Online prediction: four case studies
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Abstract Current computing systems are becoming increasingly com-
plex in nature and exhibit large variations in workloads. These changing
environments create challenges to the design of systems that can adapt
themselves while maintaining desired Quality of Service (QoS), security,
dependability, availability and other non-functional requirements. The
next generation of resilient systems will be highly distributed, component-
based and service-oriented. They will need to operate in unattended
mode and possibly in hostile environments, will be composed of a large
number of interchangeable components discoverable at run-time, and
will have to run on a multitude of unknown and heterogeneous hard-
ware and network platforms. These computer systems will adapt them-
selves to cope with changes in the operating conditions and to meet the
service-level agreements with a minimum of resources. Changes in oper-
ating conditions include hardware and software failures, load variation
and variations in user interaction with the system, including security at-
tacks and overwhelming situations. This self adaptation of next resilient
systems can be achieved by first online predicting how these situations
would be by observation of the current environment. This chapter fo-
cuses on the use of online predicting methods, techniques and tools for
resilient systems. Thus, we survey online QoS adaptive models in sev-
eral environments as grid environments, service-oriented architectures
and ambient intelligence using different approaches based on queueing
networks, model checking, ontology engineering among others.

1 Introduction

New resilient systems have to consider QoS variations that occur and then react
to these changes online acting accordingly to maintain a certain Service Level
Agreement (SLA). Consequently, these systems need to predict these variations
found even at the risk of being wrong on a certain value.

Predictions are based on a model that has to be representative in the sense
that it reflects the system’s QoS-relevant behaviour. Typically, the user be-
haviour is an input of such a model. Thus, the user behaviour has to be predicted



as well when obtaining model predictions to anticipate QoS problems. In the con-
text of performance predictions, user behaviour prediction is often referred to
as workload forecasting. For workload forecasting, established time series anal-
ysis techniques [3] are often used. For instance, Brown’s quadratic exponential
smoothing or general AutoRegressive - Moving Average (ARMA) models have
been implemented in [8] and [5].

Concerning online performance prediction, in [11,12], the authors describe a
framework using analytic performance models in the design of self-configurable
and self-managing computer systems. An general overview on performance mod-
els that can be evaluated efficiently, is provided in, e.g., [2]. Typically, these mod-
els are based on queuing networks and markov chains. A different approach is
applied in [10], where the online performance prediction is based on a machine-
learning approach.

In this chapter, we consider four different case studies in order to show how
online prediction could help in this way to the resilience of systems. The first
case study shows how detailed architecture-level performance models can be ex-
tracted and maintained automatically at run-time based on on- line monitoring
data. Even though the current version of the extraction method is not 100%
automated, and there are some prediction error yet, the case study demon-
strated that the existing gap between low-level monitoring data and high-level
performance models can be closed. In the second case, we augmented the Grid
middleware with an online performance prediction mechanism that can be called
at run-time to predict the Grid performance for a given resource allocation and
load-balancing strategy, demonstrating the benefits of online performance pre-
diction for run-time performance management. In the third example, we include
an adaptive time slot scheduling based on a burstiness metric, that permits
to control the monitoring frequency of the system depending on the burstiness
levels detected by the algorithm. This means a considerable decrease of the over-
head of the monitoring process, whose frequency can be adapted to the stress
detected at the entry point of the system. This technique is used in the fourth
case to build an admission control and load balancing algorithm that is based
on throughput prediction for a Web system. These cases studies are just four
individual examples, but they illustrate how on-line predictions increase the re-
silience of any kind of system performance problem. All of them are related one
to the others, in several ways that coincide with three general questions to face
off during their design: first, the necessity of gathering data from either moni-
toring or measurements in order to predict the future; second, the dynamicity
of the on-line decisions based on partial temporal information and finally, the
overhead of doing both procedures is the price to be paid in order to get the
on-line predictions. The challenge in all cases is how to reduce overhead time as
the QoS problem permits.



2 Automatic Model Extraction at Run-Time

As a proof-of-concept for automatic model extraction at run-time, we conducted
a case study with a complex Java EE application. The case study shows how
detailed architecture-level performance models can be extracted and maintained
automatically at run-time based on online monitoring data [4]. The Java EE
application we considered was a beta version of the new SPECjEnterprise2010
standard benchmark. We deployed the benchmark on Oracle WebLogic Server
(WLS) and used the WebLogic Diagnostics Framework (WLDF) as a monitoring
and instrumentation tool (Figure 1). The considered architecture-level perfor-
mance model was the Palladio Component Model (PCM).
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Figure 1. Model Extraction Tool Architecture

The PCM is a domain-specific modelling language for describing performance-
relevant aspects of component-based software architectures [1]. In PCM, a com-
ponent specification normally includes a definition of which interfaces the com-
ponent provides and requires together with a set of Resource Demanding Ser-
vice Effect Specifications (RDSEFFs). Each RDSEFF describes the performance-
relevant internal behaviour of a provided component service in an abstract man-
ner. The control flow and the resource consumption of the service can be mod-
elled probabilistically as well as depending on the input parameters. Figure 2
shows a component service’s RDSEFF in a notation similar to the notation of
UML activity diagrams. The RDSEFF consists of an internal action abstracting
component-internal resource demanding instructions, followed by a loop action
containing a further internal action and an external call action to a required
service. The loop iteration number of LoopAct_985 is specified as a probability
mass function (PMF). The PMF states that the loop iterates one time with a
probability of 20% and ten times with a probability of 80%.

The extraction method for Java EE applications was implemented using the
WLDF monitoring tool that is provided with Oracle WebLogic Server (WLS).
The three main steps of the model extraction process are: i) the extraction of
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Figure 2. Example: Extracted RDSEFF

the application architecture, ii) the extraction of performance-relevant control
flow and iii) the extraction of resource demands.

In the first step, the effective application architecture is extracted. The lat-
ter refers to the set of components and connections between components that
are effectively used during operation. The components and connections are
identified on the basis of trace data reflecting the observed call paths during
execution. Based on the call paths, the effective connections among compo-
nents can be determined, i.e., required interfaces of components can be bound
to components providing the respective services. In the second extraction step,
the tracing technique is applied to extract the performance-relevant control flow
inside the components. We focus on monitoring the effective control flow and
therefore extract probabilities of different call paths in contrast to extracting
explicit parametric dependencies. Figure 2 shows an RDSEFF that has been ex-
tracted from trace data generated by WLDF. To estimate the resource demands
of individual internal actions, we investigated two approaches: i) approximate
resource demands with measured response times, ii) estimate resource demands
based on measured utilization and throughput data. While the first approach is
only applicable during phases of low resource utilization, i.e., <20%, the second
approach can be applied during an observation period with medium to high load.

We applied the model extraction method to a beta version of the new SPEC-
jEnterprise2010 benchmark. The benchmark workload is generated by an appli-
cation that is modelled after a real-world business scenario. We deployed the
benchmark in a system environment consisting of three machines. The Java EE
application was deployed on an Oracle WebLogic Server (WLS) instance. As a
database server (DBS), Oracle Database 11g was installed on the second ma-
chine. The benchmark driver was running on the third machine. The machines
all have Intel Pentium Dual Core E2180 CPUs (2x2.0 GHz), 3 GB of RAM and
are connected using a 1 GBit Ethernet.

To validate the extraction method, we compared predictions derived from
the extracted PCM models with measurements on the real system. We consid-
ered two different models: i) Model A - PCM model in which resource demands
were approximated with measured response times, ii) Model B - PCM model
in which resource demands were estimated based on utilization and throughput



data. We analysed the extracted models my means of simulation [1]. As perfor-
mance metrics, we considered the average response times of business operations
as well as the average utilization of the WLS CPU and the DBS CPU. We anal-
ysed scenarios under low load conditions, medium load conditions and high load
conditions.

In the scenario we consider here, the workload consisted of the business op-
eration ScheduleWorkOrder. Figure 3 shows the results. Predictions based on
Model B perform slightly better than predictions based on Model A. For the
highest considered throughput level, both models deliver no performance pre-
dictions. This is because the system as represented by the models is not able to
sustain the injected load since the WLS CPU utilization is overestimated to be
100%. Both models overestimate the WLS CPU utilization while underestimat-
ing the DBS CPU utilization. The modelling prediction error for CPU utilization
is mostly about 20%. The modelling prediction error for response times increases
with the throughput level. The higher the CPU utilization, the bigger the im-
pact of the overestimated WLS CPU demands on the predicted response times.
We assume that the overestimation of the WLS CPU demands is due to the
instrumentation overhead during resource demand extraction.
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Figure 3. Validation of the ScheduleWorkOrder Performance Models

We considered a number of different scenarios, on the one hand, varying
the operation mix and throughput level under which the PCM models were
extracted, and on the other hand, varying the operation mix and throughput level
for which performance predictions were made. The extracted models consisted
of up to six components, eight RDSEFFs and 13 internal actions annotated
with WLS CPU demand or DBS CPU demand estimations [4]. The results were
similar to the ones presented here. The prediction error was between 20 and 30
percent. Even though the current version of the extraction method is not 100%
automated, the case study demonstrated that the existing gap between low-level
monitoring data and high-level performance models can be closed.



3 Autonomic QoS-Aware Grid Resource Managers

As a second proof-of-concept demonstrating the benefits of online performance
prediction for run-time performance management, we conducted a case study
of a SOA application running in a service-oriented Grid computing environ-
ment [14] [13]. The latter was implemented using the Globus Toolkit middleware
which is based on open Web Services standards and can be seen as an incarnation
of SOA. We augmented the Grid middleware with an online performance predic-
tion mechanism that can be called at run-time to predict the Grid performance
for a given resource allocation and load-balancing strategy. The online perfor-
mance prediction mechanism was used as a basis for building a novel QoS-aware
Grid resource manager architecture depicted in Figure 4. A resource manager is
responsible for managing access to a set of Grid servers each offering some Grid
services. The resource manager keeps track of the available Grid resources and
mediates between clients and servers to make sure that SLAs are continuously
satisfied. Before a Grid server can be used, it must register with the resource
manager providing information on the services it offers, their resource require-
ments and the server capacity made available to the Grid. The Grid server must
provide an architecture-level performance model that captures the information
relevant to predicting the performance of the services it offers. For a client to be
able to use a service, it must first send a session request to the resource man-
ager. The session request specifies the type of service addressed, the frequency
with which the client will send requests for the service, and the required average
response time (SLA). The resource manager tries to find a distribution of the
workload among the available servers that would provide the requested QoS. For
each client session, a certain number of threads (from 0 to unlimited) is allocated
on each Grid server offering the respective service. Incoming service requests are
then load-balanced across the servers according to thread availability.

The resource manager considers different configurations in terms of thread
allocation and for each of them it generates a predictive performance model
(more specifically, a queueing Petri net model [9]) based on the architecture-
level performance models of the involved services. The generated model reflects
the current system environment in terms of available server resources and active
client sessions. The model is analysed through simulation and used to predict the
performance of the system in order to ensure that the client SLAs are satisfied. If
no configuration can be found that satisfies the client SLAs, the session request
is rejected or a counter offer with lower throughput or higher response time is
sent back to the client.

We now present some experimental results that demonstrate the effective-
ness of the above approach. Three sample services each with different behaviour
and resource demands were run as part of the experiments. The services use
the Grid to execute some business logic requiring a given amount of CPU time.
The business logic includes calls to external (third-party) service providers which
are not part of the Grid environment. Figure 5 shows the results from an ex-
periment in which 99 session requests were sent to the resource manager over
a period of 2 hours. The average session duration was 18 minutes in which 92
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Figure 4. Grid QoS-aware Resource Manager Architecture

service requests were sent on average. We compare the behaviour of the system
in two different configurations: i) with basic overload control and ii) with QoS
control. In the first configuration, the resource manager simply load-balances
the incoming requests over the Grid servers without considering SLAs, however,
requests that arrive during periods in which both Grid servers are saturated are
automatically rejected. In the second configuration, the resource manager uses
its online performance prediction mechanism as described above to ensure that
SLAs are satisfied. As we can see, without QoS control, the SLAs of the majority
of accepted sessions were not fulfilled, whereas with QoS control, the response
times of accepted sessions were much lower and all SLAs were fulfilled. The ex-
periment was repeated for a number of different workload configurations varying
the transaction mix, the average session length and the server utilization. The
results were of similar quality as the ones presented here and they confirmed the
effectiveness of our online performance prediction mechanism.

So far we have assumed that when a Grid server is registered with the resource
manager, information on the service resource demands (i.e., CPU service times)
is provided as part of the supplied architecture-level performance models. In case
the resource demands are not known in advance, a simple method for estimating
them on-the-fly based on monitoring data can be used. The method, described in
detail in [13], is applicable for services with no internal parallelism. The method is
conservative in that it starts with conservative estimates of the resource demands
and refines them iteratively as requests are processed. We consider three different
configurations in an experiment with 85 sessions over a period of 2 hours: i) Basic
overload control, ii) QoS control with resource demands available in advance,
iii) QoS control with resource demands estimated on-the-fly.

The experiment was conducted in a virtualised setup with 9 Grid servers.
Table 1 presents a break down of the client sessions into: i) sessions for which the
client SLA was observed, ii) sessions for which the client SLA was violated and
iii) sessions that were rejected by the resource manager. Without QoS control,
96% of the requested sessions were admitted, however, the client SLAs were
observed in only 22% of them. In contrast to this, in all configurations with QoS
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Figure 5. Response time results for 99 sessions over a period of 2 hours.

Table 1. Summary of session SLA compliance.

IConﬁguration HSLA fulfilled [SLA violated [Rejected

1 19 63 3
2 46 2 37
3 34 0 51

control, the SLAs were observed for nearly 100% of the accepted sessions. Indeed,
only 2 sessions had their SLAs violated and the violation was by a tiny margin.
The price for estimating resource demands on-the-fly was that 14 sessions more
were rejected which amounts to 16% of the total number of sessions.

Finally, we extended the resource manager architecture to support adding
Grid servers on demand as well as dynamically reconfiguring the system after
a server failure. Whenever the QoS requested by a client cannot be provided
using the currently available server resources, the extended algorithm considers
to launch an additional server to accommodate the new session. At the same
time, each time a server failure is detected, the resource manager reconfigures
all sessions that had threads allocated on the failed server. Existing sessions
might have to be cancelled in case there are not enough resources available to
provide adequate QoS. The extended algorithm was subjected to an extensive
experimental evaluation the results of which are available in [13]. The results
showed that adding servers on demand does not have a significant impact on
the performance of the resource manager despite of the decreased flexibility in
distributing the workload.



4 Adaptive Time Slot Scheduling

The advantages of predicting the performance of a system online can also be
applied to generic distributed algorithms. As a third proof-of-concept we include
an adaptive time slot scheduling based on a burstiness metric, that permits to
control the monitoring frequency of the system depending on the burstiness levels
detected by the algorithm. This means a considerable decrease of the overhead
of the monitoring process, whose frequency can be adapted to the stress detected
at the entry point of the system.

Considering a locally distributed cluster-based Web information system, a
fundamental aim is the monitoring of some Web servers’ parameters in an adap-
tive way in order to reduce the algorithm overhead. Some of the Web servers’
parameters likely to be monitored are the arrival rate, the CPU/disk utilization,
I/O performance, etc. The performance of the nodes that compound the Web
system have to be monitored continuously in order to know their status and
make the appropriate decisions in case of overload to avoid a possible congestion
situation. This can be done in several ways: (i) each time a request arrives at
the front-end of the Web system; (i) at fixed times by using static time slot
scheduling; or (i) at non-fixed times by using dynamic time slot scheduling.
The overhead introduced by option (4) is the biggest because each time a re-
quest arrives at the Web system, Web node parameters are monitored. While
option (%) introduces a constant overhead, option (74) monitors the system at
non-fixed intervals, hence, its overhead will depend on the frequency of those
intervals. The drawback of defining monitoring in a constant duration interval
schedule (option (%)) is the choice of monitoring time interval. It is very difficult
to set a duration interval that fits with all possible Internet arrival rates at the
Web system due to its heavy tailed pattern.

We have considered six different approaches to define burstiness factors in
order to compare their behaviour and detect their benefits or drawbacks under
the same circumstances. All the burstiness factor values are defined in [0,1]. The
precise definition of the burstiness factors can be found in [6]. Instead of defining
them formally, let us describe them visually in Figure 6, where the arrival rate
to the system is also shown.

Burstiness Factor 1 (BF1) smooths the arrival rate curve. Fig. 6a illustrates
that it follows the arrival rate but does not accurately represent its quick varia-
tions. We consider that the burstiness factor should alert the system as quickly
as possible of an increase in the arrival rate, and this factor increases or decreases
along with the increasing or decreasing arrival rate trend but very slowly and
delayed.

We propose the direct inclusion of the arrival rate value in the burstiness fac-
tor in the next proposal, as a way to modify it quantitatively. Fig. 6b shows that,
in this case, BF2 also varies with the variations of the arrival rate. Nevertheless,
there are some peaks in the arrival rate that are not followed by the factor. In the
next proposal we introduce a penalisation when detecting a consecutive number
of bursty slots.
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Figure 6. Arrival rate and burstiness factors: a) BF1; b) BF2; c) BF3 with 5 = 3; d)
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Fig. 6¢, 6d and 6e represent the results obtained with BF3 and a record of
3, 4 and 10 slots, respectively. It can be observed that as the number of slots
considered increases, the burstiness factor penalisation also increases. We need



to check if this penalisation leads to an increase in the system performance or
otherwise, decreases its performance because of an overreaction to the arrival
rate.

The BF4 values are shown in Fig. 6f, 6g and 6h, representing the results
obtained with a maximum record of 3, 4 and 10 slots. We can observe that
the resulting curves of BF4 are similar to the BF3 curves, but in this case the
burstiness factor is also sensitive to changes in the arrival rate.

Fig. 6i shows the results obtained with this burstiness factor and the resulting
curve can be observed as being even smoother than the one obtained from the
original BF1.

In Fig. 6j, it can be observed that the BF6 curve does not accurately follow
the arrival rate changes. The BF6 curve decreases in some points of Fig. 6j when
the arrival rate curve increases. The main drawback of this burstiness factor is
the fact that its calculation is made for each incoming HTTP request and then
it needs a huge computational effort, which leads to a considerable overhead
compared to the other proposals.

In order to define the adaptive time slot scheduling, we divide the total obser-
vation time T of the experiment in several slots of variable duration. While the
experiment is simulated, the duration of the slot changes based on the value ob-
tained by the burstiness factor. Hence, the duration of the slot k+1 is dependent
on the burstiness of the two previous slots, b(k) and b(k — 1), as follows:

d(k+1) = 1+b(k:;1:2(k—1)’ if b(k) > bk — 1) (1)
d(k+1) = d(k) Cif b(k) < bk —1)

C1+b(k) —b(k—1)

Therefore, the number of slots defined during the simulation time is also
variable. We can calculate the total number of slots that divide the observation
time 7" during each slot. Considering the duration of the slot k+1, the frequency
of slots is defined as:

e(k+1) = ﬁ

As the duration of the following slot is defined by the value of the burstiness
factor on the current slot, when a burstiness increase is detected, the following
testing time is brought nearer in order to check the incoming arrival rate early
enough and then tune again the algorithm parameters. If a decrease in burstiness
is perceived, the duration of the following slot is enlarged to reduce the overhead.
By controlling the burstiness in the arrival rate, and then the duration of testing
slots, a sudden reduction in the future performance of the Web servers may be
forecasted.

An example of adaptive time slot scheduling is depicted in Fig. 7. In the
upper part of the figure the arrival rate and the burstiness factor curve are
drawn following adaptive time slot scheduling. As the arrival rate increases from
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Figure 7. Arrival rate monitored following adaptive time slot scheduling and detail of
some of the slots using the BF1.

time instant 910 seconds, the burstiness factor also increases. We have used BF1
to illustrate burstiness factor behaviour in this case. Below this figure, the slot
duration is represented in another scale. It can be observed how the duration of
the slots decreases when the arrival rate increases. Some slots have been zoomed
in to detail the decrease of their durations.

The adaptive time slot scheduling has been implemented in an OPNET Mod-
eler scenario and the complete simulation results can be found in [6].

5 Admission Control and Load Balancing Algorithm

In this section we want to describe an admission control and load balancing algo-
rithm that is based on throughput prediction for a Web system as a fourth case
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study of online prediction. The invocation times of the algorithm are planned
based on the adaptive time slot scheduling described in previous section.

This algorithm is adaptive because it is invoked adaptively depending on the
arrival rate. Each time it is invoked, some computations need to be done in order
to take the admission control and load balancing decisions that will remain till
the next invocation. The period of time between invocations is considered a slot.

Figure 8 depicts the general steps that are taken by the algorithm. Once the
burstiness factor has been computed and the monitored throughput, CPU util-
isation and service time values obtained from the server nodes, the throughput
that the nodes will get during the next slot is predicted. Five throughput pre-
dictors are defined in order to give us the trend of the system behaviour. These
predictors permit the algorithm to take decisions about the distribution of the
load in the Web system to maintain the performance of the system indepen-
dently of the congestion level of the server nodes. Different classes of requests
with different priorities are considered in this work. Depending on the priority
of each request, we set a fraction of the utilisation of the whole Web system
to be used by that request class. The SLA of the requests is defined in terms
of CPU utilisation of the Web servers. Therefore, we consider a set of classes,
C ={c1,ca,...,¢}, and define for them a normalised utilisation value in a de-
creasing order. Hence, the class of requests that represent ¢; have more priority
than the class c3, and so on. Finally, the resource allocation policy establishes
how the utilisation of the server nodes is assigned to attend each class of requests
that may arrive to the Web system.



The system architecture proposed is based on Web cluster-based network
servers and includes a front-end Web switch. A layer-7 Web switch is normally
described as a content-aware switch that can de-encapsulate the requests up to
the application level and classify them on the basis of this information, but it
can easily be the bottleneck of the Web system. This problem is easily solved
by transferring the request distribution mechanism to the back-end nodes and
replacing the content-aware Web switch with a content-blind Web switch.

The cluster of Web servers is locally connected to the Web switch in a two-
tier organisation (Web server and App/DB server), as it is shown in Figure 9. We
have considered 5 sets of Web and App/DB servers. Each Web server attends
the requests that ask for static files, namely static requests and the App/DB
server is accessed when the request asks for a Web page that needs to retrieve
dynamic content (dynamic requests).

Web Cluster System

Web Servers Back-End Servers
HTTP
requests : ’ Q

Load

Balancer : O

Web clients M

Internet Router
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Figure 9. The Web architecture is made up of several mirrored Web servers and their
corresponding database servers. The model architecture is one-way, which means that
the incoming HTTP requests go through the front-end node but their HT'TP responses
use a different way to prevent a system bottleneck in this node.

The six throughput predictors (P1-P6) are defined and completely detailed in
[7]. We have implemented our algorithm in the simulation tool OPNET Modeler



which facilitates accurate simulation of the layers of the TCP/IP stack. We
consider two different service classes, named c¢; and co, in all the simulations.
Each service class contains two types of applications: one that asks for dynamic
content and another that asks for static content. Static requests are attended by
the Web servers while dynamic requests require access to the App/DB server.

As an admission control algorithm is going to be tested, we need to overload
the system. The workload is generated in the Web system by 30, 40, 50, 60, 70,
80, 90 and 100 Web clients, as we are interested in stressing the system to test
the algorithm with an increasingly high workload. So, the Web system starts
rejecting requests when it is overloaded.

We configure two workloads in order to test the algorithm more accurately.
Both are basically the same, the only difference is in the user think time. In
Figure 10, we can observe that the arrival rate increases up to 350 Web requests
per second for 100 clients during these 30 second periods.
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Figure 10. Workload 1 and Workload 2 generated by 100 clients

The response time of dynamic requests, represented in Figure 11, is more
meaningful than the one obtained by static requests because the App/DB servers
are more congested with the increase of traffic. If we analyse the case of Workload
1 in Figure 11a, we can note some differences among the response time obtained
by the predictors. Focusing on the last case, 100 clients, we can detect that the
predictors P1, P2 and P3 obtain a higher response time than predictors P4 and
P5. This is also depicted in Figure 11b, which represents the response time for
Workload 2. We can also observe that the maximum response time for both
workloads is around 2.5 seconds, that means that our algorithm achieves an
extra goal, that is the limitation of the response time regardless of the amount
of traffic arriving to the system. The predictor that shows a good response time
and the most stable behaviour is P4, as P5 shows some variability in 70, 80,



90 and 100 clients for Workload 1. We can also observe that there is not any
differentiation in the response times obtained by class-1 and class-2 traffic, as
we do not distinguish different queues in the Web and App/DB servers in order
to keep the approach simple.

The response time of dynamic Web pages obtained from the simulations
leads us to the conclusion that P4 is the most suitable predictor for our admission
control and load balancing algorithm. However, we would like to remark that the
predictors P1, P2 and P3 do also obtain good performance results and that have
an important advantage: they are easily obtained from the throughput of the two
previous slots and that do not need a record of more previous slot throughput
values as predictors P4 and P5, which are more complicated to compute (please,
see [7] for more information).
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Figure 11. 95" percentile of the response time for dynamic requests: (a) Workload 1;
(b) Workload 2

In order to show the benefits of the adaptive time slot scheduling (described
in previous Section), the algorithm has been configured to be executed on a
fixed time slot scheduling. The predictor chosen for these simulations is P3. The
workload chosen for this comparison is Workload 2.

The 95" percentile of the App/DB server utilisation is represented in Figure
12. The results obtained when invoking the algorithm periodically are named as
“P3_per” in the figure. Here we observe that the utilisation level of the App/DB
servers is lower for P3_per in the first points of the x-axis of the graph. In the
case of class-1 traffic, the servers seem to be less loaded for 30, 40 and 50 clients
with P3_per. The case of 30 clients also reaches a lower utilisation level for class-2
traffic.

However, if we analyse the P3_per utilisation level of class-2 traffic after 40
clients, we can also observe that it is slightly greater that the rest of the simula-
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Figure 12. 95" percentile of the App/DB server utilisation for dynamic requests

tions. In fact, this indicates to us that the fixed time slot scheduling introduces
some errors in the utilisation level reached for each traffic class. That also means
that the algorithm is less accurate in its reservations and that the SLA is less
guaranteed.

6 Conclusion

Although the use of online prediction methods and techniques are not yet gen-
eralised to all systems, it is clear that resilient systems should consider different
strategies to ensure a certain QoS, despite failures, overwhelming services and
other inconveniences that usually occur at run-time . In this chapter, we have
tried to show through four practical examples how to use simple tools to bring
interesting benefits, thanks to online predictions. However, it is much research in
this direction, especially in finding common methodologies for building resilient
systems considering the online prediction of the future and react accordingly
by adjusting the prediction over time. These methodologies should consider not
only the techniques presented here but other appropriate to each level of design
abstraction and at each layer of the system during operation. We hope these
four case studies illuminate the reader about these possibilities.
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