
Chapter 2
Self-Aware Computing Systems: Related
Concepts and Research Areas

Javier Cámara, Kirstie Bellman, Jeffrey Kephart, Marco Autili, Nelly Bencomo,
Ada Diaconescu, Holger Giese, Sebastian Götz, Paola Inverardi, Samuel Kounev,
Massimo Tivoli

Abstract Self-Aware computing systems exhibit a number of characteristics (e.g.,
autonomy, social ability, proactivity) which have already been studied in different
research areas, such as artificial intelligence, organic computing, or autonomic and

Javier Cámara
Carnegie Mellon University, Pittsburgh, PA 15213 e-mail: jcmoreno@cs.cmu.edu

Kirstie Bellman
The Aerospace Corporation, Los Angeles, US e-mail: Kirstie.L.Bellman@aero.org

Jeffrey Kephart
Thomas J. Watson Research Center, NY, USA e-mail: kephart@us.ibm.com

Marco Autili
Università degli Studi dell’Aquila, 67100 L’Aquila, Italy e-mail: marco.autili@univaq.it

Nelly Bencomo
Aston University, B4 7ET, Birmingham, UK e-mail: nelly@acm.org

Ada Diaconescu
Telecom Paris Tech, 75013 Paris, France e-mail: ada.diaconescu@telecom-paristech.
fr

Holger Giese
Hasso-Plattner-Institut, 14482 Potsdam, Germany e-mail: Holger.Giese@hpi.de

Sebastian Götz
University of Technology Dresden, Germany e-mail: sebastian.goetz@acm.org

Paola Inverardi
Università degli Studi dell’Aquila, 67100 L’Aquila, Italy e-mail: paola.inverardi@
univaq.it

Samuel Kounev
Universität Würzburg, Am Hubland, 97074 Würzburg, Germany e-mail: skounev@acm.org

Massimo Tivoli
Università degli Studi dell’Aquila, 67100 L’Aquila, Italy e-mail: massimo.tivoli@univaq.
it

17

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



18 Cámara et al.

self-adaptive systems. This chapter provides an overview of strongly related con-
cepts and areas of study from the perspective of self-aware computing systems.

2.1 Introduction

The notion of self-aware computing encompasses different aspects which have al-
ready been the subject of study in different research areas of computer science.
In fact, systems that feature one or several desirable characteristics in a self-aware
computing system, such as being able to learn models about itself and its envi-
ronment, reasoning, planning, or providing explanations, are already a reality. The
construction of such systems has been made possible thanks to research efforts car-
ried out in areas like artificial intelligence, autonomic computing, self-adaptive and
self-organizing systems, or cognitive computing. As it happens, many of these dis-
ciplines will foreseeably be strongly intertwined with research in the area of self-
aware computing, making it stand on the proverbial shoulders of giants.

This chapter presents an overview of concepts and research areas strongly re-
lated to self-aware computing. Every section presents a different area of research
and explores its relation to self-aware computing systems. Note that there are dis-
ciplines that cannot be considered as fully within the scope of computer science
(e.g., cybernetics) in which engineers employ ideas that are well aligned with the
areas for which we provide an overview in this chapter. However, those areas are
not discussed in this chapter due to space limitations.

This chapter starts with an overview of different related forms of control in Sec-
tion 2.2. Next, Section 2.3 lays down the foundation for the rest of the chapter by
presenting an overview of one of the existing perspectives on artificial intelligence
that resonates most closely with self-aware computing systems.

After the introduction of the basics, Section 2.4 presents an overview of auto-
nomic computing, which enables the construction of systems able to manage them-
selves in accordance with a set of high-level objectives specified by administra-
tors or system users. Section 2.5 describes organic computing, which deals with the
study of systems that dynamically adapt to changing conditions and exhibit a num-
ber of self-* properties, as well as context-awareness. Next, Section 2.6 introduces
service-based systems, and cloud computing, including concepts such as location-
transparent computation and autonomous services as agents. Section 2.7 provides
an overview of self-organizing systems, which are able to organize themselves ac-
cording to the laws of the environment within which they execute. Then, Section 2.8
introduces self-adaptive systems, which are strongly related to autonomic systems,
and able to adjust their own behavior in response to its perception of the environ-
ment and the system.

Section 2.9 introduces reflective computing and the notion of computational re-
flection as the system’s ability to reason about its own resources, capabilities, and
limitations in the context of its current operational environment. Next, Section 2.10
introduces models at runtime, that is, abstract self-representations of a system fo-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 19

cused on a given aspect that may include its structure, behavior, or goals. This sec-
tion also explores the relation between models at runtime, and the concept of com-
putational reflection presented in Section 2.9. Section 2.11 presents situation-aware
and context-aware systems, in which the emphasis is made on building human-
machine systems that observe, evaluate and act within diverse situations that include
a comprehensive set of factors that correspond to people, location, events, as well as
other environmental factors. Section 2.12 presents symbiotic cognitive computing,
which are multi-agent systems that comprise both human and software agents that
collectively perform cognitive tasks such as decision-making better than human or
software agents can by themselves. Then, Section 2.13 covers auto-tuning, which
deals with the automation of performance tuning, mostly for scientific applications.

After presenting an overview of different related areas and concepts, Section 2.14
provides a constructive definition of self-aware computing system that makes some
considerations concerning the different factors influencing feasibility, capabilities,
and ultimately determine under which conditions it is possible to actually develop a
self-aware computing system, and how.

2.2 Control

In control theory several advanced forms of control and adaptive control have been
developed that involve learning, reasoning and acting as well as models employed
online as outlined for self-aware computing systems as introduced in Chapter 1. To
compare self-aware computing systems with adaptive control architectures applied
to software we look at first into Model Reference Adaptive Controllers (MRACs)
and Model Identification Adaptive Controllers (MIACs) in the following.

In case of Model Reference Adaptive Controllers (MRACs) [33, 37] a reference
model defining desired closed loop performance is employed to steer the adaptation.
Consequently, the scheme is comparable to a prediction model of what is wanted
that is used to steer the adaptation of the controller. However, as we have a prediction
model of the plant only but not of the controller there is no process like learning
involved, as the reference model is given at design time. The reference model is
more a form of given (high-level) goal that is employed to steer the adjustments.

The Model Identification Adaptive Controllers (MIACs) [37] scheme performs
some form of system identification while the system is running, which can be com-
pared to learning a model and then reason about the learned model to determine how
to adjust the controller. However, we learn only a model only of the plant and not
of the controller and therefore if the plant is the context, we have context-awareness
only, and if the plant is part of the system, we have self-awareness. As both cases are
required for self-awareness according to Chapter 1, employing the MIAC scheme
only leads to a self-aware computing system if the software as well as the environ-
ment are somehow subject to system identification.

Model Predictive Control (MPC) [72] uses a model of the plant and a finite hori-
zon for the predictions of the future output. The predicted outputs are employed to

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



20 Cámara et al.

compute optimal set points (steady-state optimization). The optimal set points are
then employed to calculate required control inputs to achieve the set points. When
self-aware computing systems are compare with model-predictive control architec-
tures using a predictive model to plan the impact of future control actions such that
given criteria are optimized (according to goals) can be mapped to the reasoning
and action. MPC can also be combined with system identification (cf. [40]) similar
to MIAC as thus also a learning component is possible. However, MPC employing
system identification learn a model only of the plant and not of the controller and
therefore if the plant is the context, we have context-awareness only, and if the plant
is part of the system, we have self-awareness. As link in case of MIAC both cases
are required for self-awareness according to Chapter 1, employing the MPC with
system identification scheme only leads to a self-aware computing system if the
software as well as the environment are somehow subject to system identification.

Overall we can conclude that if the software as well as the environment are some-
how subject to system identification, the system identification in control theory is
comparable to the learning of self-aware computing systems. Also the MPC scheme
of control theory can be seen as a special case of reasoning and acting (adapting) of
self-aware computing systems. Finally, reference models in the MRAC scheme of
control theory are a special case of static goals as considered by self-aware comput-
ing systems. Consequently, it can be argued that also self-aware computing systems
in case they adapt the software behavior like less advanced forms of self-adaptive
systems can likely largely benefit from the achievements of control theory. However,
as also for the less advanced forms of self-adaptive systems principles and solutions
of control can only be applied to software systems in restricted cases and the trans-
fer of applicable control theory results to self-aware computing systems is still in its
infancy.

2.3 Artificial Intelligence

There are many different perspectives on artificial intelligence, but the one that res-
onates most closely with self-aware systems is that adopted by Russell and Norvig
in their book “Artificial Intelligence: A Modern Approach” [69], according to which
artificial intelligence is fundamentally about designing and building rational agents.
Wooldridge and Jennings [85] further define an agent as a software-based computer
system that enjoys the following properties:

1. autonomy: agents operate without the direct intervention of humans or others,
and have some kind of control over their actions and internal state;

2. social ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language;

3. reactivity: agents perceive their environment and respond in a timely fashion to
changes that occur in it;

4. pro-activeness: agents do not simply act in response to their environment, they
are able to exhibit goal-directed behaviour by taking initiative

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 21

By emphasizing social ability as an essential property of agents, Wooldridge and
Jennings were suggesting that agents typically exist in environments in which other
agents are present, and that they interact with one another via some sort of agent
communication language, thereby forming multi-agent systems.

Self-aware computing systems as defined in this chapter possess the characteris-
tics of autonomy, social ability, reactivity and proactivity, and can therefore be un-
derstood as types of agents or multi-agent systems that achieve these charactistics
via the specific approach of learning models and using those models to determine
how best to satisfy their goals.

2.3.1 Overview of Agents and Multi-Agent Systems

A software agent can be defined, very generally, as a software entity that can ac-
complish tasks on behalf of its user, by acting within its environment [60]. In [69],
agents are also referred to as rational entities, meaning that they would take the best
possible action, considering available information and capabilities, to approach their
objective: “For each percept sequence, a rational agent should select an action that
is expected to maximise its performance measure, given evidence provided by the
percept sequence and whatever built-in knowledge the agent has.”

A wide variety of agent types, with more specific abilities and characteristics, has
been defined within this vast area to address the particularities of different domains,
based on different approaches. An extensive review of all agent types would be well
beyond the scope of this chapter. We merely aim to highlight here the most relevant
types that would help us compare multi-agent systems with self-aware computing.

We consider several dimensions of comparison, whereby agents can be either
deliberative or reactive; mobile or static; and feature various combinations of key
characteristics, such as autonomy, learning and social interaction. In the context of
self-aware computing, we are mainly concerned with aspects of autonomy, reason-
ing, learning and social abilities. Hence, we will focus on discussing these next.

A deliberative agent is “one that possesses an explicitly represented, symbolic
model of the world, and in which decisions (for example about what actions to
perform) are made via symbolic reasoning” [85]. Conversely, reactive agents reach
their objectives by implementing a stimulus-response (or reflex) behaviour, merely
reacting to changes in their environment with corresponding actions. Hence, they
do not posses symbolic representations or reasoning capabilities [15].

Russel and Norvig [69] refine this agent typology further, defining goal-oriented
and utility-based agents. These correspond to deliberative agents that pursue goals
in a binary manner – either achieving the goal or not achieving it – or in a more
modulated manner – where goal achievement can be equated to various degrees of
utility. Russel and Norvig also refine reflex-based agents into basic and model-based
reflex agents, which are reactive agents with or without internal state, respectively.

An agent’s autonomy refers to its capability to operate without requiring human
intervention, in order to achieve its objectives, or goals, on behalf of its user. In the

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



22 Cámara et al.

context of deliberative agents, pro-activeness is also considered as a key agent fea-
ture, related to its autonomy. It implies that the agent will be “taking the initiative”
for reaching its goals, rather than simply reacting passively to its environment [85].
Of course, deliberative agents can also react to environmental changes.

An agent’s learning ability allows it to adapt its behaviour – e.g. via changes in
its knowledge and reasoning; or in its reflexes – based on interactions with its en-
vironment, in order to increase its performance over time. Finally, an agent’s social
ability refers to its capability to interact with other agents, via some well-defined
communication language.

A multi-agent system (MAS) consists of multiple agents that are engaged in some
sort of interaction in order to accomplish one or several tasks, or goals. MAS are
typically employed to address complicated computing problems via a divide-and-
conquer technique – i.e. dividing the problem among a set of (specialised) agents,
which interact to compose partial results into a global solution. In the case of delib-
erative agents, this implies that knowledge representation, acquisition and reasoning
processes are also distributed among the agents.

2.3.2 Comparison to Self-Aware Computing

Since the concept of agent has been used rather broadly across various applica-
tions and domains, it has become an umbrella term for a wide variety of computing
entities that feature highly different capabilities and characteristics. Therefore, it
is quite difficult to provide an exact comparison of multi-agent systems with self-
aware computing systems, not at least since these latter can also feature different
kinds and levels of self-awareness (Chapter 3). Considering these reasons, we only
attempt here to provide a general comparison, highlighting the main differences in
focus between the two concepts.

The concept of a self-aware computing system (as defined in Chapter 1) is mostly
compatible with that of a deliberative agent, which features autonomy, learning and
social abilities – i.e. a “smart agent” in [60]. Indeed, like deliberative agents, self-
aware computing systems can possess models of the world that are explicitly repre-
sented and on which they can reason in order to achieve higher-level goals (repre-
senting the user). In addition to an agent’s world models, self-aware systems must
also possess models of them-selves, and must reason on these to perform actions –
e.g. self-adaptation to ensure system autonomy in a changing environment; explain-
ing and reporting their current states (and their probable causes) to users, or to other
systems; or suggesting means of rectifying undesirable or suboptimal states. Conse-
quently, the learning capabilities of self-aware systems must apply to both models
representing their environments and themselves. Here, self-aware systems focus on
the particular problem of agent autonomy, within a changing environment and/or in
the presence of internal faults, rather than on problem-solving in general, as is the
case for multi-agent systems.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 23

Like social agents, self-aware computing systems may also interact with other
systems, either by direct communication or via indirect influence within a shared
environment. The systems that such a self-aware system interacts with may feature
various levels of self-awareness, or may be non-self-aware. In case of direct com-
munications, a self-aware system’s interactions can be equated to agent communica-
tions (and hence represent social skills). A specific feature of self-aware computing
systems consists in the extent to which they can be, or become, self-aware of the
other systems that they interact with – e.g. acquiring and maintaining models of
them. This can also be the case in some agent-oriented approaches, like with game
theoretical agents, yet here the agents’ awareness of each other is typically provided
at design time, then potentially refined during runtime. Another interesting feature
here consists in the lack of assumptions on the other systems’ self-aware capabilities
(i.e. heterogeneity of self-awareness levels across a collective of systems). Again,
this can be the case in some multi-agent systems – such as some game theoretical
cases – yet the agent’s self-awareness levels are typically predefined, depending on
their roles.

2.4 Autonomic Computing

The autonomic computing initiative [35] was spurred by a concern that rapid growth
in the complexity of IT systems would outstrip the ability of IT administrators to
cope with that complexity. The proposed solution was for the system to take upon
itself a large portion of the management burden. Just as the autonomic nervous sys-
tem governs our pulse, our respiration, and the dilation of our pupils, freeing our
conscious brain to attend to higher-level cognitive functions, the goal of autonomic
computing is to create computing systems that manage themselves in accordance
with high-level objectives from administrators or system users. While initially con-
ceived as a paradigm for the future of IT management, over the course of time the
principles, objectives and techniques of autonomic computing have come to be ap-
plied more broadly, extending to physical systems such as data centers (and data
center robots), the internet of things, smart homes, etc.

An early paper that outlined the vision and research challenges of autonomic
computing [41] laid out an architecture in which autonomic behavior was exhib-
ited at two levels. Autonomic elements (such as databases, web servers, or physical
servers) were envisioned to use a combination of monitoring, analysis, planning
and execution driven by knowledge (often referred to as the MAPE-K architecture
or MAPE-K loop) to accomplish their own individual goals.1 System-level auto-
nomic behavior was to be driven by system-level goals, and accomplished through
well-designed interactions among multiple interacting autonomic elements whose

1 In actuality, MAPE-K was not strictly an architecture (it was more of a statement about required
functionality than it was a statement about how those functions were to be woven together) nor
was it necessarily a loop, as the various components might typically be operating in parallel at all
times and not running in a strict order.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



24 Cámara et al.

individual goals might be designed to support the desired system-level behavior.
The vision did not specify how the goals of autonomic elements might be derived
from system-level goals, nor did it specify how to design the interactions among the
autonomic elements; these were cited as difficult and important research challenges.

Comparing the definition and vision of autonomic computing systems to that of
self-aware computing reveals several similarities and a few distinctions. Employ-
ing Knowledge to support the Monitoring, Analysis, Planning and Execution func-
tions matches very closely the second clause of the self-aware computing definition,
which states that self-aware systems “reason using ... models ... enabling them to
act”. Contained within the Knowledge component of an autonomic element are one
or more models that the Analysis component can use to anticipate the likely conse-
quence of an action or a plan (a sequence of actions) that it is contemplating. The
objective of the Planning component is to move the autonomic element (or perhaps
the autonomic system in general) from its current state (as assessed by the Moni-
toring component) to a state that it is deemed more desirable according to the high-
level goals, which are also held within the Knowledge component. One common
approach to using models and high-level goals to drive the behavior of autonomic
elements and systems is utility functions. The state space is described in terms of at-
tributes that the administrator deems important (e.g. response time, power consump-
tion, etc.), a utility value is ascribed to each possible state, and the system selects an
action that would (according to models) lead to a state with the highest achievable
utility value, given current resource of other constraints. Finally, regardless of the
means by which analysis and planning are accomplished, the autonomic element
Executes the action or plan deemed most desirable by the Planning component, the
state of the autonomic element (or the autonomic system) evolves (either in reac-
tion to the action(s) or an external change such as an increase in workload), and the
MAPE-K process continues. The execution step is the one point at which the auto-
nomic computing definition may differ from the reasoning clause of the self-aware
computing definition. Autonomic computing requires execution, while self-aware
computing permits execution but does not require it. Nonetheless, in practice the
field of autonomic computing embraces work in which the system recommends an
action, but allows a human to judge whether or not to take it, viewing this as an
important and necessary evolutionary step towards full-fledged autonomic comput-
ing, not just as a matter of making incremental technological progress, but also as a
means for building user trust.

The first clause of the self-aware computing definition concerns learning. Learn-
ing has always been viewed as an important aspect of autonomic computing, and a
preferred means by which models are created, but autonomic computing does not
strictly require that an element or a system learn to be regarded as autonomic.

To summarize, while autonomic computing was initially proposed as an IT man-
agement solution, the current understanding of the term is much broader, and it
overlaps strongly with the definition of self-aware computing systems. The main
differences are that autonomic systems are not strictly required to learn, and self-
aware systems are not strictly required to act.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 25

2.5 Organic Computing

An Organic Computing (OC) System is “a technical system which adapts dynam-
ically to the current conditions of its environment. It will be self-organizing, self-
configuring, self-healing, self-protecting, self-explaining, and context-aware” [58].

From its inception, OC started with a strong Industry pull (including Daimler-
Crysler, Siemens, and Bosch) because of the shared belief across several industries
that we can no longer adequately design very large-scale, complex systems; complex
systems need to help us by designing parts of themselves and by managing parts of
themselves.

As part of this was the strong recognition by OC that complex systems have
emergence. That is, they have unplanned and unexpected side-effects and emergent
properties at different levels because of the interactions among large numbers of
components under different operational conditions. The OC attitude is “How can we
take advantage of the fact that complex systems have emergence?” How can systems
use emergence as a source of controlled variation? How can we shape emergence to
go in desired directions?

Hence, from its inception, OC emphasized the importance of having systems that
could not only observe and adapt to the changing and demanding external world,
but also could observe and adapt their own goals, plans, resources and behaviors as
necessary to correctly map to new contexts and requirements. Moreover, in OC ap-
proaches, one will take advantage of this self-awareness to adapt to not only chang-
ing conditions and requirements, but even to new, emergent properties in the system
and its environment.

Although OC has different approaches to meeting the challenges of creating self-
adaptive and self-aware systems, the observer/controller architecture is an especially
important contribution to mention here because of its clear relationship to and sim-
ilarity to several of the architectures in this book (see more in Chapter 6 and Chap-
ter 8). An early description of the observer/controller architecture is depicted in
Fig. 2.1.

A key emphasis in OC is that complex systems need to have self-control and
self-adaptation abilities while always retaining important human-in-the loop ca-
pabilities so that humans can suitably monitor and control when necessary the
results of interacting and relatively autonomous computing systems. Hence, the
observer-controller architecture is comprised of two top level concepts: the or-
ganic system and a human user, where the organic system adheres to the basic in-
put/computer/output principle of computing. The human user is seen as imposing
goals and constraints at times on the organic system, while reviewing the system
status based on the OC system’s self-reporting capabilities and whatever special
human interfaces to system instrumentation have been added.

The organic system is further decomposed into three major components: the sys-
tem under observation and control (SuOC), the observer and the controller. All hu-
man interaction is relayed by the controller. Notably, the input/compute/output prin-
ciple is realized by the SuOC. Observer and controller impose a feedback loop onto

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



26 Cámara et al.

Fig. 2.1: Early observer/controller architecture

the SuOC, where the first observes the SuOC and reports to the controller, which in
turn controls the SuOC.

An important characteristic of the SuOC in organic computing is that it is com-
prised of agents, i.e., autonomous entities. In other words, the SuOC is already a
set of self-organizing systems. The observer and controller enhance this system to
achieve controlled self-organization.

As can be seen by this very brief description, there can be multiple observer-
controller layers in a given system. Furthermore, different kinds of self-awareness
capabilities, as discussed in the rest of this book, can contribute at many points
in this architecture; they will certainly occur in the observational and reasoning
capabilities of the observer, as well as potentially in the adaptive behaviors directed
by the controller.

2.6 Service-Based Systems and Cloud Computing

In this section, we first introduce some basic concepts related to service-oriented
computing, followed by an overview of the area of cloud computing, emphasiz-
ing concepts relevant to self-aware computing systems, such as location-transparent
computation and the notion of autonomous services as agents.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 27

2.6.1 Service-Based Systems

Service-Oriented Computing (SOC) and Service Oriented Architecture (SOA) are
now largely accepted as well-founded reference paradigm and reference architec-
ture for Internet computing [62]. Under SOC, networked devices and their hosted
applications are abstracted as autonomous loosely coupled services that, while play-
ing the roles of service providers, consumers (aka clients) and registries, they also
interact by following the service-oriented interaction pattern (see Fig. 2.2).

According to this pattern, a service has to define an interface publishable on the
net, researchable and callable independently from a particular language or platform.
In order to obtain these requirements, a SOA application have to define roles (not
all required) as shown in Fig. 2.2.

• Service Consumer: the entity that uses the service; it can be an application mod-
ule or another service;
• Service Provider: the entity that provides the service and exposes the interface;
• Service Contract: defines the format for the request of a service and the related

response;
• Service Registry: Directory on the net that contains the services.

Despite the remarkable progress of the SOC paradigm and supporting technolo-
gies in the last ten years, substantial challenges have been set through the evolution
of the Internet. Over the years, the Internet has become the most important net-
working infrastructure, enabling all to create, contribute, share, use, and integrate
information and extract knowledge. As a result, the Internet is changing at a fast
pace and is called to evolve into the Future Internet, i.e., a federation of self-aware
services and networks that provide built-in and integrated capabilities such as ser-
vice support, contextualization, mobility, security, reliability, robustness, and self-*
abilities of communication resources and services [28, 38].

In this wide spectrum, a SBS can be meaningfully seen as a composition of ser-
vice providers and consumers that interact by providing/requiring functionalities
to/from each other. A SBS is often opportunistically built to the purpose of achieving
a given goal. The goal typically expresses functional and non-functional high-level
requirements that the resulting composition has to fulfill. The former class captures
the qualitative behaviour of a SBS, its functional specification. The latter defines the
SBSs quantitative attributes like, performance, reliability, security, etc.
From a software engineering perspective, goal changes are always done to meet
new requirements, e.g., users and involved business organizations may change their
functional needs and non-functional preferences. Moreover, it can be that the ser-
vices currently involved in the composition no longer perform as expected. On the
practical side, the source of this type of run-time changes can be, e.g., changing
conditions of the network through which services communicate, degrading com-
putational resources of the execution environments where services are deployed,
upgrading the version of the middleware on top of which services run, and remote
service substitution.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



28 Cámara et al.

Service' Registry

Service' Consumer Service' Provider
Invoke

PublishDiscovery

Service'
Contract

Fig. 2.2: Service-oriented interaction pattern

The knowledge that service consumers have depends on the contract (often ex-
pressed by means of service behavioral models) exposed by the service providers
they want to interact with (interface only, interface plus interaction protocol, inter-
face plus interaction protocol plus non-functional attributes, etc.). As a consequence,
also the kind of reasoning that enables a SBS to act based on its knowledge depends
on the kind of models and notations used to describe service contracts.

Last but not least, since a SBS can be seen as a composition of services, the
ways the system can act to enable self-awareness is constrained by the structure and
behavior of the adopted composition means. In particular, two forms of composition
to build SBSs can be distinguished, one centralized, i.e., service orchestration, and
one distributed, i.e., service choreography [5].

2.6.2 Cloud Computing

Cloud Computing refers to the on-demand delivery of IT resources and applications
via the Internet, possibly with a pay-as-you-go pricing. By referring to the NIST def-
inition of Cloud computing [53], “Cloud computing is a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction”. In other words, Cloud computing is essentially about mov-
ing services, computation, and data off-site to a location-transparent entity. Cloud
computing distinguishes three service models, as described below:

• Software as a Service (SaaS): WAN-enabled application services (e.g., Google
Apps, Salesforce.com, WebEx). The capability provided to the consumer is to
use the providers applications running on a cloud infrastructure. The applications
are accessible from various client devices through either a client interface, such
as a web browser (e.g., web-based email), or a program interface.
• Platform as a Service (PaaS): Foundational elements to develop new applications

(e.g., Coghead, Google Application Engine). The capability provided to the con-
sumer is to deploy onto the cloud infrastructure consumer-created or acquired

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 29

applications created using programming languages, libraries, services, and tools
supported by the provider.
• Infrastructure as a Service (IaaS): Providing computational and storage infras-

tructure in a centralized, location-transparent service (e.g., Amazon). The capa-
bility provided to the consumer is to provision processing, storage, networks, and
other fundamental computing resources where the consumer is able to deploy and
run arbitrary software, which can include operating systems and applications.

Some of the main characteristics of cloud computing are concerned with (i) elastic-
ity, in which it is required on demand capabilities of resources; (ii) broad network
access, in which access to the cloud can be done by using any computer-based de-
vice; (c) resouce pooling, in which data can be used and added in the cloud at any
time; (d) measured services, in which consumers only pay for the resources they
use from the cloud; (e) energy efficiency, in which energy consumption of cloud
data centers are optimised; and (f) virtualization, in which the infrastructure is di-
vided and seen as separated logic components.

The above characteristics of cloud computing require a degree of self-awareness
of the technology. For example, it is necessary for the system to be aware of the
need of new resources and to be able to free not used resources at a certain moment
of time. However, it is not possible to say that cloud computing technologies have
the necessary level of self-awareness, as per the definition given in Chapter 1.

2.6.3 Comparison to Self-Aware Computing

Since the vision of Weiser [81] was published almost 25 years ago, pervasive sys-
tems have almost become reality. Computer have become ubiquitous and are avail-
able in areas nobody would have expected them 20 years ago such as cars, parks
or even pot plants at home. Nevertheless, these computers are often far from being
self-aware. In many cases, these computers act as simple sensors merrely storing
the sensed environment on a local memory or transmit it to a central server. The two
main points in the self-aware computing definition are often not fulfilled. Perva-
sive systems only in some cases learn about their environment but they only rarely
reason about this knowledge.

Nevertheless, there are novel areas of research within the pervasive computing
community, such as the smart environment community. Here the devices try to learn
behavioural patterns about the user in order to anticipate certain actions, require-
ments, or desires by the user. This anticipation is often foundend on predefined
rules and only allows very limited flexibility with respect to defining new goals for
the individual device or the entire system. Furthermore, the interplay between the
indivdiual devices and the impact of their actions on each other is often hardwired
within the individual devices. This limits the capabilities to include new devices dur-
ing runtime without explicit setup of the system. While implementing individual au-
tonomous computing agents within the different devices and using a service-based
approach introduces higher flexibility and introduces robustness to the pervasive

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



30 Cámara et al.

system, the higher, system-wide goals are still not considered when actions of the
individual devices are performed.

2.7 Self-Organizing Systems

As their name suggests, self-organizing systems are systems that are able to or-
ganize themselves adaptively and without external control. Organization is at the
core of this definition and generally comprises the relations, interconnections, con-
ditionality or dependencies between the system’s components, or variables. Hence,
organization relates heavily to the system’s structure, defining its main components
and their interrelations.

In the remainder of this section, we first present a general overview of self-
organizing systems, followed by a discussion of cross-pollination opportunities with
self-aware computing.

2.7.1 Overview of Self-Organizing Systems

From a general perspective, if a system (or general “machine” [4]) is viewed as
a set of states S, with a set of inputs I and a function f that maps IxS into S – i.e.
determining the system’s future state based on the current state and inputs – then the
system’s organization represents the manner in which its variables are interrelated
via the mapping function f. A self-organizing system here implies that the system
is able to change its own mapping function. This raises some controversy around
the system’s boundary definition, since it implies the extension of the initial system
with a controller that monitors and updates its organization [4].

However, most often, self-organization is understood as a dynamic adaptive and
autonomous process that results from the inherent behaviour of each system com-
ponent and of the “laws” of the environment within which they execute [4, 20]; and
which results in a progressive increase in system structure [84]. Examples of nat-
ural self-organization include the spontaneous assembly of protons, neutrons and
electrons into atoms; of different atoms into organic molecules; and the evolution
of living organisms adapted to their environments. Examples in artificial systems
include the adaptive formation of ad-hoc mobile networks, of robot swarms, and of
component- and service-based software system assemblies. Ashby prefers referring
to this type of self-organization as the “spontaneous generation of organization”.

This is also the typical understanding of self-organization in the computing sys-
tems domain, notably in research communities such as the Self-Adaptive and Self-
Organizing (SASO) systems – as reflected for instance in the proceeding series of
the International Conference on SASO Systems.2 Here, self-organization is interest-

2 SASO history in 2016: http://saso2016.informatik.uni-augsburg.de/history.html

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 31

ing because of the advantageous properties that it features in general (e.g. resilience
and adaptability to a wide range of environmental changes; robustness in the face
of internal failures; and scalability with the number of components and adaptation
frequency). In the SASO community, self-organization is also seen as a bottom-up
alternative to achieving self-adaptation, which was originally designed as top-down.

The main challenge here is: how to design self-organising systems that also meet
desirable goals?. Indeed, in natural systems, most instances of self-organization
have no other obvious purpose than their own existence and survival within their
environment. In more “interesting” cases (from a goal-oriented system perspective),
different organisms self-organize into more-or-less temporary formations in order to
achieve via collective action a common goal that none of them could have achieved
individually (e.g. swarms, flocks, herds, teams and societies). Yet, when building ar-
tificial systems, determining which component behaviors and interaction laws will
lead to the self-organization of systems that meet the designer’s goals within tar-
geted environments is a difficult task, subject to active research. These challenges
differ from those highlighted by self-aware computing, where the research focus is
placed on the system’s knowledge acquisition and on the way in which usage of this
knowledge can serve the system’s achievement of goals.

2.7.2 Cross-Pollination Opportunities with Self-Aware Computing

In self-organizing systems, any knowledge available is decentralized and distributed
across the participating system components, or agents. An exception may occur
if global knowledge were encoded within the environment shared by the system’s
components. This aspect will be interesting to study within the context of decentral-
ized (or self-organized) self-aware systems.

Conversely, it will be interesting to explore how self-awareness could help a
system’s components self-organize in order to achieve a shared goal. Here, the
hard-coded elementary behaviors and “laws” of the environment that fuel self-
organisation could be adapted dynamically by the system components, as they be-
come aware of their shared goals (e.g. already the case in social organizations?).
Also, components that become aware of their own characteristics (e.g. range of be-
haviors and properties they can exhibit), of the characteristics of other components,
and of the key theoretical principles of self-organization (still to be produced by
the corresponding research fields) may be better able to select the components with
which they connect in order to have a better chance of achieving their goals.

2.8 Self-Adaptive Systems

In the self-adaptive software community self-* properties are organized in levels
where self-adaptiveness is at the top (or general level), while self-awareness is con-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



32 Cámara et al.

sidered only a primitive level like context-awareness and the typical autonomic com-
puting like self-* properties like self-configuring, self-healing, self-optimizing, or
self-protecting are considered major level properties in between the other two levels
(cf. [70]). Furthermore, in the self-adaptive software community most approaches
emphasis an architectural perspective (cf. [70]) where besides the control of param-
eters changes of the architecture may matter.

In the rest of this section, we first present a general overview of self-adaptive
systems, followed by a discussion of anticipatory self-adaptive systems, which are
those that exhibit a specific set of characteristics which are strongly related to self-
aware computing systems, such as the ability to predict, or self-adapt proactively.

2.8.1 Overview of Basic Self-Adaptive Systems

Like in autonomic computing for self-adaptive systems control loops are often con-
sidered one of the core objects of the design efforts [16,74] and it is advocated that in
order to achieve real self-management capabilities besides a direct layer for change
management also a goal management is required (cf. reference architecture [44]).
However, besides some specific approaches that emphasize architectural models or
goals in contrast to the notion for self-aware computing systems of Definition 1.1
for the basic efforts for self-adaptive systems hold that neither the learning of mod-
els nor the capability to reason based on this models to realize the adaptation loop
have been emphasized so far.

In a series of Dagstuhl seminars the community has identified mainly mod-
eling dimensions, requirements, engineering through feedback loops, assurances,
the design space, processes, decentralized control, and practical runtime verifica-
tion and validation as the main issues that have to be addressed (see two research
roadmaps [18, 21]. However, again neither the employed knowledge nor the capa-
bility to reason based on this knowledge as advocated by the notion for self-aware
computing systems of Definition 1.1 play a prominent role.

The notion for self-aware computing systems of Definition 1.1 is overlapping
with the notion of self-adaptive software as it also covers systems where no self-
adaptation happens. As advocated in [31] the limitation to only fully automatic
adaptation is probably too limited and instead it would be better to also consider
related manual activities such as change management and their coordination with
automated adaptation steps. Therefore, to include also mixed forms where people
supervise the adaptation or the self-awareness helps with manual adaptation in the
notion for self-aware computing systems of Definition 1.1 seems somehow benefi-
cial to better cover the real needs and the real design options.

For the subset of self-aware computing systems that realize some self-adaptation
behavior, however, we can conclude that they describe a subset of the self-adaptive
software where in addition to the existence of the feedback loop we also learn mod-
els capturing knowledge and reason about these models allowing them to act ac-
cording to internal and external conditions in accordance with higher-level goals.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 33

While several suggestions go in a similar direction as Definition 1.1 (cf. [44]), the
community will likely benefit from the suggested notion for self-aware computing
systems of Definition 1.1 that clearly separate lower-level solutions without explicit
knowledge capturing and reasoning from approaches that have these capabilities
based on learning models and reasoning based on the models.

2.8.2 Anticipatory Self-Adaptive Systems

What distinguishes a self-adaptive system from any other system is its ability to
adjust its behavior in response to its perception of the environment and the system
itself [18]. Self-adaptive systems typically operate employing a knowledge base that
can incorporate an explicit representation of the system’s structure, goals, and as-
sumptions about its environment. However, there is ample variation in the level of
detail in which the different elements of this knowledge base are described, as well
as in the reasoning capabilities that different approaches exhibit [70].

The characteristics of early proposals to self-adaptation [32, 44] tend to be far
from the traits of self-aware computing systems listed in Definition 1.1. These ap-
proaches tend to be reactive, and adapt in response to changes without anticipat-
ing future changes or reasoning about the long-term outcome of adaptation (e.g.,
a system may adapt to a transient change, only to adapt again and go back to its
original configuration moments later). Moreover, these proposals tend to be rather
limited in terms of learning capabilities. In contrast, recent approaches to self-
adaptation [17, 19, 34] are better aligned with the description of self-aware com-
puting system given in Chapter 1. The general trend among these proposals is a
paradigm shift from reactive to proactive adaption, incorporating the ability to learn,
predict, and systematically exploit knowledge to improve the operation of the sys-
tem.

These approaches fit well into the category of anticipatory self-adaptive sys-
tem, defined as “able to anticipate to the extent possible, its needs and behaviors
and those of its context, and able to manage itself proactively” [63]. Based on this
definition, we can identify the main criteria that anticipatory self-adaptive systems
should ideally satisfy:

1. Predictive. The system can likely determine ahead of time if a condition that
requires adaptation will take place. Predictions can be exploited to avoid unnec-
essary adaptations or improve the overall choice of adaptation (e.g., by factoring
in information about future resource availability or workload and other environ-
ment conditions into the decision-making process [19, 55]). Predictions can also
help to enforce safety properties when reachability of a potential safety violation
from the current state of the system is detected [48].

2. Proactive. The system can enact adaptation before a deviation from its func-
tionality or qualities takes place. A representative proactive approach to self-
adaptation in cyber-security is Moving Target Defense (MTD) [86]. MTD as-
sumes that a system that remains static with the same configuration over long

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



34 Cámara et al.

periods of time gives potential attackers time for reconnaissance and exploita-
tion of system weaknesses. Hence, the idea behind MTD is adapting to change
the configuration of the system periodically, thus reducing the chance of an at-
tacker of finding and exploiting a weakness. Another example of proactivity is
latency-aware proactive self-adaptation (PLA) [55], which anticipates changes in
environment conditions and triggers adaptations with enough lead time to deal
with them in a timely fashion, based on information about the execution time
required to complete adaptations and achieve their effects in the controlled sys-
tem (i.e., their latency). In the area of service-based systems, PROSA [34] is an
approach that carries out tests at runtime to detect potential problems before they
happen in real transactions, triggering adaptations when tests fail.

3. Learning. The system can generate and incorporate new knowledge (typically
derived from observations of the system and its environment at runtime), and use
it to improve subsequent adaptions. Simple forms of learning can also be found
in reactive approaches. To select adaptations, Rainbow [32] employs information
about the actual outcome of past adaptations to derive probabilities that represent
the likelihood of possible outcomes of future adaptations. Proactive approaches
can employ more sophisticated learning techniques to leverage its prediction ca-
pabilities (e.g., employing bayesian learning to estimate the future behavior of
the environment [17, 27]).

Table 2.1: Anticipatory self-adaptation approaches

Approach Learning Predictive Proactive
KAMI [27] X X X
QoSMOS [17] X X X
Cheng et al. [19] X X
PLA [55] X X
Li et al. [48] X X
PROSA [34] X
MTD [86] X

Table 2.1 categorizes some anticipatory approaches to self-adaptation. It is worth
noticing that although a proactive self-adaptive system can benefit significantly from
predictions, proactive approaches are not necessarily predictive. One example is
MTD. In the simplest form of MTD, the system’s configuration is changed proac-
tively with a fixed frequency, without any reasoning involving a model of the envi-
ronment or predictions about its future behavior. Moreover, we can observe that in
terms of learning, anticipatory self-adaptive approaches are still far from the ideal
of self-aware computing systems. In particular, learning capabilities are employed
only in approaches that involve relatively simple adaptations (e.g., parameter opti-
mization [17, 27]), but not combined with adaptations that entail complex changes
to a system’s architecture.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 35

2.9 Reflective Computing

In 1987, Maes [51] defined and implemented “computational reflection” as “the pro-
cess of reasoning about and / or acting upon oneself.” Computational reflection is
an engineered system’s ability to reason about its own resources, capabilities, and
limitations in the context of its current operational environment. Reflection capa-
bilities can range from simple, straightforward adjustments of another program’s
parameters or behaviors (for example, altering the step size on a numerical process
or the application of rules governing which models are used at different stages in a
design process) to sophisticated analyses of the system’s own reasoning, planning
and decision processes (for example, noticing when one’s approach to a problem is
not working and revising a plan).

Reflection processes must include more than the sensing of data, monitoring of
an event, or perception of a pattern; they must also have some type of capability
to reason about this information and to act upon this reasoning. However, although
reflection is more than monitoring, it does not imply that the system is “conscious”.
Many animals demonstrate self-awareness; not only do they sense their environment
but they are able to reason about their capabilities within that environment. For
example, when a startled lizard scurries into a crevice, rarely does it try to fit into a
hole that is too small for its body. If it is injured or tired, it changes the distance that
it attempts to run or leap. This adaptive behavior reveals the ability of the animal
system to somehow take into account the current constraints of the environment and
of its own body within that environment [9, 10].

In order to bring out the ways in which the self-awareness processes and architec-
tures enhance and further develop reflective architectures, we will quickly overview
one approach to implementing computational reflection and the building of reflec-
tion processes in a robotic car example (also see Chapter 9 for additional discussion
of self-modeling issues in this testbed).

The Wrappings approach uses both explicit meta-knowledge and recursively-
applied algorithms to recruit and configure resources dynamically to “problems
posed” to the system by users, external systems, or the system’s own internal pro-
cessing. The Problem Managers (PMs) algorithms use the Wrappings to choreo-
graph seven major functions: discover, select, assemble, integrate, adapt, explain,
and evaluate. “Discover” programs (or as called in the Wrappings, “resources”)
identify new resources that can be inserted into the system for a problem. “Se-
lection” resources decide which resource(s) should be applied to this problem in
this context. “Assembly” is syntactic integration and these resources help set up se-
lected resources so that they can pass information or share services. “Integration”
is semantic integration, including constraints on when and why resources should
be assembled. “Adaptation” resources help to adjust or set up a resource for differ-
ent operational conditions. “Explanation” resources are more than a simple event
history because they provide information on why and what was not selected. “Eval-
uate” includes the impact or effectiveness of the given use of this resource in the
current problem. The meta-knowledge for a Wrapping is always for the USE of a
resource within a particular context and for a specific posed problem. It includes

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



36 Cámara et al.

assumptions and constraints, the required services and input, the resulting services
and output, and the best practices for using this resource in this situation.

The Wrappings “problem-posing” has many benefits, including separating prob-
lems from solution methods and keeping an explicit, analyzable trace of what prob-
lems were used to evoke and configure resources. Because all of the resource are
wrapped, even the resources that support the wrappings processing, the system is
computationally reflective – it can reason about the use of all of its resources [12].

Wrappings [45,46] provide an implementation strategy for computational reflec-
tion that provides control over the level of self-awareness available in the system
and the levels of self-awareness to be used at any given time. The mechanism that
allows this flexibility is the Problem Posing Programming Paradigm, which strictly
and completely separates the information service requests (the problems) from the
information service providers (the resources), and reconnects problems in context
with resources using explicit interpretable rules collected into Wrapping Knowledge
Bases. Moreover, the processes that perform the connection (called PMs, or Prob-
lem managers) are also resources and are also Wrapped, so they can be swapped out
as easily as any other resources. We emphasize that the designers have control over
the level of detail of decomposition of the processes in the system, and of the rules
by which resources are used for particular problems. There is no inherent limit on
that level of detail (some implementations go down to the individual hardware in-
struction, but most go to the typical software component/ module level). More detail
on the implementation architecture is given in Chapter 8.

The flexibility of the Wrappings approach provides multiple entry points for the
reflective processes. A reflective resource has the general form: Given a goal, pur-
pose, or function, a reflective process uses sources of information to do some action,
decision or to create data that is used by other processes. The goal or function for
that reflective process could be built in during design time or assigned dynamically
to that reflective process by other programs. It may be in continual use or it may be
recruited or evoked only when certain resources are active or conditions exist. The
sources of information can be e.g., data sets, sensor output, or monitors. The reason-
ing process for reflection can be done with an algorithm, decision process, rulebase,
cognitive model, or planner. The resulting actions are myriad, but include sending
messages, setting program or context parameters, recruiting new components, initi-
ating new processes, or instigating a replan or undo process.

Although the Wrappings and reflective architectures approach briefly outlined
here has proven its value for resource management and dynamic integration among
large numbers of resources, the original approach was in practice limited to largely
the management and adaptation of single large distributed systems. Although, the
benefits of reflection were clear for interactions among systems (e.g., the self-
knowledge could be made available to other systems for coordination [11] and ex-
ternal viewpoints by other systems could help a system identify its own problems
or state and learn better [8, 47], in fact, the new work in self-aware systems as seen
in this volume will help greatly by expanding new ideas for how collections of self-
aware systems could interact and organize.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 37

2.10 Models@run.time and Reflection

A model at runtime (models@run.time) [14] is defined as an abstract self-representa-
tion of a system that is focused on a given aspect of the running system. Such aspects
include its structure, behaviour and goals. The runtime model exists in tandem with
the given system during the actual execution time of that system. As in the case of
traditional model-driven-enginering (MDE) [30], a self-representation of the system
in the form of runtime models can also be used as the basis for software synthesis,
but in this case the generation can be done at runtime [57, 82].

Before describing the role of models@run.time in the area of self-aware com-
puting, it is useful to briefly introduce the relationship between models@run.time
and reflection (the topic reflection is more extensively covered in Section 2.9) and
other aspects. Computational reflection focuses on representations of an underlying
system that are both self-representations and causally connected [14]. The causally
connected representations of aspects of the system are constantly mirroring the run-
ning system and its current state and behaviour. Causal connection implies that if
the system changes, the self-representations of the system (i.e. the models) should
also change, and vice versa.

Even if closely related, models@run.time and reflection are not the same. Re-
flection deals with models that are linked to the computation model and therefore
tend to be focused on the solution space and in many cases at a rather low level
of abstraction. The research area models@run.time deals with models that are de-
fined at a much higher level of abstraction. Further, runtime models more frequently
relate to the problem space. Examples of applications using runtime models are
self-adaptation [57] or generation of mediators to support interoperability [12].

Traditionally, the structure of a runtime model has been conceived at design time
(e.g architecture models [57]). However, they can also be learned at runtime. In
[12], the authors show how using learning methods, the required knowledge of the
context and environment can be captured and distilled to be formulated and made
explicitly available as a runtime model and therefore support reasoning. Another
example of techniques to be used to learned runtime models are shown in [87].

Models@run.time are at the core of self-aware systems. They are relevant to sup-
port self-awareness as defined in Chapter 1. (i) The runtime models correspond with
the learned models which capture knowledge about the system itself and their en-
vironment. Specifically, the runtime models support learning to capture the needed
knowledge about the system itself (e.g its own goals and requirements [71, 82]) or
its perception of the environment [77, 87]. (ii)The runtime models when consulted
should provide up-to-date information about the system and therefore support rea-
soning (for example predict, analyze, plan) enabling the system to act based on their
knowledge. As the runtime model is causally connected, then actions taken based
on the reasoning, can be made at the model level rather than at the system level [56].

We argue that the definition of self-awareness requires a self-representation (i.e.
runtime model) of the subject of the awareness. For example, if the system is aware
of its own architecture the system would need a representation of its architecture
(a architecture runtime model). Other examples are awareness of its own require-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



38 Cámara et al.

ments or any other aspect about it self. If the object of the awareness is part of the
environment of the system (i.e. it is outside the system), it should be considered a
self-representation as well as the representation includes the perspective of the sys-
tem. Two different systems will usually have different representations (or models)
of their perception of the same object of awareness .

2.11 Situation-Aware Systems and Context Awareness

Situation Awareness (SA) is an ongoing body of research with many conferences,
workshops, and papers which develops theory and applications in building human-
machine systems that observe, evaluate and act within diverse situations. Here we
are using the term “situation” in the technical sense [6, 23, 50] where a situation
includes at least the elements of the situation, e.g., objects, events, people, systems,
environmental factors and their current states, e.g., locations, actions.

Fracker [29] described SA as the combining of new information with existing in-
formation for the purpose of developing a “composite picture of the situation along
with projections of future status and subsequent decisions as to appropriate courses
of action to take.” Dominguez et al. [23] added to this view an emphasis on the
“continuous extraction of environmental information” with the explicit feedback
loop that would use the developed perceptions and understanding to direct the next
collection of data.

Credited with seminal work in this field, Endsley [24] argues that “it is important
to distinguish the term situation awareness, as a state of knowledge, from the pro-
cesses used to achieve that state. These processes, which may vary widely among
individuals and contexts, will be referred to as situational assessment or the pro-
cess of achieving, acquiring, or maintaining SA.” Thus, in brief, situation awareness
is viewed as “a state of knowledge,” and situational assessment as “the processes”
used to achieve that knowledge. Endsley’s model illustrates three stages or steps of
SA formation: perception, comprehension, and projection. Perception is considered
Level 1 of a SA system. “The first step in achieving SA is to perceive the status,
attributes, and dynamics of relevant elements in the environment. Thus, Level 1 SA,
the most basic level of SA, involves the processes of monitoring, cue detection,
and simple recognition, which lead to an awareness of multiple situational elements
(objects, events, people, systems, environmental factors) and their current states (lo-
cations, conditions, modes, actions).”

By this framework, Level 2 in a SA is comprehension and is a synthesis of the
Level 1 SA elements through the “processes of pattern recognition, interpretation,
and evaluation. Level 2 SA requires integrating this information to understand how
it will impact upon the individual’s goals and objectives. This includes developing
a comprehensive picture of the world, or of that portion of the world of concern to
the individual.” The highest level of SA, Level 3, is “projection” or the ability to
predict the future actions of elements in the environment. “Level 3 SA is achieved
through knowledge of the status and dynamics of the elements and comprehension

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 39

of the situation (Levels 1 and 2 SA), and then extrapolating this information for-
ward in time to determine how it will affect future states of the operational environ-
ment” [24]. With SA, one does not guarantee successful decision-making, but does
provide some of the necessary input, it is argued, for successful decision-making
with cue recognition, situation assessment and prediction. As in self-aware systems,
goals play a key role in SA. Both multiple goals, the fact of competing goals, and
goal prioritization are emphasized in SA. However it appears that for most SA sys-
tems, these goals are “given” to it and predesigned, whereas in self-awareness (as
seen in Chapter 3) although there are certainly goals given to a self-aware system, it
is also expected that the self-aware system will alter and adapt even high-level goals
and possibly generate low-level goals.

Many researchers have discussed the limitations of the current SA approaches,
noting especially that the most widely cited models of SA lack support from the
cognitive sciences (Banbury and Tremblay, [6]) and that there is also important
mathematical and logical work to be done in defining these terms computationally
(M. Kokar, [59]). In terms of self-awareness processes, we would say that SA has
not yet incorporated the same sophistication (e.g., in learning, model-building) to
its internal models that it applies to its external models of the situation. That is, as
clearly seen from SA research, although SA certainly includes cognitive processes
such as “mental models,” attention and decision-making, there has historically in
SA been less of an emphasis on any reflection processes or self-models as used in
this volume. Although models are emphasized for use by the cognitive/intelligent
processes for situation awareness, these models are not explicit models of the sys-
tem itself, its reasoning and learning capabilities, or its limitations, but rather focus
on the objects and the situations to be perceived. It appears from Endsley and other
SA leading researchers that they are making some assumptions about what is useful
in terms of their class of problems. While in self-aware systems, we are recogniz-
ing the need for both short-term and longer-term processes, it appears that SA is
focused more on immediate and fast responses, proceeding from pattern recogni-
tion of key factors in the environment – “The speed of operations in activities such
as sports, driving, flying and air traffic control practically prohibits such conscious
deliberation in the majority of cases, but rather reserves it for the exceptions.” From
Endsley [26] it would appear that SA views some of the cognitive processes that
build models as largely “backward focused”, forming reasons for past events, while
situation awareness is typically forward looking, projecting what is likely to happen
in order to inform effective decision processes. In self-awareness, we see the ben-
efits for learning, understanding and model-building processes as leading to more
adaptive behavior in the long-term certainly, and even leading to better behavior at
runtime in accordance to real time requirements.

Related to SA is the area of research called “sensemaking.” Klein, Moon, and
Hoffman [43] distinguish between situation awareness and sensemaking as follows,
“situation awareness” is about the knowledge state that’s achieved – either knowl-
edge of current data elements, or inferences drawn from these data, or predictions
that can be made using these inferences (Endsley, [24]). In contrast, sensemaking
is about the process of achieving these kinds of outcomes, the strategies, and the

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



40 Cámara et al.

barriers encountered. (p. 71) Hence, Sensemaking is viewed more as “a motivated,
continuous effort to understand connections (which can be among people, places,
and events) in order to anticipate their trajectories and act effectively” (Klein et al.,
11, p.71) rather than the state of knowledge underlying situation awareness. Al-
though, Endsley [26] points out that sensemaking is actually considering a subset
of the processes used to maintain situation awareness, as noted above it is unclear
how such longer term processes like understanding, self-awareness and self-aware
models, and “sensemaking” fit into the current concepts of SA.

There has been an emphasis on SA on comparing the models of experts and
novices, noting how the available data in a complex environment can overwhelm the
novice’s ability to efficiently process that data (Endsley, [25]) and how “experts” in
contrast often have very efficient ways to notice and integrate a large amount of data.
Interestingly, although this result is in line with the experience in early Artificial In-
telligence with building “expert systems,” the focus of many SA studies appeared to
focus on cues in the environment to activate these mental models rather than internal
knowledge bases or rulesets that could become the basis for self-models. [73].

In the future, it will be interesting for the field of self-awareness to pull from
SA some very interesting research that they have been developing on how teams
of situationally aware human and robotic agents best work together. Team SA is
defined as “the degree to which every team member possesses the SA required for
his or her responsibilities” (Endsley [26], p.39). The success or failure of a team
depends on the success or failure of each of its team members. If any one of the
team members has poor SA, it can lead to a critical error in performance that can
undermine the success of the entire team. By this definition, each team member
needs to have a high level of SA on those factors that are relevant for his or her job.
It is not sufficient for one member of the team to be aware of critical information if
the team member who needs that information is not aware.

Shared situation awareness can be defined as “the degree to which team members
possess the same SA on shared SA requirements” (Endsley & Jones [25], p.47). As
implied by this definition, there are information requirements that are relevant to
multiple team members. A major part of teamwork involves the area where these
SA requirements overlap – the shared SA requirements that exist as a function of the
essential interdependency of the team members. In a poorly functioning team, two
or more members may have different assessments on these shared SA requirements
and thus behave in an uncoordinated or even counter-productive fashion. Yet in a
smoothly functioning team, each team member shares a common understanding of
what is happening on those SA elements that are common.

2.12 Symbiotic Cognitive Computing

Symbiotic Cognitive Systems (SCS) [42] are multi-agent systems comprising both
human and software agents that collectively perform cognitive tasks such as decision-
making better than humans or software agents can by themselves. A driving princi-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 41

ple of symbiotic cognitive systems is that humans and intelligent agents each have
their respective cognitive strengths and weaknesses. The goal is not to surpass hu-
mans at challenging intellectual tasks such as chess or Jeopardy!, but rather to create
agents that both support and rely upon humans in accomplishing cognitive tasks.
This philosophy traces its lineage back to the vision espoused by Licklider in his
essay on Man-Computer Symbiosis [49], and is today experiencing a revival among
researchers in academia and industry who are pursuing aspects of the symbiotic cog-
nitive systems research agenda from a variety of perspectives. One realm in which
the principles and technologies of SCS are being applied is robotics, exemplified
in the work of Rosenthal, Veloso and colleagues at Carnegie Mellon University
on the co-bot [66, 68]. One also finds aspects of symbiotic cognitive computing
in cognitive assistants such as Apple’s Siri and IPsoft’s Amelia (designed for help
desks and related applications), and in the cognitive boardroom being developed by
IBM Research [42], in which a multi-agent system interacts with humans via speech
and gesture to provide seamless access to information and support for high-stakes
decision-making.

One aspect of the challenge of creating SCS is that of developing algorithms
(and the agents in which they are embodied) that are at least as competent as hu-
mans at the cognitive task for which they are designed. This task is made somewhat
easier by focussing efforts on those aspects of cognition for which human biases,
irrationality, and other deficiencies are well-documented [3, 39, 78], and for which
machines seem inherently better suited. A second general class of challenges for
symbiotic systems is related to making human-agent interactions as seamless as
possible. These include:

• Developing multi-modal forms of interaction that combine speech, gesture,
touch, facial expression, and perhaps other manifestations of emotion [75];
• Learning mental models of other agents and humans, including their intent, to

form a basis for adapting behavior so as to improve the speed and likelihood of
accomplishing a task that the collective is trying to solve [68, 79]; and
• Storing, maintaining, and retrieving mental models of the environment, the task,

and the other agents and human participants in the task to provide a shared
context that can be used for communication among humans and agents [52,67];

Kephart [42] discussed correspondences between autonomic computing systems
and symbiotic computing systems, including the need for a means by which humans
can effectively communicate objectives to the system and the fact that the natural
architecture for both is a multi-agent system, and hence issues of inter-agent com-
munication and interaction are very important. Moreover, self-management in all of
its usual forms (self-optimization, self-healing, self-configuration, etc.) is essential
for cognitive applications and the cognitive services from which they are built. A key
difference is that, in SCS, humans are not just regarded as providers of high-level
goals, but are expected to collaborative deeply with symbiotic cognitive systems,
interacting with them constantly.

Given the strong overlap between autonomic computing systems and self-aware
systems (detailed in Section 2.4), there is also a strong relationship between SCS

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



42 Cámara et al.

and self-aware computing systems. A three-way comparison among AC, SCS, and
Self-Aware systems is instructive. Like self-aware computing systems, but unlike
autonomic computing systems, SCS do not require that agents take action. The rea-
son that some software agents within an SCS may be self-aware without being auto-
nomic is that they are not expected to perform all cognitive tasks by themselves, but
instead to work collaboratively with humans. As a result, they may propose actions
to humans, who can then use their judgment to decide whether or not to follow the
agent’s recommendations. Another connection between SCS systems and self-aware
computing systems is that, while it is not a strict requirement, SCS are expected to
learn models of intent and likely behavior by other participants (including both soft-
ware agents and humans). In the case of SCS, there is a slight twist – the models
may be used not just to manage resources wisely according to fixed goals, but the
goal itself (the intent of the human users of the system) may not be revealed fully
at the outset, so behavior models may be used to predict future goals and actions –
thereby enabling the system to configure itself appropriately in anticipation of what
it may be asked to do.

2.13 Auto-Tuning

Auto-Tuning covers techniques from High Performance Computing (HPC), which
automate the process of performance tuning for scientific applications (e.g., weather
forecasts and genome expression analysis). Various approaches have been devel-
oped throughout the past decades [13, 54, 61, 64, 65, 76, 80, 83].

The motivation for auto-tuning in HPC is the problem that the frequency of new
hardware increases, but the required time to manually tune high-performance code
for this new hardware remains unchanged. Hence, approaches to automate the per-
formance tuning for new hardware are needed.

The common way of performance tuning in HPC relies on source code transfor-
mations. Thus, the goal of auto-tuning approaches is to find those source code trans-
formations, which improve performance. A basic prerequisite of most auto-tuning
approaches is the existence of a kernel library. Such a library contains kernel (i.e.,
core) algorithms, which are used by scientific applications. Auto-tuning is applied
to those kernel libraries instead of the applications themselves. This adheres to stan-
dard principles in HPC, where manually optimized kernel libraries are commonly
used. The application of auto-tuning enhances these libraries with code transforma-
tions, which adjust the libraries’ algorithms to the given hardware architecture.

In general, there is a distinction between static and dynamic approaches, de-
pending on when decision-making takes place. This is either at compilation-time,
denoting static auto-tuning, or at runtime, denoting dynamic auto-tuning.

Auto-tuning approaches are closely related to self-adaptive systems (SAS) in
that they realize feedback loops. For example, the CADA loop [22] is realized in
the following way: (1) information about the available hardware is collected, (2)
this information is analyzed with respect to its effect on the kernel algorithms, (3) a

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 43

decision selecting code transformations improving (or optimizing) the performance
of the kernel algorithms is made and (4) the code transformations are applied (act).

Thus, auto-tuning can be seen as a special kind of SAS, which operates on source
code level with a restricted focus on scientific applications (i.e., HPC). Notably, ap-
proaches of the SAS community usually realize the feedback loop on higher lev-
els of abstraction. Commonly, the elements of variation are components, features
or classes, whereas auto-tuning works on source code statements. Auto-tuning ap-
proaches mainly apply techniques known from compiler optimization like loop un-
rolling to identify code variants that optimally utilize the underlying hardware (e.g.,
by not exceeding the number of available registers or available memory).

2.14 Constructive Definition

According to our definition, self-aware systems are complex systems that while
in operation might need to access and analyze pieces of information about them-
selves and about the execution environment. In large part this information is made
available/created and managed during the various phases of development, e.g. de-
sign, architectural structure, code structure, execution machine structure, deploy-
ment information. Thus, it is recognized nowadays that developing self-* systems
requires some activities that traditionally occur at development time to be moved to
run time [2, 7, 36]. Activities here refer to the usual development process activities
extended with execution monitoring activities. Responsibilities for these activities,
shift from developers to the system itself, the self part, causing the traditional bound-
ary between development time and run time to blur. If a system needs to adapt in
order to better respond to an increased and unexpected load of service requests, it
might decide to change its configuration e.g. by substituting one of its components
by a more efficient one. In practice, this means being able to detect the situation by
monitoring and analyzing the execution environment and its own behavior and also
to carry on re-configuration activities at run time in a correct and time-efficient way.

The discriminating factor for deciding whether an activity has to be performed at
development time or at run time is cost. Cost can be explained in terms of resources
needed to take responsibility of the activity and its achievement. Resources can be
software and hardware capabilities ultimately resulting in time or memory costs that
need to be affordable with respect to the system goal and operational requirements.

Service oriented and cloud computing paradigms permit reconsidering offline
activities in a new perspective making it possible for a self-aware system to rely
on heavy loaded system infrastructure for self-* system attributes thus in practice
mitigating the traditional cost-driven dichotomy between compile time vs. run time.

This consideration leads us to consider also a constructive definition of self-aware
computing systems that stresses the fact that the question is not only whether it is
possible to make a system or portions of it system self-aware, but also whether
it is economically reasonable/sustainable. This requires to focus on the amount of
resources, software and hardware, that may be needed in order to support the self-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



44 Cámara et al.

awareness degrees of a system. The cost factor thus becomes the self-enabling factor
that may influence design and architectural choices, coding and execution choices
as well as monitoring and analysis system capabilities, and may ultimately deter-
mine whether in given conditions it is actually possible to develop, and how, a self-
aware system. This also impacts the complexity of the techniques used to achieve
self-awareness that may be more or less advanced depending on whether they are
economically justified and sustainable.

So the extent to which a self-aware computing systems is able to learn knowl-
edge about itself and/or its environment and reason and adapt to internal and external
changes it is heavily dependent on development choices (design, architecture, pro-
gramming languages, coding techniques), and deployment constraints (deployment
infrastructure, resource availability). This requires quantitative reasoning capabili-
ties at the process definition level as suggested in [2]. Depending on the system life-
time these development choices may also be re-discussed; what could have been too
costly at a certain stage of maturity of the system and of the technology may become
convenient and affordable at a later stage of maturity. This suggests the architecture
of the system to be flexible enough to easily accommodate evolutions of system the
with respect to its self aware degrees.

2.15 Summary

The area of self-aware computing systems is still incipient, but promising concern-
ing the construction of systems that are required to learn models on an ongoing
basis, and use them to reason about aspects related to the purpose for which the
systems themselves were built.

Self-aware computing systems pose new opportunities and challenges for the re-
search and engineering communities, some of which are related to prior experience
in different disciplines.

This chapter has reviewed different concepts and research areas strongly related
to self-aware computing. Different sections have explored topics like AI, autonomic
computing, self-organizing systems, or cognitive computing, among others, as well
as their relation to self-aware computing systems and potential opportunities for
cross-polination. Moreover, the landscape outlined in this chapter provided the ba-
sis for a constructive definition of self-aware computing system, as well as for some
considerations concerning the different factors that influence the feasibility and the
capabilities of a self-aware computing system. These considerations serve as a start-
ing point to investigate important questions related to the conditions under which it
is possible to actually develop a self-aware computing system, and in what way.

Acknowledgements The authors thank Lukas Esterle, Kurt Geihs, Philippe Lalanda, Peter Lewis,
and Andrea Zisman for the useful feedback provided during the elaboration of this chapter.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 45

References

1. 31st International Conference on Software Engineering, ICSE 2009. IEEE, 2009.
2. Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra Gorla,

Paola Inverardi, and Thomas Vogel. Software engineering processes for self-adaptive systems.
In Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle,
Germany, October 24-29, 2010 Revised Selected and Invited Papers, pages 51–75, 2010.

3. Dan Ariely. Predictably irrational the hidden forces that shape our decisions. Harper Collins,
New York, 2010.

4. W. Ross Ashby. Principles of the self-organizing system. In Principles of SelfOrganization:
Transactions of the University of Illinois Symposium.

5. M. Autili, P. Inverardi, and M. Tivoli. Automated synthesis of service choreographies. Soft-
ware, IEEE, 32(1):50–57, Jan 2015.

6. S. Banbury and S. Tremblay. A cognitive approach to situation awareness: Theory and appli-
cation. Aldershot, UK: Ashgate Publishing, 2004.

7. Luciano Baresi and Carlo Ghezzi. The disappearing boundary between development-time
and run-time. In Proceedings of the Workshop on Future of Software Engineering Research,
FoSER 2010, at the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, pages 17–22, 2010.

8. K.L. Bellman and C. Landauer. A web of reflection processes may help to de-conflict and
integrate simultaneous self-optimization. In SAOS 2014: The 2nd International Workshop on
Self-optimisation in Organic and Autonomic Computing Systems.

9. K.L. Bellman and C. Landauer. Towards an integration science. Journal of Mathematical
Analysis and Applications, 249(1):3–31, 2000.

10. K.L. Bellman, C. Landauer, and P.R. Nelson. Developing mechanisms for determining “good
enough” in sort systems. In Second IEEE Workshop on Self-Organizing Real Time Systems,
2011.

11. K.L. Bellman, C. Landauer, and P.R. Nelson. chapter System Engineering for Organic Com-
puting: The Challenge of Shared Design and Control between OC Systems and their Human
Engineers, pages 25–80. Understanding Complex Systems Series. Springer, 2008.

12. Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon S. Blair, and Valérie Issarny. The role
of models@run.time in supporting on-the-fly interoperability. Computing, 95(3):167–190,
2013.

13. Jeff Bilmes, Krste Asanovicy, Chee-Whye Chinz, and Jim Demmel. Optimizing matrix mul-
tiply using PHiPAC: a portable, high-performance, ANSI C coding methodology. In Pro-
ceedings of the 11th International Conference on Super Computing, pages 340–347. ACM,
1997.

14. G. Blair, N. Bencomo, and R.B. France. Models@ run.time. Computer, 42(10):22–27, Oct
2009.

15. Rodney A. Brooks. Cambrian Intelligence: The Early History of the New AI. MIT Press,
Cambridge, MA, USA, 1999.

16. Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-Adaptive Sys-
tems through Feedback Loops. In Software Engineering for Self-Adaptive Systems, 2009.

17. Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, and Giordano
Tamburrelli. Dynamic qos management and optimization in service-based systems. IEEE
Trans. Software Eng., 37(3):387–409, 2011.

18. Betty H.C. Cheng et al. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In Software Engineering for Self-Adaptive Systems. Springer, 2009.

19. Shang-Wen Cheng, VaheV. Poladian, David Garlan, and Bradley Schmerl. Improving
architecture-based self-adaptation through resource prediction. In Software Engineering for
Self-Adaptive Systems. Springer, 2009.

20. Michel Cotsaftis. From System Complexity to Emergent Properties, chapter What Makes a
System Complex? - An Approach to Self Organization and Emergence, pages 49–99. Springer,
2009.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



46 Cámara et al.

21. Rogério de Lemos et al. Software Engineering for Self-Adaptive Systems: A second Research
Roadmap. In Software Engineering for Self-Adaptive Systems II. Springer, 2013.

22. Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaı̈ti, Erol Gelenbe, Fabio
Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli. A survey
of autonomic communications. ACM Transactions on Autonomous and Adaptive Systems,
1(2):223–259, 2006.

23. Vidulich M. Vogel E. Dominguez, C. and G. McMillan. Situation awareness: Papers and
annotated bibliography. Armstrong Laboratory, Human System Center, ref. AL/CF-TR-1994-
0085, 1994.

24. M.R. Endsley. Toward a theory of situation awareness in dynamic systems. Human Factors,
37(1):32–64, 1995.

25. M.R. Endsley. The role of situation awareness in naturalistic decision making. 1997.
26. M.R. Endsley. Situation awareness: Progress and directions. 2004.
27. Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Model evolution

by run-time parameter adaptation. In 31st International Conference on Software Engineering,
ICSE 2009 [1], pages 111–121.

28. European Commission. Digital Agenda for Europe - Future Internet Research and Experi-
mentation (FIRE) initiative, 2015.

29. M.L. Fracker. Measures of situation awareness: Review and future directions (report no. al-tr-
1991-0128), 1991b. Wright-Patterson Air Force Base, OH: Armstrong Laboratories.

30. Robert B. France and Bernhard Rumpe. Model-driven development of complex software: A
research roadmap. In International Conference on Software Engineering, ISCE 2007, Work-
shop on the Future of Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis, MN,
USA, pages 37–54, 2007.

31. Cristina Gacek, Holger Giese, and Ethan Hadar. Friends or Foes? – A Conceptual Analysis
of Self-Adaptation and IT Change Management. In Proc. of the ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2008), pages 121–128. ACM,
May 2008.

32. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R. Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE
Computer, 37(10):46–54, 2004.

33. Chang-chieh Hang and P. Parks. Comparative studies of model reference adaptive control
systems. IEEE Transactions on Automatic Control, 18(5):419–428, October 1973.

34. Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A framework for
proactive self-adaptation of service-based applications based on online testing. In Towards a
Service-Based Internet. Springer, 2008.

35. Paul Horn. Autonomic Computing: IBM’s Perspective on the State of Information Technol-
ogy. Technical report, 2001.

36. Paola Inverardi and Massimo Tivoli. The future of software: Adaptation and dependability.
In Software Engineering, International Summer Schools, ISSSE 2006-2008, Salerno, Italy,
Revised Tutorial Lectures, pages 1–31, 2008.

37. Rolf Isermann, Karl-Heinz Lachmann, and Drago Matko. Adaptive Control Systems. Prentice
Hall International series in systems and control engineering. Prentice Hall, New York, 1992.
ISBN 0-13-005414-3.

38. Valerie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Panos Vassiliadist,
Marco Autili, MarcoAurlio Gerosa, and AmiraBen Hamida. Service-oriented middleware
for the future internet: state of the art and research directions. Journal of Internet Services and
Applications, 2(1):23–45, 2011.

39. Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New York, 2011.
40. Gorazd Karer and Igor Skrjanc, 2012.
41. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,

36(1):41–50, 2003.
42. Jeffrey O. Kephart and Jonathan Lenchner. A symbiotic cognitive computing perspective on

autonomic computing. In 2015 IEEE International Conference on Autonomic Computing,
pages 109–114. IEEE Computer Society, 2015.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 47

43. Moon B Klein, G. and R.R. Hoffman. Making sense of sensemaking 1: Alternative perspec-
tives. IEEE Intelligent Systems, 21(4):70–73, 2006.

44. Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In FOSE
’07: 2007 Future of Software Engineering, 2007.

45. C. Landauer. Infrastructure for studying infrastructure. In ESOS 2013: Workshop on Embed-
ded Self-Organizing Systems.

46. C. Landauer and K.L. Bellman. Generic programming, partial evaluation, and a new program-
ming paradigm.

47. C. Landauer and K.L. Bellman. Self-modeling systems.
48. Wenchao Li, Dorsa Sadigh, S.Shankar Sastry, and SanjitA. Seshia. Synthesis for human-

in-the-loop control systems. In Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2014.

49. J. C. R. Licklider. Man-machine symbiosis. IRE Transactions on Human Factors in Electron-
ics, HFE-1:4–11, March 1960.

50. Mieczyslaw Kokar M. and M.R. Endsley. Situation awareness and cognitive modeling. IEEE
Intelligent Systems, 27(3):91–96, 2012.

51. P. Maes and D. Nardi (eds.). Meta-Level Architectures and Reflection. 1986.
52. Matthew Marge and Alexander I. Rudnicky. Towards evaluating recovery strategies for sit-

uated grounding problems in human-robot dialogue. In IEEE International Symposium on
Robot and Human Interactive Communication, IEEE RO-MAN 2013, pages 340–341. IEEE,
2013.

53. Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud computing.
Technical report, Gaithersburg, MD, United States, 2011.

54. A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque. MATE: Monitoring, analysis
and tuning environment for parallel/distributed applications. Concurrency and Computation:
Practice and Experience, 19(11):1517–1531, 2007.

55. Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R. Schmerl. Proactive self-
adaptation under uncertainty: a probabilistic model checking approach. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
1–12, 2015.

56. Brice Morin, Olivier Barais, Grégory Nain, and Jean-Marc Jézéquel. Taming dynamically
adaptive systems using models and aspects. In 31st International Conference on Software
Engineering, ICSE 2009 [1], pages 122–132.

57. Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg, Vegard
Dehlen, and Gordon S. Blair. An aspect-oriented and model-driven approach for managing
dynamic variability. In Model Driven Engineering Languages and Systems, 11th International
Conference, MoDELS 2008, pages 782–796, 2008.

58. Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, editors. Organic Computing
- A Paradigm Shift for Complex Systems. Springer, 2011.

59. B.E. Ulicny M.M. Kokar and J.J. Moskal. Ontological structures for higher levels of dis-
tributed fusion. 2012.

60. Hyacinth S. Nwana. Software agents: an overview. Knowledge Eng. Review, 11(3):205–244,
1996.

61. Jakob Ostergaard. Discrete optimization of the sparse QR factorization.
http://unthought.net/OptimQR/OptimQR/report.html, Oct 1998.

62. Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. IEEE Computer, 40(11), 2007.

63. Manish Parashar and Salim Hariri. Autonomic computing: An overview. In Unconventional
Programming Paradigms. Springer, 2005.

64. Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, special issue on “Program Generation, Optimization, and Adapta-
tion”, 93(2):232– 275, 2005.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



48 Cámara et al.

65. R. Ribler, J. Vetter, H. Simitci, Huseyin Simitci, and Daniel A. Reed. Autopilot: Adaptive
control of distributed applications. In Proceedings of the 7th IEEE Symposium on High-
Performance Distributed Computing, pages 172–179, 1998.

66. Stephanie Rosenthal, Joydeep Biswas, and Manuela M. Veloso. An effective personal mo-
bile robot agent through symbiotic human-robot interaction. In Wiebe van der Hoek, Gal A.
Kaminka, Yves Lespérance, Michael Luck, and Sandip Sen, editors, 9th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 915–922. IFAA-
MAS, 2010.

67. Stephanie Rosenthal, Sarjoun Skaff, Manuela M. Veloso, Dan Bohus, and Eric Horvitz. Exe-
cution memory for grounding and coordination. In Hideaki Kuzuoka, Vanessa Evers, Michita
Imai, and Jodi Forlizzi, editors, ACM/IEEE International Conference on Human-Robot Inter-
action, HRI 2013, pages 213–214. IEEE/ACM, 2013.

68. Stephanie Rosenthal, Manuela M. Veloso, and Anind K. Dey. Task behavior and interaction
planning for a mobile service robot that occasionally requires help. In Automated Action
Planning for Autonomous Mobile Robots, Papers from the 2011 AAAI Workshop, volume WS-
11-09 of AAAI Workshops. AAAI, 2011.

69. Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education, 2010.

70. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.

71. Peter Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkelstein.
Requirements-aware systems: A research agenda for RE for self-adaptive systems. In RE
2010, 18th IEEE International Requirements Engineering Conference, pages 95–103, 2010.

72. Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, and Francis J. Doyle, 2011.
73. MacMillan J. Entin E.E. Serfaty, D. and E.B. Entin. The decision-making expertise of battle

commanders. 1997.
74. Mary Shaw. Beyond objects: A software design paradigm based on process control. ACM

SIGSOFT Software Engineering Notes, 20(1):27–38, 1995.
75. Stefanie Tellex, Pratiksha Thaker, Joshua Mason Joseph, and Nicholas Roy. Learning percep-

tually grounded word meanings from unaligned parallel data. Machine Learning, 94(2):151–
167, 2014.

76. A. Tiwari and J.K. Hollingsworth. Online adaptive code generation and tuning. In Proceedings
of 2011 International Symposium on Parallel Distributed Processing (IPDPS), pages 879–
892, 2011.

77. Romina Torres, Nelly Bencomo, and Hernán Astudillo. Market-awareness in service-based
systems. In Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems Workshops, SASOW 2012, pages 169–174, 2012.

78. Amos Tversky and Daniel Kahneman. Judgment under Uncertainty: Heuristics and Biases.
Science, 185(4157):1124–1131, September 1974.

79. Laura Pfeifer Vardoulakis, Lazlo Ring, Barbara Barry, Candace L. Sidner, and Timothy W.
Bickmore. Designing relational agents as long term social companions for older adults. In
Intelligent Virtual Agents - 12th International Conference, IVA 2012, volume 7502 of LNCS,
pages 289–302. Springer, 2012.

80. Michael J. Voss and Rudolf Eigemann. High-level adaptive program optimization with adapt.
In Proceedings of the eighth ACM SIGPLAN symposium on principles and practices of paral-
lel programming, PPoPP ’01, pages 93–102. ACM, 2001.

81. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–104, Septem-
ber 1991.

82. Kristopher Welsh, Pete Sawyer, and Nelly Bencomo. Towards requirements aware systems:
Run-time resolution of design-time assumptions. In 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), pages 560–563, 2011.

83. R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



2 Self-Aware Computing Systems: Related Concepts and Research Areas 49

84. Tom Wolf and Tom Holvoet. Engineering Self-Organising Systems: Methodologies and Ap-
plications, chapter Emergence Versus Self-Organisation: Different Concepts but Promising
When Combined, pages 1–15. Springer, 2005.

85. Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: theory and practice. Knowl-
edge Eng. Review, 10(2):115–152, 1995.

86. Jun Xu, Pinyao Guo, Mingyi Zhao, Robert F. Erbacher, Minghui Zhu, and Peng Liu. Compar-
ing different moving target defense techniques. In Proceedings of the First ACM Workshop on
Moving Target Defense, MTD ’14, pages 97–107. ACM, 2014.

87. Eric Yuan, Naeem Esfahani, and Sam Malek. Automated mining of software component in-
teractions for self-adaptation. In Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, pages 27–36. ACM.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!




