. Case Study

In this section, we present a case study demonstrating how the proposed WCF method can be
successfully used for proactive online resource provisioning. WCF offers a higher degree of
flexibility due to the spectrum of integrated forecast methods. None of these forecasting methods
can offer this degrees of flexibility on their own. For this case study scenario, there is no historic
knowledge available at the beginning and the WCF has to adapt to this and wait for the first three
periods (Monday, Tuesday, Wednesday) until forecasting methods of the overhead group 4 can be
applied. For an arrival rate higher than a given threshold, the SLO of the average response time
is violated. We assume that the underlying system of the analyzed workload intensity behavior is
linearly scalable from zero to three server instances. This assumption implies a constant average
resource demand per request for all system configurations. Furthermore we assume the presence of
aresource provisioning system that reacts on observed SLO violations as well as on forecast results.
For an arrival rate lower than a given threshold, the running server instances are not efficiently used

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 23

and therefore one of them is shut down or put in stand by mode. In this scenario, the WCF system
provides forecast mean values and confidence intervals to the resource provisioning system which
then can proactively add or remove server instances at that point in time, when the resource or server
is needed, in addition to solely reacting on SL.O violations. Details on the WCF configuration for
this case study scenario are given in Table VI.

Table VI. Case Study Scenario

Forecast Strategy WCEF(1-4)

(overhead group)

Input Data Wikipedia Germany, 3 weeks,

WIB trace 504 values in page requests per hour,

frequency = 24,
21 periods as days

Forecast Horizon h = 1 for 1%* half period

(= Forecasting Frequency) h = 3 until 3" period is complete
(number of forecast points (h)) | h =12 from 4" on

Confidence Level 80 %

In Figure 10, the WCF forecast values are plotted together with the corresponding confidence
intervals and the actual observed workload intensities. The two dotted lines represent the given
thresholds that define when a server instance needs to be started or shut down. The upper threshold
is placed in a way that it is not reached constantly in every daily seasonal period (for example not
on the weekends).

1 Day 8 Day18
inday Monday Thursday

28

-> overhead group 2, horizon 3 -> overhead group 4, horizon 12

Million Wikipedia Page Requests per hours

upper
confidence

lower
confidence

forecasted
value

observation

— — upper
threshold

— -lower
threshold

Al dlassification
..... g £ %% %8 & S bywcr

B L

mEEnanasenaseeepesenesel 2 | B | % | 5 | 6 | v |8 | | w82 8| esivio| ol e 66| es| 6|)| oo

execution

Figure 10. Case Study Chart: 21 Days Wikipedia Page Requests, WCF4 approach

The additions or removals of server instances are triggered based on simple threshold-based rules
either in a reactive manner after an SLO violation or in a proactive fashion anticipating the points
in time when SLO violations would occur. It can be seen that SLO violations cannot be forecast
reliably in the first three daily periods. For the following daily periods, SLO violations can be
correctly anticipated in the majority of cases. Only when the amplitude of the daily pattern changes,
for example before and after weekends, the forecast mean values deliver false positives or do not

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

24 N. R. HERBST ET AL.

anticipate the need for additional computing resources on time. To obtain the results summarized in

Table VII. Case Study: SLO Violations Summary

Comparison | Reactive vs. proactive WCF based
provisioning of server instances
Reactive 76 SLO violations

Proactive 42 SLO violations correctly anticipated
(WCF based) | and 15 more nearly correctly

6 cases of false positives

13 cases of false negatives (not detected)

Table VII, we counted correct, incorrect and nearly correct forecasts for all threshold crossings of
the real workload. In the worst case 34 and in the best case 19 SLO violations occur when using
the proactive approach based on WCF compared to 76 SLO violations in the reactive case. 17%
of SLO violations were not anticipated by the proactive WCF-based approach in addition to 8%
reported false positives. The total uptime of the server instances remains equal to a solely reactive
provisioning. The start and stop of the server instances is timed more accurately with the result of
avoiding the majority of SLO violations and increasing efficiency in resource usage.

5.3. Result Interpretation

As part of our comprehensive evaluation, we considered a number of different scenarios
under different workloads with different forecasting objectives and different respective WCF
configurations. The experiment results show that the WCF system is able to sensitively select
appropriate forecasting methods for particular contexts thereby improving the overall forecast
accuracy significantly and reducing the number of outliers as compared to individual forecasting
methods applied on their own. In the presented exemplary scenario, WCF achieved an improvement
in forecast accuracy on average by 37%. As demonstrated in the case study scenario, the
interpretation of WCF forecast results by proactive resource provisioning reduces the number of
SLO violations by between 55% to 75%. In addition, our proposed self-adaptive WCF approach
supports the system users to select a forecasting method according to their forecasting objectives.
Especially at the beginning of a WIB’s lifetime, when no or few historical data is available, a
static decision made by a user would not fit for the WIB’s lifetime. With its dynamic design and
the flexibility to react on changes in the WIB, the WCF system is able to adapt to such changes,
thereby increasing the overall accuracy of the forecast results. Our WCF system enables online
and continuous forecast processing with controllable computational overheads. We achieve this
by scheduling forecasting method executions and WIB classifications in configurable periods. In
all experiments, the processing times of all forecasting methods remained within the boundaries
specified by their corresponding overhead group in such a way that the forecast results are available
before their corresponding request arrival rates are monitored. The latter is crucial especially for the
execution of forecasting methods at a high frequency with short horizons.

For a WIB with strong daily seasonal pattern and high amplitude variance due to known calendar
effects, the forecast accuracy might be strongly improved by splitting this WIB into two separate
time series: regular working days in the first and weekends and public holidays in the second. This
can reduce the impact of the possibly strong overlay of weekly patterns. As part of our future work,
we plan to introduce support for such time series splitting as well as for the selection of the data
aggregation level for varying forecasting objectives. This can be achieved by a realisation of an
intelligent filter applied to the monitoring data before it is provided to the WCF system in form of
time series.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 25

6. RELATED WORK

We divide related work into the following three groups: (i) The first group of related work has its
focus on evaluating forecasting methods applied to either workload related data or performance
monitoring data. (ii) In the second group of related work we consider approaches for workload
forecasting that are not based on the methods of the time series analysis, as opposed to our proposed
WCEF approach. (iii) In the third group of related work we cover research that has its focus on
approaches for proactive resource provisioning using tailored forecasting methods.

(i) In 2004, Bennani and Menasce have published their research results of an robustness
assessment on self-managing computer systems under highly variable workloads [30]. They come
to the conclusion that proactive resource management improves a system’s robustness under highly
variable workloads. Furthermore, the authors compare three different trend interpolating forecasting
methods (polynomial interpolation, weighted moving averages and exponential smoothing) that
have been introduced as means for workload forecasting in [31]. Bennani and Menasce propose
to select the forecasting methods according to the lowest R? error as accuracy feedback. Still,
the focus of this work is more on the potentials of proactive resource provisioning and the
evaluation of forecasting methods is limited to basic trend interpolation methods without any pattern
recognition for seasonal time series components. In [32], Frotscher assesses the capabilities to
predict response times by evaluating the forecast results provided by two concrete ARIMA models
without seasonality, simple exponential smoothing (SES) and the Holt-Winters approach as a special
case of the extended exponential smoothing (ETS). His evaluation is based on generated and
therefore possibly unrealistic times series data. The author admits that the spectrum of forecasting
methods offered by time series analysis is not covered and he is critical about the capability to
predict response times of the evaluated methods as their strengths in trend extrapolation does not
suit to typically quickly alternating response times.

(i1) In [33] and a related research paper [34], the authors propose to use neuronal nets and machine
learning approaches for demand prediction. This demand predictions are meant to be used by an
operating system’s resource manager. Goldszmidt, Cohen and Powers use an approach based on
Bayesian learning mechanisms for feature selection and short term performance forecasts described
in [35]. Shortcoming of these approaches is that the training of the applied neuronal nets on a certain
pattern need to be completed before the nets can provide pattern based forecasts. This stepwise
procedure limits the flexibility and implies the availability of high amounts of monitoring data for
the mining of possibly observable patterns.

(iii) The authors of [3] use a tailored method to decompose a time series into its dominating
frequencies using a Fourier transformation and then apply trend interpolation techniques to finally
generate a synthetic workload as forecast. Similarly in [4], Fourier analysis techniques are applied
to predict future arrival rates. In [8], the authors base their forecast technique on pattern matching
methods to detect non-periodic repetitive behavior of cloud clients. The research of Bobroff, Kochut
and Beaty presented in [5] has its focus on the dynamic placement of virtual machines, but workload
forecasting is covered by the application of static ARMA processes for demand prediction. In [7],
an approach is proposed and evaluated that classifies the gradients of a sliding window as a trend
estimation on which the resource provisioning decision are then based. The authors Grunske, Aymin
and Colman of [36, 37] focus on QoS forecasting such as response time and propose an automated
and scenario specific enhanced forecast approach that uses a combination of ARMA and GARCH
stochastic process modeling frameworks for frequency based representation of time series data.
This way, the authors achieve improved forecast accuracy for QoS attributes that typically have
quickly alternating values. In [6], different methods of the time series analysis and Bayesian learning
approaches are applied. The authors propose to periodically selected a forecasting method using
forecast accuracy metrics. But it is not further evaluated how significantly this feedback improves
the overall forecast accuracy. No information is given on how the user’s forecast objectives are
captured and on how the computational overheads can be controlled. In contrast to our research, the
authors concentrate on the prediction of resource consumptions.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

26 N. R. HERBST ET AL.

However, besides of [6], a common limitation of the above mentioned approaches is their focus on
individual methods that are optimised or designed to cover a subset of typical situations. Therefore,
they are not able to cover all possible situations adequately as it could be achieved by an intelligent
combination of the innovation state space frameworks (ETS and tBATS) and the auto-regressive
integrated moving averages (ARIMA) framework for stochastic process modeling. Furthermore,
in all mentioned approaches besides in [4], the resource utilisation or average response times
are monitored and taken as an indirect metric for the recent workload intensity. But these QoS
metrics are indirectly influenced by the changing amounts of provisioned resources and several other
factors in a dynamic environment. The forecasting computations are then based on these values that
bypass resource demand estimations per request and interleave by principle performance relevant
characteristics of the software system as they can be captured in a system performance model.

7. CONCLUSION

Today’s resource managing systems of virtualized computing environments often work solely
reactive using threshold-based rules, not leveraging the potential of proactive resource provisioning
to improve a system performance while maintaining resource efficiency. The results of our research
is a step towards exploiting this potential by computing continuous and reliable forecasts of request
arrival rates with appropriate accuracy.

The basis of our approach was the identification of Workload Intensity Behavior specific
characteristics and metrics that quantify them. Moreover, we presented a survey on the strengths,
weaknesses and requirements of existing forecast methods from the time series analysis and ways
to estimate and evaluate the forecast accuracy of individual forecast executions. As the major
contribution of this paper, we presented an approach classifying Workload Intensity Behaviors
to dynamically select appropriate forecasting methods. This has been achieved by using direct
feedback mechanisms that evaluate and compare the recent accuracy of different forecasting
methods. They have been incorporated into a decision tree that considers user specified forecasting
objectives. This enables online application and processing of continuous forecast results for a
variable number of different WiBs. Finally, we evaluated an implementation of our proposed
approach in different experiments and an extensive case study based on different real-world
workload traces. Our experiments demonstrate that the relative error of the forecast points in relation
to the monitored request arrival rates is significantly reduced as in the exemplary scenario by 37%
on average compared to the results of a static application of the Extended Exponential Smoothing
(ETS) method. More importantly, the major benefit of our approach has been demonstrated in an
extensive case study, showing how it is possible to prevent between 55% and 75% of SLO violations.

7.1. Future Work

We plan to extend the functionality of the WCF system to apply it in further areas. One extension
is the combination of the WCF system with an intelligent filter that helps a system user to fit the
aggregation level of the monitored arrival rates for specific forecasting objectives, e.g, continuous
short term forecasts for proactive resource allocation or manually triggered long term forecasts for
server capacity planning. For divergent forecasting objectives, such a filter would multiplex an input
stream of monitoring data and provide it as individual WIBs in different aggregation levels at the data
input interface of the WCF system. A second WCF system application area will be a combination
with an anomaly detection system like ©PAD as outlined in [38]. Such a system can compute
continuous anomaly ratings by comparing the WCF system’s forecast results with the monitored
data. The anomaly rating can serve to analyze the Workload Intensity Behavior for sudden and
unforeseen changes and in addition as an reliability indicator of the WCF system’s recent forecast
results.

Ultimately, we will connect the WCF system’s interface (data input) to a monitoring framework
like Kieker [27] to continuously provide online forecast results. These forecast results can then be
used as input for self-adaptive resource management approaches like in [28], giving them the ability

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOL: 10.1002/cpe

WORKLOAD CLASSIFICATION & FORECASTING 27

to proactively adapt the system to changes in the workload intensity. This combination of workload
forecasting and model-based system reconfiguration is an important step towards the realization of
self-aware systems [39].

10.
. Calzarossa M, Serazzi G. A characterization of the variation in time of workload arrival patterns. /EEE

12.

13.

14.

15.
16.

17.

18.

20.

21.

22.

REFERENCES

. Abdelsalam H, Maly K, Mukkamala R, Zubair M, Kaminsky D. Analysis of energy efficiency in clouds. Future

Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD ’09.
Computation World:, 2009; 416421, doi:10.1109/ComputationWorld.2009.38.

. Lefvre L, Orgerie AC. Designing and evaluating an energy efficient cloud. The Journal of Supercomputing 2010;

51:352-373. URL http://dx.doi.org/10.1007/s11227-010-0414~-2, 10.1007/s11227-010-0414-2.

. Gmach D, Rolia J, Cherkasova L, Kemper A. Workload analysis and demand prediction of enterprise data center

applications. Proceedings of the 2007 IEEE 10th International Symposium on Workload Characterization, ISWC
’07, IEEE Computer Society: Washington, DC, USA, 2007; 171-180, doi:http://dx.doi.org/10.1109/IISWC.2007.
4362193. URL http://dx.doi.org/10.1109/IISWC.2007.4362193.

. Hedwig M, Malkowski S, Bodenstein C, Neumann D. Towards autonomic cost-aware allocation of cloud resources.

Proceedings of the International Conference on Information Systems ICIS 2010, 2010. URL http://aisel.
aisnet.org/icis2010_submissions/180/.

. Bobroff N, Kochut A, Beaty K. Dynamic placement of virtual machines for managing sla violations. Integrated

Network Management, 2007. IM °07. 10th IFIP/IEEE International Symposium on, 2007; 119 —128, doi:10.1109/
INM.2007.374776.

. Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D. Efficient resource provisioning in compute

clouds via vim multiplexing. Proceedings of the 7th international conference on Autonomic computing, ICAC
10, ACM: New York, NY, USA, 2010; 11-20, doi:http://doi.acm.org/10.1145/1809049.1809052. URL http:
//doi.acm.org/10.1145/1809049.1809052.

. Kim H, Kim W, Kim Y. Predictable cloud provisioning using analysis of user resource usage patterns in virtualized

environment. Grid and Distributed Computing, Control and Automation, Communications in Computer and
Information Science, vol. 121, Kim Th, Yau SS, Gervasi O, Kang BH, Stoica A, Slezak D (eds.). Springer Berlin
Heidelberg, 2010; 84-94.

. Caron E, Desprez F, Muresan A. Pattern matching based forecast of non-periodic repetitive behavior for cloud

clients. J. Grid Comput. March 2011; 9:49-64, doi:http://dx.doi.org/10.1007/s10723-010-9178-4. URL http:
//dx.doi.org/10.1007/s10723-010-9178-4.

. Temple J, Lebsack R. Fit for Purpose: Workload Based Platform Selection. Technical Report, IBM Corporation

2010.
Mitsa T. Temporal Data Mining. 1st edn., Chapman & Hall/CRC, 2010.

Trans. Comput. February 1985; 34:156-162, doi:10.1109/TC.1985.1676552. URL http://dl.acm.org/
citation.cfm?id=1309285.1309718.

Arlitt MF, Williamson CL. Web server workload characterization: the search for invariants. SIGMETRICS Perform.
Eval. Rev. May 1996; 24:126-137.

Schroeder B, Wierman A, Harchol-Balter M. Open versus closed: a cautionary tale. Proceedings of the 3rd
conference on Networked Systems Design & Implementation - Volume 3, NSDI’06, USENIX Association: Berkeley,
CA, USA, 2006; 18-18. URL http://dl.acm.org/citation.cfm?id=1267680.1267698.

van Hoorn A, Rohr M, Hasselbring W. Generating probabilistic and intensity-varying workload for web-based
software systems. Proceedings of the SPEC international workshop on Performance Evaluation: Metrics, Models
and Benchmarks, SIPEW 08, Springer-Verlag: Berlin, Heidelberg, 2008; 124—143.

Ali-Eldin A, Tordsson J, Elmroth E, Kihl M. Workload classification for efficient auto-scaling of cloud resources
2013.

Box G, Jenkins G, Reinsel G. Time series analysis : forecasting and control. 4. ed. edn., Wiley series in probability
and statistics, Wiley: Hoboken, NJ, 2008. Includes index.

Hyndman R, Khler A, Ord K, Snyder R ((eds.)). Forecasting with Exponential Smoothing : The State Space
Approach. Springer Series in Statistics, Springer-Verlag Berlin Heidelberg: Berlin, Heidelberg, 2008. URL http:
//dx.doi.org/10.1007/978-3-540-71918-2.

Shumway RH. Time Series Analysis and Its Applications : With R Examples. Springer Texts in
StatisticsSpringerLink : Bcher, Springer Science+Business Media, LLC: New York, NY, 2011. URL http:
//dx.doi.org/10.1007/978-1-4419-7865-3.

. Verbesselt J, Hyndman R, Zeileis A, Culvenor D. Phenological change detection while accounting for

abrupt and gradual trends in satellite image time series. Remote Sensing of Environment 2010; 114(12):2970
— 2980, doi:10.1016/j.rse.2010.08.003. URL http://www.sciencedirect.com/science/article/
p1i/S0034425710002336.

Hyndman RJ, Khandakar Y. Automatic time series forecasting: The forecast package for R 7 2008. URL http:
//www.jstatsoft.org/v27/103.

De Livera AM, Hyndman RJ, Snyder RD. Forecasting time series with complex seasonal patterns using exponential
smoothing. Journal of the American Statistical Association 2011; 106(496):1513-1527, doi:10.1198/jasa.2011.
tm09771. URL http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.tm09771.

Hyndman RJ, King ML, Pitrun I, Billah B. Local linear forecasts using cubic smoothing splines. Monash
Econometrics and Business Statistics Working Papers 10/02, Monash University, Department of Econometrics and
Business Statistics 2002. URL http://EconPapers.repec.org/RePEc:msh:ebswps:2002-10.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOLI: 10.1002/cpe

http://dx.doi.org/10.1007/s11227-010-0414-2
http://dx.doi.org/10.1109/IISWC.2007.4362193
http://aisel.aisnet.org/icis2010_submissions/180/
http://aisel.aisnet.org/icis2010_submissions/180/
http://doi.acm.org/10.1145/1809049.1809052
http://doi.acm.org/10.1145/1809049.1809052
http://dx.doi.org/10.1007/s10723-010-9178-4
http://dx.doi.org/10.1007/s10723-010-9178-4
http://dl.acm.org/citation.cfm?id=1309285.1309718
http://dl.acm.org/citation.cfm?id=1309285.1309718
http://dl.acm.org/citation.cfm?id=1267680.1267698
http://dx.doi.org/10.1007/978-3-540-71918-2
http://dx.doi.org/10.1007/978-3-540-71918-2
http://dx.doi.org/10.1007/978-1-4419-7865-3
http://dx.doi.org/10.1007/978-1-4419-7865-3
http://www.sciencedirect.com/science/article/pii/S0034425710002336
http://www.sciencedirect.com/science/article/pii/S0034425710002336
http://www.jstatsoft.org/v27/i03
http://www.jstatsoft.org/v27/i03
http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.tm09771
http://EconPapers.repec.org/RePEc:msh:ebswps:2002-10

28

23.

24.
25.
26.

217.

28.

29.
30.

31.
32.
33.
34.
3s.
36.

37.

38.

39.

N. R. HERBST ET AL.

Shenstone L, Hyndman RJ. Stochastic models underlying croston’s method for intermittent demand forecasting.
Journal of Forecasting 2005; 24(6):389-402, doi:10.1002/for.963. URL http://dx.doi.org/10.1002/
for.963.

Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. International Journal of Forecasting
2006; :679-688.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria 2011. URL http://www.R-project.org/, ISBN 3-900051-07-0.

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. Wiley: Chichester, UK, 1996.

van Hoorn A, Waller J, Hasselbring W. Kieker: A framework for application performance monitoring and dynamic
software analysis. Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering
(ICPE 2012), ACM, 2012; 247-248.

Huber N, van Hoorn A, Koziolek A, Brosig F, Kounev S. Modeling Run-Time Adaptation at the System
Architecture Level in Dynamic Service-Oriented Environments. Service Oriented Computing and Applications
Journal (SOCA) 2013; doi:10.1007/s11761-013-0144-4.

Kephart JO, Chess DM. The vision of autonomic computing. Computer 2003; 36(1):41-50.

Bennani MN, Menasce DA. Assessing the robustness of self-managing computer systems under highly variable
workloads. Proceedings of the First International Conference on Autonomic Computing, IEEE Computer
Society: Washington, DC, USA, 2004; 62-69. URL http://dl.acm.org/citation.cfm?id=1078026.
10784009.

Menascé DA, Almeida VAF. Capacity planning for Web performance: metrics, models, and methods. Prentice-Hall,
Inc.: Upper Saddle River, NJ, USA, 1998.

Frotscher T. Prognoseverfahren fiir das Antwortzeitverhalten von Software-Komponenten March 2011. Christian-
Albrechts-Universitit zu Kiel, Bachelor’s Thesis.

Kleeberg SD. Neuronale Netze und Maschinelles Lernen zur Lastvorhersage in z/OS. Universitit Tiibingen,
Diploma Thesis.

Bensch M, Brugger D, Rosenstiel W, Bogdan M, Spruth WG, Baeuerle P. Self-learning prediction system for
optimisation of workload management in a mainframe operating system. /CEIS, 2007; 212-218.

Goldszmidt M, Cohen I, Powers R. Short term performance forecasting in enterprise systems. In ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining, ACM Press, 2005; 801-807.

Amin A, Grunske L, Colman A. An Automated Approach to Forecasting QoS Attributes Based on Linear and Non-
linear Time Series Modeling. Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE/ACM, 2012.

Amin A, Colman A, Grunske L. An Approach to Forecasting QoS Attributes of Web Services Based on ARIMA
and GARCH Models. Proceedings of the 19th IEEE International Conference on Web Services (ICWS), IEEE,
2012.

Bielefeld TC. Online Performance Anomaly Detection for Large-Scale Software Systems March 2012. Diploma
Thesis, University of Kiel.

Kounev S, Brosig F, Huber N, Reussner R. Towards self-aware performance and resource management in modern
service-oriented systems. Proceedings of the 2010 IEEE International Conference on Services Computing, SCC
’10, IEEE Computer Society: Washington, DC, USA, 2010; 621-624, doi:http://dx.doi.org/10.1109/SCC.2010.94.
URL http://dx.doi.org/10.1109/SCC.2010.94.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://dx.doi.org/10.1002/for.963
http://dx.doi.org/10.1002/for.963
http://www.R-project.org/
http://dl.acm.org/citation.cfm?id=1078026.1078409
http://dl.acm.org/citation.cfm?id=1078026.1078409
http://dx.doi.org/10.1109/SCC.2010.94

	1 Introduction
	2 Foundations
	2.1 Workload Intensity Behavior
	2.1.1 Real-World WIBs:

	2.2 Survey of Forecasting Methods
	2.2.1 Naive Forecasting Method:
	2.2.2 Moving Averages Method:
	2.2.3 Simple Exponential Smoothing:
	2.2.4 Cubic Smoothing Splines:
	2.2.5 ARIMA(1,0,1) Stochastic Process Model:
	2.2.6 Croston's Method for Intermittent Time Series:
	2.2.7 Extended Exponential Smoothing:
	2.2.8 tBATS Innovation State Space Modelling Framework:
	2.2.9 ARIMA Stochastic Process Modelling Framework:

	3 Approach for Workload Classification and Forecasting
	3.1 Forecasting Objectives
	3.2 Forecasting Methods Overhead Groups
	3.3 Partitions of the Classification Process
	3.4 Evaluating Forecasting Accuracy
	3.5 Non-Absolutely Positive Workloads
	3.6 Decision Tree

	4 WCF Architecture and Implementation
	4.1 Architecture
	4.2 Interfaces
	4.3 Control Flow
	4.4 Integration

	5 Evaluation
	5.1 Exemplary Scenario
	5.2 Case Study
	5.3 Result Interpretation

	6 Related Work
	7 Conclusion
	7.1 Future Work

