
Solving Explicit Dependencies for
Architectural Performance Models

Master Thesis of

Simon Eismann

Department of Computer Science
Chair for Computer Science II

Software Engineering

Reviewer: Samuel Kounev
Advisor: Dipl Inform Jürgen Walter

Duration: 14. December 2016 – 14. June 2017

Julius-Maximilians-Universität Würzburg www.uni-wuerzburg.de

Contents

1 Introduction 5

2 Foundations 9
2.1 Parametric Dependencies . 9

2.2 Descartes Modeling Language (DML) . 10

2.3 Parametric Dependencies in DML . 15

2.4 Queuing Petri Net (QPN) . 16

2.5 SimQPN . 16

2.6 DML Solution Process . 17

3 Related Work 21
3.1 Modeling of Parametric Dependencies . 21

3.2 Extraction of Parametric Dependencies . 22

3.3 Resolution and Calculation of Parametric Dependencies 23

4 Approach 25
4.1 Goals . 25

4.2 Approach . 27

5 Solving Parametric Dependencies 29
5.1 Callpath Model . 29

5.2 Dependency Graph . 30

5.3 Relationship Graph Solving . 31

5.4 Dependency Calculation . 31

Probabilistic Logic Values . 32

6 Application of Parametric Dependency Solving to DML 39
6.1 Callpath Model . 39

6.2 Callpath Model Extraction . 40

6.3 Relationship Graph . 41

6.4 Relationship Graph Extraction . 42

6.5 Dependency Calculation . 42

7 Implementation 47
7.1 Components . 47

7.2 Control flow . 48

7.3 Integration in existing solver . 48

7.4 Testing . 50

7.5 Technical Details . 50

8 Evaluation 53
8.1 Goal Question Metric (GQM) . 53

8.2 Methodology . 54

ii

Contents iii

8.3 Dependency Calculation Evaluation . 55
8.4 Dependency Resolution Evaluation . 57

9 Conclusion 65
9.1 Summary . 65
9.2 Benefit . 66
9.3 Future Work . 67

10 Acronyms 75

Bibliography 77

iii

Abstract

Architectural performance models can be leveraged to explore performance properties of
software systems. While non-parametric component behavior can be easily modeled and
predicted, parametric behavior causes additional complexity for performance modeling
not supported by all Software Performance Engineering (SPE) approaches. The Palladio
Component Model (PCM) requires to model parameters and parametric dependencies ex-
plicitely which might be only partly known to performance engineers especially in online
scenarios. The parameter model of Descartes Modeling Language (DML) allows to model
scenarios in which not all parameters are known, but did not yet provide a solver. This
master thesis discusses resolution of parametric dependencies in general and for DML in
particular. The resolution consists of the extraction of a directed graph containing all
parameters and dependencies including the application of arithmetic operations on dis-
tributions. Our implementation derives performance predictions by solving the resulting
graph based on a flooding algorithm, a transformation to QPN, and subsequent simulation.
We provide an end-to-end evaluation of our approach using a media store model. More-
over, we evaluate modeling alternatives using benchmark models and comparing merged
distributions to empirically created samples.

1

Zusammenfassung

Architekturelle Performance Modelle können genutzt werden um die Performance Eigen-
schaften eines Software Systems zu untersuchen. Während nicht parametrisches Ver-
halten von Komponenten einfach modelliert und vorhergesagt werden kann, verursacht
parametrisches Verhalten zusätzliche Komplexität bei der Modellierung die nicht von
allen Software Performance Engineering (SPE) Ansätzen unterstützt wird. Das Palla-
dio Component Model (PCM) benötigt eine explizite Modellierung der Parameter und der
parametrischen Abhängigkeiten. In einem Online Szenario ist es wahrscheinlich, dass nicht
all diese Informationen dem Performance Engineer zur Verfügung stehen. Das Parameter
Modell der Descartes Modeling Language (DML) erlaubt die Modellierung mit unvoll-
ständigen Informationen, aber stellt keinen Lösungsansatz dafür zur Verfügung. Diese
Master Arbeit diskutiert generell die Auflösung von parametrischen Abhängigkeiten und
die Anwendung dieser Ideen für DML spezifisch. Die Auflösung besteht aus der Extrak-
tion eines gerichteten Graphen der all Parameter und Abhängigkeiten zwischen ihnen ent-
hält. Unsere Implementierung generiert Performance Vorhersagen durch das Auflösen des
Graphen mit Hilfe eines Flooding Algorithmus und einer darauffolgenden Transformation
zu Warteschlangen-Petri-Netzen und Simulation. Wir evaluieren unseren Ansatz von Ende
zu Ende mithilfe eines Media Store Modells. Des weiteren evaluieren wir verschiedene Mod-
ellierungsfeatures mithilfe von Benchmark Modellen und wir vergleichen die berechneten
Verteilungen mit empirisch erzeugten Samples.

3

1. Introduction

Modern software systems allow for dynamic reconfiguration at runtime [AFG+10]. Tech-
nologies like containerization enable flexibly replication of component instances. Virtual-
ization allows to abstract the physical layer into virtual machines on which applications can
be deployed. Due to these and other technologies, software systems can be dynamically re-
configured. Due to changing workloads continuous adaptations are required to constantly
tune configuration for resource efficiency while ensuring quality of service. Commonly,
adaptations are automated using either reactive or pro-active approaches. Reactive ap-
proaches define upper and lower thresholds for performance metrics like utilizations and
scale the system on violations. Reactive approaches tend to either scale late causing Service
Level Agreement (SLA) violations or to overprovision massively. Proactive approaches ap-
ply predictions of both the workload and the system’s performance to adapt to changes
in the workload before they happen in production. Reactive autoscalers are commonly
used in industry, but in some scenarios they start to oscillate [LBMAL14]. This leads to
ongoing research looking into proactive autoscalers [BHK17], [MBE13]. Proactive resource
management needs predictions of the systems performance for different system configu-
rations and workloads. Architectural performance models can provide these predictions.
They model the systems architecture and its performance relevant characteristics, which
are used to make predictions about the systems performance.
Different approaches for architectural performance models have been proposed focusing
on different system attributes, modeling granularities and prediction approaches. Exam-
ples for architectural performance models include CACTOS [RIF01], SAMM [SAM], UML
Marte [GS08], ACME [GMW10] and Palladio Component Model (PCM) [BKR09]. These
models focus on predictions at design time, but for proactive resource management pre-
dictions at run time are required. The main differences are that at run time measurement
values for the current system configuration are available and the existence of an upper
limit on prediction time. A proactive autoscaler might need a result in thirty seconds or
five minutes depending on the situation. Descartes Modeling Language (DML) [KBH14]
is an architectural performance model targeting runtime scenarios. [HBK12] used DML to
perform a case study on the influence of the resource environment on the systems perfor-
mance, while [Bro14] evaluated the influence of different software and deployment aspects.
DML also includes an adaptation model which allows the system to dynamically reconfig-
ure itself to meet requirements specified in SLAs [HvHK+14]. For this purpose [HBS+16]
proposes a control loop which uses DML predictions to reconfigure a system at runtime.
This shows how DML can be used for autonomous proactive resource management. Proac-
tive resource management depends on accurate predictions for the DML models [ZCB10].

5

6 1. Introduction

For design time architectural models parametric dependencies were shown to increase pre-
diction accuracy, especially for the exploration of different configurations and workloads
[KHB06]. The performance of a component can depend on the value of a parameter which
is passed from component to component. If a component is deployed in a different context
the values of these parameters can change and therefore the component’s predicted perfor-
mance changes. In an online context information might not be available for all parameters.
While the parameters are usually modeled, their distributions are not necessarily known.
Some components might not be monitored due to performance reasons or because the
parameter can not be measured. DML provides a parameterization model tailored to on-
line scenarios which allows for incomplete parameter specifications. To facilitate model
analysis, a single variable can be described using multiple dependencies. Dependencies
can also be specified across components, instead of only within components. This allows
to model dependencies between parameters on a coarser granularity. A parametric depen-
dency might specify that the average number of web pages a user requests impacts the
resource demand of a backend component. Formalisms except from DML limit depen-
dencies to a chronological order. This means that only parameters contained in already
executed behaviors can influence a variable. DML also allows for dependencies without
chronological order, which provides additional ways to describe variables. In addition to
the dependencies reaching across components this allows to specify dependencies that do
not necessarily resemble real world influences but guesses about correlation. If only the
database’s resource demands can be measured, the performance engineer could specify a
correlation between this resource demand an the resource demand of a frontend compo-
nent. At the moment none of these parameterizations are taken into consideration during
model solving and prediction, even though it would provide more accurate predictions.
The aim of this thesis is to provide a solution approach for parametric dependencies and
apply it to DML. We provide a characterization for each model variable that depends on
the path the request takes to encounter the variable. This description is independent from
any parameters and can therefore be used for analytical and simulation-based stochastic
performance analysis. In addition to basic parameter dependency features supported by
existing work, we support multiple dependencies describing one model variable, depen-
dencies that do not follow the call path, and dependencies spanning across components.
To achieve the resolution of parametric dependencies we perform the following steps. We
extract a CallpathModel representing all possible paths a request can take through the
system. The CallpathModel details for every component to which other components the
request can go. Then we transform the CallpathModel to the RelationshipGraph. This
is a directed graph containing information about the models parameters and the depen-
dencies between them. In this graph the nodes represent a parameter coupled with a path
through the system to it. Every edge represents a dependency that can be used to derive
a value for the edges target if the edges other parameters are known. Since the values for
parameters can be arbitrary distributions we implement the computation of a distribution
arithmetic. To resolve values for all nodes in the RelationshipGraph we use an adapted
flooding algorithm [ADEP04]. From this solved RelationshipGraph a value for every
parameter in every context can be retrieved. We integrate the information from the solved
RelationshipGraph in the existing DML solving.
This allows to transform DML models with parametric dependencies to a Queueing Petri
Net (QPN), which is subsequently simulated to provide performance metrics. Alterna-
tively, other solving approaches like a transformation to Queueing Net (QN) or analytical
solvers could be used. Models with parametric dependencies allow to model additional
real life systems and the accuracy of existing models can be improved. Additionally, our
approach provides two intermediate models, which provide additional views on the system.
A look at the CallpathModel can help to understand the assembly of the system by dis-
playing the paths a request can take through the system. The RelationshipGraph shows

6

Outline 7

the system’s parameters and the dependencies between them. If not enough information
is available to resolve a value for a parameter, the RelationshipGraph can be used to
find out which measurements would allow for a full resolution. In addition to this, the
RelationshipGraph provides an extension point for future features like the characteriza-
tion of both model variables and dependencies, automated dependency learning and an
automated decision support between multiple ways to characterize a parameter. While we
implement the approach for DML, it can easily be applied to another performance model
or any data center model that includes software control flows. To improve the transfer-
ability of our approach we provide a DML independent description of the approach. We
provide an end-to-end evaluation of our approach using a media store model. To evalu-
ate our approach we manually create reference models highlight specific modeling aspects
and ti evaluate the approach end-to-end we use a media store model. To evaluate the
distribution arithmetic we compare its results to empirically created samples.

Outline

The remainder of this thesis is organized as follows:

Chapter 2 details the foundations this master thesis is based on. This includes our defini-
tion of parametric dependencies, details on DML and how it models parameteric dependen-
cies. Additionally it introduces Queueing Petri Nets (QPNs) and SimQPN, a simulation
tool for the latter. Lastly, the current DML solving process which uses a transformation
to QPN is described.

Chapter 3 describes the current state of the art with regard to modeling parametric de-
pendencies. Additionally, the solving approaches for these models are introduced.

Chapter 4 contains the aim and respective approach of this thesis with regards to depen-
dency modeling features and general modeling features of DML.

Chapter 5 discusses the resolution of parametric dependencies in general. It introduces the
CallpathModel, the RelationshipGraph and an algorithm to solve the Relationship-

Graph.

Chapter 6 details the adaptation of these ideas for DML, including DML specific versions
of the CallpathModel and the RelationshipGraph. The extraction of these models is
also covered in this section.

Chapter 7 features the technical details of the implementation, an overview over the compo-
nents in our implementation and the control flow between them. Additionally, we describe
its integration in the existing solver.

Chapter 8 evaluates the approach and its implementation. First we evaluate the calculation
of a dependency by comparing its results with empirically generated samples. Next we used
a number of manually created reference models to test if certain features are supported.
Lastly we perform an end to end evaluation using a media store model.

Chapter 9 concludes the thesis with a short summary, an overview over the benefits gained
from this theses and some ideas for future work.

7

2. Foundations

In this chapter we will introduces all the foundations needed to understand this master
thesis. We first define the term parametric dependencies in Section 2.1, since this is the
concept this master thesis is based upon. Next we introduce the architectural performance
model DML in Section 2.2 and how it allows to model parametric dependencies Section 2.3.
The current state of solving these parametric dependencies is detailed in Section 2.6. To
understand the solving a rudimentary understanding of QPNs is necessary, therefore we
give an introduction to QPNs in Section 2.4. These QPNs are solved using SimQPN which
we introduce in Section 2.5.

2.1 Parametric Dependencies

Brosig [Bro14] gives a definition for parametric dependencies in models, which we will
introduce in this section. When analyzing the performance of a system there are param-
eters that directly affect the systems performance like resource demands, response times,
loop iteration counts or branch probabilities. But there are also parameters that do not
directly correspond to the systems performance, that indirectly still influence the systems
performance. Examples for this might be configuration values, component input param-
eters or the return values of calls to other components. While these parameters do not
directly affect the systems performance, they instead influence the values of parameters
that directly affect the systems performance. For example a components resource demand
of a component might be influenced by the value of one of the components input param-
eters or the response time of a database query could depend on the number of entries in
the relevant database tables. If we know all parameters that one variable is influenced by
there exists an formula that describes its value. This formula would use the parameters
that influence this variable as input. Aside from this formula a parametric dependency is
defined by which value is characterized, the dependencies dependent and the parameters
that influence this value, the independents. We will illustrate this concept using an exam-
ple from [Bro14] which is shown in Figure 2.1. The first component, the CatalogServlet

allows the user to browse a web shops articles. Every page shows ten articles and if the
user wants to continue browsing he has to go to the second page. For each article a preview
image is shown, which is retrieved from a database using the JPAProvider component.
This component contains a cache which means already loaded images are retrieved faster.
The probability of having to load the image instead of it already being in the cache can
be modeled as a branching probability. This probability depends on the articles access

9

10 2. Foundations

Figure 2.1: Example for parametric dependencies from [Bro14]

frequency and this frequency in turn depends on which page the user requests, since the
later pages get called less often, so the article is accessed less often. So the JPAProviders

branching probabilities can be calculated if the requested page numbers distribution is
known.

2.2 Descartes Modeling Language (DML)

Todays software systems are becoming increasingly complex and dynamic while the in-
dividual parts are becoming more and more decoupled. This makes answering questions
like the following difficult to answer. How would the system perform under a different
workload? How much would the systems response time improve if we added 5 addi-
tional physical nodes to this cluster? These tasks are referred to as online performance
prediction [KBHR10]. Descartes Modeling Language (DML) is a architectural perfor-
mance model tailored for these scenarios. This means it models both the systems archi-
tecture and its performance relevant aspects. DML was used in a number of case studies
[Bro14][HBS+16][HvHK+14][HBS+16]. The model is split into five sub-models: repository,
assembly, resource environment, deployment and usage profile. The repository model de-
fines blueprints for the components that get assembled and connected in the assembly
model. The deployment model describes how these components are distributed across the
hardware resources defined in the resource environment model. The workload definition
is contained in a separate model, the usage profile model. In the following we will go into
detail about the individual models since they are critical to understanding this thesis.

Repository

Todays software systems consist of multiple independent components that can be flexibly
assembled and deployed. Not every component contained in the system has to be deployed
at all times and components will often times be deployed multiple times. To reflect this
flexibility and to allow for reuse of single components DML separates the component
descriptions from the information about the assembly and deployment of these components
in the system. Components can not be defined independently from each other, since
components can provide services that other components require to function. To define
that component A requires component B would compromise the components independence.
The classical component approach and DML deal with this by defining interfaces which
can be provided by a component. If a component needs other components to function this
is modeled by defining that the component requires an interface. This allows for every
component that provides this interface to be used, for more details on this see Section 2.2.
Figure 2.2 shows the interface meta-model of the DML repository model.

10

2.2. Descartes Modeling Language (DML) 11

Figure 2.2: Interface meta-model from [Bro14]

Every Interface defines a series of Signatures which represent the different function-
alities encapsulated in an Interface. If a model element can provide interfaces it is de-
rived from InterfaceProvidingEntity, which contains a number of InterfaceProvid-

ingRoles which each reference one Interface. If a InterfaceProvidingEntity would
provide multiple Interfaces it would contain multiple InterfaceProvidingRoles. The
InterfaceRequiringEntity and InterfaceRequiringRoles provide the ability to re-
quire Interfaces using the same mechanisms. If an element can both provide and require
Interfaces it is modeled as an InterfaceProvidingRequiringEntity. The Interface-
ProvidingRequiringEntities in DML are shown in Figure 2.3.

Figure 2.3: InterfaceProvidingRequiringEntity meta-model from [Bro14]

A traditional component is one example for an InterfaceProvidingRequiringEntity,
which is modeled in DML as a BasicComponent. A CompositeComponent is a collection of
RepositoryComponents that together form a larger component that can again require and
provide Interfaces. The System and Subsystem are elements from the assembly model
which is explained in Section 2.2. Aside from being able to provide and require Inter-

face every RepositoryComponent contains ServiceBehaviorAbstracts which describe
the performance relevant aspects of each Signature of every Interface provided by the
component. This means it contains a ServiceBehaviorAbstraction for every functional-
ity which the component provides. The most common ServiceBehaviorAbstraction, the
FineGrainedBehavior is shown in Figure 2.4. Every FineGrainedBehavior contains ex-
actly one ComponentInternalBehavior, which is a ordered list of AbstractActions which
represent different steps of the behavior. The two basic AbstractActions are the Inter-

nalAction which wraps a ResourceDemand and the ExternalCallAction which models a
components calls to its InterfaceRequiringRoles. The remaining AbstractActions are
control flow actions, which allow to model loops, forks and branches. This behavior model
together with the InterfaceRequiringRoles and InterfaceProvidingRoles allows to

11

12 2. Foundations

Figure 2.4: Behavior meta-model from [Bro14]

model both the systems architecture and its performance attributes.

Assembly

In the assembly model users can specify a system using the components from the repository,
that is either analyzed directly or reused in a larger system. An Unified Modeling Language
(UML)-Diagramm for the meta-model of the assembly is shown in Figure 2.5.

Figure 2.5: Assembly meta-model from [Bro14]

The head element for a assembly is the ComposedStructure, which uses the Interface-

ProvidingDelegationConnector to propagate the systems InterfaceProvidingRoles

across they system border. Should the system require additional services to function these
InterfaceRequiringRoles are propagated using the InterfaceRequiringDelegation-

Connectors. Inside the system the RepositoryComponents from the repository model
are encapsulated by an AssemblyContext to represent an instance of the component.
As described previously the encapsulated RepositoryComponents have their own Inter-

faceProvidingRoles and InterfaceRequiringRoles. To connect a InterfaceRequir-

ingRole with a InterfaceProvidingRole for the same interface the assembly model uses
AssemblyConnectors. For the model to be valid all InterfaceRequiringRoles inside the
system have to be connected to corresponding InterfaceProvidingRoles.

Resource Landscape

The physical resources of the system are modeled in the resource landscape model. It
contains information about the active and passive resources of the system as well as their
organization in different data centers and composite hardware resources like racks. This
organization is shown in Figure 2.6.

A DistributedDataCenter consists of multiple Datacenters, that each contain a number

12

2.2. Descartes Modeling Language (DML) 13

Figure 2.6: Resource Enviroment meta-model from [Bro14]

of HardwareInfrastructure. A HardwareInfrastructure can be a CompositeHard-

wareInfrastructure that itself consists of multiple HardwareInfrastructures. The
other type of HardwareInfrastructures are the ComutingInfrastructers, that can ei-
ther contain a ConfigurationSpecification or a RuntimeEnviroment that in turn con-
tains a ConfigurationSpecification. A RuntimeEnviroment represents a virtual ma-
chine that either contains additional virtual machines or a hardware resource modeled by
a ConfigurationSpecification. A detailed UML diagram for the ConfigurationSpec-

ification is shown in Figure 2.7.

Figure 2.7: Resource Specification meta-model from [Bro14]

Since the details of the resource specifications are not relevant for this thesis we will not go
into much detail here. It should be noted that a resource specification can either be a Ac-

tiveResourceSpecification or a PassiveResourceSpecification. A passive resource
could be a thread pool or a limited number of database connections. Active resources rep-
resent processing power like a CPU or a HDD, which is modeled using a processing rate
and a NumberOfParrallelProcessingUnits. Together this allows to model a detailed
representation of a data center’s physical landscape.

Deployment

The deployment model links the assembly and the resource landscape models by describing

13

14 2. Foundations

which component instances are deployed on which physical or virtual machines. This is
done using the meta-model described in Figure 2.8.

Figure 2.8: Deployment meta-model from [Bro14]

Each Deployment model links exactly one DistributedDataCenter and one System, the
root nodes of the resource landscape and the assembly respectivly. A Deployment con-
sists of a number of DeploymentContexts that each link one AssemblyContext from the
assembly with one Container from the resource landscape.

Usage Profile

The workload is modeled independently of the rest of the DML model to simplify analysis
on a system with different workloads. Each UsageProfileModel references exactly one
System and therefore assembly model as shown in Figure 2.9.

Figure 2.9: Usage profile meta-model from [Bro14]

Each UsageProfileModel specifies one or more UsageScenarios that describe a way users
access the system. These UsageScenarios are used to model simultaneous access from
different workload types. Each UsageScenario has either a OpenWorkloadType defined
by its inter arrival rate or a ClosedWorkloadType consisting of a population and a think
time. These WorkloadTypes describe how often the UsageScenario’s ScenarioBehavior

is executed. A ScenarioBehavior consits of a order list of AbstractUserActions that
are executed in order of the list. The most common AbstractUserAction is the Sys-

temCallUserAction where a Signature of a InterfaceProvidingRole of the System is
being called. To model a delay between two SystemCallUserActions the DelayUserAc-

tion is used. Both loops and branches can be modled inside the ScenarioBehavior using

14

2.3. Parametric Dependencies in DML 15

the LoopUserAction and the BranchUserAction. Together this allows to flexibly model
different types of workloads.

2.3 Parametric Dependencies in DML

In this section we will detail how DML models dependencies, but to do this we will first need
to go into detail about what kind of variables and parameters exist, that can get connected
using dependencies. DML’s variables, which are all derived from the ModelVariable class
are shown in Figure 2.10.

Figure 2.10: Variables meta-model from [Bro14]

There exist five different ModelVariables, BranchingProbabilities, LoopIterationCount,
CallFrquency, ResourceDemand and ResponseTime. Each of these variables can be char-
acterized either as EMPIRICAL or EXPLICIT. EXPLICIT variables are characterized using
an ExplicitDescription, while EMPIRICAL variables are characterized at run time using
measurement values. To describe these ModelVariables using a dependency they have to
wrapped in an InfluencedVariableReference as shown in Figure 2.11 (a). These a In-

(a) (b)

Figure 2.11: Parameter meta-model from [Bro14]

fluencedVariableReferences can depend on InfluencingParameters. The first type
of InfluencingParameter is the ShadowParameter which is used to model influencing
parameter that do not directly map to a component property. The other Influencing-

Parameters are the Callparameters, which are shown in Figure 2.11 (b). A components
input parameters are modeled as ServiceInputParameters, while the parameters of an
ExternalCall are modeled as ExternalCallParameters and ExternalCallReturnPa-

rameters. The InfluencedVariableReferences and the InfluencingParameters can
be used in relationships as described in Figure 2.12. A DependencyRelationship de-
scribes an InfluencedVariableReference using one or more InfluencingParameters.
To describe relationships between parameters on an assembly level DependencyPropat-
gationRelationships can be used. They describe an InfluencingParameter using one
more InfluencingParameters. The ComponentInstanceReferences are used to describe
in which assembled components these parameters exist. A Relationship can be either ex-
plicitly described or empirically characterized at run time.

15

16 2. Foundations

Figure 2.12: Relationship meta-model from [Bro14]

2.4 Queuing Petri Net (QPN)

The Queueing Petri Net (QPN) is a formalism from the area of Queuing Theory. It
is a combination of two prior formalisms, the Queueing Net (QN) and Petri Net (PN).
It consists of four elements, Places, Tokens, Transitions and Queuing Places, which are
shown in Figure 2.13. The places have no functionality by them selfs, but they can contain

Place Place with four Tokens Transition Queuing Place

Figure 2.13: QPN Formalism

tokens. These tokens are the only element that changes during a QPNs life, facilitated by
the transitions. These transitions connect one or more places and move tokens between
them. They fire when all required tokens, denoted by the incoming arrows are available.
Upon the activation of a transition all required tokens are consumed and the output tokens,
denoted by the outgoing arrows are created. So far the formalism is similar to PNs, the
real difference are the newly added queuing places, which are borrowed from the QNs.
Just like ordinary places queuing places can be connected via transitions. Incoming tokens
arrive at the left side of the queuing place, the so called waiting area. From there on one
token at a time can be dealt with by the so called server, the order in which the tokens
enter is usually first come first served. After a set amount of time the token is moved to
the right side of the queuing place where it is available for transitions. These elements are
used to represent delays of any sort, for more information on how a QPN can be used to
represent a software environment see Section 2.6.

2.5 SimQPN

SimQPN is a simulator for QPNs. It facilitates a discrete-event-simulation approach that
allows to simulate larger amounts of simulated time in the same period of real time than

16

2.6. DML Solution Process 17

a traditional simulation. It supports three different analysis methods, the batch means
method [MS84], replication/deletion approach [Law15] and the method of welch[Wel83].
Currently the warm-up period of the simulation has to be manually specified, but there is
some ongoing for the implementation of an automated detection for the warm-up period
length. SimQPN allows the user to choose between three different stopping criteria for
the simulation, with the simplest one terminating the simulation after a fixed time. The
simulation can also be stopped when a relative or absolute precision is reached. The time
between these stop checks can be set in both real time and simulated time. A statlevel
that that indicates what level of detail the collected information should have can be set
for every place in the QPN. These statlevels influence the duration of the simulation since
the collection of aggregates is faster than collecting all values. For more information about
SimQPN see [KSM10].

2.6 DML Solution Process

In this section we detail how DML is currently solved using QPNs. We start in Section 2.6
by explaining the stackframe model that is used during the transformation to QPN. How
DML is currently transformed to the stackframe model is detailed in Section 2.6. The
stackframe model is then transformed to a QPN as described in Section 2.6. Finally the
resulting QPN is solved using simQPN (see Section 2.5).

Stackframe model

The stackframe model contains information about the paths a request can take through
the system, as well as characterizations for the variables a request encounters during its
traversal of the model. These characterizations can come from empirical characterizations,
from relationships or explicitly stated within the model. It also describes which Service-

BehaviorAbstraction should be used to solve the model. While it contains information
about which ServiceBehaviorAbstraction the user calls, it does not describe the work-
load. The physical aspects of the model are also not considered. So together with the
UsageProfile and the Deployment it builds the basis for any model based solver. This
avoids duplicate code between multiple model based approaches, since they do not each
have to solve model traversal and variable characterization.

Figure 2.14: Stackframe Metamodel

Figure 2.14 describes the meta model for the stackframe model. Each Stackframe links a
ServiceBehaviorAbstraction to a ComponentInstanceReference. This ComponentIn-

stanceReference is the entry point to use the Deployment to extract information about

17

18 2. Foundations

hardware aspects of the model. For each ModelVariable in the ServiceBehaviorAb-

straction there is an ValueMapEntry that contains its characterization in form of a
RandomVariable. A Stackframe contains a Successor for each ExternalCall in the
ServiceBehaviorAbstraction. The Successor describes which Stackframe the Exter-

nalCall calls.

Transformation to Stackframe Model

The current implementation of the transformation does not take any relationships or em-
pirical variable characterizations into account. It only traverses the model and extracts the
possible successors for each ServiceBehaviorAbstraction alongside the explicit variable
characterizations. [Bro14] describes a more detailed transformation that is not imple-
mented.

Transformation to QPN

The transformation to QPN does not transform the model as a whole, but it describes
modularized mappings for each DML element, that together allow to transform the whole
model. Most of these mappings were first described in [MKK10]. Each mapping has an
ordinary place that is used as an entry point for the structure and another ordinary place
that is used as an exit point. Mappings for elements like ExternalCall that call other
elements also have entry/exit points for the elements that are called. By linking these
entry/exit points for the external call to the entry/exit points for the called element the
modular mappings come together as a QPN that models the whole DML model. In the
following we explain the mappings for ClosedWorkloads, ExternalCalls and Acquire-

/ReleaseActions, for the remaining mappings see [Bro14].

Figure 2.15: Mapping for ClosedWorkload [MKK10]

A ClosedWorkload mean a limited number of requests exists and after they are finished by
the system they have to wait a certain time before the are processed by the system again.
To model this we have a queuing place that represents the wait time, after a request leaves
the queue it enters the begin place of the called behavior. Upon leaving the behavior end
place the request enters the queue again.

Figure 2.16: Mapping for ExternalCall [MKK10]

18

2.6. DML Solution Process 19

To model an ExternalCall we need to stop the current behaviors execution and wait
until a external behavior is done. To model this our token leave the current behavior
and enters the behavior begin place and upon returning from the behavior end place the
ExternalCall ends.

Figure 2.17: Mapping for Aquire-/ReleaseAction [MKK10]

An Acquire-/ReleaseAction means that to execute a behavior the additional constraint
must be met that not more than a set number of request is currently in the area covered
by the acquire/release. We model an AcquireAction by a transition between the acquire
start place and the acquire end place that requires a token from a passive resource place.
The corresponding release action is modeled by a transition that places a new token in the
passive resource place. This means that only a set number of requests can be executed
concurrently.

19

3. Related Work

There has been a lot of work done already in the area of performance modeling and there
exists to model and resolve parametric dependencies, that we all found unfit to use in the
case of DML. We will detail to best of our knowledge what has been done so far and what
has not yet been done. In Section 3.1 we describe which performance models implement
parametric dependencies and if so how they model them. In Section 3.2 we briefly go over
the idea of extracting performance models that contain parametric dependencies using
measurement data. How these performance models resolve their version of parametric
dependencies is described in Section 3.3. Some performance models allow for operations
between multiple continuous distributions inside their dependencies. The current state
of the art for techniques to calculate and compute these operations between continuous
distributions is also described in Section 3.3. Together this describes the current state of
the art, which we build upon in this master thesis.

3.1 Modeling of Parametric Dependencies

In [GM01], [GS08], [Zsc10], [BdWCM05], [Phi], [Bro14] and [BHK12] different modeling
approaches for parametric dependencies are proposed. Every approach has its own ad-
vantages and disadvantages but none of these approaches target an online scenario except
for DML [Bro14]. In the following we provide an overview over the different meta-models
focusing on their approach to model parametric dependencies. We go from the model
with the least detailed parametric dependencies to the most detailed model. In [GM01]
software components are modeled using UML and are extended with annotations about
the performance relevant parameters. This model is then mapped to a QPN where it can
be simulated to predict response times. However, they do not model dependencies be-
tween the parameters. Instead the parameters are inserted directly in the resulting QPN
since they represent resource demands or loop frequencies. Another approach modeling
parametric dependencies is UML MARTE [GS08] which adds capabilities to UML for
model-driven development of real-time and embedded systems (RTES). It allows for the
modeling of non-functional properties which can also include performance properties. In
MARTE these non-functional parameters are used in constraints that need to be satisfied.
A formal description for non-functional attributes for components has been proposed in
[Zsc10]. These non-functional attributes can be used to model performance relevant pa-
rameters. This description allows to model a components performance in relation to the
available resources or the container it is contained in, not in relation to the components

21

22 3. Related Work

input parameters. [BdWCM05] extends ROBOCOB [Phi], an existing performance model
to support input parameters. Each component can have one or more input parameters
which are used in the cost function that describes the components resource demand. Ne-
glecting output or return parameters simplifies the solving significantly but leads to not
being able to model some systems adequatly.
In Palladio Component Model (PCM) [Koz08] each component can have input parameters
and output parameters. If a component specifies a call to another component, the call it-
self has input and output parameters which are propagated between the components. The
component developer can now define dependencies between these parameters, for example
an external calls input parameter could be two times the components input parameter.
These dependencies can also be specified between parameters and model variables like
resource demands or loop iteration counts. This allows to define non-static components
that behave differently depending on where it is called from and also depending on which
implementation of an interface it calls.
DML [BHK12] extends the modeling concepts from PCM to support online scenario in a
number of ways. DML allows for model variables to be described by multiple dependencies.
A resource demand could be characterized by two dependencies. Therefore the influenc-
ing parameters of one dependency need to be known to resolve a value for the resource
demand. So the constraint that all parameters need to be known is no longer a concern.
Additionally, DML supports modeling of dependencies on an assembly level which means
they can span across multiple components. For example, a components resource demand
can directly depend on another components input parameter. This simplifies modeling
and improves understandability at the cost of the components reusability. Both model
variables and relationships can be modeled as empirically characterized, which mean the
values should be characterized using measurement values from the system. To our best
knowledge there have been no attempts to model parametric dependencies in low level
models like QPNs or stochastic process models. This is hard to implement since paramet-
ric dependencies need high level information, which is not available in low level modeling
formalisms.

3.2 Extraction of Parametric Dependencies

Modeling dependencies manually is realistic for smaller systems, but for enterprise level
systems modeling them by hand is time intensive. Large systems usually employ some
kind of response time monitoring. Example Application Monitoring Tool (APM) tools
include DynaTrace [WBGK15] and Appdynamics [WH13]. Kieker [VHWH12] is an APM
tool from research. These measurements can be used to extract performance models
[Bre16], [BK17], but most of these approaches do not extract parametric dependencies. An
approach that does extract parametric dependencies was proposed in [KKR10], which uses
bytecode analysis to extract PCM models for software components that contain parametric
dependencies. They analyze bytecode in combination with measurements for parameter
values at interface level and then employ genetic search to find correlations between the
two. They then map certain bytecode instructions to model variables like loop iteration
counts. Therefore they can derive characterizations for these model variables based on
the input parameters of the component and the output parameters of components called
from this component. An approach based purely on measurement values is proposed in
[BHK11]. The proposed approach does not try to actively learn between which parameters
dependencies exist. Instead it relies on the user to specify where dependencies exist and
the characterization of the dependency is learned from measurement values. This prevents
both learning wrong dependencies and learning correlations, that are small enough to be
potentially from random noise. It comes with the downside of needing more input from
the user. How these models can be solved to enable predictions is described in Section 3.3.

22

3.3. Resolution and Calculation of Parametric Dependencies 23

3.3 Resolution and Calculation of Parametric Dependencies

Resolving a parametric dependency means to provide a description for the parameters
that depend on other parameters that no longer contains these other parameters. In the
context of performance modeling this usually means to provide a value for each possible
scenario which leads to a component behaviors execution. In the following we discuss so-
lution strategies for solving of parametric dependencies based on formalisms presented in
Section 3.1. For [GM01], [GS08] and [Zsc10] there are no parallels to DML dependencies,
while [BdWCM05] and [Koz08] could be relevant for the DML dependency resolution. In
[GM01] the parameters are directly copied into the QPN so no resolution is necessary.
Both [GS08] and [Zsc10] do not propose a solving algorithm, but they both also do not
use fully fledged parametric dependencies. [BdWCM05] models only input parameters so
they use a flooding algorithm to resolve values for all parameters. This works by starting
at the workload definition where the input, parameters need to be known and from there
these input parameters can be propagated to all components that get called. If these
components contain calls to other components these input parameters can again be prop-
agated to the next component. This is done until a component is reached where the call
terminates, which means it does not contain calls to any other components. Visually this
can be imagined as the parameters starting in the workload definition and then flowing
through the systems components.
We go into detail on the solving approach used for parametric dependencies in PCM, since
parameteric dependencies in DML are an extension of Palladio Component Model (PCM)
approach to model parameteric dependencies. Koziolek [Koz08] introduces the concept of
ComputedUsageContexts to simplify the dependency resolution. A ComputedUsageCon-
text is a wrapper for a behavior description and an assembly instance of the component.
Additionally it stores the behaviors input and output parameters as well as the in- and
output parameters for each external call inside the behavior. Two ComputedUsageCon-
texts are considered equal if the behavior description, the assembly instance and the input
parameters are identical. To resolve the dependencies the model is traversed and for each
encountered behavior description the corresponding ComputedUsageContext is retrieved
or a new one is created if it does not exist yet. The traversal starts by going over each
behavior that is called from the usage profiles calls to the system. The dependency solver
goes over each action contained in the behavior and if an external call is encountered its
target is traversed first before returning to the next action inside the current behavior de-
scription. When creating the ComputedUsageContext for the target of an external call the
current ComputedUsageContext’s external call parameters are mapped to the new Com-
putedUsageContext’s input parameters. Similarly after returning to a ComputedUsage-
Context from traversing an external call the target ComputedUsageContext’s output is
mapped to the current ComputedUsageContext’s external call output. If any action en-
countered during the model traversal contains a model variable that is characterized using
a dependency the current ComputedUsageContext’s parameter values are used to calcu-
lated the model variables value. At this point all parameters that are used to describe the
model variable have to be known due to the constraints described in Section 3.1. After
traversing the model a characterization for each model variable is known for every set of
occurring input parameters for the containing behavior description.
Parameters in DML can have different data types like boolean value, integer, probability
mass function or probability distribution function. Calculating the resulting value for a de-
pendency can contain arithmetic operations like addition, subtraction, multiplication and
division or comparisons like greater or equal. Most of these operations are straightforward
to compute, but the operations between two distributions can be challenging. Therefore,
we will give a small overview over the current state of the art of addition, subtraction,
product and division of distributions. The addition of two distributions is also known as
the convolution of two distributions. Formulas for the convolution can be found in fun-

23

24 3. Related Work

damental statistics literature like [Sch12]. The convolution also covers the subtraction of
two distributions since we can inverse the second distribution and add both. A formula
for the product of two distributions has been introduced in [ST66]. An approach for the
division of two distributions has been proposed in [Cur41]. While deriving formulas for
arithmetic operations on distribution is possible, the computation proves difficult since it
involves the solution of complex integrals [GLD04]. [GLD04] also proposes an approach
based on the melin transformation to compute the product of two distributions. Solutions
for the products of Beta, Gamma, and Gaussian random variables have been introduced
in [ST70]. [Akk08] describes the convolution of exponential distributions. While for some
cases solutions exist, a general solution does not exist.

24

4. Approach

The goals of this master thesis are described in Section 4.1 and the approach to achieve
these goals in Section 4.2.

4.1 Goals

The three main aims of this master thesis are the determination of the correct dependency
resolution order, the calculation of the dependency results and the integration of the new
transformation to the Stackframe Model in the existing QPN based DML solver.

1. Dependency Resolution The order in which the dependencies are resolved is es-
sential since a variable which was characterized using one dependency might be used
as an input parameter in another dependency. Resolving them in reverse order is im-
possible. To determine the correct order an overview of the variables and dependen-
cies in the system is needed. We differentiate three different types of dependencies in
DML. DependencyRelationships which describe dependencies within one compo-
nent, DependencyPropagationRelationships which describe dependencies across
component borders and implicit relationships which are not explicitly modeled.

a) Component Relationships DependencyRelationships model dependencies
with the component’s borders. A resource demand can depend on an input
parameter or on the value returned by an external call. These relationships can
not be resolved independently since the component’s input parameters as well
as the values returned by a call to another component depend on the remaining
system.

b) Implicit Relationships If two parameters model the same real world value
due to the system’s assembly, they have to be equal. This constraint can be
understood as an implicit relationship. The input parameters of an external call
have to be equal to the input parameters of the called component. Alternatively,
if a component returns a value this value has to be equal to return parameters
of the external call that lead to its execution.

c) Assembly Relationships In DML the DependencyPropagationRelation-

ships allow to model dependencies not on a component basis, but between
assembled components. This provides challenges for the dependency resolution
since other components apart from those directly connected to the resolution
target are of relevance.

25

26 4. Approach

2. Dependency Calculation DML allows for boolean values, discrete distributions
and continuous distributions to be used as values for a parameter or model variable.
These values can be used as input for boolean operations, arithmetic operations
and comparisons in the explicit description of an relationship. We implement an
algorithm to compute solutions for these operations.

a) Boolean Calculations We support boolean operations like AND, OR and
XOR for both boolean values and probabilistic boolean values.

b) Discrete Numeric Calculations For discrete numeric distributions support
both arithmetic operations like +,-,*,/ and comparisons like <,=,>, ≥, ≤.

c) Mixed Numeric Calculations For a mix of continuous and discrete opera-
tions to support as many of the previously mentioned operations as possible.

d) Continuous Numeric Calculations For two continuous distributions we sup-
port all mentioned arithmetic operations and comparisons, except for divisions
since the computation of the division of two continuous distributions is unsolved
so far, as mentioned in Chapter 2.

3. Integration We integrate our approach in the existing DML tool chain. Using
the values derived from the relationships as input for the existing transformation
to QPN which is then be solved using SimQPN. This results in an automated pro-
cess to solve models containing relationships and allow users to specify Descartes
Query Language (DQL) performance queries to answer their performance relevant
questions. Furthermore, this enables end-to-end evaluation of our approach.

While features might be evaluated separately, combinations of modeling features cause
additional challenges. These scenarios have to be considered for our approach. Supported
features as well as their respective evaluation are listed below:

1. Relationship Chains If the InfluencingParameters of a relationship are not ex-
plicitly modeled the relationship might still be resolved through values retrieved from
other relationships necessary for the unknown InfluencingParameters. The In-

fluencingParameters of these relationships might in turn be not explicitly modeled
but again the dependent of a relationship. This forms chains of relationships that
have to be resolved in order. If an independent of a relationship in not yet charac-
terized, a relationship with this parameter as a dependent needs to be identified and
solved first.

2. Multiple Callpaths The resource demand of a component might be different de-
pending on which component it is called from. The resource demand depends on the
components input parameters, which can be different for two external calls. But due
to relationship chains the resource demand might depend on the input parameter of
a completely different component. Thus, not only the component the call originated
from, but the whole path of the request through the system needs to be taken into
account.

3. Multiple Instances of one component For a component which is instantiated
multiple times, independent values for the contained model variables have to be pro-
vided by the dependency solving. Depending on the call path, these model variables
can have different values despite being contained in the same component instance.
The two identical components can be on different call paths and therefore have dif-
ferent input parameters.

4. Multiple ServiceBehaviorAbstractions A component providing ServiceBehav-

iorAbstractions for multiple signatures should not interfere with the dependency

26

4.2. Approach 27

resolution. Despite being a technical more than a conceptual challenge this problem
needs to be taken into consideration.

4.2 Approach

In this section we will give a short overview over our approach to resolve parametric
dependencies. The approach can be split into three steps:

1. Extract callpath information Parameters can have different values depending
on where the containing component is called from. In a model this is realized by
different dependencies describing them or because parameters they depend up having
different values when called from another component. Therefore to analyze the
models dependencies the paths a request to the system need to be taken into account.

2. Extract parameter and dependency information On the basis of the callpaths
in the model, detailed information about the model’s parameters and dependencies
can be extracted. For every pair of parameter and callpath leading to it is described
which other parameter and callpath pairs it depends upon. This is coupled with a
description what equation can be used to calculate a value for the parameter using
the values of the independent parameters.

3. Resolve all possible dependencies Having the information about parameters
and their dependencies in a comprehensive format we contribute an algorithm to
resolve value for all parameter and callpath pairs. Should resolving a value for some
parameters be impossible due to missing information the algorithm resolves all values
that can be calculated.

The resolved values for parameters can be used to either simulate the model or to use an
analytical approach to solve it. Additionally, step two provides an overview of the models
parameters and dependencies. On the one hand this can help the user to understand the
model better and on the other hand this provides an extension point to implement loading
of empirical variables, automated learning of dependencies and empirical characterization
of dependencies. Additionally it provides an opportunity to implement more sophisticated
decision support between different ways to characterize a parameter.

27

5. Solving Parametric Dependencies

This chapter describes our proposed approach for the resolution of parametric dependen-
cies. First all possible paths through the system are extracted to a CallpathModel, as
described in Section 5.1. In Section 5.2 we use this CallpathModel to extract a Dependen-

cyGraph containing all variables and their dependencies. How this RelationshipGraph

can be solved is explained in Section 5.3. The calculations necessary to calculate values
from a dependencies where all influencing values are known are detailed in Section 5.4.

5.1 Callpath Model

Assigning a single value to a components resource demand is often not feasible, because it
depends on some input parmeter or an external calls output parameter. And therefore by
extension it depends on from where the current component is called and which implemen-
tation fulfills its required components.This means we need information about which paths
a request can possibly take through the system. We propose to extract this information
to a CallpathModel, an example for which is shown in Figure 5.1.

CallpathPointCallpathPoint

executedBehavior: Behavior
location: Location

CallMapEntryCallMapEntry

call : Call

0..*

externalCallMap

0..*

externalCallMap

1 callTarget1 callTarget

CallpathModelCallpathModel 1..*

entryPoints

1..*

entryPoints

DependencyDependency

description: DependencyCharacterization

0..* dependencies0..* dependencies
1dependent 1dependent 1..*independents 1..*independents

Figure 5.1: CallpathModel Metamodel

The CallpathModel contains a set of CallpathPoints that represent possible entry points
for the system. Each CallpathPoint specifies the Location where a Behavior is executed.
A location does not refer to a physical node in the system, but to an assembled component
that contains the executed behavior. Every time the CallpathPoint’s Behavior specifies
a Call to another component a CallMapEntry references the CallpathPoint that rep-
resents the Behavior that is executed due the the Call. This model leads to a tree-like

29

30 5. Solving Parametric Dependencies

structure as shown in Figure 5.2. Every possible path that leads to a Behaviors execution
can be described by a single CallpathPoint, since the path to it can be traced back due
to it being contained in a CallMapEntry.

A

B C D

E F E

Dependency

Call to Component

Figure 5.2: Example for a callpath model

When specifying Dependencies in this model it is only important in which components the
dependent variable and the independent variables are contained, the exact nature of the
dependency is hidden in a DependencyCharacterization for now. The CallpathModel

can be extracted by recursively traversing the system, starting at all possible entry points
and iterating over all Calls in the entry points. Then for each resulting callpath we can
check if any Dependencies can be applied. Dependencies that are fully contained within
one component do not need to modeled in the CallpathModel since the location of its
dependents and independents is clear. The same holds true for implicit dependencies i.e.
dependencies given by the fact that an external calls parameter are passed to its target.

5.2 Dependency Graph

The CallpathModel is a representation of all paths through the system. But it is insuffi-
cient as a base for dependency resolution algorithms since it neither shows clearly which
variables exist nor does it list all dependencies that could describe these variables. There-
fore before resolving the dependencies we transform the CallpathModel to a model that
contains all information about the system’s model variables and dependencies. This is
done to simplify the dependency resolution, improve understandability and to provide an
extension point to resolve more complex variable and dependency combinations. We chose
to use a graph to model the variables and corresponding dependencies with the variables as
nodes and the dependencies as edges. Figure 5.3 shows our proposed RelationshipGraph

model. Each Node represents a model variable in combination with a call path leading to
this variable. Therefore it refers to a CallpathPoint and a ModelVariable, as well as
the variables distribution. In case the variable’s distribution is not yet know, the distribu-
tion value is null. The dependencies are represented as Edges, connecting one dependent
Node with one or more independent Nodes. The Edge’s Equation describes the equation
to calculate the dependents distribution from its independent’s distributions, Section 5.4
covers this step. To extract the DependencyGraph from the CallpathModel we need to
iterate over every CallpathPoint and create a Node for every ModelVariable in it and

30

5.3. Relationship Graph Solving 31

DependencyGraphDependencyGraph

EdgeEdge
NodeNode

callPoint : CallpathPoint
variable : ModelVariable
distribution : Distribution

0..*edges 0..*edges

1..*nodes 1..*nodes

dependent

1

dependent

1

independents 1..*independents 1..*

equation: Equation

Figure 5.3: DependencyGraph Metamodel

an Edge for every dependency defined inside the CallpathPoint’s Behavior. Then an
edge needs to be inserted for every external call parameter and behavior input parameter
pair. This means for every two CallpathPoints connected by a CallMapEntry we need to
create an Edge connecting the calls parameters with the called behaviors input parameters.
Lastly every Relationship in the CallpathModel needs to be mapped to an Edge. This
models shows which variables and CallpathPoint pairs exist in the model and if a value
is known for it. All information about which relationships describe an unknown variable
and CallpathPoint pair is contained in the RelationshipGraph. How these unknown
variables can be resolved is described in Section 5.3.

5.3 Relationship Graph Solving

To solve the relationship graph we need to determine the order in which to calculate the
edges. This order is relevant because a newly characterized node might allow to resolve
additional nodes. It also needs to account for the fact that some dependencies might never
be used because an independent node might be impossible to resolve, but the dependent
node can also be characterized using another edge. Should it not be possible to resolve
values for all nodes the algorithm should still characterize as many nodes as possible.
Therefore we propse the algorithm described in 1. The algorithm consists of a loop, that
keeps repeating until the underlying dependency graph does not change anymore. Inside
the loop it goes over every edge inside the dependency graph and checks if the egde’s
dependent is not characterized. Should that be the case it checks if all independent nodes
of the edge are known and if so we know all input parameters for the edge’s Equation.
This means we can now calculate the value of the edge’s independent. Characterizing an
edge’s dependent is the change that keeps the main loop going. The newly characterized
parameter could also be the independent of another edge, therefore we need to check all
unsolved edges again. The algorithm terminates if either all parameters are characterized
or if some are uncharacterized but can not be resolved using the available data. Therefore
a check should be implemented if the value is known when retrieving a value from the
solved dependency graph.

5.4 Dependency Calculation

When calculating dependencies there are usually three relevant datatypes, probabilistic
logic value, discrete probability distributions and continuous probability distributions.
Probabilistic logic values([Nil86]) are boolean values that are uncertain and therefore de-
scribed using the probability that they are true. If the statement A is true 20 percent

31

32 5. Solving Parametric Dependencies

Algorithm 1 Dependency Solver

1: function solveDependencies(dependencyGraph)
2: change = true
3: while change == true do
4: change = false
5: for Edge in dependencyGraph.edges do
6: allIndependentsCharacterized = true
7: for Node in Edge.independents do
8: if Node.value == null then
9: allIndependentsCharacterized = false

10: end if
11: end for
12: if allIndependentsCharacterized == true then
13: Edge.dependent.value = Edge.equation.apply(Edge.independents)
14: change = true
15: end if
16: end for
17: end while
18: end function

of the time, we would describe it as P(A) = 0.2. Discrete probability distributions are
distributions with a fixed number of possible results, like the throw of a dice. These distri-
butions are described using probability mass functions(PMF), which assign a probability
to each possible result. Continuous probability functions are distributions with an endless
amount of possible results, for example a normal distribution. While they are usually spec-
ified using a probability distribution function(PDF) we will instead use Boxed PDFs as
described in [Bro14], to simplify the computation of arithmetic operations. For probabilis-
tic logic values only boolean operations can be computed. For the numeric distributions
comparisons(LESS, LESSEQUALS, GREATER, GREATEREQUALS and EQUALS) and
arithmetic operations(SUM, SUBTRACTION, DIVISION and MULTIPLACTION) need
to be calculated. Section 5.4 explains how boolean operations on probabilistic logic values
can be computed. Arithmetic operations and comparisons for two discrete distributions,
a discrete and a continuous distribution and two continuous distributions are defined in
subsections 5.4, 5.4 and 5.4 respectively.

Probabilistic Logic Values

For probabilistic logic values we will compute three operations AND, OR and XOR, which
are defined analog to their non-probabilistic counterparts. Koziolek [Koz08] provides the
following formulas for these operations:

P (CAND) = P (A) ∗ P (B)

P (COR) = P (A) + P (B)− P (A ∧B)

P (CXOR) = P (A)(1− P (B)) + (1− P (A)) ∗ P (B)

In these formulas P(A) is short for P(A = true) and C is used to denote the subscript
operation being applied to A and B. For the expression A AND B being true both A and
be need to be true so we can multiply P(A) and P(B). If either A or B has to be true we
can add P(A) and P(B) but this counts the situation where A and B are true twice so we
need to subtract P(A AND B) again. If either A or B should be true but not both we

32

5.4. Dependency Calculation 33

can calculate this as the probability of A being true and B false plus the probability of A
being false and B true. All three formulas can be easily computed, since P(A) and P(B)
are known.

Discrete Distributions

To apply an arithmetic operation for two discrete distributions we propose to calculate
a weighted average over all possible results, with the results probability as weights. The
algorithm for the sum of two discrete distributions is shown in algorithm 2. The algorithm

Algorithm 2 Sum of two PMFs

1: function calculateSum(pmf1, pmf2)
2: resultPMF = createEmptyPMF()
3: for sample1 in pmf1 do
4: for sample2 in pmf2 do
5: result = sample1.value + sample2.value
6: probability = sample1.probability * sample2.probability
7: updateResultPMF(resultPMF , result, probability)
8: end for
9: end for

10: end function
11:

12: function updateResultPMF(pmf, value, probability)
13: if pmf .contains(value) then
14: pmf .setProbability(value, probability + pmf .getProbability(value))
15: else
16: pmf .put(value, probability)
17: end if
18: end function

first creates a PMF without any entries, then it iterates over all entries of the first PMF.
For each entry in the first PMF the algorithm goes over every entry in the second PMF
and computes the sum of both values. This value is then added to the newly created
PMF using the product of both previous entries as the new probability. When adding
a new value to the pmf it first checks if an entry with this value already exists, if so it
just addes the new probability to the existing entries probability. Should no entry for
this value exist a new entry is added. This algorithm can be reused for other arithmetic
operations, by substituting the addition in line five for the desired arithmetic operation.
Comparisons between two discrete distributions return a probabilistic logic value, since
the result depends on which value each distribution assumes. We used a algorithm similar
to algorithm 2, by summing up the probabilities of every possible value combination for
which the comparison is true. The resulting algorithm is shown in algorithm 3 for the
comparison GREATER. To achieve this the resulting probability is set to zero. Similarly
to the algorithm 2 it iterates over every possible combination of entry pairs when taking
one entry from each PMF. For these pairs the greater operator is applied and if it returns
true the product of the occurance probabilities of each PMF entry is added to the resulting
probability.

Discrete and Continuous Distribution

To calculate arithmetic operations and comparisons we reused the algorithms 2 and 3. We
iterate over all values of the discrete distribution and all uniform probability distribution

33

34 5. Solving Parametric Dependencies

Algorithm 3 GREATER for two PMFs

1: function GREATER(pmf1, pmf2)
2: probability = 0
3: for sample1 in pmf1 do
4: for sample2 in pmf2 do
5: result = sample1.value > sample2.value
6: if result then
7: probability += sample1.probability * sample2.probability
8: end if
9: end for

10: end for
11: end function

segments of the BoxedPDF. To adapt the algorithm for a mix of discrete and continu-
ous distributions we need to define the arithmetic operations and comparisons between
them. Our prosed formulas for arithmetic operations between discrete values and uniform
distribution segments are as following:

d+ seg(l, u, p) = seg(l + d, u+ d, p)

d− seg(l, u, p) = seg(d− u, d− l, p)

seg(l, u, p)− d = seg(l − d, u− d, p)

d ∗ seg(l, u, p) = seg(l ∗ d, u ∗ d, p)

seg(l, u, p)/d = seg(l/d, u/d, p)

In these formulas the discrete value is called d and the uniform probability distribution
segment seg(l, u, p) with l as the lower limit, u as the upper limit and p as the probability.
When adding or subtracting a discrete value to a uniform probability distribution segment
both the segments upper and lower boundries are moved by the discrete value. Multiplying
a segment with a discrete value means both borders or the segment are multiplied by
the discrete value. This means the segment gets wider if the discrete value is larger
than one and smaller otherwise. The total probability stays the same, so the probability
density changes. Dividing a segment by a discrete value works analog to the multiplication
approach. We were not able to find a solution for the divisio of a discrete value by a
uniform probability distribution segment. These formulas are only correct if l of both
the input segment and the output segment is positive. This is however no issue since we
can assume that all performance relevant attributes have positive values. In the unlikely
case of negative values extending these formulas would be possible. For comparisons we
can assume the probability for d == seg(l, u, p) is zero since there are infinite possible
values for seg(l, u, p). Which means if we can compute d > seg(l, u, p) we can derive
the results for all other comparisons . For d > seg(l, u, p) there are three possible cases,
either d is larger or equal to u, it is less or equal to l or it lies between l and u. In the
first two cases the resulting probability is one or zero respectively, and for the third case
we can compute the probability that d is larger than seg(l, u, p) as p ∗ (u − l)/(u − l).
Figure 5.4 shows a graphical derivation for the aforementioned formula. The area of the
large rectangle is the probability p of the uniform distribution segment. Therefore its height
which equals its probability density is p/(u− l). The gray area represents the probability
of d > seg(l, u, p). Therefore multiplying the height p/(u− l) with its width d− l results
in the probability that d > seg(l, u, p). Using these operations in the algorithms 2 and 3
we are able to compute both comparisons and arithmetic operations for a continous value
and a continuous distribution

34

5.4. Dependency Calculation 35

Figure 5.4: Graphical derivation for d > seg(l, u, p)

Continuous Distributions

For the calculations in regards to continuous calculations we can again reuse the previously
mentioned algorithm 2. As with the discrete/continuous calculations we need to define
the operators again. The sum of two continuous distribution is defined as:

f(x) =

∫ ∞
−∞

f1(t) ∗ f2(t− x)dt

We will solve this equation for two uniform probability distribution segments seg(l1, u1, p1)
and seg(l2, u2, p2). f1(t)∗f2(t−x) is zero if f1(t) is zero, which leads the following equation
for l1 + l2 <= x <= u1 + u2:

f(x) =

∫ u1

l1

p1 ∗ f2(t− x)dt

Meanwhile f2(t− x) is not zero from x− t2 to x− l2, which means :

f(x) =

∫ min(t1,x−l2)

max(l1,x−t2)
p1 ∗ p2dt

Which can be simplified to:

f(x) = [min(t1, x− l2)−max(l1, x− t2)] ∗ p1 ∗ p2dt

Resolving the min and max to different cases leaves us with:

f(x) =



0 x < l1 + l2

(x− l1 − l2) ∗ p1 ∗ p2 l1 + u2 ≥ x, u1 + l2 ≥ x
(u1 − l1) ∗ p1 ∗ p2 u1 + l2 < x ≤ l1 + u2

(u2 − l2) ∗ p1 ∗ p2 l1 + u2 < x ≤ u1 + l2

(u1 + u2 − x) ∗ p1 ∗ p2 l1 + u2 < x, u1 + l2 < x

0 x > u1 + u2

35

36 5. Solving Parametric Dependencies

This means we have two uniform segments and a linear rising as well as a linear falling
section. Upon closer inspection we can see that in no situation both uniform sections will
appear. We binned the two linear sections in two equally large bins and used one bin
for the uniform section. We do not need the integral to create the bins, since binning is
trivial for lines and uniform sections. Should the two bins result in too large of an error
we can increase the number of bins used. There is a trade off between execution speed
and accuracy here. This cover both addition and subtraction, since for subtractions we
can multiply the second segment with minus one and still add them. For multiplications
the basic formula is similar:

f(x) =

∫ ∞
−∞

f1(t) ∗ f2(t/x) ∗ 1

|x|
dt

For l1 ∗ l2 < x ≤ u1 ∗ u2:

f(x) =

∫ u1

l1

p1 ∗ f2(x/t) ∗
1

|x|
dt

f2(x/t) is not zero for x between min(l2 ∗ x, u2 ∗ x) and max(l2 ∗ x, u2 ∗ x), which leads us
to:

f(x) =

∫ min(u1,max(l2∗x,u2∗x))

max(l1,min(l2∗x,u2∗x))
p1 ∗ p2 ∗

1

|x|
dt

We then integrate this equation , since the calculation of bins is not trivial here. With the
help of l2 < u2 we get:

F (x) =



0 x < l1 ∗ l2
z(1+log(t1)−log(x

t2
))

(l1−t1)(l2−t2) t1 ∗ t2 < x, l1 ∗ t2 < x
−z(log(l1)−log(t1))

(l1−t1)(l2−t2) t1 ∗ t2 < x, l1 ∗ t2 ≥ x
z(log(t2)−log(l2))
(l1−t1)(l2−t2) t1 ∗ t2 ≥ x, l1 ∗ t2 < x

z(−1+log(x
l2
)−log(l1)

(l1−t1)(l2−t2) t1 ∗ t2 ≥ x, l1 ∗ t2 ≥ x
0 x > u1 ∗ u2

Due to the fragmented nature of the integral, it is not equal to the cdf. It can only be
used to calculate probabilities within one case, to calculate the probability of an area
covering multiple cases it is necessary to split it into multiple parts residing in only one
case and add up the resulting probability. Using this approach we bin the result into
ten bins, we chose a higher number of bins because of the erratic nature of the resulting
distributions. When comparing two segments, there are three possible cases, either they
do not overlap, they have identical limits or they partially overlap. If they do not overlap
the result of the comparison is either zero or the product of both probabilities, depending
on which is larger. In case of identical limits the result of a comparison is the product
of both probabilities divided by two. Figure 5.5 shows an example for two overlapping
segments, the first segment from l1 to u1 and the second one from l2 to u2. In a case
like this the result is not trivial. Therefore we divide the problem into a subset of simpler
problems. We divide the existing segments to create pairs of segments that either do
not overlap or have identical borders. In this pairing it is neccesary to pair one segment
with a set of segments whos probabilities sum up to the original segments probability.

36

5.4. Dependency Calculation 37

Figure 5.5: Example for overlapping segments

Figure 5.6: Four subproblems created for the comparison of the segments from Figure 5.5

This is shown in Figure 5.6 for the example from Figure 5.5. The solution to the initial
comparison is the sum of the results of all subcomparisons. Together with the previously
introduced formulas this approach allows us to compute both comparisons and arithmetic
operations on two continuous distributions. In total we are therefore able to compute
all operations from Section 5.4 between the datatypes we identified as necessary for the
calculation of dependencies. An evaluation of the approaches we propose here can be found
in Section 8.3. Next we will describe how we implemented this approach for the Descartes
Modeling Language (DML).

37

6. Application of Parametric Dependency
Solving to DML

This chapter describes how we apply the approach presented in Section 4.2 to the solving
process of DML. We only describe where it is adapted or if we deviate from it. Section 6.1
and Section 6.3 describe how the CallpathModel and the RelationshipGraph can be
used for DML. Their extraction is explained in Section 6.2 and Section 6.4 Since solving
the RelationshipGraph can be done exactly as described Section 5.4 we will not go into
further detail, instead the challenges when calculating values for each dependency are
described in Section 6.5.

6.1 Callpath Model

In this section we will explain how we adapted the abstract CallpathModel from Sec-
tion 5.1 to be used with DML. One challenge when adapting the CallpathModel for DML
is that parameters can not only be contained in the component’s behavior descriptions,
but also inside the workload description. Therefore we need to use two types of points in
the CallpathModel. Figure 6.1 shows the resulting meta model.

CallEntryPointCallEntryPoint

call : SystemCallUserAction

AbstractCallpathPointAbstractCallpathPoint

CallpathPointCallpathPoint

behavior : ServiceBehaviorAbstraction
assemblyContext : AssemblyContext

ExternalCallMapEntryExternalCallMapEntry

externalCall : ExternalCall

1..*

entryPoints

1..*

entryPoints

1

nextCallPoint

1

nextCallPoint

0..*

externalCallMap

0..*

externalCallMap

CallpathModelCallpathModel

externalCallTarget1 externalCallTarget1

CallpathRelationshipCallpathRelationship

relationship: Relationship

1..* entryPoints1..* entryPoints

1

dependent

1

dependent

1..*independent 1..*independent

Figure 6.1: DML CallpathModel Metamodel

The CallpathModel contains a series of CallpathEntryPoints, which each represent a
SystemCallUserAction from the UsageProfile. Each of these CallpathEntryPoints

points to one CallpathPoint which consists of one ServiceBehaviorAbstraction and
one AssemblyContext. The ServiceBehaviorAbstraction needs to be contained in the
AssemblyContext’s encapsulated component. Two CallpathPoints are equal not only
if they have the same ServiceBehaviorAbstraction and AssemblyContext, they also
need to have equal parents (either another CallpathPoint or a CallpathEntryPoint).

39

40 6. Application of Parametric Dependency Solving to DML

For every ExternalCall in a CallpathPoint’s behavior it needs to have an External-

CallMapEntry, that links the ExternalCall to the CallpathPoint that is called from
the ExternalCall. This means by traversing from a CallPathEntryPoint through a
series of CallpathPoints and ExternalCallMapEntries until a CallpathPoint has no
ExternalCallMapEntries we get a possible path a request can take through the system.
Since one ServiceBehaviorAbstraction can be contained in multiple CallpathPoints

the ServiceBehaviorAbstraction’s variables can also be contained in multiple Call-

pathPoints. This means any Relationships describing these variables need to also be
duplicated. The CallpathModel contains CallpathRelationships to facilitate this. They
each encapsulate a DML Relationship and point to the CallpathPoints which are used
as either dependent or independent in this Relationship. They do not contain any infor-
mation about the actual structure of the relationships, only the coarse-grained information
about which CallpathPoints participate in the Relationship.

6.2 Callpath Model Extraction

The extraction of the CallpathModel can be described as a model to model transformation.
As input it uses three of the DML submodels, the repository, the assembly and the usage
profile. The resource landscape and the deployment are not required since the physical
location of a component does not influence its parameterization. Additionally it requires
a DML helper model called composition markers model, which denotes for every behavior
which granularity of behavior description should be used. In the following we will assume
that there is only one behavior description to simplify the notation. The information
from these models is transformed to a CallpathModel as described in the pseudeo code
algorithm 4.

Algorithm 4 Extraction of the Callpath Model

1: function extractCallpathModel()
2: for systemCallUserAction in usageProfile do
3: entryPoint = createEntryPoint(systemCallUserAction)
4: firstPoint = createCallPoint(systemCallUserAction.target)
5: firstPoint.parent = entryPoint
6: traverseCallPoint(firstPoint)
7: end for
8: end function
9:

10: function traverseCallPoint(callPoint)
11: for externalCall in callPoint.behavior do
12: newCallPoint = createCallPoint(externalCall.target)
13: newCallPoint.parent = callPoint
14: traverseCallPoint(newCallPoint)
15: end for
16: end function

Algorithm 4 iterates over every SystemCallUserAction in the usage profile and in line
three creates a CallEntryPoint for it. Additionally it creates a CallpathPoint in line
four for the SytemCallUserAction’s target, which is then traversed using the traver-

seCallPoint() function in line six. This function iterates over every ExternalCall in
the CallpathPoints behavior and creates another CallpathPoint for the target of every
ExternalCall as shown in line twelfth. The function recursivly invokes itself no the newly
created CallpathPoint in line fourteen. Every time a new CallpathPoint is created the
CallEntryPoint or the CallpathPoint it is created from is labeled as it’s parent, which is

40

6.3. Relationship Graph 41

done in lines five and thirteen. The algorithm terminates when a CallpathPoint contains
no ExternalCalls.

6.3 Relationship Graph

As descibed in Section 4.2 the CallpathModel is used to extract a RelationshipGraph.
First we adapted the RelationshipGraph for DML using the generic concepts of the
DependencyGraph described in Section 5.2. Similarly to the CallpathModel the fact that
parameters can be contained in both components and the workload descriptions means we
need to implement two types of Nodes. Another adaption is the existence of two different
edges, one for explicit dependencies and another for the model’s implicit dependencies.
The resulting meta model is shown in Figure 6.2.

RelationshipGraphRelationshipGraph

EdgeEdgeNodeNode

value : RandomVariable

ExplicitEdgeExplicitEdge

characterization : ExplicitCharacterization

InfluencingParameterMapEntryInfluencingParameterMapEntry

key : influencingParameter
value : Node

IdentityEdgeIdentityEdge

1..*influencingParameterMap 1..*influencingParameterMap

0..*edges 0..*edges1..*nodes 1..*nodes

1

dependent

1

dependent

1..*

independents

1..*

independents

RepositoryNodeRepositoryNode

entryPoint: CallpathEntryPoint
variable:CallParameterSetting

UsageProfileNodeUsageProfileNode

callpathPoint: CallpathPoint
variable:CallParameter

Figure 6.2: DML RelationshipGraph Metamodel

It contains two types of nodes, UsageProfileNodes and RepositoryNodes. Every Usage-

ProfileNode represents one SystemCallSetting of a SystemCallUserAction contained
in a CallpathEntryPoint, meaning one value that the user passes into the system. A
RepositoryNode represents a variable inside the system in combination with a call path,
which means that for one variable in the system there can be multiple RepositoryNodes.
This is modeled by giving every RepositoryNode a reference to a CallpathPoint and a
Callparameter. A Callparameter can be either a ExternalCallParameter, External-
CallParameter, ServiceInputParameter, ServiceOutputParameter or an Influenced-

VariableReference. Both types of Nodes have a RandomVariable that characterizes the
variables value, which can be unset if the value is not yet known. These Nodes are con-
nected by Edges, which each reference on dependendent Node that is characterized by it
and one or more independent Nodes which represent the variables used to describe the
dependent. An ImplicitEdge describes a relationship which is not explicitly modeled in
the DML model, but is implicitly given. For example if component A calls component B,
then every ExternalCallParameter of A needs to have the same value as the correspond-
ing ServiceInputParameter in B. There is no characterization needed for these Edges

since if we know the independents value we can copy it for the dependents value. DML’s
explicitly defined relationships are modeled using ExplicitEdges, which contain the Re-

lationship’s ExplicitCharacterization. Its InfluencingParameterMapEntrys link
the Relationship’s influencing parameters with the Node that represents said parameter.
The details on how to calculate the results for these ExplicitCharacterizations can be
found in Section 6.5.

41

42 6. Application of Parametric Dependency Solving to DML

6.4 Relationship Graph Extraction

The extraction of the RelationshipGraph is another model to model transformation that
takes a CallpathModel as input and transforms it into a RelationshipGraph model. It
traverses every AbstractCallpathPoint and creates a Node for every Parameter inside
the AbstractCallpathPoint’s behavior description as shown in 5. The algorithm iterates

Algorithm 5 Extraction of the Relationship Graph

1: function extractRelationshipGraph(callpathModel)
2: for abstractCallpathPoint in callpathModel do
3: for parameter in abstractCallpathPoint.behavior do
4: createNode(parameter, abstractCallpathPoint.behavior)
5: end for
6: for relationship in abstractCallpathPoint do
7: createExplicitEdge(relationship)
8: end for
9: checkForImplicitEdges(abstractCallpathPoint)

10: end for
11: for relationship in callpathModel do
12: createExplicitEdge(relationship)
13: end for
14: end function
15:

16: function checkForImplicitEdges(abstractCallpathPoint)
17: for parameter in abstractCallpathPoint.behavior do
18: if containsCorrespondingParameter(abstractCallpathPoint.behavior) then
19: createImplicitEdge(abstractCallpathPoint, parameter)
20: end if
21: end for
22: end function

over every AbstractCallpathPoint in the CallpathModel . For every parameter inside
the AbstractCallpathPoint a Node is created and for every Relationship contained in
the AbstractCallpathPoint a Edge is created between the Nodes corresponding to the
connected parameters. After the Nodes for a AbstractCallpathPoint are created the
algorithm checks if any implicit Edges exist between the AbstractCallpathPoint and its
parent. This is done by checking for every ServiceInputParameter and every Service-

OutputParameter in the AbstractCallpathPoint if the call to it from the parent contains
a corresponding characterization. At last for every relationship in the CallpathModel an
explicit Edge is created, this handles DependencyPropagationRelationships spanning
across multiple components. This algorithm extracts a RelationshipGraph model con-
taining Nodes for every parameter occurrence and Edges for every dependency between
them.

6.5 Dependency Calculation

Adapting the dependency calculation for DML is equivalent to calculating the results for
Relationships. This can be done as described in Section 5.4, with two adaptations. DML
allows to nest relationships, meaning one of the arguments of a TERM might for example
be a SUM. This can be dealt with by recursively calculating the relationship bottom-up.
Since each operation results in a value that can be used as input for another operation,
this guaranties that it is possible to calculate a value for the relationship. The second task

42

6.5. Dependency Calculation 43

is to map the data types used in DML to the distributions from Section 5.4. An overview
for this mapping is shown in Table 6.1. A BooleanLiteral can be directly mapped to

DML Datatype Distribution

BooleanLiteral Probabilistic Logic Value
IntLiteral Discrete Distribution
DoubleLiteral Discrete Distribution
BoxedPDF Continuous Distribution
NormalDistribution Continuous Distribution
ExponentialDistribution Continuous Distribution
DoublePMF Discrete Distribution
IntPMF Discrete Distribution
BooleanPMF Probabilistic Logic Value

Table 6.1: Mapping of DML data types to distributions

a probabilistic logic value A with P(A) = 1 or P(A) = 0 depending on the BooleanLit-

erals value. In a similar fashion we can map a BooleanProbabilityMassFunction to a
probabilistic logic value, but in this case the probabilities can be read directly from the
BooleanProbabilityMassFunction. Both DoubleProbabilityMassFunctions and Int-

ProbabilityMassFunctions are already probability mass functions, so there is no map-
ping necessary. IntLiteral and DoubleLiteral can be used as probability mass functions
with one value and a probability of one. The mapping for DML’s continuous datatypes is
a challenge. While we can directly use DML’s BoxedPDFs, the NormalDistributions and
ExponentialDistributions have to be transformed to BoxedPDFs. The probability for a
value between µ to µ+ xσ in normal distributions can be calculated as following:

F (x) = CDF (µ+ xσ)− CDF (µ)

F (x) =
1

2
[1 + erf(

x√
2

)− 1

2
[1 + erf(0)]]

F (x) = erf(
x√
2

)

We used this formula to create nine bins to approximate the normal distribution, which
are shown in Table 6.2. The table shows for every bin the left limit, the right limit and
the probability for this bin.

Bin Number From To Probability

1 µ− 3σ µ− 2σ 0.023
2 µ− 2σ µ− 1.5σ 0.044
3 µ− 1.5σ µ− σ 0.092
4 µ− σ µ− 0.5σ 0.15
5 µ− 0.5σ µ+ 0.5σ 0.382
6 µ+ 0.5σ µ+ σ 0.15
7 µ+ σ µ+ 1.5σ 0.092
8 µ+ 1.5σ µ+ 2σ 0.044
9 µ+ 2σ µ+ 3σ 0.023

Table 6.2: Probabilities for binned normal Distribution

An example for a normal distribution with a mean of four and a standard deviation of
one can be found in Figure 6.3. The figure shows in blue the density curve of the normal

43

44 6. Application of Parametric Dependency Solving to DML

Figure 6.3: Example of the approximation for N(4,1)

distribution and in red our approximation. Since the exponential distribution is a one-sided
distribution we will create ten bins, which each have a probability of 9.9%. To calculate
the right limit of each bin(the left limit is either zero or the right limit of the previous bin)
we resolved the exponential distributions cumulative distribution function for x:

CDF (x) = 1− e−λx

x =
log(1− CDF (x))

−λ

The resulting bins are shown in Table 6.3 and Figure 6.4 provides an example for the
binning with λ = 0.75.

Bin Number From To Probability

1 0 0.10425/λ 0.099
2 0.10425/λ 0.22064/λ 0.099
3 0.22064/λ 0.35239/λ 0.099
4 0.35239/λ 0.50418/λ 0.099
5 0.50418/λ 0.68319/λ 0.099
6 0.68319/λ 0.90140/λ 0.099
7 0.90140/λ 1.18091/λ 0.099
8 1.18091/λ 1.57022/λ 0.099
9 1.57022/λ 2.21641/λ 0.099
10 2.21641/λ 4.60517/λ 0.099

Table 6.3: Probabilities for binned exponential Distribution

44

6.5. Dependency Calculation 45

Figure 6.4: Example of the approximation for exp(0.75)

45

7. Implementation

This chapter will describe the details of our implementation of the dependency resolution
approach for DML. First Section 7.1 will list the components we used and describe their
functionality. How the controlflow between these components works is shown in Section 7.2.
Section 7.3 explains how we integrated this solution in the existing solver. The integration
and unit tests used to test the project are explained in Section 7.4 and Section 7.5 contains
technical details for our implementation like the languages uses.

7.1 Components

The implementation of our approach to resolve dependencies for DML models is separated
into multiple components. This allows to reuse parts of it like the dependency calculation
and improves maintainability by adhering to the open/closed principle of software design.
The implementation is separated in to the following five components:

• RelationshipSolver This component wraps the features offered by this master the-
sis behind an interfaces and acts a general entry point when working with the de-
pendency solver.

• CallpathExtractor The extraction of the CallpathModel using the transformation
from Section 6.2 is managed by this component.

• RelationshipGrap The transformation of the CallpathModel to a Relationship-

Graph is contained in this component. For additional information on the extraction
of the RelationshipGraph see 5

• RelationshipGraphSolver The flooding algorithm from Section 5.3 to resolve val-
ues for all Nodes of the RelationshipGraph is managed by this component.

• RelationshipCaclculator For a Relationship and values for all parameters used
in the Relationship this component calculates a resulting value as described in
Section 5.4 and Section 6.5.

How these components are assembled is shown in Figure 7.1, the RelationshipSolver

requires the CallpathExtractor, the RelationshipGraphExtractor and the Relation-

shipGraphSolver. The RelationshipCalculator is used by the RelationshipGraph-

Solver to compute a value for a relationship where all parameters are known. How these
components interact with each other and can be used to resolve the dependencies insde a
DML model is shown in Section 7.2.

47

48 7. Implementation

Figure 7.1: Component diagram for the dependency resolution implementation

7.2 Control flow

The components from Section 7.1 work together to resolve the dependencies in a DML
model. How such a request is handled is shown in Figure 7.2. As shown in this sequence
diagram the RelationshipSolver transmits the DML models to the CallpathExtractor

which returns a CallpathModel to the RelationshipSolver. This CallpathModel is send
to the RelationshipGraphExtractor which extracts and returns a RelationshipGraph.
The RelationshipGraphSolver is then used to solve this RelationshipGraph. To do this
it determines the order of the relationship resolution and then uses the Relationship-

Calculator to determine values for a relationship and a set of input parameters. The
returned distribution might be used as an input parameter in another call to the Rela-

tionshipCalculator. After all relationships are resolved the solved RelationshipGraph

is send back to the RelationshipSolver. This concludes the relationship resolution.

7.3 Integration in existing solver

Prior to this master thesis the process to solve a DQL query on a DML Model was as fol-
lowing. First the model is tailored to the DQL query by selecting the appropriate behavior
description abstraction. The CompositionMarkerModel details which behavior description
abstraction should be used. This information is used to transform the DML Model to a

48

7.3. Integration in existing solver 49

Figure 7.2: Sequence diagram for the dependency resolution implementation

solvable StackFrameModel. Next is the tailored model solving, a step in which the DQL
query is used to determine the appropriate solution technique. All solution techniques are
applied to the StackFrameModel. Currently only two solution techniues are supported, a
bounds analysis [Jai90] and a transformation to QPN with subsequent simulation using
SimQPN. We replaced the current transformation to the StackFrameModel with our Re-

lationshipSolver component. Since it uses a DML Model and a Composition Marker

49

50 7. Implementation

Model as input and produces a Stackframe model no iterfaces needed to be changed and the
existing tailored model solving can be applied on the output of our RelationshipSolver.
This allows to automatically solve DML models containing parametric dependencies.

7.4 Testing

Automated testing is a vital piece to ensure a projects health [Pat01]. Unit tests are
automated tests that test the functionality of a function, class or code piece. Integration
tests on the other hand are end to end tests which do not test specific code but test if a
functionality is working as intended. For our project we have five different types of tests:
calculation tests, callpath tests, relationshipgraph tests, solving tests and stackframe tests.
The first four are unit tests, while the stackframe tests are intended as integration tests.

• Calculation Test A calculation test validates if for a set of input distributions and
a relationship the expected result distribution is calculated. These expected result
distributions are validated as described in Section 8.3.

• Callpath Test In a callpath test we evaluate if for a DML model the expected
CallpathModel is extracted. The expected models are manually created.

• RelationshipGraph Test These tests check if the expected RelationshipGraph

is extracted.

• Solving Test Solving tests evaluate if for a RelationshipGraph the expected values
are resolved.

• Stackframe Test Stackframe tests function as end to end tests, which evaluate if
our dependency resolution works as intended. They evaluate if for a DML Model
the expected StackframeModel is returned.

Table 7.1 gives an overview of the number of tests used. Together these tests provide a
sufficient test coverage for our implementation.

Tested Feature # of Tests Failure Rate

Calculation Test 300 0 %
Callpath Test 12 0 %
RelationshipGraph Test 10 0 %
Solving Test 10 0 %
Stackframe Test 10 0 %

Table 7.1: Number of tests for each type of test.

7.5 Technical Details

Below we list the technical specifications of the project along with some explanations on
why they were choosen.

• Eclipse Plugin Our implementation is encapsulated in an eclipse plugin. Since the
existing DML project is an eclipse plugin as well this allows to easily import the
dependency resolution as an dependency, while keeping the builds separatee.

• Java The project was done in Java to allow easy wrapping as an eclipse plugin.

50

7.5. Technical Details 51

• Java for Transformations We used Java to implement our transformations instead
of a model transformation language like Xtend(http://www.eclipse.org/xtend/)
or QVTO (https://projects.eclipse.org/projects/modeling.mmt.qvt-oml).
The main advantages of these languages are a faster execution speed and a syntax
tailored to model transformation needs. The execution speed was no issue for us
since our Java transformations require only a fraction of a second. While the model
transformation syntax is nice we decided that we would rather use a further spread
language instead of a niche language since many extension of this project are planned,
possibly by students.

• Eclipse Modeling Framework(EMF) We used EMF (https://eclipse.org/
modeling/emf/) to build the CallpathModel and the RelationshipGraph. This
allows for easy reference of model elements from the existing DML model elements
since the model from [Bro14] is in EMF. For our automated testing we needed to
persist the EMF models. They were saved as XML files using existing EMF func-
tionality.

• JUnit Due to the projects Java nature we used JUnit (http://junit.org/junit4/)
for our unit and integration tests. Alternatively TestNG http://testng.org/doc/

could be used.

• Jenkins We used Jenkins (https://jenkins.io/) to automatically build and de-
ploy the project on our build server. This allows for continuous integration and test
execution.

51

http://www.eclipse.org/xtend/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
http://junit.org/junit4/
http://testng.org/doc/
https://jenkins.io/

8. Evaluation

The evaluation of this master thesis is split into six parts. First we use the Goal Question
Metric (GQM) to define what should be evaluated and how it can be measured as shown
in Section 8.1. The methodology for our evaluation can be found in Section 8.2. First we
evaluate that we calculate the correct result for a given relationship, this is described in
Section 8.3. To evaluate if our dependency resolution meets the goals we set in Chapter 4
we build and evaluate a number of example models, which can be found in Section 8.4.
Next we evaluated our approach in an end to end scenario first using simple dependencies
in Section 8.4 and then using more complex dependencies in Section 8.4.

8.1 Goal Question Metric (GQM)

We choose to use the Goal Question Metric (GQM) approach [Bas92] to give an overview
over what we should validate and how we should do it. The GQM approach consists of
three steps, first high level goals are defined about what should be accomplished with the
evaluation. Next it suggests to collect a number of questions which should be answered by
the evaluation. Lastly a number of metrics should be defined by which it can be measured
if the questions were answered and therefore if the goals were met. For our dependency
resolution approach we identified the following goals:

• Resolve values for all possible model variables

• Support resolution of explicit dependencies

• Integrate approach into existing DML solver

GQM suggests to next find questions based on these goals that depict if the goal was met
or not. For our dependency resolution approach we tried to find a question for each goal.
If these questions can be answered positively we can assume that our goals have been met.
Below are the questions we settled upon:

• Are values resolved for all possible model variables?

• Are the values calculated for explicit dependencies correct?

• Does our integration into the existing DML solver allow to solve models containing
explicit dependencies?

53

54 8. Evaluation

The next step is to define metrics which can measure these questions. This was not trivial
for our approach, since there are no quantitative metrics to test if a model transformation
produces the correct output. In the end we settled on manually building the model we
expect as output and comparing it to the algorithms output. Defining a metric for the
end-to-end scenario was easier, since we can just compare the predicted response time with
measurement values. We came up with the following metrics to validate our approach:

• Similarity of expected and actual output models

• Absolute and relative difference between predicted system response time and ex-
pected system response time

How we used these metric to evaluate our dependency resolution is outlined in Section 8.2.

8.2 Methodology

In the chapter we will outline our approach to evaluate this master thesis. Based on the
results of Section 8.1 we came up with three steps, the last of which can be split into two
separate steps leading to four steps in total. These four tasks are listed below:

• Evaluate dependency calculation We will evaluate if our approach calculates the
correct result for a relationship and a number of input parameters. It is important
here to test for all operations between all datatypes. This is evaluated first, since
it can be evaluated independently of the the remaining approach. To evaluate the
results of our dependency calculation we compare them to empiric samples.

• Evaluate dependency resolution for specific modeling features Next we will
evaluate if our approach produces the expected results for models containing specific
features. For the selection of these features we used our goals from Chapter 4 as
a guideline. We compare the resulting StackFrameModels with manually created
reference models.

• Evaluate end-to-end Lastly we want to evaluate our approach when the whole
DML tool chain is used end to end. This means the resulting model is transformed
to a QPN and simulated using SimQPN to predict the systems response time. For
this modeling a real system and comparing the results with the measurement values
proves complicated, since we can not determine why the predicted response time
differs from the measurement values. It could be due to a problem with our depen-
dency resolution, deviation cause by discrepancy between the model and the real
system or general simulation deviation. Instead we will build a DML equivalent of
the PCM MediaStore model and evaluate if we can solve the simple PCM depen-
dencies. Then we will model the same system using the DML specific relationship
features like DependencyPropagationRelationships and evaluate if we still get the
same results.

– Evaluation of the MediaStore model A exact replica of the PCM Media-
Store model is created in DML and then we predict the systems response time
using both PCM and DML. We assume that both solvers produce similar re-
sults for the same model, therefore we can use the results from the PCM solver
as ground truth. So any difference in the results can be attributed to a issue
with our dependency resolution.

– Evaluation of a remodeled MediaStore model We created a second DML
model which depicts the same system as the MediaStore model using DML spe-
cific concepts like DependencyPropagationRelationships. The results from
the PCM model can still be used as ground truth since both models model the
same real life system.

54

8.3. Dependency Calculation Evaluation 55

8.3 Dependency Calculation Evaluation

Before evaluating our relationship solving we first evaluated if a single dependency is
calculated correctly. This means to evaluate if our approach described in Section 5.4
calculates the expected result for a Relationship in combination with a set of input
parameters. The correctness of these results is both critical for the model to provide
correct results as well as hard to uncover that the model provides wrong results due to
a problem within these calculations. This leads to the need to rigorously test both the
algorithms as well as the implementations. Therefore in addition to the mathematical
proofs from Section 5.4 we performed empirical tests to ensure the results correctness.
These empirical tests were performed by generating 10.000.000 random numbers from all
involved distributions and executing the operations described in the Relationship on
them.

pdfA(x) =


1 for 3.7 6 x 6 4

0.249 for 4 6 x 6 6.132

0.196 for 6.132 6 x 6 7

0 else

pmfB(x) =


0.25 for x = −2.2

0.5 for x = 0.9

0.25 for x = 6.4

0 else

For example for the addition of the PMF A and the PDF B shown above we created ten mil-
lion random variables from each distribution and calculated the sum of each pair, resulting
in ten million samples from the resulting distribution. We then plotted a small binned his-
togram for these samples against the distribution calculated by our algorithm. The result
of this is shown in Figure 8.1. The black histogram for the frequency density of the samples

Figure 8.1: Empirical evaluation example for the addition of a PDF and a PMF

overlaps almost perfectly with the gray probability densities of the calculated distribution,
which means our algorithm calculated the correct result. This approach work well for algo-
rithms that provide exact results, but determining if a result is correct is more complicated
for the operations between two PDFs, since our restriction to BoxedPdfs causes a loss in
precision. An example for this is shown in Figure 8.2. In situations like this it is harder to
say if correctly approximated the resulting distribution. We first wanted to use goodness-
of-fit tests like the Kolmogorov-Smirnov-Test[Lil67], Anderson–Darling[AD54] test or the
Cramér–von Mises test[EL92] but ran into the problem that these tests checked if the sam-
ples come from exactly this distribution, which does not work with a binned distribution.
The next idea was to compute an existing distance metric for the sample frequencies and
the calculated distribution like the Hellinger distance[Ber77], Wasserstein metric[GS+84]

55

56 8. Evaluation

Figure 8.2: Empirical evaluation example for the addition of two PDFs

or even the Kolmogorov–Smirnov statistic[Lil67]. But the problem with these metrics is
that two distributions having a distance of x has no apparent meaning, and only gets
useful when comparing which of two estimations is the better one for example. The main
issue is that there are two types of error possible, a systematic error due to mistakes in
either the calculation or the computation and an error due to the binning. This second
type of error would be acceptable, since that poses a trade-off between computation time
required and achieved precision. If the deviations are due to an error of the first type,
our dependency calculator would not work properly. To test for this we heavily increased
the bin size and therefore eliminated the binning error, this is shown in Figure 8.3 for the
addition example from above. From the figure it is obvious that the error was due to the

Figure 8.3: Empirical evaluation example for the addition of two PDFs with increased num-
ber of bins

binning and not a systematic error, we can therefore conclude that our dependency reso-
lution works correctly. Unfortunately this number of bins is not feasible for a production
environment, since this heavily influences the computation time. This is especially the case
for consecutive operations on PDFs since the resulting number of bins grows exponentially
with the number of bins in the two original PDFs. We evaluated a large set of edge cases

56

8.4. Dependency Resolution Evaluation 57

for our distribution calculation like this and used these scenarios to write more than 250
junit test cases.

8.4 Dependency Resolution Evaluation

This section will detail how we evaluated our dependency resolution algorithm. We used
a set of simple DML models that each contain a small feature that we want to test if
our dependency resolution approach can handle it. Each parameter is set as a random
decimal value and all operations are sums of the independents and an additional randomly
generated decimal number. This will ensures minimal complexity during the dependency
calculation, but still prevents any cases where we accidentally get the correct result. For
the design of the DML models we used the goals described in Chapter 4 as a guideline. For
each model we manually created a reference model what we would consider the correct re-
sult of the resultion. Then we compared the results of the dependency resolution with these
manually created reference models. We will introduce the test models as traditional UML
component diagrams with some additions. The circles inside the components represent
the resource demand of a component. The squares represent ExternalCallParameters,
ExternalCallReturnParameters, ServiceInputParameters and ServiceOutputParam-

eters. A green fill means the value is known while yellow means the value is unknown
and has to be resolved using relationships. A thick black arrow between two parameters
indicates a Relationship between them and a dotted blue arrow represents an implicit
relationship. Below follows a list of the models we used. The result of the dependency
resolution evaluation is shown in Section 8.4

ExternalCallParameter Model

The first model shown in Figure 8.4 depicts the simplest use case for dependencies in
DML, the propagation of an external calls parameter as an input parameter of the target
component. Component A defines a ServiceInputParameter for its ExternalCall to

A C

Figure 8.4: ExternalCallParameter Model

component B. This value implicitly characterizes the corresponding ServiceInputParam-

eter in C. Then there is a relationship defined between this ServiceInputParameter and
the ResourceDemand in B. This model tests some of the features described in goal 1a and
goal 1b.

ExternalCallReturnParameter Model

A C

Figure 8.5: ExternalCallReturnParameter Model

This second model is similar to the first one, but as shown in Figure 8.5 it depicts the
reverse direction. Here the return parameter of an external call has to be propagated

57

58 8. Evaluation

back to the original component. In this model the resource demand of A depends on the
unknown value of a ExternalCallReturnParameter which in turn is implicitly dependent
on the ServiceOutputParameter of component C. This model covers the features of goal
1a and goal 1b that are not yet covered by the first model.

SimpleExteralCallMixedParameter Model

The next model shown in Figure 8.6 is a combination of the first two. A parameter is
passed from one component to another and then back.

A C

Figure 8.6: SimpleExteralCallMixedParameter Model

In this example component C could be a database, from which component A, a webGUI
requests a file via an id (ExternalCallParameter) and on the returned file an operation
is executed, whose resource demand depends on the file size. Component A passes a
parameter to component B, which influences the output parameter of B. This parameter
in turn is propagated back to component A and influences a resource demand there. Aside
from further testing goals 1a and 1b this example also includes dependency chaining as
described in feature 1, since four relationships need to be resolved in order to calculate the
resource demand of A.

ComplexExteralCallMixedParameter Model

Figure 8.7 shows a more complex model containing three different components, where the
third component can be called in two different ways. Component A serves as an entry point

A

B

C

Figure 8.7: ComplexExteralCallMixedParameter Model

for the system, which then calls both components B and C. While the C only contains a
resource demand, component B also contains a call to component C. If the call to C comes
directly from A it depends on a known ExternalCallParameter of A. If A calls B instead a
different ExternalCallParameter characterizes the value of the ServiceInputParameter

of B. This ServiceInputParameter in turn is the independent in a relationship that
characterizes the ExternalCallParameter in B, on which the ServiceInputParameter

of C depends. So depending on which path a request takes the resource demand of C has
to be characterized differently. This model tests whether our dependency resolution works
for component relationships (goal 1a) and implicit relationships (goal 1b) in models with
multiple call paths, as described in 2

58

8.4. Dependency Resolution Evaluation 59

SimpleDependencyPropagationRelationship Model

The model shown in Figure 8.8 is the first model containing a DependencyPropagation-

Relationship. It depicts the basic use case for a DependencyPropagationRelationship

by connecting two parameters in different components directly. This model is similar to

A C

Figure 8.8: SimpleDependencyPropagationRelationship Model

the ExternalCallParameter model, but instead of going from the ExternalCallParameter
via a ServiceInputParameter to the resource demand there is a DependencyPropaga-

tionRelationship between the ExternalCallParameter in a and the resource demand
in component C. This model is the first test if goal 1c is met.

ComplexDependencyPropagationRelationship Model

When using DependencyPropagationRelationships on of the challenges is the manage-
ment of multiple call paths. The model in Figure 8.9 depicts such a scenario. This second

A

B

C

Figure 8.9: ComplexDependencyPropagationRelationship Model

model that tests if goal 1c is met contains three components. As before component A calls
to component C and C’s resource demand is characterized by a DependencyPropagation-

Relationship with a ServiceInputParameter of A as independent. But now component
A also calls to a new component B, which in turn call C again. For requests that take
this path the resource demand of C should still be characterized by the DependencyProp-

agationRelationship from A, even if the call comes from component C. This model also
tests if goal 2 is met when used together with DependencyPropagationRelationships.

TwoInstances Model

To validate support for model feature 3 we build a model that describes a scenario in which
there are two instances of the component C, as shown in Figure 8.10. The component A
calls both components, but with different ServiceInputParameters. In each instance of
the component C this input parameter influences the resource demand. This means that
the resource demands of the two instances need to be calculated separately. This model
specifically tests if our dependency resolution works or models containging feature 3.

59

60 8. Evaluation

A

C1

C2

Figure 8.10: TwoInstances Model

TwoCalls Model

Our last model is inspired by our goal to support models with multiple ServiceBe-

haviorAbstractions as described in goal 4. This model can be seen in Figure 8.11.
Component A contains two ServiceBehaviorAbstractions(not shown in this figure) that

A C

Figure 8.11: TwoCalls Model

both call component C, but with different ServiceInputParameters. The resource de-
mand of C should obviously be characterized differently depending on which ServiceBe-

haviorAbstraction the call comes from. If our approach would not be able to resolve
this model correctly it would be detrimental, since this is a common scenario.

Results

We used these models to evaluate the dependency resolution by manually creating the
expected StackFrame model for each model. We then compared these manually created
reference models to the StackFrame model returned by our implementation of the depen-
dency resolution algorithm. Our test for equivalence tests if all attributes are equal, all

Model Figure Attributes Reference Containment

ExternalCallParameter 8.4
√ √ √

ExternalCallReturnParameter 8.5
√ √ √

SimpleExteralCallMixedParameter 8.6
√ √ √

ComplexExteralCallMixedParameter 8.7
√ √ √

SimpleDependencyPropagation 8.8
√ √ √

ComplexDependencyPropagation 8.9
√ √ √

TwoInstances 8.10
√ √ √

TwoCalls 8.11
√ √ √

Table 8.1: Equivalence of algorithm output and manually created reference models.

references point to the same elements and in where each model element is contained. As

60

8.5. Evaluation of the MediaStore model 61

shown in Table 8.1 the output models of our algorithm are equivalent to the manually
created reference models. We additionally created the expected CallpathModel, unsolved
RelationshipGraph and the solved RelationshipGraph by hand and used these as well
as the StackFrame model to create unit tests to both test the implementation and to test
if future changes break the dependency resolution.

8.5 Evaluation of the MediaStore model

In addition to evaluating the dependency calculation and the dependency resolution indi-
vidually, we also want to test our relationship solving in a realistic use case, which means
together with the existing QPN solver for DML. So we will test if the calculated resource
demands from our relationship solver will lead to accurate performance prediction. The
problem with modeling a real world application and comparing the predictions to the ac-
tual measurement values is that there might be some systematic error because the model
does not capture an aspect of the system. If for example we would have twenty percent
deviation between the prediction and the measurement values it would be impossible to
say if our dependency resolution worked correctly.The discrepancy might be caused by
a mistake in the dependency resolution or be from a systematic error due to the model
based approach. We need a scenario where we already know what the correct simula-
tion result would be. For this we build a DML equivalent to the Mediastore model from
PCM [BKR09, SK16], an architectural performance model that supports some forms of
dependencies.

WebGUI

WatermarkingService

MediaStore AudioDB

FileSize ResourceDemand

(a) User uploads a file

WebGUI

WatermarkingService

MediaStore AudioDB

Number of Files
LoopCount

Resource DemandLoopCount

(b) User downloads a file

Figure 8.12: UML diagram with parameters and dependencies for the Mediastore

It models a media store similar to apples itunes store. It features two use cases, the up-
load of new files and the download of existing ones. All user requests are first pointed at a

61

62 8. Evaluation

web gui component, which redirects them to the mediastore component. This component
either uploads the new file to the audio database component or downloads the requested
one from the audio database. In case of a download the file is sent to a watermarking com-
ponent before it is returned to the user. The system, its parameters and the dependencies
between them are shown in Figure 8.12, the figure uses the same syntax as the figures
from Section 8.4. When a user uploads a file, the input parameter filesize is propagated
from the WebGUI all the way to the Database where it influences its resource demand.
When the user requests a set of files the number of files parameter is propagated to both
the AudioDB and the WatermarkingService where it influences a loop count, meaning the
number of times a resource demand is executed. The AudioDB additionally returns a file
size parameter that influences the watermarking services resource demand. We modeled
the system in DML and analyzed it using the proposed dependency propagation algorithm
and the existing QPN solver for DML. As shown in Table 8.2 the predicted response time
for the system differs by less than two percent from the response time PCM predicts, the
remaining difference can be attributed to differences in the solvers. The standard devia-

Model Mean Response Time Std. Dev. Response Time

PCM MediaStore 1.345916 0.9081705
DML MediaStore 1.321071 0.8841287

Relative Deviation 1.778 % 2.719 %

Table 8.2: System response times for the DML and PCM mediastore models

tions differ by less than one percent which is a good indicator that the distributions are
similar. To test this hypothesis we plotted a histogram of the response time distributions
in Figure 8.13. To further illustrate this we also plotted density curves using kernel density
estimation [Sil86] for the resulting response time distributions in Figure 8.14. The fig-

Figure 8.13: Histogram of response time distributions for the DML and PCM Mediastore

ure shows that while the distributions have slight differences they are small enough to be
caused by the differences in the two simulation approaches. This means we can conclude
that our approach correctly solves models with a dependency complexity similar to PCM.
Next we will evaluate if the model still produces correct results if we use the more complex
elements of the DML dependency modeling.

62

8.6. Evaluation of a remodeled MediaStore model 63

Figure 8.14: Density curves of response time distributions for the DML and PCM Media-
store

8.6 Evaluation of a remodeled MediaStore model

Now that we know what the expected simulation results are for the media store model,
we can evaluate the DependencyPropagationRelationships in a end to end scenario. To
evaluate this we replaced the component internal dependencies with Descartes Modeling
Language (DML) DependencyPropagationRelationships which are defined on the as-
sembly level and can therefore span across multiple components. This simplifies the model-
ing process and make the model easier to understand at the cost of reducing the reusability
of individual components. The resulting model is shown in Figure 8.15. This model is
equal to the previous model in the sense that they model the same reality, which means
that they should return the same results. The DML solver produced a mean of 1.321065
and a standard deviation of 0.883921, as shown in Table 8.3. This shows that the depen-

Model Mean Response Time Std. Dev. Response Time

PCM MediaStore 1.345916 0.9081705
DML specific MediaStore 1.321065 0.883921

Relative Deviation 1.321 % 2.7434 %

Table 8.3: System response times for the PCM and DML specific mediastore models

dency resolution returns the correct results for models using DependencyPropagationRe-

lationships. We will also evaluate if using the DependencyPropagationRelationships

provided any benefits. This model used four relationships and three parameters compared
to the ten relationships and sixteen parameters contained in the first model. This shows
that the use of DependencyPropagationRelationships reduced the models complexity,
which in turn reduces the effort required to model a system. The DependencyPropaga-

tionRelationships also provide a more high level view on the model, when comparing
Figure 8.12 to Figure 8.15 the second model is a lot more intuitive. For the upload sce-
nario we see that the size of the files the user uploads influences the resource demand of
the AudioDB component. In the first model the file size parameter is first passed to the
WebGUI, from there to the MediaStore, which in turn passes it as an input parameter to

63

64 8. Evaluation

WebGUI

WatermarkingService

MediaStore AudioDB

FileSize ResourceDemand

(a) User uploads a file

WebGUI

WatermarkingService

MediaStore AudioDB

Number of Files
LoopCount

Resource DemandLoopCount

(b) User downloads a file

Figure 8.15: UML diagram for the Mediastore using DependencyPropagationRelation-

ships

the AudioDB where it influences the resource demand. We can conclude from this case
study that our approach can solve both dependencies modeled within components (like
PCM) as well as the more complex dependency models of DML.

64

9. Conclusion

To conclude this thesis a short summary can be found in Section 9.1, followed by a short
summary of benefits derived from it in Section 9.2. Lastly, in Section 9.3 presents our
ideas for the extension and continuation of the work from this thesis.

9.1 Summary

While performance models have been proven as useful to predict a systems performance
aspects, simple performance models have problems with components dynamically changing
behavior depending on their assembly. This is caused by the fact that the performance
of a component is influenced by different parameters, most prominently the component’s
input parameters. When changing the component’s deployment these parameters can
change, which can not be captured by a static component description. A solution to this
is to model these parameters and their influence on the component’s performance. The
Descartes Modeling Language (DML) proposes a sophisticated approach to model these
parametric dependencies, but so far no solution algorithm exists. This thesis fills this gap
by resolving the dependencies and providing a description of the model parameters that
depends on the call’s context. First, information about the different paths a request can
take through the system is extracted in the CallpathModel. This information is then
used to create a RelationshipGraph in which each node represents a model variable in
combination with a call path to it. These nodes are then connected by edges that represent
the dependencies between them. Dependencies can either be explicitly modeled or implicit
due to the system configurations. The term implicit dependency is used to describe the
fact that some variables have to hold equal values even though this fact is not explicitly
modeled as a dependency. The input and output parameters of a call to another component
have to be equal to this components input and output parameters. Together this forms a
directed graph that contains all available information about the model variables and the
dependencies between them. On the basis of this graph an algorithm is proposed that
uses the already characterized variables and the dependencies between them to derive a
characterization for all variables in the system. If not all variables can be characterized,
the algorithm still characterizes as many variables as possible. The approach described
here was integrated in the existing DML solver by retrieving the corresponding value from
the RelationshipGraph whenever a model variable is encountered. The setup’s evaluation
is conducted in three steps. First, the implementation of the dependency calculation is
evaluated by comparing the results from the implementation with empirically generated

65

66 9. Conclusion

samples. A set of random numbers from all input distributions is generated and the
operations described in the dependency are applied on them. The empirical distribution of
this sample is compared to the distribution calculated by the dependency solving algorithm.
Secondly, a set of DML models that each contain a specific modeling aspect are created
and evaluated if the model is resolved as expected. Lastly, the approach is evaluated for
a real world case study. This is done by creating a DML equivalent of a PCM case study
model containing simple parametric dependencies. We first evaluated it by comparing the
results for both models and after they were identical we used the advanced dependencies
of DML to model the same system and evaluated if the results stayed the same. In all
three scenarios the approach performed up to expectations.

9.2 Benefit

This section recaps the benefits derived from this master thesis. While the immediate
benefit of being able to solve additional features of DML models is obvious some other
benefits are less obvious to readers unfamiliar with the vision and ideas behind DML.
Below we will list the benefits gained by this master thesis.

• Solving of additional model features DML models containing DependencyRe-

lationships as well as DependencyPropagationRelationships can now be solved.
This allows to model and solve parametric dependencies which means that resource
demands, response times, loop iteration counts and branch probabilities can be de-
scribed using an equation that uses other model or workload parameters as input.
This equation is then used to calculate context specific values for these variables.
Using these modeling features additional real life systems can be modeled and the
accuracy of existing models can be improved.

• Improved model understanding due to intermediate models Aside from
being able to solve additional models the approach also provides two intermediate
models. The CallpathModel that contains all possible paths through which a request
can traverse the system and the RelationshipGraph shows all existing model vari-
ables and the dependencies between them as a graph. These models help to improve
the users understanding of the DML model, since they provide additional views on
the model. The CallpathModel allows for a different perspective on the assembly
of the system, while the RelationshipGraph gives detailed information about the
models variables and the dependencies between them. This can be especially helpful
if due to missing information it is not possible to resolve a value for a variable.

• Extension point for additional features The RelationshipGraph also serves as
an extension point for a large set of additional features, like the characterization of
model variable and relationships using monitoring data and a sophisticated decision
support between multiple ways to characterize a variable. These features could be
implemented by defining additional operations on the RelationshipGraph. For more
details on this see Section 9.3.

• Transferability of the approach In addition to the improvements to DML the
approach introduced in Chapter 5 can be applied to other architectural performance
models since its description is high level and not DML specific. In theory the ap-
proach could also be applied to any data center model and is not restricted to models
focusing on performance aspects. Models focusing on reliability or security can di-
rectly profit from this approach.

• Computation of arithmetic for BoxedPDFs Another, albeit minor contribu-
tions is the computation of arithmetic operations for BoxedPDFs. While it is mostly

66

9.3. Future Work 67

an application of existing concepts, the availability of a comprehensive overview over
the topic can prove useful for other projects dealing with BoxedPDFs.

.

9.3 Future Work

This thesis provides a series of possible extension points that allow for future innovation.
There are also some features DML features that are not implemented yet. Ideas for future
projects based on this thesis are listed below:

• Dependency Calculation In Section 5.4 describes an approach to calculate com-
parisons and arithmetic operations between different data types. While the current
state is sufficient for an evaluation, some steps can be improved and some additional
features can be implemented. The binning during the calculation of operations on
continuous distributions could be improved in several ways and two of the currently
not supported operations could be implemented.

– Improved binning During the computation of arithmetic operations between
two continuous distributions there is currently a loss in precision due to the
conversion from a PDF to a BoxedPDF. This could be improved by using a
better number of bins of not necessarily the same width.

– Intelligent composition of multiple resulting PDFs When calculating a
arithmetic operation between two PDFs, currently a set of PDFs is created
which is recombined to a single PDF. As the recombination results in exact
values, a large number of bins are created. IF multiple of these operations are
chained the number of bins increases exponentially, which can be troublesome.
This could be avoided by a smarter recombination algorithm.

– Improve binning of existing PDF An alternative solution to the previously
mentioned problem of an increasing number of bins is the implementation of
an algorithm that reduces the number of bins of an existing PDF. This could
be used on the user specified PDFs as well as on the resulting PDF after the
execution of an arithmetic operation.

– Implement division of a discrete distribution by a continuous distri-
bution Currently the division of a discrete distribution by a continuous distri-
bution is not supported. While not a frequent event, this could be implemented
using approaches like the one introduced in [Cur41].

– Implement division of two PDFs The second unimplemented operation is
the divison of two PDFs. A solution might lie in the approach of [Cur41].
Alternatively, an approach that estimates the result with some degree of error
could be implemented.

• Support additional modeling features DML offers a large collection of para-
metric dependency features. This thesis did not aim to implement solutions for all
features, but was designed with these extensions in mind. DML’s Shadowparameters
could be supported as well as the empirical characterization of both model variables
and relationships.

– Support Shadowparameter In some cases the modeler will have knowledge
of the existence of a non-functional parameter that influences a components per-
formance that can not be directly mapped to an input or output parameter. To
solve this DML introduces the so-called ShadowParameter that can be defined
inside a component that has no purpose aside from being used in dependencies.

67

68 9. Conclusion

The current approach does not support the usage of these ShadowParameters,
but could be easily extended to do so by introducing a new type of Node in the
RelationshipGraph model.

– Characterization of model variables using monitoring data In DML a
variable can be characterized as empirical, meaning it should be characterized
at runtime using monitoring data. If the variable is not characterized once, but
for each call path individually results will improve. As the RelationshipGraph

model which lists for every model variable all call paths to it.

– Characterization of relationships using monitoring data Relationships
can be characterized empirically. This means that measurements for all param-
eters and variables participating in the relationship have to be available. In this
case either an equation can be learned or a machine learning approach can be
applied to predict its results.

• Statistical independence Solving of the parametric dependencies is based on a
simplification. If one variable is used as an independent to describe two or more
model variables the distributions for these variables are falsly assumed to be statis-
tically independent. It should be noted that all approaches to resolve parametric
dependencies from Section 3.3 make the same simplification. Our Relationship-

Graph is an excellent tool to check if this issue occurs and which variables are affected.
For each variable the variables influencing its characterization are known. This way
we can determine for every Node a set of Nodes that this Node’s value dependes
upon. So if for two variables there is an overlap in these sets of Node’s we can
conclude that they are not statistically independent.

– Warning message A warning message can be displayed to the user containg
the information which variables were wrongly assumed to be statistically inde-
pendent. This solution allows the user to make an informed decision on whether
the results are valid.

– Generate samples for dependent variables For solution approaches that
allow to specify a list of values that a variable assumes in order instead of a
distribution we could generate such lists for the statistically dependent vari-
ables. Sets of values from each independent distribution could be generated on
which the respective operations can be applied. Unfortunately with increased
complexety of the system’s control flows difficulties in implementation arise.

– Use machine learning to predict values for dependent variables An-
other solution would be to ignore the control flow by using measurements for
the independent as input in a machine learning algorithm predicting the depen-
dent’s values. This approach would still produce incorrect distributions for low
level metrics like the response time of a specific component, but should improve
results for metrics concerning the whole system.

• Decision support between multiple ways to characterize a variable The
implementation of empirical characterization of both variables and relationships al-
lows for multiple ways to characterize one variable. These different approaches come
with trade-offs concerning precision and time consumption which is important in an
online scenario. An automated decision support could be implemented that uses the
DQL performance queries [GBK13] specified by the user to tailor the way a variable
is characterized to the users concerns.

• Casestudy While our evaluation is sufficient for the resolution of the explicit para-
metric dependencies, the same approach could not be used to implement the mea-

68

9.3. Future Work 69

surement based model characterizations. Therefore a case study involving a real sys-
tem equipped with monitoring software might be necessary. This case study could
also be used to prove the accuracy improvements achieved by modeling parameter
dependencies.

69

List of Figures

2.1 Example for parametric dependencies from [Bro14] 10

2.2 Interface meta-model from [Bro14] . 11

2.3 InterfaceProvidingRequiringEntity meta-model from [Bro14] 11

2.4 Behavior meta-model from [Bro14] . 12

2.5 Assembly meta-model from [Bro14] . 12

2.6 Resource Enviroment meta-model from [Bro14] 13

2.7 Resource Specification meta-model from [Bro14] 13

2.8 Deployment meta-model from [Bro14] . 14

2.9 Usage profile meta-model from [Bro14] . 14

2.10 Variables meta-model from [Bro14] . 15

2.11 Parameter meta-model from [Bro14] . 15

2.12 Relationship meta-model from [Bro14] . 16

2.13 QPN Formalism . 16

2.14 Stackframe Metamodel . 17

2.15 Mapping for ClosedWorkload [MKK10] . 18

2.16 Mapping for ExternalCall [MKK10] . 18

2.17 Mapping for Aquire-/ReleaseAction [MKK10] 19

5.1 CallpathModel Metamodel . 29

5.2 Example for a callpath model . 30

5.3 DependencyGraph Metamodel . 31

5.4 Graphical derivation for d > seg(l, u, p) . 35

5.5 Example for overlapping segments . 37

5.6 Four subproblems created for the comparison of the segments from Figure 5.5 37

6.1 DML CallpathModel Metamodel . 39

6.2 DML RelationshipGraph Metamodel . 41

6.3 Example of the approximation for N(4,1) 44

6.4 Example of the approximation for exp(0.75) 45

7.1 Component diagram for the dependency resolution implementation 48

7.2 Sequence diagram for the dependency resolution implementation 49

8.1 Empirical evaluation example for the addition of a PDF and a PMF 55

8.2 Empirical evaluation example for the addition of two PDFs 56

8.3 Empirical evaluation example for the addition of two PDFs with increased
number of bins . 56

8.4 ExternalCallParameter Model . 57

8.5 ExternalCallReturnParameter Model . 57

8.6 SimpleExteralCallMixedParameter Model 58

8.7 ComplexExteralCallMixedParameter Model 58

8.8 SimpleDependencyPropagationRelationship Model 59

8.9 ComplexDependencyPropagationRelationship Model 59

71

72 List of Figures

8.10 TwoInstances Model . 60
8.11 TwoCalls Model . 60
8.12 UML diagram with parameters and dependencies for the Mediastore 61
8.13 Histogram of response time distributions for the DML and PCM Mediastore 62
8.14 Density curves of response time distributions for the DML and PCM Medi-

astore . 63
8.15 UML diagram for the Mediastore using DependencyPropagationRelation-

ships . 64

72

List of Tables

6.1 Mapping of DML data types to distributions 43
6.2 Probabilities for binned normal Distribution 43
6.3 Probabilities for binned exponential Distribution 44

7.1 Number of tests for each type of test. 50

8.1 Equivalence of algorithm output and manually created reference models. . . 60
8.2 System response times for the DML and PCM mediastore models 62
8.3 System response times for the PCM and DML specific mediastore models . 63

73

10. Acronyms

APM Application Monitoring Tool

QPN Queueing Petri Net

SPE Software Performance Engineering

QN Queueing Net

PN Petri Net

UML Unified Modeling Language

PCM Palladio Component Model

DQL Descartes Query Language

DML Descartes Modeling Language

GQM Goal Question Metric

SLA Service Level Agreement

75

Bibliography

[AD54] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” Journal of
the American statistical association, vol. 49, no. 268, pp. 765–769, 1954.

[ADEP04] J. Arango, M. Degermark, A. Efrat, and S. Pink, “An efficient flooding al-
gorithm for mobile ad-hoc networks,” in Proc. of WiOpt, 2004, pp. 1–7.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[Akk08] M. Akkouchi, “On the convolution of exponential distributions,” J.
Chungcheong Math. Soc, vol. 21, no. 4, pp. 501–510, 2008.

[Bas92] V. R. Basili, “Software modeling and measurement: the goal/question/metric
paradigm,” Tech. Rep., 1992.

[BdWCM05] E. Bondarev, P. de With, M. Chaudron, and J. Muskens,“Modelling of input-
parameter dependency for performance predictions of component-based em-
bedded systems,” in Software Engineering and Advanced Applications, 2005.
31st EUROMICRO Conference on. IEEE, 2005, pp. 36–43.

[Ber77] R. Beran, “Minimum hellinger distance estimates for parametric models,”
The Annals of Statistics, pp. 445–463, 1977.

[BHK11] F. Brosig, N. Huber, and S. Kounev, “Automated extraction of architecture-
level performance models of distributed component-based systems,” in Pro-
ceedings of the 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering. IEEE Computer Society, 2011, pp. 183–192.

[BHK12] ——, “Modeling parameter and context dependencies in online architecture-
level performance models,” in Proceedings of the 15th ACM SIGSOFT sym-
posium on Component Based Software Engineering. ACM, 2012, pp. 3–12.

[BHK17] A. Bauer, N. Herbst, and S. Kounev, “Design and Evaluation of a Proac-
tive, Application-Aware Auto-Scaler,” in Proceedings of the 8th ACM/SPEC
International Conference on Performance Engineering (ICPE 2017), April
2017.

[BK17] A. Brunnert and H. Krcmar, “Continuous performance evaluation and ca-
pacity planning using resource profiles for enterprise applications,” Journal
of Systems and Software, vol. 123, pp. 239–262, 2017.

[BKR09] S. Becker, H. Koziolek, and R. Reussner, “The palladio component model
for model-driven performance prediction,” Journal of Systems and Software,
vol. 82, no. 1, pp. 3–22, 2009.

[Bre16] P. C. Brebner, “Automatic performance modelling from application perfor-
mance management (apm) data: An experience report,” in Proceedings of the

77

78 Bibliography

7th ACM/SPEC on International Conference on Performance Engineering.
ACM, 2016, pp. 55–61.

[Bro14] F. M. K. Brosig, “Architecture-level software performance models for online
performance prediction,” Ph.D. dissertation, Karlsruhe, Karlsruher Institut
für Technologie (KIT), Diss., 2014, 2014.

[Cur41] J. Curtiss, “On the distribution of the quotient of two chance variables,” The
Annals of Mathematical Statistics, vol. 12, no. 4, pp. 409–421, 1941.

[EL92] R. Eubank and V. LaRiccia, “Asymptotic comparison of cramer-von mises
and nonparametric function estimation techniques for testing goodness-of-
fit,” The Annals of Statistics, pp. 2071–2086, 1992.

[GBK13] F. Gorsler, F. Brosig, and S. Kounev, “Controlling the palladio bench using
the descartes query language.” in KPDAYS, 2013, pp. 109–118.

[GLD04] A. G. Glen, L. M. Leemis, and J. H. Drew, “Computing the distribution of
the product of two continuous random variables,” Computational statistics
& data analysis, vol. 44, no. 3, pp. 451–464, 2004.

[GM01] H. Gomaa and D. A. Menascé, “Performance engineering of component-based
distributed software systems,” in Performance Engineering. Springer, 2001,
pp. 40–55.

[GMW10] D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture description
interchange language,” in CASCON First Decade High Impact Papers. IBM
Corp., 2010, pp. 159–173.

[GS+84] C. R. Givens, R. M. Shortt et al., “A class of wasserstein metrics for proba-
bility distributions.” The Michigan Mathematical Journal, vol. 31, no. 2, pp.
231–240, 1984.

[GS08] S. Gérard and B. Selic, “The uml–marte standardized profile,” IFAC Pro-
ceedings Volumes, vol. 41, no. 2, pp. 6909–6913, 2008.

[HBK12] N. Huber, F. Brosig, and S. Kounev, “Modeling dynamic virtualized resource
landscapes,” in Proceedings of the 8th international ACM SIGSOFT confer-
ence on Quality of Software Architectures. ACM, 2012, pp. 81–90.

[HBS+16] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bahr, “Model-based self-
aware performance and resource management using the descartes modeling
language,” IEEE Transactions on Software Engineering, 2016.

[HvHK+14] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and S. Kounev, “Mod-
eling run-time adaptation at the system architecture level in dynamic
service-oriented environments,” Service Oriented Computing and Applica-
tions, vol. 8, no. 1, pp. 73–89, 2014.

[Jai90] R. Jain, The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley
& Sons, 1990.

[KBH14] S. Kounev, F. Brosig, and N. Huber, “The Descartes Modeling Language,”
Department of Computer Science, University of Wuerzburg, Tech. Rep.,
October 2014. [Online]. Available: http://www.descartes-research.net/dml/

[KBHR10] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-aware per-
formance and resource management in modern service-oriented systems,” in
Services Computing (SCC), 2010 IEEE International Conference on. IEEE,
2010, pp. 621–624.

78

http://www.descartes-research.net/dml/

Bibliography 79

[KHB06] H. Koziolek, J. Happe, and S. Becker, “Parameter dependent performance
specifications of software components,” in International Conference on the
Quality of Software Architectures. Springer, 2006, pp. 163–179.

[KKR10] K. Krogmann, M. Kuperberg, and R. Reussner, “Using genetic search for re-
verse engineering of parametric behavior models for performance prediction,”
IEEE Transactions on Software Engineering, vol. 36, no. 6, pp. 865–877,
2010.

[Koz08] H. Koziolek, “Parameter dependencies for reusable performance specifica-
tions of software components,” Ph.D. dissertation, Universität Oldenburg,
2008.

[KSM10] S. Kounev, S. Spinner, and P. Meier, “Qpme 2.0-a tool for stochastic model-
ing and analysis using queueing petri nets,” in From active data management
to event-based systems and more. Springer, 2010, pp. 293–311.

[Law15] A. M. Law, “Statistical analysis of simulation output data: the practical
state of the art,” in Proceedings of the 2015 Winter Simulation Conference.
IEEE Press, 2015, pp. 1810–1819.

[LBMAL14] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-
scaling techniques for elastic applications in cloud environments,” Journal of
Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[Lil67] H. W. Lilliefors, “On the kolmogorov-smirnov test for normality with mean
and variance unknown,” Journal of the American statistical Association,
vol. 62, no. 318, pp. 399–402, 1967.

[MBE13] L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive auto-scaling into
proactive auto-scaling,” in Proceedings of the 3rd International Workshop on
Cloud Data and Platforms. ACM, 2013, pp. 7–12.

[MKK10] P. Meier, S. Kounev, and H. Koziolek, “Automated transformation of palla-
dio component models to queueing petri nets,” in 19th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2011), July, 2010, pp. 25–27.

[MS84] M. S. Meketon and B. Schmeiser, “Overlapping batch means: Something
for nothing?” in Proceedings of the 16th conference on Winter simulation.
IEEE Press, 1984, pp. 226–230.

[Nil86] N. J. Nilsson, “Probabilistic logic,” Artificial intelligence, vol. 28, no. 1, pp.
71–87, 1986.

[Pat01] R. Patton, Software testing. Sams publishing, 2001.

[Phi] “Robocop website,”http://www.extra.research.philips.com/euprojects/robocop/,
Phillips. [Online]. Available: http://www.extra.research.philips.com/
euprojects/robocop/

[RIF01] M. Ripeanu, A. Iamnitchi, and I. Foster, “Cactus application: Performance
predictions in grid environments,” in European Conference on Parallel Pro-
cessing. Springer, 2001, pp. 807–816.

[SAM] “Q-impress consortium,” www.q-impress.eu/wordpress/wp-content/
uploads/2009/05/d21-service architecture meta-model.pdf.

[Sch12] L. Schmetterer, Introduction to mathematical statistics. Springer Science &
Business Media, 2012, vol. 202.

79

http://www.extra.research.philips.com/euprojects/robocop/
http://www.extra.research.philips.com/euprojects/robocop/
www.q-impress.eu/wordpress/wp-content/uploads/2009/05/d21-service_architecture_meta-model.pdf
www.q-impress.eu/wordpress/wp-content/uploads/2009/05/d21-service_architecture_meta-model.pdf

80 Bibliography

[Sil86] B. W. Silverman, Density estimation for statistics and data analysis. CRC
press, 1986, vol. 26.

[SK16] M. Strittmatter and A. Kechaou, “The media store 3 case study system,”
Faculty of Informatics, Karlsruhe Institute of Technology, Tech. Rep. 2016,1,
February 2016. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/
volltexte/documents/3792054

[ST66] M. Springer and W. Thompson, “The distribution of products of independent
random variables,” SIAM Journal on Applied Mathematics, vol. 14, no. 3, pp.
511–526, 1966.

[ST70] ——, “The distribution of products of beta, gamma and gaussian random
variables,” SIAM Journal on Applied Mathematics, vol. 18, no. 4, pp. 721–
737, 1970.

[VHWH12] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in Pro-
ceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering. ACM, 2012, pp. 247–248.

[WBGK15] F. Willnecker, A. Brunnert, W. Gottesheim, and H. Krcmar, “Using dyna-
trace monitoring data for generating performance models of java ee appli-
cations,” in Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. ACM, 2015, pp. 103–104.

[Wel83] P. D. Welch, “The statistical analysis of simulation results,” The computer
performance modeling handbook, vol. 22, pp. 268–328, 1983.

[WH13] J. Waller and W. Hasselbring, “A benchmark engineering methodology to
measure the overhead of application-level monitoring.” CEUR Workshop
Proceedings, 2013.

[ZCB10] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of internet services and applications, vol. 1,
no. 1, pp. 7–18, 2010.

[Zsc10] S. Zschaler, “Formal specification of non-functional properties of component-
based software systems,” Software and Systems Modeling, vol. 9, no. 2, pp.
161–201, 2010.

80

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054

	Contents
	Introduction
	Foundations
	Parametric Dependencies
	Descartes Modeling Language (DML)
	Parametric Dependencies in DML
	Queuing Petri Net (QPN)
	SimQPN
	DML Solution Process

	Related Work
	Modeling of Parametric Dependencies
	Extraction of Parametric Dependencies
	Resolution and Calculation of Parametric Dependencies

	Approach
	Goals
	Approach

	Solving Parametric Dependencies
	Callpath Model
	Dependency Graph
	Relationship Graph Solving
	Dependency Calculation
	Probabilistic Logic Values

	Application of Parametric Dependency Solving to DML
	Callpath Model
	Callpath Model Extraction
	Relationship Graph
	Relationship Graph Extraction
	Dependency Calculation

	Implementation
	Components
	Control flow
	Integration in existing solver
	Testing
	Technical Details

	Evaluation
	Goal Question Metric (GQM)
	Methodology
	Dependency Calculation Evaluation
	Dependency Resolution Evaluation

	Conclusion
	Summary
	Benefit
	Future Work

	Acronyms
	Bibliography

