Bachelor Thesis

Julius-Maximilians-

UNJVERSITAT
WURZBURG

Remote Attestation for loT with
Smart Verifier

Lukas Petzi
Department of Computer Science
Chair of Computer Science Il (Software Engineering)

Prof. Dr.-Ing. Alexandra Dmitrienko
First Reviewer

Ala Ben Yahya
First Advisor

Submission
21. January 2021 www.uni-wuerzburg.de

Contents

1. Introduction

2. Background|
2.1. Remote Attestation].
2.2. Blockchain and Smart Contract/
2.3. Sawtooth Hyperledger|

3. Related Work
B3.1. Hardware-based
3.2. Software-based
3.3. Hybrid-based
[3.4. Attestation from the Provers Point of View| . . .

13.5. Remote Attestation in combined with Blockchain Technology|

4. Approach
4.1. Blockchain as Verifier]
[4.2. The Prover Devicel
4.3. Communication|
4.4. Attacker Modell

5. Implementation|
5.1. The Prover Device
5.2. Choice of Blockchain Platform|
5.3. Implementation of the Prover Device|
5.3.1. Secure Application|
5.3.1.1. Configuring TrustZone|

[5.3.1.2. Calculation of Attestation Evidence]

5.3.1.3. Building the Attestation Evidence Message|

5.3.1.4. Building the Blockchain Query] .
5.3.2. Non-Secure Application|
5.3.2.1. Setting up the WiFi board . . .
5.3.2.2. Setting up the MQTT Client| . .

5.3.2.3. Communication with Blockchain and Secure World

5.4. Implementation of Transaction Families|

5.4.1. TImplementation of Administrator Transaction Family|

5.4.2. Implementation of Attestation Transaction Family|

5.4.3. Other used Transaction Families|

6.1. Performance Evaluation|
6.2. Security Evaluation|.
6.2.1. Attacker located on Prover Devicel
[6.2.2. Attacker located outside of Prover Devicel

iii

11

13
13
14
15
17
18

21
22
23
23
24

s Contents

—.

43
LList of Figures| 45
45
Listings 47
51
55

A, First Appendix Section|. Lo 55

iv

Abstract

The Internet is evolving. The Internet of Things (IoT) is a disruptive technology, billions
of small and smart devices are encompassing every aspect of our lives, which leads us to a
new era of the Internet. IoT connects billions of heterogeneous embedded devices in large
networks. Restricted capabilities of the devices in combination with various mutually mis-
trusting parties throughout the network pose new challenges to security. As IoT devices
become increasingly important, so does trust in their secure and reliable operation. But
before we can trust them, we need to establish the trust. In the past, remote attestation
has emerged into a very powerful tool in order to establish trust between devices. Tra-
ditional remote attestation establishes a static trust between two devices. This approach
suffers badly heterogeneity of IoT network and purely scales to a large number of devices.
Furthermore, it is very vulnerable to Denial of Service attacks.

Within this thesis, we present a new approach to Remote Attestation in IoT networks. Our
design combines the core strength of Remote Attestation with the advantages blockchain
technology in order to enable attestation and validation of attestation evidences in a scal-
able manner. At first, we develop a remote attestation scheme on a low end device serving
as an exemplary IoT device. Second, we design our smart verifier, a flexible system capable
of validating and storing attestation evidence. The system is build on top of blockchain
technology and solves several issues accompanied by Traditional Remote Attestation in
IoT such as scalability and device heterogeneity. In the end, we build and evaluate a
proof of concept implementation based on ARM TrustZone and Sawtooth Hyperledger.
The proposed system architecture enables trust establishment in a scalable manner even
in heterogeneous networks while preventing denial of service attacks.

Zusammenfassung

Das Internet verdndert sich. Das Internet der Dinge (IoT) ist eine disruptive Technolo-
gie, Milliarden kleiner und intelligenter Gerdte dringen in jeden Bereich unseres Lebens
vor, und fithrt uns damit in ein neues Zeitalter des Internets. Das Internet der Dinge
verbindet Milliarden heterogener eingebetteter System innerhalb riefliger Netzwerke. Die
beschrankten Moglichkeiten der Geréte in Verbindung mit zahlreichen sich gegenseitig Mis-
strauenden Parteien innerhalb des Netwerkes stellt Sicherheit vor neue Herausforderungen.
Dadurch, dass IoT immer wichtiger wird, ist unser Vertrauen in die sichere und verléssliche
Arbeitsweise immer wichtiger. Aber bevor wir dieses Vertrauen aussprechen konnen, muss
es aufgebaut werden. In der Vergangenheit hat sich gezeigt, dass Remote Attestation ein
verldssliches Werkzeug ist um Vertrauen zwischen Geréten zu etablieren. Traditionelles
Remote Attestation sorgt fiir Vertrauen zwischen zwei Geréten. Dieser Ansatz leidet stark
unter der Heterogenitét von IoT Netwerken und der groflien Anzahl der Gerate. Auflerdem
ist es sehr Anfillig fiir Denial of Service Angriffe.

In dieser Arbeit présentieren wie einen neuen Ansatz fiir Remote Attestation im Inter-
net der Dinge. Unser Design verbindet die Stdrken von Remote Attestation mit den
Vorteilen von Blockchain Technologien um Attestierung und Validierung der Resultat in
einer Skalierbaren Form zu ermdoglichen. Zu Beginn entwerfen wir ein Remote Attestation
Schema fiir ein simples Endgerite, das exemplarisch als IoT Geréte fungiert. Im An-
schluss entwerfen wir unseren Smart Verifier, ein flexibles System mit der Moglichkeit die
Resultate von Attestierungsprozessen zu validieren und zu speichern. Das System wurde
basieren auf Blockchain Technologien entwickelt und 16st zahlreiche Probleme einherge-
hend mit traditionallem Remote Attestation in IoT wie die Skalierbarkeit und Heterogen-
itdt der Geréite. AbschlieBen wurde eine Proof of Concept Implementierung durchgefiihrt
und evaluiert basieren auf ARM TrustZone und Sawtooth Hyperledger. Die vorgestellte
Systemarchitektur ermoglicht es auch in groflen und heterogenen Netwerken vertrauen
zwischen Geriten aufzubauen und verhindert gleichzeitig Denial of Service Angriffe.

1. Introduction

The Internet of Things impacts our society more then ever before. There are seemingly
endless use cases for IoT systems and therefore more and more embedded devices are
being deployed. These devices are used in various settings ranging from wearables and
smart home solutions all the way up to industrial usage in smart factories or smart cities.
Billions of IoT devices are already deployed and numbers are constantly rising [1]. The
increasing integration into our daily life paired with connectivity, collection of sensitive
data and execution of security critical operations make embedded devices an attractive
target for attackers. To protect sensitive data in an IoT network it is necessary to ensure
the integrity of all used devices.

In the future there will be millions of IoT devices within the same network. Due to the
fact that all these devices usually communicate with each other, IoT networks are very
vulnerable to common attacks like sinkhole [2] or man-in-the-middle attacks [3]. With
sinkhole attacks, for example, an intruder can easily compromise the security of a network
by only compromising a single device. But malicious IoT devices or even whole malicious
networks can form more complex large scaling attacks like an example of 2018 shows where
GitHub was victim of the until now biggest denial of service attack where at peak 1.35
Thbps traffic tried to bring down GitHub servers [4].

Despite all concerns, security is not a priority for most low end IoT device manufacturers,
due to cost, size and power constrains. Thereby, most IoT devices lack on security features.
Their simple design and restricted capabilities leave most IoT devices very vulnerable to
attackers as many strong security mechanisms like for example firewalls cannot be applied
to a simple IoT device. But it is unrealistic to expect low end devices to have the means
to prevent malware attacks. Because of that, it is crucial to deploy a reliable mechanism
that detects malicious devices. Therefore, it can help to establish trust between different
devices. Establishing trust using a unified scheme is complicated due to the large number
of devices and the heterogeneity of IoT networks. Additionally, IoT networks usually inter-
connect devices form different parties and vendors which are usually mutually mistrusting,.
In order to establish trust within an IoT nework, we need a procedure that can be easily ap-
plied to every device and provides information about the internal state of the device. This
procedure is called, Remote Attestation (RA). The term RA was introduced by Trusted
Computing Group and describes the process of one device, usually called verifer, at-
testing the internal state of another device, called prover, in order to identify whether the
prover is compromised or not.

Attestation techniques can be divided in three different categories [6]: (1) software-based,
(2) hardware-based and (3) hybrid-based. Software-based attestation schemes usually ex-

6 1. Introduction

ploit the computational limit of embedded devices. This means they use the fact that the
execution of specific algorithms takes a specific amount of time using the device’s compu-
tational limit. Software-based attestation techniques usually rely on strong assumptions
like the adversery being passive during the whole attestation process and require detailed
knowledge about network delays to prevent false positives and is thereby not suitable for
large scale and dynamic IoT networks. The hardware-based attestation techniques require
specific secure hardware such as Trusted Platform Module (TPM) [5]. Most of these secure
hardware solutions scale poorly to IoT networks due to their high complexity and costs.
But there are some very promising options especially for industrial IoT where security is
very important in order to protect intellectual property as well as other sensitive data. The
most promising one of these solutions is ARM TrustZone. It does not provided remote
attestation by itself, but the hardware architecture allows the developer to implement an
own attestation scheme. With TrustZone, ARM developed a technology that separates
memory space of a single core device into secure and non-secure. The so-called secure
world can run cryptographic operations and store private data like cryptographic keys.
These boards are built quite small and are available of the shelf while not being very
expensive. Finally, there are hybrid Remote Attestation Schemes which are a mixture
out of both techniques. They usually rely on software based attestation combined with
some minor secure hardware modification capabilities, such as Read Only Memory (ROM)
to store cryptographic keys. This combination does not rely on strong assumptions like
software based attestation and is also not dependent on significant hardware modification,
but can be deployed with only a few small changes to common off the shelf IoT devices.
These features make hybrid attestation schemes suitable for most low end IoT devices who
have the appropriate hardware.

Traditional RA was not developed targeting a large number of heterogeneous IoT devices
but targeting PCs. This leaves traditional remote attestation schemes with some chal-
lenges to overcome when applying it to IoT. Apart from the attestation scheme itself,
validating and storing attestation evidences is a defiance to solve when talking about re-
mote attestation in IoT. Most schemes either have device to device communication to
exchange attestation messages or use a central authority like a server to store and verify
the evidences. But unfortunately, both approaches offer some major drawbacks. Device
to device communication for attestation must tackle a key management challenge as it
requires the devices to have a shared secret in order to verify the authenticity of the re-
ceived evidence. This is not applicable to large IoT networks as this approach does not
scale. That is because, a single device requires a unique shared secret for every other
device within the network in order to be able to attest them. Another downfall of this
approach is the possibility of denial of service attacks. A malicious device can just ask
another device for attestation over and over again. This will keep the device from doing
anything but calculating attestation evidences. In order to mitigate this issue, one could
introduced a central authority that ask for attestation and validates received evidences.
This introduces a single point of failure as the system is highly dependent on the central
authority and attackers can easily run denial of service attacks by shutting down the cen-
tral server. Another downside of this approach is that one must introduce a trusted party
into a highly dynamic and heterogeneous network. IoT devices are usually controlled by
different parties and this approach requires all of them to trust the central authority in
order to run remote attestation. This is also a problem with swarm attestation schemes
[8]. These schemes are developed to attest a large number of devices but usually require
the devices to have similar hardware and software configurations and are thereby not ap-
plicable to heterogeneous networks.

In order to solve the issues discussed above, our idee is to use a blockchain as decentral-
ized authority and a smart contract to handle attestation requests and validate incoming
attestation evidences. Additionally, we made our attestation results publicly verifiable

and use transactions in order to exchange attestation evidences and requests. This comes
with the benefit, that we are able to drastically reduce the number of saved keys on a
device as we do not need any shared secrets anymore but can use public key cryptography.
Additionally, we have a decentralized authority and all data is publicly verifiable for every
network participant. In addition to that, by using a smart contract as a verifier, we solve
the problem with denial of service attacks. With introduction of the blockchain technol-
ogy, we remove the direct device to device communication during the attestation process
and mitigate denial of service attacks made possible by flaws in traditional RA. Even sub-
mitting a large amount of transactions requesting attestation is not feasible anymore.
The following thesis is structured as follows. The first upcoming chapter is the back-
ground chapter. This chapter provides all necessary information required to understand
this thesis. Chapter (3| discusses the current related work in this area of research. It
first comprehends current traditional remote attestation schemes before heading further
towards remote attestation in combination with blockchain technology. In the following
chapter we discuss our approach. In the beginning, some overall challenges with remote
attestation in IoT are explained before presenting our approach of using a blockchain as a
central authority to solve this challenges. Additionally, the used prover device and the at-
tacker model is described. Chapter |5/is the implementation section. This section explains
the implementation required to realize the presented approach and all used components.
After the implementation section comes the evaluation in chapter [6l The Evaluation sec-
tion is divided in performance evaluation of the system and a security evaluation. In the
end, a conclusion is drown summarizing the overall thesis.

Contributions and Outline The contributions of this bachelor thesis can be summarized as
follows:

e Hardware-based attestation scheme utilizing ARM TrustZone. We propose a hardware-
based remote attestation scheme build on top of ARM TrustZone. It has a secure
and non-secure application and is able to measure its internal state as well as com-
municating with the blockchain.

e Decoupling Prover and Verifier. The analysis of traditional remote attestation
schemes in chapter |2| discovers that trust establishment based on remote attesta-
tion will not scale to larger networks due to single device-to-device communication
patterns. With decoupling the prover and verifier pairs in our system, we enable
scalability for remote attestation.

e Public Verifiability of Remote Attestation. In chapter|4|the introduced smart verifi-
cation authority is designed. The usage of distributed ledger technology enables the
system to make remote attestation publicly verifiable.

¢ Remote Attestation in Publish/Subscribe Environment. The publish and subscribe
environment of IoT networks brings properties with it that complicate the remote
attestation process, such as lack of time synchronization between devices and sleeping
devices. Our approach does not only enable remote attestation in a publish and
subscribe environment, but additionally fully removes the communication between
two devices in order to get attestation evidence.

e Evaluation. Finally, we supply an evaluation of our system. The overview shows
that the smart verifier operates very fast even with up too 100 transactions at once.
In addition to that, we illustrate that our system effectively protects against the
defined attacker model.

Overall, this thesis proposes a solution to trust establishment in large scale heterogeneous
networks.

2. Background

2.1. Remote Attestation

The term Remote Attestation(RA) was introduced and disseminated from Trusted Com-
puting Group (TCG) as an important concept of their Trusted Platform Module (TPM).
The principal goal of RA is to provide a user with reliable knowledge about a platform’s
internal state. Usually, Remote Attestation is a process between two parties namely prover
and verifier. An exemplary RA process is shown in Figure In the first step the verifier
submits a pseudo-random challenge to the prover. As a reaction, the prover measures its
internal state. Once step two is done, the prover links the measurement to the challenge
and returns it to the verifier. As a last step, the verifier compares the received evidence
against a database of pre-known good values to determine whether the prover can be
considered trusted or not. To ensure the authenticity of the evidence prover and verifier
usually use some sort of shared secret.

(2) measurement

(1) challenge

A 4

(4) evidence

Verifier (3) evidence Prover
¢

Figure 2.1.: Remote Attestation

2.2. Blockchain and Smart Contract

Bitcoin: A Peer-to-Peer Electronic Cash System [9] was the first decentralized cash system.
Bitcoin was introduced in 2009 by Satoshi Nakamoto who was the first one to use a
distributed ledger to store transactions in order to establish a cryptocurrency platform.
In principle, a cryptocurrency is a decentralised system for interacting with virtual money
in a shared global ledger [10]. That distributed ledger is called blockchain, because the
ledger comnsists of a sequence of blocks which holds a complete list of transaction records

10 2. Background

that were made within the network and it is not stored in a single location but on multiple
network nodes. An exemplary overview is provided in figure

Block Block Block
‘ Previous Block Hash ‘ ‘ Previous Block Hash ‘ | Previous Block Hash ‘
‘Transactions‘ ‘ Timestamp ‘ Transactions‘ ‘ Timestamp ‘ Transactions‘ ‘ Timestamp ‘

Figure 2.2.: Overview of a blockchain architecture

Each block consists of some transactions, a time stamp, and the hash of the previous block
[11]. In order to determine, which block is added to the blockchain next, the network par-
ticipants, also called miners, have to solve complex computational problems [12]. Different
consensus mechanisms are used to determine what block is added to the blockchain. Bit-
coin, the biggest blockchain platform uses proof-of-work (POW). The POW mechanism
assumes that each node votes with his computing power by solving proof of work instances
and constructing the appropriate blocks [13]. The node that solved the computation first
is then allowed to add its block to the blockchain. Other blockchains use the proof-of-stake
(POS) mechanism. With POS the competition of POW is replaced in order to reduce the
computational requirement. Instead of solving complex computations to be able to add a
block, POS chooses nodes based on stakes that they are holding or fully random [14].
Since 2009 multiple blockchain platforms emerged with different features like varying con-
sensus mechanisms, support of smart contract or the possibility to be deployed privately.
In 1997 Nick Szabo proposed the idea of smart contracts, a software having self-
verifying, self-executing and tamper-resistant properties. A smart contract usually consists
of a unique address, a set of executable functions, state variables and value [11]. Figure
displays a high level overview of a smart contract.

Smart Contract Messages to other contracts
Transaction (Data, Value)
(Value, Data) Address Functions
Events
Value State

Figure 2.3.: Smart Contract

In order to trigger a function, a transaction targeting one of the functions has to be
submitted. A transaction is a signed message published by a user to the network. The
transaction includes input parameter which are required by the function in the contract.
Once a function is triggered it executes the corresponding code and triggers an output
event. Depending on the internal logic, the state may change or other smart contracts
are triggered. In general, a smart contract can be very similar to a real world contract
capturing agreements in a fully digital manner. Apart from being fully digital, smart
contracts offer some obvious advantages [16]. In the first place, they offer increased ef-
ficiency as a transactions facilitated through smart contract does not require a trusted
third party to validate it but the consensus of the network. This can also result in reduced
transaction and legal costs due to the absence of a central authority. A final advantage
is the greater transparency and anonymity. Transparency comes with the decentralisation
of data through distributed ledger and anonymity is provided because no proof of identity
is required but public-key cryptography instead [16]. The usage of smart contracts has

10

2.3. Sawtooth Hyperledger 11

some downfalls as well. First of all, there is a big trust issue as you are fully reliant on
computer software. Software can have bugs or errors in the code that can cause unpre-
dictable malfunction of the smart contract or can be exploited by attackers [17]. Because
smart contracts are immutable it is nearly impossible to fix bugs once the contract is de-
ployed. Another issue is privacy, smart contracts are unable to store secrets as data saved
in blockchain is publicly available [18]. As already mentioned, smart contracts are usually
constructed upon an underlying distributed ledger, mostly a cryptocurrency platform.

2.3. Sawtooth Hyperledger

In this thesis, we use Sawtooth Hyperledger as our underlying distributed ledger platform.
Sawtooth Hyperledger is a project of the Linux Foundation and distributed under the
Hyperledger umbrella like multiple other projects. It offers a modular and open source
system for building and running a distributed ledger that also supports smart contracts.
Figure provided a high level overview of Sawtooth Hyperledger architecture.

Validator Node

/ validator \

Clients \ —T
> Interconnect Transaction
. ST AP Processors

Block Transaction
Management Handling

i Consensus | Consensus
Engine ! Proxy State

\ P2P Network /
//Ni
Sawtooth Network

T\
e e

Figure 2.4.: Sawtooth Hyperledger High Level Architectural Overview

In Sawtooth there are existing two different type of nodes, clients and validators. The
client is submitting transactions and uses the provided functionality of the system. Val-
idator nodes are required to run the blockchain and provide the application interfaces to
the clients. The functionality of validator nodes in Sawtooth is equivalent to a miner in a
public distributed ledger. The task of validator nodes is to validate transactions, create the
corresponding blocks and attach them. In contrast to other distributed ledger platforms
like Ethereum, the biggest distributed ledger supporting smart contracts, Sawtooth is de-
ployed privately and offers some additional features like different consensus mechanisms.
In addition, Sawtooth supports transaction families, an abstraction of a smart contract,
that allows the developer to write smart contract logic in several languages. An additional
feature called Sawtooth Seth also enables Sawtooth to include Ethereum smart contracts
written in Solidity into its environment. Every application in Sawtooth is realized by a

11

12 2. Background

transaction family. Each transaction family consists of three components. The first one
is the transaction processor. The transaction processor defines the business logic of the
application and provides the required functionality. This is what is considered a smart
contract in a public blockchain. The code of the transaction processor runs on the val-
idator nodes. The second component is the data model. We need to define a data model
as it is responsible for recording and storing data for a transaction family. The third
component consists of the client. The client logic defined the functionality and the format
of transaction submitted to validator. Unlike many other blockchain platforms, Sawtooth
Hyperledger does not have a cryptocurrency, which is obvious because there is no publicly
available instance but every user can deploy his very own instance fully private. Sawtooth
supports different consensus algorithms. We chose Practical Byzantine Fault Tolerance
(PBFT) as consensus algorithm for our system. PBFT is a voting based consensus algo-
rithm that guarantees liveness and safety of the network as long as a minimum amount of
nodes function properly. Unlike many other consensus algorithms, PBFT does not treat
every node equally but introduces two types of nodes, primary and secondary nodes. The
methodology of PBFT is described in and the algorithm operates as follows:

e Client sends a request to invoke a operation to the primary
e The primary multicasts the request to all secondary nodes
e Secondary nodes execute the operation and send a reply to the client

e Client waits until he has received f+1 replies with the same result from different
secondary nodes

e This is the result of the operation

Sawtooth PBFT is based on the methodology described above. The implementation differs
a bit from original PBFT as it was not developed targeting distributed ledger technology,
but as a way to generally reach consensus within a network. Therefore, the actual imple-
mentation has been modified to work in a blockchain context but the principles of operation
are still the same. In order to generate a new block, a primary node creates candidate
blocks and secondary blocks vote on them. The primary node changes in a round robin
order.

12

3. Related Work

In this chapter, different categories of remote attestation are presented. Additionally,
the current related work for this categories is shown, starting with traditional remote
attestation and following up with the provers point of view on remote attestation as well
as presenting some more advances schemes using blockchain in combination with RA. As
already mentioned, the traditional remote attestation schemes can be divided in three
categories namely hardware-, software- and hybrid-based.

3.1. Hardware-based

Hardware-based attestation scheme is an umbrella term for every remote attestation
scheme utilizing special secure hardware in order to operate. This secure hardware can for
example include protected storage for secure keys or cryptographic processors.

Trusted Platform Modules. Trusted Platform Modules (TPMs) [5] are one of the most pop-
ular secure hardware attestation architectures. TPMs are discrete co-processors equipped
with special Platform Configuration Registers (PCRs). These PCRs are special registers
inside the TPM and thus a secure location for integrity measurements. TPM does not
only provide attestation but also various other security features like secure storage and
a cryptographic processor. Due to its size and complexity, TPM is intended for larger
platforms like computers and not for IoT devices.

Intel Software Guard Extension. Another hardware-based security architecture is Intel
Software Guard Extension (Intel SGX) [21]. Intel SGX adds a set of new instructions and
memory access changes to common Intel architecture. This extension enables the device
to instantiate a protected container called enclave. It also provides a build-in mechanism
for attestation. But similar to TPM, the usage of Intel SGX is more towards high end
devices like computers and not IoT devices.

M-Shield. M-Shield is a hardware-based mobile security architecture. It was devel-
oped by Texas Instruments and offers secure hardware for small devices like smartphones.
M-Shield offers a complete security infrastructure like secure storage and a secure exe-
cution environment. In addition to that, a secure middleware component is provided to
support the interoperability with third-party software to support other security features
like attestation.

ARM TrustZone. The use of integrated trusted execution environments within the main
processor is a third way to realize a hardware-based security. An example for such an
architecture is ARM TrustZone [23]. As shown in figure ARM TrustZone separates

13

14 3. Related Work

all hardware and software resources into two worlds. A security world where the secu-
rity subsystem is deployed together with all security relevant data and keys and a normal
world for every other application. Software running in the secure world have a completely
different view of the whole system then software running in normal world. In this way,
cryptographic credentials and security functions can be hidden from software running in
normal world. TrustZone’s functionality is defined by software which makes it more flex-
ible then other hardware-based approaches where functionality is hard-wired. TrustZone
can be used to develop simple secure applications but even more complex security archi-
tectures can be implemented. Such an example is fTPM [24]. The authors used TrustZone
to create a fully operating firmware-based TPM. The major downside of hardware-based
security architectures is the mandatory use of secure hardware which results in extra costs.
But in order to establish a secure system some trusted hardware components seem to be
necessary. ARM TrustZone appears as a well-rounded solution that, unlike TPM or Intel
SGX, can be used in IoT devices.

Two worlds - one CPU
Real-time transition™

Non-trusted

Trusted
view

Non-trusted
view

Secure services

Secure firmware

Secure data

Peripherals

Memory

CPU resources

*<2 cycles

Figure 3.1.: ARM TrustZone

3.2. Software-based

Software-based attestation techniques are not reliant on any hardware support and there-
fore cheap and easy to deploy on any IoT device. Software-based attestation makes use
of side channel information like the execution time to detect abnormal behavior of soft-
ware. Any modification of the executed function or algorithm would be reflected in a
increased execution time. SWATT is a software-based attestation technique using

14

3.3. Hybrid-based 15

pseudo-random memory traversal to attest the software state of a device. The prover can
only execute specific algorithms within a certain time period. SWATT calculates a check-
sum over the whole memory of the prover using a pseudo-random number generator to
determine the next address being attested. The werifier calculates a reference checksum
using a reference software state. If both checksums are equal and the prover calculated
the checksum within a certain time period, the prover is considered trusted and otherwise
not.

3.3. Hybrid-based

Hybrid-based attestation schemes evolved as a combination of software and hardware-
based schemes. They cannot be considered software-based because they required some
sort of hardware support or small hardware modifications. Still, these schemes are not
considered hardware-based because in contrast to hardware-based schemes, the required
hardware for hybrid schemes is very simple. Most of the time Read Only Memory (ROM)
or a Memory Protection Unit is sufficient in order to run a hybrid-based scheme. In liter-
ature many different hybrid remote attestation architectures can be found.

SMART. This solution was one of the first hybrid remote attestation architectures
proposed. The authors used standard Memory Control Unit (MCU) enabled platforms
with an additional hardwired Read Only Memory (ROM). The additional ROM is used to
store a secret key K and the attestation code. K and the attestation code are guarded by
hard wired MCU access rules. The success of SMART is based on three security objectives:
(1) Prover Authentication, (2) External Verification and (3) Guaranteed Execution. There-
fore SMART uses four major security components namely, Attestation ROM, Secure Key
Storage,Access Control and Reset and Memory Erasure. These components are considered
necessary and sufficient for establishing a dynamic root of trust in a low-end IoT device
and are located at the prover. SMART calculates a HMAC over a given memory region
[a,b] before passing control to a specified memory address z and returning HMAC([a,b])
to the verifier who checks the correctness. To ensure the attestation process will not be
interrupted, interrupts are globally disabled during the execution of the attestation code.
The SMART architecture seems promising with the only downside that the whole memory
region is attested at once, which makes it vulnerable to roving malware, and the attesta-
tion process cannot be interrupted which adversely affects the availability of the devices.
TrustLite. This scheme architecture relies on ROM and an Execution-Aware Memory
Protection Unit (EA-MPU), which is similar to a normal MPU, but also considers the
address of the currently executing instruction when validating code or data access. While
the EA-MPU is responsible for controlling every data access including regular memory,
the ROM stores the platform key K and a secure boot loader which has exclusive access to
K. The secure loader allows TrustLite to enable isolation of critical software components
by initiating critical components via secure boot which sets up necessary memory access
rules for each component in the MPU.

TrustLite enables different security features by the use of trustlets. A trustlet or trusted
task is a program implementing a specific security feature. During attestation process
interrupts can happen which are then managed by the TrustLite Exception Engine. The
result is that attestation can be interrupted and continued later on.

SWARM. On top of SMART architecture builds SWARM [29]. Unlike SMART, SWARM
allows interruption of the attestation process. In order to do so, SWARM does not at-
test the whole memory region at once, but divides it in n equal parts. After a block got
attested it is possible to interrupt the process. The next block n; being attested is deter-
mined randomly to detect roving malware. Additionally, the block is chosen in privat so
that the malware remains unaware of which blocks are already measured and which will
be measured next. This technique reduces the impact of the attestation process on the

15

16 3. Related Work

prover while detecting malware with high probability.

HEALED. Another aspect to remote attestation is added by HEALED [30]. The attesta-
tion process in general remains unchanged, that means that HEALED does not modify the
attestation process of its used platform. In the case that the prover turns out to be mali-
cious, HEALED enables the verifer to heal infected memory regions. To heal the infected
device HEALED aims to identify the infected memory region using a Merkle Hash Tree.
Once the infected memory region is found, the verifier looks for a healer device having
the same reference software configuration as the infected device. As soon as a healer is
found the infected device gets healed. This obviously relies on the assumption that at least
one device within the network can heal the infected device, which means it has the same
software configuration while not being infected.

TyTAN. This approach uses nearly the same architecture as TrustLite. Additionally
to a EA-MPU and a secure bootloader to securely load critical tasks into the platform,
each device needs to run TyTAN OS, which is an extended version of FreeRTOS. This
enables TyTAN to dynamically load an unload multiple tasks at runtime and establish
secure communication between the tasks. A downside of this improvement is the fact that
every device needs to run TyTAN OS which increases the overall complexity of the setup
and might require more advanced hardware.

HYDRA. HYDRA requires only very basic secure hardware. To compensate the lack
of advanced hardware the formally verified sel.4 microkernel is used. This kernel offers
guarantees like process isolation and access control that most of the other architectures
could only realize with secure hardware. HYDRA fully satisfies these requirements with
software. The only hardware requirement is ROM to immutably store the sel.4 kernel.
One downside of HYDRA is the complexity of the kernel which results in a dependency on
more advanced hardware suitable to implement HYDRA. The kernel also does not allow
the interruption of the attestation process.

HAtt. A different approach is HAtt [33]. The authors used Physical Unclonable Functions
(PUFs) embedded into IoT devices. The usage of PUF's is an effective way to protect IoT
devices from physical attacks by eliminating the need of storing secret keys. This makes
HAtt also viable against attacker models using hardware attacks. Therefore, HAtt differs
from all the other already featured remote attestation schemes as they keep hardware at-
tacks out of scope. HAtt still needs some sort of secure hardware as it is necessary to store
the attestation code immutable and insure its immutability. HAtt divides the memory
space of the device into n blocks with m words in every block. The attestation process
attests the blocks in a pseudo-random manner using the PUF to determine which one is
used next. Furthermore, only a random number of bits from every word in a block are at-
tested. To increase the detection probability, the verifier might run the attestation process
multiple times. This attestation technique does not require the whole memory space of the
device to be attested, but attests only random parts of it. This reduces the computational
complexity and still detects all malware including roving malware with high probability.
ATT-Auth. Just like HAtt, ATT-Auth uses PUF's in its attestation process. The
attestation protocols are build upon SWATT, a software-based attestation technique. The
usage of a software-based attestation scheme reduces the cost of IoT devices as it does
not require any secure hardware. To run Att-Auth every device needs to install SWATT
and have its own PUF. No further secure hardware is required. For attestation, Att-Auth
supports two different techniques, individual attestation and multiple node attestation.
Individual attestation is based on the usage of SWATT in combination with a PUF to
introduce a hardware root of trust to the attestation process. Additionally the verifier
has a challenge response pair CRP (C,R) for every device it tries to attest. Due to the
usage of SWATT, both single and multiple node attestation with Att-Auth rely on timing
information which is not suitable for all types of IoT networks.

Att-Auth and HAtt seem to be very promising solutions for hybrid-based attestation. The

16

3.4. Attestation from the Provers Point of View 17

biggest downside of both schemes is the usage of PUFs. PUFs in general are very suscep-
tible to environmental influences like temperature or humidity and are thereby not
reliable enough for huge IoT networks.

VRASED. The last hybrid remote attestation scheme is VRASED [36]. The authors of
VRASED used the same architecture as the authors of SMART did. They divided their
design into software and hardware components and formally verified all used components
as well as the interaction between them. Since, VRASED uses the same architecture as
SMART, it requires atomic execution of the attestation process and is by that not inter-
ruptible.

APEX and PURE. In order to further increase the capabilities of VRASED [36], APEX
and PURE were proposed. Both are extensions of VRASED adding some additional
features while not affecting VRASED in any way. APEX adds a proof of execution on top
of VRASED while PURE enables provably secure and verified proofs of software update,
erasure and system-wide reset. They cannot be deployed without VRASED as they are
both fully reliant on VRASED secure architecture. Table shows the adversarial model
targeting each presented hybrid-based attestation scheme as well as the interruptibility of
the attestation process. The first column shows the name of the attestation scheme while
the following three columns display the attacker model of each scheme. Every attestation
scheme considers remote and local adversaries, but only two schemes also include a phys-
ical adversary. The fifth column tells if the attestation process can be interrupted or not
and in the last column can be seen that only the source code of VRASED is public.

Attestation Remote Local Physical Attestation can be inter- Public
scheme Adversaries Adversaries Adversaries rupted Source
Code
SMART vV vV X X X
TrustLite V V X vV X
SWARM V V X V X
HEALED V V X Platform dependent X
TyTAN V V X V X
HYDRA vV V X X X
HAtt Vv Vv Vv Vv X
Att-Auth V V V vV X
VRASED Vv Vv X X vV

Table 3.1.: Comparison of properties of hybrid attestation scheme

3.4. Attestation from the Provers Point of View

Most of the above presented attestation schemes focus on the scenario where there is a
trusted verifier and a possibly malicious prover. The opposite setting with a compromised
verifier and a honest prover is not considered in most attestation schemes and might offer
some attack vectors. Tsudik et al showed in that a malicious verifier can use the
attestation protocol in order to run certain attacks against a prover device. As the com-
putation of the attestation evidence takes some time, a malicious verifier can easily run a
Denial-of-Service attack by requesting attestation over and over again. To run this attack,
it is not even necessary to have a malicious verifier but the attack can be executed by any
network participant that is able to impersonate the verifier. To mitigate these attacks,
two additional countermeasures are required. Authentication of the attestation requests

17

18 3. Related Work

published by the verifier is the first one. This prevents malicious devices from impersonat-
ing the verifier and can be achieved by using either a pre-shared key to establish a secure
communication channel or public key cryptography to sign the messages. Unfortunately,
this does not prevent DoS attacks as a attacker can just intercept and replay attestation
requests. In order to solve this, we need a way to detect replayed attestation request.
There are several standard ways proposed like nonces, counter or timestamps to ensure
the freshness of the attestation request. Obviously, the prover still has to check the counter
for example but this results in a minimal computational effort then calculating a whole
attestation.

3.5. Remote Attestation in combined with Blockchain Technology

BARRETT. BlockchAin Regulated REmote aTTestation attends the problem that in
a RA setting a malicious verifier can repeatedly send attestation request in order to prevent
the target device form performing its usual tasks or draining its battery. This attack is
also called Computational Denial of Service (CDoS). To resolve the problem, BARRETT
combines RA with the Public Ethereum Network (PEN). The proposed architecture can
be seen in figure 3.2l In order to send an attestation request the verifier needs to submit
a transaction to the PEN. For every transaction, the submitting account is forced to pay
transaction fees. These fees would naturally alleviate the feasibility of a CDoS attacks as
it might result in high costs for the attacker. Additionally, they used a smart contract
that limits the maximum amount of incoming attestation requests within a time period
for a single device.

L FulVN
+ | Ethereum
» | ledger copy | :
Ept\hereuT 3: The prover
: ceoun executes the RA
e process
[1 2: The PEN Prover/
: Full VN notifies the prover loT Device
about AR via the
| Ethereum smart contract. |
. | ledger copy * | Rsprecess
' PEN
+ | Ethereum 1 Th Ethereum
' Account A WIRES PROMEF Account
: submits R
""""""""" to the PEN.
1: VN submits an
AR to the PEN.
6: VN verifies
R and submits

the verification Light VN Account
process to the
PEN.

5: The prover sends R to the
VN that submitted the AR.

the outcome of Ethereum

TR

Figure 3.2.: BATTETT Architecture

TM-Coin. This solution uses the blockchain to store and manage the attestation re-
sults of a device. Figure provides a detailed overview of the system architecture of

18

3.5. Remote Attestation in combined with Blockchain Technology 19

TM-Coin. The blockchain is used as a trustworthy decentralized database to store the
attestation results and make them publicly accessible for every verifier. TM-Coin uses the
miner to perform RA on a target device and publish the result to the blockchain. Later
on, a verifier can request the attestation result directly from the blockchain and does not
have to request the result from the prover device. This method makes the attestation
process more efficient because attestation does not have to be calculated every time for
every verifier. This means that once the attestation result is calculated and published
to the blockchain every verifier device can request it from the blockchain and verify it.
Therefore, the verifier does not need to trigger attestation of the prover device again but
can just request the already calculated results from the blockchain. This process assumes
the trustworthiness of the miners as they must act as a verifier and publish the attestation
result to the blockchain.

- —— block#1 block#2 block#3 +—:-:
I_| I_|
4—{ transaction A2 l<—| transaction A3 |
[roTn— \2 7.

blockchain

2, verify attestation

i

add transaction to blockchain

a
ot e
8 A Siat\on
transaction \@ atie!

0

e

remote attestation
of TCB

device

REE TEE
Th-Coin TM-Coin TA
[} A
4
.| TZ-aware
gl 0s |:| :TCB

Figure 3.3.: TM Coin Architecture

LegloT. In Ledgered Trust Management Platform for IoT J. Neureither et al use
a graph-based representations of trust relationships. The system builds and maintains
system-wide trust information by applying trust chains across the network. A trust chain
is a edge of the graph and implies that the nodes that are connected by an edge trust each
other. LegloT uses indirect trust relationships via a trust graph between devices. This
means that in order to establish trust, the devices do not necessarily need to access each
other directly but can follow the trusted path along the edges of the graph. This approach
significantly reduces the number of trust assessments in the network. The graph is calcu-
lated and maintained by a distributed ledger, this offers the benefit that all parties reach
consensus about the trust graph without relying on a central authority. This addition-
ally removes the single point of failure usually coming with the introduction of a central
authority. The core functionality of LegloT is the trust query. This query, allows every

19

20 3. Related Work

device within the network to query its trust relationship to another device and operates as
follows: A devices sends a transaction containing his own ID and the ID of another device.
The smart contract receives the message and queries the stored trust graph. If a path
between both devices exists, the trust score of this found path is returned. The authors of
LegloT proved that the usage of a distributed ledger as replacement for a central authority
and the usage of indirect trust chains can be a very effective tool to overcome challenges
of traditional remote attestation in IoT.

20

4. Approach

This section provides an overview of the approach used in this thesis. The section is divided
into two major subsections namely blockchain as verifier and the capabilities of the prover.
In the first subsection the task of the blockchain as well as the way of interacting with it
is described. The functionalities of the prover are described within the second subsection.
Figure provides an architectural overview of the whole system. It consists of four main
parties:

Device A

The prover device P

Smart Contract

Underlying distributed ledger

The device A can be any IoT device connected to the network. Its part is to request
attestation evidence. The prover device is responsible for checking his pending requests
and calculating and submitting fresh attestation evidence whenever required. All these
information are stored in a distributed ledger with a smart contract on top of it. The
smart contract provides the required application interface for all devices including the
prover devices. But before going into details about every component’s functionality we
need to discuss some challenges that have to be solved. These challenges are a result of
two different techniques used in this approach and solving them is crucial for the whole
system. The usage of remote attestation in an IoT setting poses several challenges. Remote
attestation is originally designed targeting complex machines like PCs and requires the
machines to establish a synchronous end-to-end communication. In order to run remote
attestation over IoT devices, there are five challenges that have to be solved:

Heterogeneity of devices The usage of unified schemes for trust establishment is compli-
cated due to heterogeneity of IoT networks.

Large number of devices The large number of devices causes scalability issues because of
required key management and the direct device to device communication of tradi-
tional RA.

Networks interconnect devices controlled by different parties IoT networks interconnect
devices produced, owned and controlled by many different parties which are typically
mutually mistrusting.

21

22 4. Approach

Difficulty to establish trust in a scalable manner Without a central authority it is diffi-
cult to establish trust in a scalable manner. But central authorities provide a target
for denial of service attacks.

Asynchronous communication mediated by brokers IoT networks usually do not sup-
port synchronous communication but rely on a asynchronous communication me-
diated by brokers.

Sleeping loT devices IoT devices are sleeping from time to time and therefore will not
receive any requests.

The idea to master those challenges is to use a smart contract as a verification authority.
This makes remote attestation publicly verifiable and visible for every network participant.
In addition, it introduces trust to every network participant. Using a smart contract as a
verification authority solves several problems of remote attestation in IoT but is not really
straightforward to apply and raises some new challenges.

No support of synchronous communication A smart contract does not support synchronous
communication.

Cannot keep secrets Remote attestation usually utilizes some sort of shared secret to
establish a secure communication channel. This is not possible when communicating
with a smart contract as they are public and obviously cannot store secrets.

Unable to generate random challenges Freshness is a problem because the blockchain
cannot generate random challenges.

In order to solve the first challenge, we do not run attestation over an established session.
This means that messages are exchanged by querying the blockchain and sending data
to the smart contract using transactions. The second challenge is solved by switching
to public key cryptography from pre-shared symmetric keys and use signatures to ensure
authenticity of the attestation evidence. By using time stamps we introduce a weaker
notion of freshness to solve the last challenge. This notion is still sufficient for attestation,
as it is not a process that is run every second and requires a very precisive time stamp but
is executed every few minutes or hours.

Devices Blockchain / Verifier Prover

Check Request

Queries TrustStatusp

% TrustStatusp

Requests €{True,False}

N~

Calculates and stores Submit Evidence Calculates fresh attestation

TrustStatusp €[0,3] IF Requests = True
Stores Requests

Figure 4.1.: Architectural Overview

4.1. Blockchain as Verifier

In this thesis, a blockchain in combination with a smart contract is used to verify the
attestation results of a prover device. Therefore, the blockchain needs to store the expected

22

4.2. The Prover Device 23

attestation result Attestp as well as the public key pkp of every prover device P. This can
be realized during an enrolement phase. In the following, the operation of the blockchain
is described. Once device A wants to know whether a device P is malicious or not, A
submits a trust query. The smart contract will take this message and query the blockchain
for the latest attestation result of P. If there is no result available or the latest one is older
then a certain threshold, the smart contract stores an attestation request (AR). This AR
is realized by a smart contract that sets a status bit which indicates that the prover needs
to calculate a fresh attestation. The request cannot be directly forwarded to P but needs
to be stored. That is because in an IoT scenario devices can be sleeping at some time and
therefore not reachable for downlink messages. From time to time the prover requests the
smart contract and checks if it is required to calculate a new attestation result. If the AR
bit is set to 1, the smart contract will tell the prover device to calculate a fresh attestation
evidence and additionally add a timestamp to the reply message. This timestamp is then
used as a nonce of freshness and included in the attestation evidence computed by the
prover device.

Telling the prover device its current ARs as well as processing incoming attestation results
and comparing it with the stored reference results are the main tasks handled by the smart
contract.

4.2. The Prover Device

To realize the above explained approach, we decided to implement a hardware based
attestation scheme. The biggest downside of hardware based approaches usually taken to
point is the price of the hardware. But boards with secure hardware support are becoming
cheaper as new technologies like ARM TrustZone emerge. The big advantage of a secure
hardware architecture when implementing attestation schemes is that the scheme usually
require less assumptions. Especially, the reliance on any timing assumptions that are
usually part of software based attestation schemes is a huge problem when applying it to
IoT networks. The communication in IoT networks is usually indirect and mediated by
brokers. The reliance on any timing information is thereby not applicably to IoT networks
as the transmission delay can fluctuate widely.

4.3. Communication

The following section provides a detailed overview about the communication between all
parts of the system. The presented system consists of three communication parties.

The Device Submitting trust queries to get the trust status of a requested prover device.
The Prover Checking pending request, computing and submitting attestation evidence.

The Smart Contract Answering trust queries, calculating trust status, storing requests
and validating attestation evidence.

Figure provides a system sequence diagram showing the system communication step
by step.

In the first step a device publishing a trust query, requesting the current trust status of a
prover device P. The smart contract receives the trust query and checks if an attestation
evidence is available for the requested prover device. If evidence is available, the smart
contract will additionally check the timestamp of this result. The timestamp is compared
with the current time of the system. If the timestamp is older then a certain threshold,
the smart contract will declare the evidence as invalid, delete the evidence and store

23

4. Approach

24
Verifier

i 1. Requests Trust Status of Prover i i i E
i 2b. No, store ; : i
! attestation request ! 1 i

i 2a.Yes, Trust Status (ARp)

' Boot up
4. Check Request

. 5.ARp€{0,1},timestamp* ' i
: .Trigger attestation IF ARp = 1 E

i
|

Measurement ,nonce, sign -
5
]

Execute !
Attestation code!

’ Verifiy result and store |
. the outcome
|

Figure 4.2.: Sequence Diagramm of whole System

a new attestation request. If the timestamp is valid, the smart contracts returns the
corresponding trust status. After every reboot and after a certain amount of time, the
prover device requests its pending requests ARp from the smart contract. The smart
contracts answers the request by sending ARp. Additionally, the smart contract adds a
timestamp to the reply message if ARp = 1. If ARp = 1 the normal world of prover
device triggers attestation and passes the received timestamp to the attestation message.
By that, the attestation code in secure world is executed and a new attestation result
Attest’s is calculated. Once the computation is finished, the non-secure world publishes
the attestation evidence to the smart contract. The attestation result Attest’, is a SHA-256
hash of the whole untrusted flash memory of the prover device P. Before transmission, the
prover signes the whole message to ensure integrity of the attestation result. The smart
contract first checks the signature to see if the received message is valid. If this is the
case, it checks Attest’, and the timestamp. If the timestamp is valid, the smart contract
calculates and stores the trust status of the prover device as well as the timestamp.

4.4. Attacker Model

In order to define an attacker model for our approach we must take two different possible
attack vectors into account. One possible attack vector are attacks against the blockchain
or blockchain related parties like validators. The other one combines all possible attacks
against the device itself. We use Sawtooth PBFT as consensus algorithm, because of
this we have to assume that at least f4+1 validator nodes are trustworthy and working as
expected with the total amount of nodes being R = 3f + 1. So a maximum of f nodes
in our network can be malicious. Additionally we assume, that the attacker has limited
computational power so he cannot derive any private keys from public keys and cannot
forge any signatures. For the prover device we consider an adversary that can control
the entire software state, code and data of the non-secure world. Every for the non-
secure application readable memory region can be read by the attacker and every writable
memory region can be written. The attacker can also execute every function provided
by the veneer table. Every memory region protected by TrustZone cannot be accessed.
We also assume that an attacker can intercept, delay and replay any messages transferred
within the network. We do not consider any physical attacks against the device.

24

5. Implementation

The implementation is spilt up into four major components. The first component is setting
up and configuring TrustZone and the memory assignment on our device. Once TrustZone
is configured and all access rules are defined, the second component is developing the secure
application. The secure world application is responsible for calculating the attestation
result as well as building and signing the transactions, batches and batch lists required to
communicate with the blockchain, in order to submit query or publish attestation evidence.
The last device related component of our implementation is the normal world or non-secure
application. This application initializes the wifi board and connects to a provided wifi.
An additional part of the non-secure application is the MQTT Client that is running
in the non-secure environment and is required to send data to and get data from the
blockchain. The other part of the implementation is the blockchain and the corresponding
smart contract. We use the blockchain to verify submitted attestation evidences, store
attestation requests and answer check request transactions. Additionally, the blockchain
has to response to trust queries and publish the trust status of the requested prover device.
To realize this functionality a smart contract was developed handling all required features.
The implementation of the prover device is written in standard C language, while the
blockchain related component is implemented in python. But before going into details of
the implementation, the components used to realized our approach are described.

5.1. The Prover Device

We chose an LPC55569-EVK evaluation board from NXP as a platform to implement
prover device. The LPC55569 is equipped with an Arm Cortex - M33 processor with
TrustZone and should be used for every prover device. The Cortex M33 provides a security
foundation offering isolation to protect valuable data. TrustZone offers a system-wide
approach to security by isolating critical security firmware and private information such
as cryptographic keys from the rest of the application. The board provides 640KB on-chip
flash memory and can run at a frequency of up to 150MHz. Due to TrustZone, every
prover device has a secure hardware architecture with hardware-enforced isolation built
into the CPU. This secure hardware architecture allows us to implement a hardware based
attestation scheme running on the device. The device function as a

5.2. Choice of Blockchain Platform

We decided to use Sawtooth Hyperledger as the blockchain platform to realize our ap-
proach. Sawtooth is an open-source blockchain platform for building distributed ledger

25

26 5. Implementation

applications and networks. This decision is based on several reasons. First of all, Saw-
tooth Hyperledger offers the support of smart contracts which is obviously required. In
addition to that, Sawtooth provides separation of the core system from the application
domain. This allows application developers to develop applications and specify business
rules without deep knowledge of the underlying core system. Another advantage is that
Sawtooth is an open source project what simplifies development. Unlike Bitcoin, Ethereum
or many other blockchain platforms, Sawtooth does not a publicly deployed instance but
a private one that can be deployed separately by every individual and does thereby not
have a cryptocurrency and transaction fees.

In Sawtooth, the developer can define a unique transaction family for every application.
The transaction family then consists of three components: an transaction processor, a
data model to define stored and recorded data and a client. The core of every transaction
family is the transaction processor. It is Sawtooth’s equivalent to smart contract of other
blockchain platforms as it defines the internal business logic of the application. Its counter-
part is the client, as he is the one running the client application and sending transactions
to the processor.

5.3. Implementation of the Prover Device

As already mentioned, ARM TrustZone splits the system-architecture in two separate
worlds, the secure and the normal one. The secure world is used to store the private
key pkp as well as the attestation code and everything required to create the transaction
messages. The normal world stores every other software, especially a client that is required
to communicate with the blockchain. We use MQTT to communicate with the smart
contract. The client cannot be store in secure world as it will not be remote accessible.
When awake, the device handles its normal tasks and periodically asks the blockchain if
there are any new unprocessed attestation requests. In case of a new AR, the client triggers
the attestation process. Once the attestation process is finished it will be published and
the device resumes its normal tasks.

To realize the described functionality, two different applications need to be developed, a
secure and a non-secure one. Above it is described that the board is equipped with a secure
hardware architecture called TrustZone. During startup the TrustZone device executes the
secure application first because it is responsible for configuring the Security Attribution
Unit(SAU) and Implementation specific Device Attribution Unit (IDAU) to enable memory
protection, access to peripheral components and interrupts. Once the security components
are configured, the secure application passes the control to the non-secure application.

5.3.1. Secure Application

5.3.1.1. Configuring TrustZone

In our implementation, the first step is to properly initialize TrustZone, enable the mem-
ory protection, configure the peripheral access and the interrupt security and establish a
secure gateway between secure and non-secure application. Memory and access protection
is handled by SAU and IDAU as shown in figure

26

5.3. Implementation of the Prover Device 27

Request from CPU
]

Address

Security
Attribution Unit
(SAU)

IDAU Interface
Attribution
—

Security
Attribution

v

Secure MPU

Non-Secure MPU

Figure 5.1.: TrustZone Access Control

Everytime the CPU requests a memory address, the security attribution of the address
is checked. Every memory address has a security access configuration from IDAU and
SAU. The final security attribution of a memory address is then defined by combining the
security access configuration of both SAU and IDAU following the rules expressed in figure
The NXP IDAU has a rather simple design and configures every memory address with
bit 28 = 0 as non-secure and secure with bit 28 = 1. SAU allows the developer to override
the memory map of IDAU in order to define additional non-secure memory areas or a spe-
cial memory area called non-secure callable (NSC). The access request is then delegated
to secure or non-secure MPU. For peripheral access TrustZone has two different memory
regions for non-secure an secure peripheral access. By default all non-secure peripheral
memory regions are accessible for the non secure application as well as for the secure appli-
cation. Secure peripheral access instead is locked for non-secure applications. TrustZone
provides a Peripheral Protection Controller (PPC) and a Memory Protection Controller
(MPC) controlling the accessibility of a memory page or peripheral. These controllers can
also lock the non-secure peripherals so that the non-secure application cannot initialize
any peripherals or handle and trigger interrupts.

By default, the secure application restricts every peripheral access as well as the inter-
rupt handling so only the secure application has access to peripherals and can handle and
trigger interrupts. For our application it is required to initialize the WiFi board in the
non-secure world. To make this possible, it is necessary to change the security configu-
ration and allow the IOCON and SYSCON controller to access the non-secure peripheral
location. We faced the problem, that even when SYSCON and IOCON where configured
correctly and execution of the WiFi initialization function did not trigger any BUS Faults
or Memory Access Violations, the function did still not work properly from non-secure
world while execution in the secure world worked perfectly fine. We realized, that the ex-
ecution in non-secure environment stopped at a point where the the board was waiting on
a wmi_ready event from the WiFI board. This event was never propagated to non-secure
application what resulted in the function timing out and the program crashing. The prob-
lem why it was working fine in the secure environment but crashing in the non-secure was
the fact, that interrupts have a security configuration in TrustZone and a secure interrupt
cannot be received or handled in the non-secure environment. To solve this we had to
adjust the Nested Vector Interrupt Controller (NVIC). Like peripheral access, TrustZone
supports two separate interrupt vector tables one for secure and the other one for non

27

28 5. Implementation

SAU IDAU Result

Secure Secure Secure

Non-Secure Secure Secure

Secure Non-Secure Secure

Non-Secure Non-Secure Non-Secure

+ + ¥+ + +

NSC

Secure Secure

NSC

NSC + Non-Secure

Figure 5.2.: Memory Access Rules

secure execution. The NVIC is part of the secure application and initialized during Trust-
Zone initialization. It controls the interrupt assignment during execution and configures
every interrupt as secure by default. Once the corresponding interrupts where configured
right and non-secure access was allowed, the WiFi board did work as expected.

After the peripheral access and the interrupt access is configured, we started with the sec-
ond step: enabling a secure communication between the non-secure and the secure applica-
tion so that the non-secure application can call some functions that are specially declared.
To enable a secure communication between secure and non secure application we need to
implement an entry point from non-secure to secure world. Every function from secure
world that is callable from non-secure must be marked with cmse,onsecure.ntry function
attribute. Additionally, these functions must be located in a special memory region, the
so called veneer table. Figure provides an exemplary overview of the communication
flow between the secure and non-secure world in a system utilizing ARM TrustZone. The
veneer table defines all functions that are located in the secure world and are callable
from the non-secure world. Thereby, the veneer table functions as a defined entry point
from the non-secure world into the secure one. In our project, the veneer table exports
three functions, one to check the pending request for our prover device, another one to
calculate the attestation evidence and the third one to submit a trust query. Implementing
those functions as part of the secure application is mandatory. That is because, all three
functions require access to the secure key that must not be leaked to non-secure world.
The secure application can just access data and memory from the non-secure application
but the non-secure application cannot. To allow the non-secure application to access the
veneer table it must not be placed in secure memory nor non-secure memory but needs
to be placed in a specific memory region called non-secure callable. This memory region
must be defined in SAU and assigned to a memory region marked as non-secure in IDAU.
Only this memory region is accessible from non-secure memory and is able to branch to
secure memory. Additionally, every veneer table function must check the location of every
handover parameter as well as the location of the callback to ensure no secure data is
leaked or the non-secure application is able branch to secure memory.

28

5.3. Implementation of the Prover Device 29

Non-Secure code Secure code

ResetHandler
__main
main()

ResetHandler nonsecure_init()

—_main NS-callable

main() attestation()

Figure 5.3.: Program Control Flow

5.3.1.2. Calculation of Attestation Evidence

The second part of the secure application is the implementation of the attestation code.
The attestation code exports a function to the veneer table, that can be called from
non-secure application in order to trigger the attestation process. This function requires a
nonce or a timestamp as parameter as well as an output buffer to store the transaction and
the size of this output buffer. Before calling the secure world the veneer table function
checks the validity of the provided parameters. The output buffer must be located in
non-secure memory as a whole and large enough to store the whole batch. Once all the
parameters are checked and valid the function will call the attestation function in secure
world. The main part of attestation is calculating the evidence. In order to calculate
the attestation evidence the application iterates over every memory region classified as
non-secure, reads the stored values and calculates a SHA-256 hash of all read values. In
order to read the memory multiple factors must be considered. The device provides 640K
of flash memory but not the whole memory needs to be attested, only the area marked
as non-secure. Figure shows our used memory assignment. The green memory area
from 0x0 up to 0x40000 is secure and cannot be altered. All the other memory is assigned
non-secure and has to be attested. On this device all flash operations must be done when

OX9FFFF

E — Attested Memory Region

0x40000 —

N
0

Figure 5.4.: Memory Configuration of our device

0x00000

the clock is under 100MHz. So in order to make any flash operations we are required to
reduce the clock speed from its maximum of 150MHz down to 100MHz or below. But
even with reduced clock speed reading flash memory might fail if we just use flash_read()
operation or standart C pointer. This will happen most likely through the fact, that the
accessed memory location is not storing any data, but instead the memory is erased. If

29

30 5. Implementation

the application tries to access a memory page that is erased or blank, this will trigger a
hardfault what causes the program execution to fail. To solve this issue, we need to check
if the accessed memory page is blank using Flash VerifyErase() to confirm that the page
is erased or not. If we have an erased page, we first write OxFF to this memory before we
read it so no malicious code can hide in erased marked sections.

We use the SHA-256 hash function to hash all values read. We do not read the whole flash
memory at once to RAM but read a single memory page before updating the hash and go
on to the next one. Once the calculation is finished, some additional steps are required in
order to be able the submit the calculated attestation result to the blockchain.

5.3.1.3. Building the Attestation Evidence Message

As already mentioned, we use Sawtooth Hyperledger as our blockchain platform. In order
to submit the attestation evidence to Sawtooth Hyperledger we need to encapsulate the
measurement into a transaction and this transaction must be wrapped inside of a batch
and a batch list. The overall structure of a transaction and batch includes four different
parts, the transaction itself, a transaction header, the batch and a batch header. The final
construction is illustrated in Figure5.5| below.

Serialized
Header >
HeaderSignature Signer_pubkeys
Transactions TransactionsIDS
Serialized

Header >

HeaderSignature Batcher_pubkey

Payload dependencies

Family_name

Family_version
Inputs

Nonce

Outputs
Payload_encoding
Payload_512
Signer_pubkey

Figure 5.5.: Batch Construction in Sawtooth Hyperledger

In order to create the final batch, the first step is to create a transaction. Every transaction
is serialized using protocol buffers and consist of two fields, the transaction header and
the transaction itself. Every transaction contains a serialized form of its header as well as
the header signature and a payload. The transaction header field is a serialized version of
the TransactionHeader. This has the advantage, that the exact same bytes can be used
to verify against the signature. The header is signed using the signers private key and
the signature is stored in the HeaderSignature field of the transaction. The same applies
for the batch apart from having its own payload which stores one up to multiple hundred
transaction depending on configuration. In our application we only have one transaction
that is wrapped inside of a batch. For every signature, Sawtooth relies on the use of

30

5.3. Implementation of the Prover Device 31

Elliptic Curve Cryptography (ECC). As a curve we use secp256k1, the same curve is used
in Bitcoin for public key cryptography. We use libsecp256k1 libary, an optimized C libary
for ECDSA signatures and secret/public key operations on curve secp256k1. This library is
an open source cryptographic library that provides a small memory footprint what makes it
suitable for embedded programming. Additionally, signatures are already provided in lover
S format. This is required, as a validator in Sawtooth expects a 64 byte compact signature
and some libraries add additional informations to the signature like recovery fields for
example. This signature would be rejected by the validator or require additional parsing
overhead during verification. To use this library we first need to create a secp256k1 context
that stores large precomputed data tables that are expensive to construct and required for
calculation. The construction of the context is very time consuming but it can be reused
for multiple calculations and is necessary for both, signature verification and calculation.
Once the transaction is finished, the transaction is wrapped in a batch. The batch is also
signed using the private key stored in secure application. Once the batch is finished, we
create a batch list from the created batch and build a json object of the batch list. This
json object is then written to the provided output buffer so the completed attestation
evidence message is now available to the non-secure application and can be transmitted.
With this, the execution of the secure function is finished and program execution is passed
back to the non-secure application.

5.3.1.4. Building the Blockchain Query

The last functionality of the secure application is querying the blockchain. As described
in the approach, the device periodically publishes requests to the blockchain to check if
attestation is required or not. If the queried information tells the device that attestation is
required, the attestation code will be executed. In order to submit a query the device needs
to build a transaction storing the request. As already mentioned above, it is mandatory
to sign the transaction. And even if no attestation is calculated it is required to access
the secure key in order to build a transaction. Therefore, it is necessary to make this
functionality also part of the secure application. This function is also callable from non-
secure application as it returns the message that needs to be transmitted. Therefore,
the non-secure application has to provide a large enough buffer to store the output and
passes the buffer as well as the size of it to the veneer table function. This function checks
the location and size of the provided buffer and executes the buildQuery function if the
provided parameters are valid. The operation of building the query message is nearly the
same as building the attestation message apart from the calculation of the hash of the
non-secure memory. Instead the message contains a inquiry requesting whether the device
must calculate and submit a new attestation or not. This transaction is also wrapped in
a batch and stored in a batch list as already described above. Finally, the batch list is
serialized and returned back to the provided output buffer. Once this is done, the execution
of the secure application is finished and program control flow is passed back to non-secure
application.

5.3.2. Non-Secure Application

Unlike the secure application, the non secure application runs FreeRTOS a Real Time
Operating System (RTOS). It is a real-time operating system for microcontrollers and mi-
croprocessors and functions as an operation system of our non-secure application. FreeR-
TOS provides some already available and easy to integrate libraries and files to step up
the implementation process. The main responsibilities of the non-secure application are
the communication with the MQTT broker and calling the functions provided by the se-
cure application. For the communication with the secure application we use the veneer
table which is implemented as part of the secure application and only the header file is

31

32 5. Implementation

exported to the non-secure application. The non-secure application can call every function
marked as non-secure callable and exposed by the veneer table like any other function of
the project. The only difference is that the non-secure application only has the header file
but the corresponding source file is part of the secure application and thereby inaccessi-
ble for the non-secure application like every other secure memory region and unchangeable.

5.3.2.1. Setting up the WiFi board

For the communication with the MQTT broker we need to implement a MQTT client.
But before we can start with implementing the MQTT client we need to establish a WiFi
connection and therefore initializing the WiFI board. As WiFi is not available on the
LPC55569 itself, we use the WiFi 10 Click board which is clicked in the mikro BUS of
the board. The WiFi 10 Click board comes equipped with the QCA400x WiFi module
manufactured by Qualcomm. It is just clicked in the board and will be powered by the
LPC55569 so no additional power supply is required.

To communicate with the module we use WiFi QCA400x drivers provided by the MCUX-
presso SDK. Additionally we need to run FreeRTOS as it is required to properly run the
WiFi. We already mentioned, that initializing the WiFi board is not straight forward, be-
cause the initialization of pins and peripherals as well as the interrupts are usually handled
as part of the secure application and by default not accessible within non-secure environ-
ment. For our approach we do not want the WiFi to run as a part of the secure application
but want the attestation code and all cryptographic operations to be fully separated from
other program logic. Because of that we changed the access configuration during the ini-
tialization of TrustZone. Once the non-secure application boots, it at first initializes pins
and clock of the system. Once this is done, the application creates a new task. This task
initializes the socket required for communication before turning on the WiFi. The WiFi
10 click uses the SPI interface and GPIO to communicate with the board. To use them
we had to adjust the pin multiplexing of our board to configure the pins according to the
WiFi board. We use the Flexcomm SPI interface and WiFi SPI drivers from FreeRTOS
to communicate with the board. Additionally we use the iot wifi library for QCA400x to
power on the board and to connect to a predefined network and to get an IP address using
DHCP. This library is also part of FreeRTOS and is provided by the MCUXpresso SDK.
To connect to a WiFi network, one usually needs some form of cryptographic library as
most WiFi networks use WPA2 to securely connect to their network. Therefore we use
Mbed TLS library. Mbed TLS is an open source cryptographic library that was published
by ARM and is now maintained by TrustedFirmware. FreeRTOS relies on Mbed TLS as
an underlying cryptographic library. Additionally, Mbed TLS provides a small memory
foodprint what makes it very suitable for embedded projects. Once the device has booted
the WiFi board properly and is connected to the WiFi network, the current task creates
a new one before deleting itself. It is necessary to delete every task created once they are
not required anymore to free allocated resources.

5.3.2.2. Setting up the MQTT Client

After the WiFi connection is established, next step is setting up the MQTT client and
connecting it to the broker. For this we delete the old task and create a new one with
greater heap and stack size as the MQTT requires much more memory then the initializa-
tion process. For our application, we require a MQTT client that subscribes to a specified
topic, publishes messages and respond on incoming messages sent under the subscription
topic. For the MQTT we use AWS IoT MQTT which is included in FreeRTOS C SDK
and thereby fits perfectly in our scenario. In order to use FreeRTOS C SDK we first

32

5.4. Implementation of Transaction Families 33

need to initialize the SDK itself before calling any of its API functions or it will trigger a
hardfault. After C SDK is initialized we create a MQTT client and connect to the broker.
Therefore, we use the MQTT agents provided by the MQTT library. There is an agent
provided for every core functionality of the MQTT protocol. These agent function as an
abstraction layer of the underlying MQTT logic and simplify the implementation as the
developer does not need to care about underlying program logic like data serialization or
used TCP/IP stack. Once the device established a connection to the broker, we subscribe
to the specified topic and publish a check request transaction. This message is published
to the blockchain that will check for pending attestation requests and reply.

5.3.2.3. Communication with Blockchain and Secure World

In order to publish a transaction message successfully to Sawtooth, the publisher must sign
the transaction using his private key. As the private key is only available to a secure world
function, non-secure application has to call the veneer table function check_request first
and pass the control to the secure function where the batch message is constructed and
handed over to the non secure application where the message is published. This method
is not trivial as the batches require a huge amount of memory space. This memory space
must be allocated in the non-secure memory area as otherwise the non-secure application
cannot access it. In order to allocate that much space we need to increase the maximum
heap size in the FreeRTOS configuration as well as the heap configuration in the MCU
settings or drastically increase the maximum stack size of the task ,because every task is
created with a maximum task size, as well as the stack configuration in MCU settings.
Once the check request message was published the device will stay in non-secure world
until the client receives a reply message. Once the devices receives this reply message or
any other message under the specified topic, the MQTT client will execute the defined
callback function. This function will take the received message and call a secure world
function that checks the received message and act appropriately. The reply message to a
check request tells the client if a fresh attestation result is required or not. If this is the
case, the message also contains a timestamp. If not, the timestamp will be empty. Once
the device receives an attestation request, the attestation function takes the timestamp
and calculates a fresh attestation evidence, creates the batch and passes the data back
to the non-secure application, where the MQTT client publishes the attestation evidence.
Nearly the same applies for trust queries. If the device needs to check the trust status of
an other device within the network, it has to query the blockchain in order to receive the
stored trust status.

5.4. Implementation of Transaction Families

In order to implement our functionality we had to implement two transaction families.
An administrator transaction family and an attestation transaction family. Both trans-
action families are implemented in Python. We used the Sawtooth Python SDK in our
implementation as it provides some very useful components that simplified developing ap-
plication for Sawtooth. Additionally, we used google protocol buffer as Sawtooth relies on
this to serialize transactions and batches. Google protocol buffer is a fast an simple way
to serialize structured data. We had to define a proto file for every message type used in
our transactions. These proto files were then used to generate a special source code using
protocol buffer compiler for Python. These files are then used in our implementation to
serialize and deserialize payload data.

5.4.1. Implementation of Administrator Transaction Family

Once the blockchain is running, multiple databases storing necessary data for the whole
system must be initialized. These databases are important as they contain relevant in-

33

34 5. Implementation

‘ Device Identity Time Function ‘ Measurement ‘ xXmin ‘ xXmax ‘ Reliability Score
073B -0.003333333*x + 1.2 | TA09AB47D4 | 60 120 0.7
998D -0.001666667*x + 2 C956F3FE76 | 600 | 1200 0.9
0CD1 -0.0006666667*x + 1.2 | 69F3BCD492 | 300 600 0.8

Table 5.1.: Device Database

formation like devicelDs of legitimate users and expected attestation evidences for the
devices. For our approach two different databases are required. The first one is the device
database displayed in This database contains the unique device identifier of every
legitimate user of the network. Additionally, it includes a time function, the expected
integrity measurement a lower and upper threshold xmin and xmax and the reliability
score. The value xmin is the threshold before an evidence starts to decay. Once a submit-
ted evidence is older then xmin the trust store will reduce over time following the defined
function. Whenever the trust score is below the minimum reliability or older then xmax,
the attestation is considered invalid. The exact procedure is explained in the next section.
The other one defines the system parameters used in the blockchain. All these information
are require to validate a submitted evidence and answer trust queries. The administrator
transaction processor is used to upload these administrative databases to the global state
of the blockchain. This step must take place before starting any other transaction, as the
data is relevant for other transaction families especially the attestation transaction family
in order to operate properly. In order to upload these database the administrator client
is used. This client uploads the data by sending transactions containing the correspond-
ing data. Once the administrative databases are initialized and the data was successfully
loaded to global state, the attestation transaction processor can be used.

5.4.2. Implementation of Attestation Transaction Family

Attestation Transaction Processor

submitEvidence —— | Evidence Storage
Submission Function

Attestation
trustQuery — Transaction Trust Query Block I.nfo
Processor Function
Check Address
checkRequests ~—— Requests Calculator

Figure 5.6.: Modules involved in the Attestation Processor

The attestation transaction family is the core component of our system. The transaction
processor takes all incoming transactions. The payload of every transaction is CBOR

34

5.4. Implementation of Transaction Families 35

encoded and must include two pieces of information, the action and the actual payload.
Because of this, the payload of every received transaction is decoded and split into action
and actual inner payload. Depending on the action, the processor will call the appropriate
action module and pass the current blockchain state, the transaction payload and the
public key of the signer to the function. As displayed in figure we have defined three
different action modules in our system and three additional helper modules. Before going
to the main modules, the action modules we briefly describe the helper modules:

Storage Functions This function queries the global state of the blockchain and is used
during validation to get a list of legitimate device IDs.

Block Info Functions Used to read block related information like the ID of a block or the
timestamp of a block with given ID.

Address Calculator The purpose of this module is to calculate the addresses in order to
store data or read already stored data.

The first action is to submit attestation evidence, the second one to query the trust status
of a prover device and the last one to check pending requests. These actions are required
in order to realize the functionality of the proposed approach and are implemented as own
python scripts. In the following, all three functions are explained starting with the trust
query.

The purpose of the trust query is to query the trust status of the requested prover device.
In order to do so, the payload must contain the devicelD of the device sending the trust
query as well as the ID of the prover device and a minimum reliability value. This is
checked in the first part of the function. In addition to that we require both IDs to be
assigned to legitimate peers. This means that the used device IDs must be stored in the
device ID database uploaded from admin client in beforehand. Therefore, we validate the
received IDs using the storage functions module. This module queries the global state of
the blockchain and checks if the devicelDs are part of the deviceDB. Once this is done,
we pass the proverID to the address calculation module where the address of the stored
attestation result as well as the address of the associated timestamp is calculated. The
next step is to read the stored values of these addresses. The last step before assembling
the reply message is to check the timestamp and calculate the trust status of the prover
device. The pseudocode in displayes the calculation of the trust status for a given
proverID. We use the block info module in this step in order to get the timestamp of
the last block submitted. At first we check if there is any evidence and timestamp for
this prover device in the system. In the case that no attestation result or timestamp is
stored, a check request for the proverID is set and attestation pending is return, telling the
requesting device that no attestation evidence of the requested prover device is currently
available in the system and it has to wait until an evidence is submitted. If both values are
available, the execution continues and checks if there is a strike registered for this prover
device. The device will get a strike whenever a wrong evidence is submitted what means
that the device is malicious. If the device has at least one strike, the function will return
untrusted and stores a new attestation request for the proverID. When there is evidence
available and no strike registered, the trust status is calculated using the timestamp. We
registered a minimum and maximum value as well as a decay function required for the
computation of the trust score. At first the age of the submission is calculated. This age
is stored in the variable z and is the difference between the timestamp of the latest block
submitted and the evidence timestamp. If x is below xmin, this means the evidence is
fresher then the defined threshold and we consider the device trusted. In the case that the
evidence is older then xmin but fresher then xmax the defined decay function determines
the trust score. A decay function is defined for every proverID and defines the remaining
trust score. We consider the device as trusted as long as the remaining trust score is above

35

36 5. Implementation

Algorithm 1 Calculation of Trust Status
Require: proverID
timestamp < getTimestamp(proverID)
trustStatus < getTrustStatus(proverID)
currentTime < getLastBlockTime()
if (timestamp # 0V trustStatus # ()) then
setRequest(proverID)
return attestationPending (2)
else if proverID.Strikes > 1 then
set Request(proverID)
return untrusted (3)
else
x = currentTime - timestamp
if x < proverID.xMin then
return trusted (1)
else if x > proverID.xMin A z < proverID.xMax then
decayedTrustStatus < calculate Decay(proverID)
return decayedTrustStatus [0:1]
else
setRequest(proverID)
delete Evidence(proverI D)
return attestationPending (2)
end if
end if

the minimum reliability defined in trust query payload. If the evidence is older then xmax,
we consider it outdated, delete the stored evidence as it is not longer valid and store an
attestation request for the proverID. The function will return a three if the prover device
is untrusted, two if attestation is pending, one if the device is trusted and a value between
one and zero if the evidence is still valid but decaying.

The next functionality explained is check request. This one is rather simple as the only
required functionality is to check the pending request for a prover device submitting this
request. The payload message only has to contain the device ID of the device checking
its pending request. The ID is then validated in the same way as described in the trust
query, before pending requests are read and returned. We additionally check if the device
has strikes. If it is the case, we set pending request true even if no actual requests are
stored to get a fresh attestation evidence of the device. This has the benefit, that the
system automatically checks if the malicious device is still malicious or if it was healed. If
there are pending requests for prover device, the return message will additionally contain
the block ID of the latest block submitted to the blockchain. This timestamp is then later
included in the evidence submission message.

The final functionality is evidence submission. The evidence submission message contains
following information, the device ID of the prover, the measurement itself and the times-
tamp. Before calculating the trust status, the legitimacy of the prover device is checked.
Additionally, the timestamp of the evidence message is checked. This is done to detect
messages that did not arrive in time and are therefore already invalid. With this check,
we prevent an unnecessary calculation of a trust status that will be deleted by the trust
query anyways. If the message passed both checks, the transaction processor queries the
blockchain for the expected attestation measurement and compares it with the received
one. If both values equal, the trust status of the device is set to one, meaning the device
is considered trusted otherwise the device will get a strike, meaning that it is considered

36

5.4. Implementation of Transaction Families 37

malicious. In the case that the received evidence did not pass the timestamp check, we
will set the trust status to two, meaning attestation is pending and additionally set the
check request bit to inform the prover that a fresh attestation evidence is required.

5.4.3. Other used Transaction Families

In addition to the two above described transaction families, we use two transaction fami-
lies that are provided by Sawtooth. The first one it the identity transaction familiy. This
transaction family deal with the permissioning of the participants. The purpose of the
identity transaction family is to define roles and policies for specific user groups. In order
to make changes in the family, a validator need to set keys that are allowed to do so. After
that, roles are created and policies are assigned to those roles. An example role might
be the "transactor” and refers to a policy that controls which entity is allowed to submit
batches and transaction to the network.

The other used transaction family is the settings family. This one is also provided by Saw-
tooth and is used to administrate the systems settings for the entire blockchain network.
In order to change global settings, a voting-based concept is introduced. This concept
enables permitted participants to decide on changes in the global policy. The changes are
executed once a certain threshold of votes is reached, resulting in a change of the global
settings.

37

6. Evaluation

6.1. Performance Evaluation

Action ‘ 1 Transaction ‘ 10 Transactions | 100 Transactions
Check Requests 9 55 483
Submit Evidence 41 252 2496
Trust Query 26 173 1559

Table 6.1.: Execution Time in Milliseconds

The performance of the whole system is mainly dependent on two factors. On the one
hand, the performance of the attestation scheme and on the other hand, the rate with
which Sawtooth Hyperledger can handle incoming transactions. The performance of both
parts is highly dependent on the capabilities of the underlying hardware components.
The performance of Sawtooth is additionally dependant on multiple other factors like the
network delay, the performance of the validator nodes and the amount of validator nodes
in our system. In order to eliminate the varying network delay we decided not to evaluate
the system as a whole but every component separately to get a more precisive result of the
capability of our approach. To evaluate the performance of Sawtooth, we measured the
execution time of all three implemented actions for a single transaction, ten and hundred
transactions. The transactions where directly submitted to the transaction processor to
minimize network delay. The results of our measurements are displayed in table It is
clear to see that the evidence submission requires the longest while check requests is the
fastest. This is obviously resulting from the computational effort required for this action.
We see that even handling 100 transactions at a time is very fast. This shows the feasibility
of this approach for larger networks.

6.2. Security Evaluation

In this security evaluation we are going to show that our approach is able to detect a
malicious prover device and additionally provides sufficient counter measures against com-
mon attacks targeting remote attestation schemes in IoT. In the definition of the attacker
model we considered two different possible attackers, attacker targeting the device itself
excluding hardware attacks and malicious entities within our network. For our security
evaluation we divided it in two sections with the first one focusing on an attacker that

39

40 6. Evaluation

infiltrated the prover device. This means that the attacker has access to every unprotected
memory region and can execute every function that is executable from non-secure memory.
While the second section considers an attacker within the network that might have also
access to non-secure memory of prover device but first of all the attacker was able to infect
some device within the network.

6.2.1. Attacker located on Prover Device

An attacker that managed to infect a prover device is able to fully control the non-secure
application. This includes writing to and reading from every accessible memory space, us-
ing every provided function especially the MQTT functions and the veneer table functions
as well as gathering every information that is available to in the non-secure environment.
In our setting, a malicious prover device can gather full control over the MQTT client.
The attacker can exploit this for example and use the MQTT client to send messages to
other network participants or publish transactions to the blockchain. In order to generate
a valid transaction message a prover device must sign the transaction using his private key.
This key is only available in secure environment which is protected by ARM TrustZone
and therefore not accessible. So even if a malicious prover device tries to send a spoofed
message, the recipient just needs to check the signature and will detect that this message
is not created by a trusted communication party.

There is a possibility for the attacker to get a valid transaction by using the veneer func-
tions. These functions will return the non-secure environment either a trust query or an
attestation evidence message. These messages are valid because they are generated and
signed by the secure application and can be generated and published by any malicious de-
vice. The attacker does not have any advantage by generating either one of these messages
as he can only query data stored in the blockchain or submit his own attestation evidence.
Calling the attestation function and publishing its result would additionally result in the
attacker revealing himself, as the attestation code calculated a hash over the whole non-
secure memory and publishes this as part of the attestation evidence batch. Once the
blockchain receives this package and the smart contract compares the provided attestation
result with the expected value, it will detect the infected device and store the result ac-
cessible for every other network participant making them aware that the prover device is
not trusted anymore. Usually after every boot the device will check with the blockchain if
any pending attestation requests were received. If a request was received, the prover will
calculate the attestation evidence and publish it causing a malicious prover to be revealed.
As the non-secure application is responsible for publishing the request in first hand and
the attestation evidence later on, a malicious application can prevent the request or the
attestation evidence from being sent. With this strategy a malicious device can try to
hide its malware infection by just not calculating and publishing any attestation evidence
ever again. This can be a good strategy especially if the last evidence submitted did not
contain any malware and thereby the prover is considered trusted. In order to mitigate
this, every attestation evidence has a time stamp. This time stamp is the time stamp
of the latest block submitted at the time and is sent to the prover device as an answer
to check attestation request. This times stamp is stored for every attestation evidence
submitted and checked everytime the attestation result is queried. If the time stamp of
latest attestation evidence submitted is older then a certain threshold, the prover device
that submitted this evidence is considered not trusted until a fresh attestation evidence
is submitted. This has the benefit that once a prover device turns malicious and stops
submitting attestation evidences the system automatically marks the device as attestation
pending and make every other device aware that this device did not submit any evidence
over a longer period of time. Obviously this security measure is highly dependent on the
actual threshold as a more generous threshold will result in a longer period of time until

40

6.2. Security Evaluation 41

a malicious device is marked as attestation pending and thereby can be detected by other
devices. So for security critical applications and devices it is recommended to use a low
threshold to detect malicious devices faster with the downside that devices must submit
attestation evidences more often what results in an increased security overhead.

With the possibility of generating valid transaction messages, the malicious prover device
can try to impersonate another device and publish spoofed transactions. Sawtooth stores
the data of every received and validated transaction to a specified address. This address
is calculated using an ID that is transmitted as part of every transaction. Thereby it can
be interesting for a malicious device to use other IDs within their transactions in order to
hide his own identity or impersonate another device. Such an attack is not possible in our
system as the proverlD is stored in secure memory and included in every transaction. This
is done by the secure application and cannot be manipulated by a malicious non-secure
application. Even trying to change the proverID once the finished batch is handed over
to non-secure application is not possible. Because of the signature, every change to the
transaction message will make the signature and thereby also the transaction invalid.
Another attack vector that must be considered summarizes attacks that cause denial of
service. There are already some attacks proposed using remote attestation schemes to
cause denial of service on a prover device by excessive execution of the attestation code.
Causing denial of service from non-secure environment, by executing the attestation code
is also possible in our scenario. A malicious non-secure environment can use the veneer
table functions to force the secure application to execute the attestation code over and
over again and prevent the board from doing anything else. However, even if this attack is
possible for an attacker that controls the non-secure environment we do not consider it as
reasonable. That is because first of all, an attacker running this attack would run a denial
of service attack against himself. The second point why this attack is not reasonable is
because the non-secure environment could run a denial of service attack much easier then
with excessive execution of attestation code by just turning of the board or the WiFi.
This means that even if denial of service attacks are still possible against a device that is
infected with malware it is not really profitable for the attacker.

The last attacks that must be evaluated are attacks targeting the WiFi and the WiFi
board. As already mentioned in the implementation section, we run and initialize the
WiFi board as a part of the non-secure application. This allows the attacker to power up
and down the WiFT as well as connecting to a WiFi. The WiFi credentials are required to
connect to the WiFi network and are thereby stored as part of the non-secure application
leaving the possibility for an attacker to leak the WiFi credentials. For most industrial
IoT scenarios this is not a huge concern as the WiFi network has additional protection.
If this is not the case, an attacker infecting a device can leak the WiFi credential. This
enables the possibility for other malicious devices located within the reach of the WiFi
to join the network. This is only possible if the attacker is able to locate the additional
devices within reach of the WiFi. And even if the attacker has access to the location and
can sneak malicious devices into the network this devices can not act as trusted commu-
nication parties because the blockchain does not have their public key stored. This will
cause the validator to dismiss every transaction that is published by such a device because
the signature check fails. Additionally, every normal device that requests a trust status
of such a device will receive a not trusted as their is no value available what causes the
smart contract to consider the device as not trustworthy.

6.2.2. Attacker located outside of Prover Device

In this section we are going to evaluate an attacker model where the attacker lies within
the network, but did not infect the prover device itself but some other network device.
This attacker is able to eavesdrop and intercept communication between devices or prover

41

42 6. Evaluation

and blockchain, record an replay intercepted messages, submit attestation requests and
can even be part of the validation process.

Evesdropping. An attacker eavesdropping the network communication is able to listen
to transaction messages published by devices. These messages are not encrypted and the
attacker can read all the included information. Transaction messages are publicly verifiable
and are thereby readable by every network participant and do not contain any sensitive
data. This has the result that an attacker eavesdropping does not gather any new and
private informations that are not available to every network participant anyway.

Replay Attacks. A more advanced attacker can try to intercept communication, record
and replay intercepted messages. As already explained above, an attacker can eavesdrop
communication easily and thereby also intercept communication and record the messages.
This will allow the attacker to delay messages sent from possible trusted parties. The
attacker could for example intercept an attestation evidence AE published by an genuine
prover device P before infiltrating the device P and turning it malicious. This message AE
can then be stored by the attacker and published at a later stage. With this attack, the
attacker is able to get a valid attestation evidence representing the device trusted while
being malicious. A countermeasure to this attack is the time stamp of the attestation
evidence. Once the transaction message comes trying to convince the system that P is
trusted the smart contract will check the timestamp of the evidence and the transaction is
declared invalid once the time stamp is too old. This will result in the transaction being
dismissed and the smart contract setting the check request bit as well as setting the trust
status to attestation pending so every device querying this value knows that fresh evidence
is missing.

Denial of Service. Another possible attack vector against honest devices is again denial of
service. A malicious device can publish massive requests for attestation evidence and make
the device calculate attestation over and over. In our system, these messages are not sent
directly from device to device, but one device needs to submit a request to the blockchain
and the prover device will query this value after some time. Thereby, the attacker has to
naturally wait until the prover device queries the submitted request and cannot send a
massive amount of requests directly to the device like in many other remote attestation
schemes in IoT.

As DoS attacks against the device are not possible, an attacker could try to run an DoS
attack against the blockchain and its validator nodes. This is a concern in Sawtooth as
unlike most other blockchain platforms, Sawtooth does not provide its own cryptocurrency
and thereby also no transaction fees. In order to alleviate this issue, the smart contract
provides a penalty function. This function can provide a penalty and even timeout devices
that are sending too many transactions in order to prevent such attacks.

Predicting Timestamp. The last attacker we need to evaluate, is an attacker that tries
to predict the timestamp of upcoming blocks in the system. We use the block ID as a
nonce of freshness for the attestation evidence. An attacker that can guess the upcoming
blocks several minutes or hours in advance can request attestation evidence from a prover
device and provide a spoofed timestamp that lies in the future. This will give the attacker
the opportunity to get an unaltered attestation evidence in advance before infecting the
memory of the prover device. Usually this evidence will be timed out quickly by the system
but as the timestamp lies in the future, the attacker will have some additional time. In
large networks it is nearly impossible to reliably influence the block generation and the
order in which transactions are submitted. In order to manipulate this process, an attacker
is required to control half of the devices within the network or at least large parts of it
and is thereby not considered in this thesis.

42

7. Conclusion

The internet is no longer a web that we connect to. Instead, it’s a computerized,
networked, and interconnected world that we live in. This is the future, and
what we’re calling the Internet of Things.

This quote of Bruce Schneider emphasizes the future importance of IoT. Billions of IoT
devices are already deployed with numbers rapidly increasing. With a further expansion
of IoT networks, security within the networks becomes more and more important. The re-
stricted capabilities of the devices as well as the heterogeneity and large number of devices
within an IoT network causes most traditional security features as well as trust establish-
ment methods to suffer from some major downfalls when being applied to IoT devices. In
this thesis a new approach to establish and maintain trust between different IoT devices
is presented. The proposed system design uses distributed ledger to store attestation re-
quests, answer trust queries and validate attestation evidences. In the presented approach,
a distributed ledger platform and a smart contract is used to replace the central verification
authority used in most remote attestation schemes. With this step, several flaws usually
resulting from the reliance of systems on a central authority are solved. In addition to
that, the overall trust is increased as every piece of information is public. The possibility
of evaluating attestation evidences and storing their outcome without relying on central
servers is a important step to establish and maintain trust in a scalable manner in IoT.
We evaluated that the proposed architecture is able to solve every challenge formulated
at the beginning of this thesis. Additionally, it was presented that our approach reliably
protects against the formulated attacker model and prevents common attacks like denial of
service. Additionally, a prove of concept implementation of the overall system is provided.
This implementation contains the implementation of Sawtooth transaction processors as
well as the attestation code and a MQTT client on the LPC55S69-EVK. We conclude that
the presented concept solves several issues regarding remote attestation in IoT and enables
trust establishment to large and heterogeneous networks.

We are glad that we were able to fully implement the whole approach on Sawtooth as well
as providing a implementation for a prover device. Nonetheless, there are some interesting
challenges for future work in order to further advance the system. The first step could
be to deploy a real world setup with multiple different devices. Implementing other attes-
tation schemes for other devices with different hardware and adding these devices to the
system is also a future step to improve the system and bring the concept closer to a real
world deployment.

Another interesting aspect for future research could be the consideration whether and how

43

44 7. Conclusion

it is possible to port this concept to a public blockchain platform like Ethereum.

44

List of Figures

2.1. Remote Attestation|. Lo 9
2.2. Overview of a blockchain architecturel 10
2.3. Smart Contractl o oo 10
2.4. Sawtooth Hyperledger High Level Architectural Overview [19]]. 11
3.1. ARM TrustZone | 14
3.2. BATTETT Architecture [40] 18
3.3. TM Coin Architecture [41]/. L. 19
4.1. Architectural Overview| 22
4.2. Sequence Diagramm of whole System|. 24
5.1. TrustZone Access Controll 27
5.2. Memory Access Rules| 28
5.3. Program Control Flow|, 29
5.4. Memory Configuration of our device, 29
5.5. Batch Construction in Sawtooth Hyperledger| 30
[5.6. Modules involved in the Attestation Processor|. 34

A1 Afigure] L 55

45

List of Tables

13.1. Comparison of properties of hybrid attestation scheme|

[5.1. Device Databasel

6.1. Execution Time in Milliseconds

47

Listings

49

Bibliography

1]

2]

7]

Knud Lasse Lueth, “State of the iot 2018: Number of iot devices now at 7b — market
accelerating,” 2018.

I. Krontiris, T. Giannetsos, and T. Dimitriou, “Launching a sinkhole attack in wireless
sensor networks; the intruder side,” in 2008 IEEFE International Conference on Wire-
less and Mobile Computing, Networking and Communications, IEEE, 10/12/2008 -
10/14/2008.

M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle attacks,” IEEE
Communications Surveys € Tutorials, 2016.

Sam Kottler, “February 28th ddos incident report,” 2018.
Trusted Computing Group, “Tpm main specification version 1.2,” 2012.

F. Brasser, K. B. Rasmussen, A.-R. Sadeghi, and G. Tsudik, “Remote attestation for
low-end embedded devices,” in Proceedings of the 53rd Annual Design Automation
Conference, (New York, NY), ACM, 2016.

W. Meng, T. Jiang, and J. Ge, “Dynamic swarm attestation with malicious devices
identification,” IEEE Access, vol. 6, pp. 50003-50013, 2018.

M. Ammar and B. Crispo, “Wise: A light weight intelligent swarm attestation scheme
for the internet of things,” ACM Trans. Internet Things, vol. 1, June 2020.

Satoshi Nakamoto, “bitcoin,”

K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step towards creat-
ing a safe smart contract: Lessons and insights from a cryptocurrency lab,” in Finan-
cial Cryptography and Data Security (J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach,
M. Brenner, and K. Rohloff, eds.), (Berlin, Heidelberg), pp. 79-94, Springer Berlin
Heidelberg, 2016.

A. Bahga and V. K. Madisetti, “Blockchain platform for industrial internet of things,”
Journal of Software Engineering and Applications, vol. 09, no. 10, pp. 533-546, 2016.

M. Pilkington, Blockchain technology: principles and applications. Cheltenham, UK:
Edward Elgar Publishing, 2016.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and S. Capkun, “On
the security and performance of proof of work blockchains,” CCS 16, (New York, NY,
USA), p. 3-16, Association for Computing Machinery, 2016.

C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and
E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future blockchain networks:
Fundamentals, applications and opportunities,” IEEE Access, vol. 7, pp. 85727-85745,
2019.

51

52

Bibliography

[15]

[16]

[17]

N. Szabo, “Formalizing and securing relationships on public networks,” First Monday,
vol. 2, no. 9, 1997.

M. Giancaspro, “Is a ‘smart contract’ really a smart idea? insights from a legal
perspective,” Computer Law & Security Review, vol. 33, no. 6, pp. 825-835, 2017.

K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab,”
in International conference on financial cryptography and data security, pp. 79-94,
Springer, 2016.

W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen, and B. Xu,
“Smart contract development: Challenges and opportunities,” IEEE Transactions on
Software Engineering, pp. 1-1, 2019.

K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and C. Montgomery,
“Sawtooth: An introduction,” The Linux Foundation, 2018.

B. L. Miguel Castro, “Practical byzantine fault tolerance,” 1999.
F. McKeen, “Innovative instructions and software model for isolated execution,”
G. F. Jerome Azema, “M-shield whitepaper,” 2008.

ARM Limited, “Arm security technology building a secure system using trustzone
technology,”

“ftpm: A firmware-based tpm 2.0 implementation.”
Diya Souba, “Trustzone for armv8-m.”

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “Swatt: software-based at-
testation for embedded devices,” in 2004 Symposium on Security and Privacy, (Los
Alamitos, Calif), IEEE Computer Society, 2004.

K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure and minimal
architecture for (establishing dynamic) root of trust.,” in Ndss, vol. 12, pp. 1-15, 2012.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite,” in Proceedings
of the 9th ACM FEuropean Conference on Computer Systems ; April 18 - 16, 2014,
Amsterdam, Netherlands (D. Bultermann, H. Bos, A. Rowstron, and P. Druschel,
eds.), (New York, NY), pp. 1-14, ACM, 2014.

X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation of iot devices via
smarm: Shuffled measurements against roving malware,” in Proceedings of the 2018
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
(Piscataway, NJ), pp. 9-16, IEEE, 2018.

A. Ibrahim, A.-R. Sadeghi, and G. Tsudik, “Healed: Healing & attestation for low-end
embedded devices,” in International Conference on Financial Cryptography and Data
Security, pp. 627645, Springer, 2019.

B. et al., “Tytan,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), (Piscataway, NJ), IEEE, 2015.

K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra,” in Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(G. Noubir, ed.), (New York), pp. 99-110, Association for Computing Machinery,
July 2017.

52

Bibliography 53

[33]

[34]

[35]

[36]

[41]

[42]

M. N. Aman, M. H. Basheer, S. Dash, J. W. Wong, J. Xu, H. W. Lim, and B. Sikdar,
“Hatt: Hybrid remote attestation for the internet of things with high availability,”
IEEE Internet of Things Journal, p. 1, 2020.

M. N. Aman and B. Sikdar, “Att-auth: A hybrid protocol for industrial iot attestation
with authentication,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 5119-5131,
2018.

A.-R. Sadeghi, Towards Hardware-Intrinsic Security: Foundations and Practice. In-
formation Security and Cryptography, Berlin, Heidelberg: Springer-Verlag Berlin Hei-
delberg, 2010.

I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik,
“VRASED: A verified hardware/software co-design for remote attestation,” in 28th
USENIX Security Symposium (USENIX Security 19), USENIX Association, Aug.
2019.

I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “A verified archi-
tecture for proofs of execution on remote devices under full software compromise.”

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and and Gene
Tsudik, “Pure: Using verified remote attestation to obtain proofs of update, reset and
erasure in low-end embedded systems,”

F. Brasser, K. B. Rasmussen, A. Sadeghi, and G. Tsudik, “Remote attestation for low-
end embedded devices: The prover’s perspective,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1-6, 2016.

M. Bampatsikos, C. Ntantogian, C. Xenakis, and S. C. A. Thomopoulos, “Barrett
blockchain regulated remote attestation,” in Proceedings, 2019 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence Workshops (WI 2019 companion) (P. Bar-
naghi, ed.), (New York, New York), pp. 256-262, The Association for Computing
Machinery, 2019.

J. Park and K. Kim, “Tm-coin: Trustworthy management of tcb measurements in iot,”
in 2017 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), (Piscataway, NJ), pp. 654-659, IEEE, 2017.

J. N. et al, “Legiot: Ledgered trust management platform for iot,”

53

Appendix

A. First Appendix Section
ein Bild

Figure A.1.: A figure

55

	Contents
	1 Introduction
	2 Background
	2.1 Remote Attestation
	2.2 Blockchain and Smart Contract
	2.3 Sawtooth Hyperledger

	3 Related Work
	3.1 Hardware-based
	3.2 Software-based
	3.3 Hybrid-based
	3.4 Attestation from the Provers Point of View
	3.5 Remote Attestation in combined with Blockchain Technology

	4 Approach
	4.1 Blockchain as Verifier
	4.2 The Prover Device
	4.3 Communication
	4.4 Attacker Model

	5 Implementation
	5.1 The Prover Device
	5.2 Choice of Blockchain Platform
	5.3 Implementation of the Prover Device
	5.3.1 Secure Application
	5.3.1.1 Configuring TrustZone
	5.3.1.2 Calculation of Attestation Evidence
	5.3.1.3 Building the Attestation Evidence Message
	5.3.1.4 Building the Blockchain Query

	5.3.2 Non-Secure Application
	5.3.2.1 Setting up the WiFi board
	5.3.2.2 Setting up the MQTT Client
	5.3.2.3 Communication with Blockchain and Secure World

	5.4 Implementation of Transaction Families
	5.4.1 Implementation of Administrator Transaction Family
	5.4.2 Implementation of Attestation Transaction Family
	5.4.3 Other used Transaction Families

	6 Evaluation
	6.1 Performance Evaluation
	6.2 Security Evaluation
	6.2.1 Attacker located on Prover Device
	6.2.2 Attacker located outside of Prover Device

	7 Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography
	Appendix
	A First Appendix Section

