
Bachelor Thesis

Strategies for the Security
Assessment of IoT Devices by
Certification Authorities

Moritz Anton Finke
Department of Computer Science
Chair of Computer Science II (Software Engineering)
Secure Software Systems Research Group

Prof. Dr.-Ing. Alexandra Dmitrienko
First Reviewer & First Advisor

Submission
26th May 2020 www.uni-wuerzburg.de

Abstract

The Internet of Things (IoT) is a global infrastructure that interconnects physical and
virtual things based on evolving information and communication technologies [1]. Along
with the rise of the IoT, multiple unprecedented forms of security issues and attacks have
emerged. While their limited resources disallow the utilization of computing-intensive
security measures, the services of IoT devices represent an attractive target for vulnera-
bility exploitation. Certification Authorities (CAs) have responded to the trend and offer
security assessments and certification for IoT devices. To ensure qualitative and fair cer-
tification, security testing requires well-defined strategies. This bachelor thesis analyzes
the existing IoT security assessment models and proposes a novel, CA oriented Testing
Guide Model (TGM) for standardized and reproducible assessments. The TGM describes
a complete security assessment approach for application in IoT device security certification
procedures of CAs. As part of the bachelor thesis, the TGM is specified, implemented,
and its applicability evaluated with the help of existing IoT devices.

CAs account for the security of certified products. The certification of devices that (subse-
quently) prove to be insecure can lead to a consumer’s loss of trust in the CA. Therefore,
the decision for issuing certificates must be comprehensible and made carefully. For the
risk estimation of security issues and vulnerabilities, it is common to make use of numerical
scoring systems. Well-defined scoring systems allow precise and reproducible estimations.
In addition to the introduction of the TGM, this bachelor thesis analyzes the scoring sys-
tems established in the field of IT security in regard to their applicability for the scoring of
IoT related vulnerabilities, complete IoT devices, and for the specific requirements of CAs.
This thesis uncovers incompatibilities and insufficiencies in the existing systems that disal-
low application for the scoring of IoT devices and for application by CAs. To counter these
issues, the thesis introduces a novel Security Scoring System (SSS) for rating IoT devices
based on the risks of their vulnerabilities, services, and operational contexts. The SSS is
integrated into the TGM, implemented in software, and evaluated with a comparison to
the existing scoring systems.

To summarize, the contributions of this bachelor thesis are two novel models for the security
assessment of devices of the IoT: the TGM and the SSS. The models are intended to find
application for CAs and both standardize and improve the security testing and assessment
procedures.

iii

Zusammenfassung

Das Internet der Dinge (IoT) stellt eine globale Infrastruktur dar, welche physische und
virtuelle Geräte mit stetig weiterentwickelten Informations- und Kommunikationstechno-
logien verbindet [1]. Mit der Verbreitung des IoT in Industrie, öffentlicher Infrastruktur
und Wohnhäusern entstehen bisher unbekannte Schwachstellen und Angriffsmöglichkeiten.
Geräte des IoT werden in unterschiedlichen Umgebungen eingesetzt und können aufgrund
ihrer individuellen Funktionalitäten neben den Auswirkungen von konventionellen Angrif-
fen auch physische Schäden an den Geräten selbst sowie ihrer Umgebung verursachen. Für
IoT Geräte ist die Absicherung vor Angriffen deshalb von hoher Wichtigkeit. Zertifizie-
rungsstellen bieten die Überprüfung der Sicherheit und Entdeckung möglicher Schwach-
stellen als Dienstleistung mit Vergabe von Zertifikaten oder Prüfsiegeln an. Hierfür bedarf
es festgelegter Strategien und Modelle, welche die Form des Verfahrens zur Zertifizierung
definieren und eine vollständige und gleichbehandelnde Überprüfung ermöglichen. Da be-
stehende Modelle für die Überprüfung von IoT-Sicherheit den individuellen Anforderungen
von Zertifizierungsstellen nicht gerecht werden, wird mit dieser Bachelor-Thesis erstmalig
ein Testing Guide Modell (TGM) für die konkreten Anforderungen von Sicherheitstests
für IoT Geräte im Kontext von durch Zertifizierungsstellen durchgeführte Überprüfungen
entwickelt. Das TGM wird im Rahmen der Bachelor-Thesis implementiert und anhand
von existierenden IoT Geräten hinsichtlich dessen Anwendbarkeit evaluiert.

Mit der Vergabe von Prüfsiegeln bestätigen Zertifizierungsstellen gegenüber den Kunden
von Produkten deren geprüfte Sicherheit. Werden unsichere Geräte fälschlicherweise zertifi-
ziert, kann dies zum Verlust des Vertrauens in die Zertifizierungsstelle führen. Die Entschei-
dung zur Vergabe muss genau abgewogen und nachvollziehbar sein. Zur Einschätzung von
Schwachstellen werden im Gebiet der IT-Security numerische Bewertungssysteme genutzt.
Mit eindeutig definierten Bewertungssystemen sind Einschätzungen sowohl begreiflich als
auch reproduzierbar. Mit dieser Bachelor-Thesis werden zusätzlich zur Entwicklung TGM
die etablierten Bewertungssysteme hinsichtlich ihrer Anwendbarkeit für die Bewertung von
IoT Geräten sowie für die Anforderungen von Zertifizierungsstellen untersucht. Anschlie-
ßend wird ein neues Bewertungssystem, das Security Scoring System (SSS), entwickelt,
welches die Sicherheit von IoT Geräten anhand dessen Schwachstellen, Funktionalität und
operationeller Umgebung bewertet und für den Einsatz durch Zertifizierungsstellen geeig-
net ist. Das SSS wird im TGM integriert, implementiert und anhand eines Vergleichs mit
bestehenden Bewertungssystemen evaluiert.

Mit dieser Bachelor-Thesis werden die zwei neuartigen Modelle TGM und SSS für die
Sicherheitsüberprüfung von Geräten des IoT entwickelt. Die Modelle sollen bei Prüfver-
fahren von Zertifizierungsstellen Anwendung finden und sowohl das Prüfverfahren selbst,
als auch die Sicherheitsbewertung von IoT Geräten standardisieren und verbessern.

v

Contents

Glossary 1

Abbreviations 3

1. Introduction 5

2. Background and Related Work 7
2.1. The Need for Security Scoring . 7

2.2. Common Vulnerability Scoring System . 8

2.2.1. Common Vulnerability Scoring System (CVSS) Model 8

2.2.1.1. Metrics . 8

2.2.1.2. Scoring . 9

2.2.2. Risk Scoring with CVSS . 10

2.2.3. Version Changes affecting the Applicability for the Internet of Things 10

2.2.3.1. CVSS Version 2.0 . 10

2.2.3.2. CVSS Version 3.0 . 11

2.2.3.3. CVSS Version 3.1 . 13

2.2.4. CVSS for Certification Authorities 13

2.2.4.1. Exploit Code Maturity . 13

2.2.4.2. Remediation Level . 14

2.2.4.3. Report Confidence . 14

2.3. Weighted Risk Ranking Model . 14

2.3.1. WRR Model Description . 15

2.3.1.1. Risk Mapping Database . 16

2.3.1.2. Weighted Risk Ranking Method 16

2.3.1.3. Device Risk Score Calculation 16

2.3.2. Applicability of the Weighted Risk Ranking (WRR) Model for the
IoT and CAs . 17

2.3.2.1. Representation of IoT Specific Risk Categories 17

2.3.2.2. Security Scoring Limitations of WRR 18

2.4. Security Risk Assessment for Certification Authorities 19

3. Security Scoring System 21
3.1. SSS Requirements . 21

3.1.1. Feature Set Relations . 21

3.1.2. Impact of Risk Weighting on SSS . 22

3.1.3. Applicability of Simple Fractions . 22

3.1.4. Finite Score Boundaries . 23

3.2. SSS Specification . 23

3.2.1. Security Assessment Component . 23

3.2.2. Security Score . 24

3.2.2.1. Device Base Risk Score . 24

vii

viii Contents

3.2.2.2. Security Score Function . 24
3.2.2.3. Security Score Limit . 25

3.2.3. SSS Application in Testing Procedures 26
3.3. SSS Constants . 26

4. Testing Guide 29
4.1. TGM Segments . 29

4.1.1. Testing . 29
4.1.2. Test Management . 31
4.1.3. Risk Assessment . 31
4.1.4. Client Communication . 32

4.2. Layer of Abstraction . 33
4.3. Iterative Testing Procedure . 33

4.3.1. Initial Phase . 33
4.3.2. Iterative Phase . 34
4.3.3. Deciding Over Certification . 36
4.3.4. Parallelism . 36

5. Implementation 39
5.1. Test Management System . 39

5.1.1. Test Cases . 40
5.1.2. Creating Test Plans . 40
5.1.3. Updating Test Cases . 40
5.1.4. Testing Updates . 40
5.1.5. Information Sources . 41

5.2. Risk Register . 41
5.3. Scoring System . 41

6. Evaluation 43
6.1. TGM Evaluation . 43

6.1.1. Testbed . 43
6.1.2. Initial Phase . 44
6.1.3. Iterative Phase . 45
6.1.4. Evaluation Results . 48

6.2. SSS Evaluation . 48
6.2.1. Testbed . 49
6.2.2. Security Score Analysis for Existing IoT Devices 49
6.2.3. Comparison to WRR and CVSS . 50

7. Future Work 53
7.1. TGM Evaluation . 53
7.2. CVSS Extensions Framework . 53
7.3. WRR Accuracy . 53
7.4. SSS Constants . 54

8. Conclusion 55

List of Figures 56

List of Tables 57

Listings 59

Bibliography 63

viii

Contents ix

Appendix 67
A. SSS Implementation . 67
B. TGM Test Cases . 69
C. Risks of IoT Devices . 70

ix

Glossary

Black Box “A system [. . .] whose inputs, outputs, and general function are known but
whose contents or implementation are unknown or irrelevant” [2].

Certification Authority (CA) A CA assesses a DUT’s compliance to specified certification
criteria via a certification process. If all requirements are satisfied, the CA issues a
certificate for the Device Under Test (DUT)’s product type.

Certification “The process of confirming that a system or component complies with its
specified requirements and is acceptable for operational user” [2].

Certification Criteria “A set of standards, rules or properties to which an asset must
conform in order to be certified to a certain level” [2].

Certification Process “The process of assessing whether an asset conforms to predeter-
mined certification criteria appropriate for that class of asset” [2].

Client A company or a similar entity that requests a CA to perform a certification process
on its product in order to obtain a product certification.

Device Base Risk Score The Device Base Risk Score (DBRS) is a component of the SSS.
It measures an IoT device’s risks based on its service capabilities and operational
contexts. A high DBRS indicates risky service capabilities and low risk operational
contexts, while a low DBRS indicates risky operational contexts or few and/or low
risk service capabilities.

Device Risk Score The Device Risk Score is the product of the WRR model and repre-
sents an IoT device’s risk estimation based on its vulnerabilities, service capabilities
and operational contexts.

Device Under Test (DUT) A DUT is a physical or virtual item that is subject of a CA’s
certification process. It is a sample device of a product type that is to be issued a
certificate.

Iterative Testing Procedure (ITP) The ITP is a testing procedure that is intended to be
used by CAs for performing security assessments. It utilizes TGM components and
covers the complete testing cycle required in a certification process.

Risk “The combination of the probability of an abnormal event or failure and the con-
sequence(s) of that event or failure to a system’s components, operators, users, or
environment” [2].

Risk Acceptance “Acknowledgement of a risk factor’s existence along with a decision to
accept the consequences if the corresponding problem occurs” [2].

Risk Analysis “The process of examining identified risk factors for probability of occurence,
potential loss, and potential risk-handling strategies” [2].

Risk Category “A class or type of risk” [2].

1

2 Contents

Risk Identification “An organized, systemic approach to determining the risk factors as-
sociated with a planned activity, project, or program” [2].

Risk Mapping Database (RMD) The RMD, defined in [3], is a database that holds in-
formation and risk scores for the vulnerabilities, service capabilities, and operational
contexts of IoT devices.

Risk Mitigation “A course of action to reduce the probability of and potential loss from
a risk factor” [2].

Risk Register “The document containing the results of the qualitative risk analysis, quan-
titative risk analysis, and risk response planning. The risk register details all identi-
fied risks, including description, category, cause, probability of occurring, impact(s)
on objectives, proposed responses, owners, and current status” [2].

Security Risk Assessment (SRA) Model An SRA model describes the steps and strate-
gies for assessing a certain asset’s security risk.

Security Score The Security Score is a numerical estimation of the security of an IoT
device. The Security Score is computed by the SSS.

Security Scoring System (SSS) The SSS assigns numerical scores to the security of IoT
devices. The security score is based on the devices’ service capabilities, operational
contexts, and vulnerabilities.

Test “An activity in which a system is executed under specified conditions, the results
are observed or recorded, and an evaluation is made of some aspect of the system or
component” [2].

Test Case “Documentation specifying inputs, predicted results, and a set of execution
conditions for a test item” [2].

Test Execution “Act of performing one ore more test cases” [2].

Testing Guide Model (TGM) The TGM is an abstract set of components and relations
that is utilized in a certification process. It is specified in Chapter 4.

Test Management System (TMS) The TMS is an abstract set of components and rela-
tions that is utilized in a testing procedure.

Weighted Risk Ranking Method (WRRM) The WRRM, defined in [3], assigns weights
to risks provided as input.

Weighted Risk Ranking (WRR) Model The WRR model, defined in [3], assigns numeri-
cal risk scores to the security of IoT devices. The risk score is based on the devices’
service capabilities, operational contexts, and vulnerabilities.

White Box “A system [. . .] whose internal contents or implementation are known” [2].

2

Abbreviations

BRS Base Risk Score

BSI Bundesamt für Sicherheit in der Informationstechnik

CA Certification Authority

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DoS Denial of Service

DUT Device Under Test

IoT Internet of Things

IoTSF IoT Security Foundation

ITP Iterative Testing Procedure

NVD National Vulnerability Database

OSI Open Systems Interconnection

RMD Risk Mapping Database

SRA Security Risk Assessment

SSS Security Scoring System

TGM Testing Guide Model

TL TestLink

TMS Test Management System

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik

WRRM Weighted Risk Ranking Method

WRR Weighted Risk Ranking

YAML YAML Ain’t Markup Language

3

1. Introduction

The Internet of Things (IoT) is a constantly evolving field with growing market share [4].
For the year 2020, a number of 5.8 billion IoT endpoints is projected [4]. This huge number
of devices and their unique conjunction between software and the real, physical world
creates unprecedented security vulnerabilities and allows for novel attacks. In late 2016,
the distributed Denial of Service (DoS) attack Mirai harmed multiple Internet connected
high-profile targets. The Mirai attack peaked with a number of 600.000 infections and
was largely backed by IoT devices – platforms that are characterized by their low level of
resources [5]. Yet, the Mirai attack was sufficiently powerful to cause outages in multiple
targets, including servers of Deutsche Telekom [5]. Mirai is just an example for a multitude
of attacks that either exploit IoT devices as a tool to harm their targets or damage the
devices themselves.

With the rise of attacks in the IoT, the interest in IoT security has increased correspond-
ingly [6]. In an effort to motivate manufacturers to develop more secure IoT products
and allow consumers to make purchase decisions based on a product’s assessed security,
the Bundesamt für Sicherheit in der Informationstechnik (BSI) was commissioned to roll
out a certification program for IoT products [7]. Similar certification programs are also
offered by independent Certification Authorities (CAs) like Verband der Elektrotechnik,
Elektronik und Informationstechnik (VDE). At VDE, manufacturers of IoT devices vol-
untarily request information security assessments for their products. If deemed secure,
devices can be marketed with a proprietary VDE seal to signify to consumers that the
manufacturer attributes importance to information security and offers reviewed products
that satisfy a high security standard [8].

For proprietary IoT security certificates, it is in the interest of CAs to keep their test-
ing procedures secret, as sharing those with other CAs could implicate disadvantages in
competition. However, publicly developed testing procedures may be of higher advantage,
since those are subject to peer-review and discussed by a greater audience. This bachelor
thesis initiates this proposition and introduces a public testing procedure model for IoT
device security assessments in the context of CA testing conditions. It represents an open
alternative to proprietary approaches and is intended to be utilized and enhanced by CAs
and the general public.

Depending on the consulted definition, it can be argued that there is no such thing as
absolute security. Regardless, if this is deemed true or false, CAs must decide over the
security level, at which they are willing to grant certification and thereby pay for potentially

5

6 1. Introduction

undetected security issues with their public trust or certification license. This means
that CAs do not only have to perform comprehensive security tests, but also be able to
interpret the test results correctly. For precise security ratings, “quantitative methods are
needed to ensure that the decisions are not based on subjective perceptions only” [9]. Such
quantitative methods are typically realized in the form of scoring systems, such as the
Common Vulnerability Scoring System (CVSS) [10].

Contributions and Outline The contributions of this bachelor thesis can be summa-
rized as follows:

• Analysis of the existing risk and vulnerability scoring systems CVSS and Weighted
Risk Ranking (WRR) [3] in Chapter 2. It is discovered that the components and
equations of these systems hold insufficiencies that disallow the precise scoring of IoT
devices and their individual vulnerabilities. Furthermore, the systems’ components
are found to be inapplicable for the use cases of CAs.

• Development of the SSS in Chapter 3. The introduced scoring system SSS is designed
to properly express the overall security of IoT devices. The developed methods for
score computation consider a device’s vulnerabilities and put those in relation to its
service capabilities and operational contexts. The SSS is implemented in software in
Chapter 5 and compared to the existing systems CVSS and WRR in Chapter 6. It
is determined to have beneficial features that improve application by CAs.

• Development of the TGM in Chapter 4. The TGM consists of multiple, interdepen-
dent segments that already find application in product certification processes. The
TGM represents a proposal for standardizing the security risk assessment methods of
CAs and incorporates the introduced SSS. Its segments’ components are combined
to form a testing procedure that covers a complete certification process. The software
elements of the TGM are implemented in Chapter 5 and the TGM’s applicability for
utilization by CAs is evaluated in Chapter 6.

Overall, the thesis proposes a solution for the security testing and assessment of IoT devices
tailored for the needs of CAs and has the potential to improve the security of IoT systems.

6

2. Background and Related Work

This chapter examines the scoring system solutions Common Vulnerability Scoring Sys-
tem (CVSS) [10] and Weighted Risk Ranking (WRR) [3] that build the foundation for
the research of Chapter 3 and investigates the existing work related to those systems.
Additionally, the work related to existing Security Risk Assessment (SRA) models and
the requirements for Internet of Things (IoT) security testing by Certification Authori-
ties (CAs) is surveyed (see Section 2.4).

The behavior of both scoring systems is briefly explained and their applicability for CAs
analyzed (see Sections 2.2 and 2.3). Especially CVSS, a well-established and researched
model [9], has experienced many changes in the past that affect the compatibility both
for IoT and CAs. Its problems and the efforts made in the history of CVSS towards an
IoT compatible system are investigated in greater detail with both existing work and new
contributions.

2.1. The Need for Security Scoring

It is essential for security analysts to properly ascertain the severity, exploitability, and
accessibility of detected security risks. Risks that are falsely assumed to only cause minor
impact and therefore are ignored in later mitigation procedures can have fatal consequences
[11]. A common approach for vulnerability rating is to make use of a specially designed
scoring system such as the CVSS, that “has now become almost an industrial standard for
assessing [. . .] security vulnerabilities” [9]. With CVSS, vulnerabilities are rated by their
severity on a linear scale. This helps security analysts and developers in “communicating
the characteristics and severity of software vulnerabilities” [10] and determining which
vulnerabilities are most important to mitigate or could be ignored because of lack of
impact.

Attempting to quantify the level of security of a Device Under Test (DUT) or to make
any other assertion about its security is associated with many challenges. Security assess-
ments are limited in their resources, including available amount of time for testing, the
researchers’ education, available information, etc. Hence, a scoring system can, at best,
only represent the DUT’s security level based on all available knowledge gained through
prior testing. It must be clear that scoring systems only provide an approximation for
a DUT’s security level. Still, scoring systems are indispensable for security analysts and
CAs, as they are capable of expressing and summarizing complex test results and also

7

8 2. Background and Related Work

Qualitative Rating CVSS Score

None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

Table 2.1.: Qualitative Severity Rating Scale. Table taken from [10].

allow untrained personell to comprehend and interpret such results. Furthermore, scoring
systems ensure that security ratings do not primarily rely on the researcher’s subjective
opinions [9].

When assessing the security of devices of the IoT, determining the severity of single vul-
nerabilities and risks is not sufficient, since a conclusion about the complete DUT must
be drawn. The IoT introduces new aspects that both require new security mechanisms
and, at the same time, exceed the scope of classical systems like CVSS. Not only a DUT’s
software, but also its hardware and physical components, as well as environmental aspects
must be considered by a scoring system. While hardware attacks primarily impact the
integrity, confidentiality, or availability of devices and networks, misuse of the physical
functionality of IoT devices can lead to major disasters such as the injury of individuals
[11].

2.2. Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is described as“an open framework for
communicating the characteristics and severity of software vulnerabilities” [10]. It consists
of three metric groups, Base, Temporal, and Environmental. Through a set of equations,
the groups’ metrics are merged to form a quantitative score on a range from 0.0 to 10.0
that can also be mapped onto a qualitative scale (see Table 2.1). The sections below
shortly describe the model’s components and investigate the applicability of CVSS for IoT
and CAs.

2.2.1. CVSS Model

The CVSS score rates a vulnerability by its severity. The score is composed of the values
of CVSS metrics. It is computed through CVSS equations that use the individual metrics’
values [10].

2.2.1.1. Metrics

CVSS defines three metrics groups: Base, Temporal, and Environmental. Over the course
of CVSS development, the groups’ metrics sets have changed drastically. The metrics
discussed in this section are part of the latest CVSS specification (version 3.1).

Base Metrics The Base metric group, consisting of Exploitability, Scope, and Impact
metrics, holds the fundamental vulnerability properties that are not affected by time or
environment [10].

Exploitability Metrics The Exploitability metrics group consists of the metrics At-
tack Vector, Attack Complexity, Privileges Required, and User Interaction. The Attack
Vector metric measures the degree of exploitability with regard to the Open Systems In-
terconnection (OSI) layer an attack is executed on [10]. Attacks are rated more severe,

8

2.2. Common Vulnerability Scoring System 9

the more remote the attacker can be located. The Attack Complexity metric measures the
prevalent conditions that are out of the attacker’s control and that must be fulfilled before
the attack is executed. The Privileges Required metric (originally termed Authentication
metric in CVSS v2.0 [12]) is used to measure the system specific privileges required for
successful exploitation [10]. The User Interaction metric indicates, if a user must perform
a specific action before an attack can be executed successfully [10].

Scope Metric The Scope metric is introduced in CVSS v3.0, after “CVSS v2.0 pre-
sented difficulties for vendors when scoring vulnerabilities that would fully compromise
their software, but only partially affect the host operating system” [13]. The Scope metric
focuses on a component’s security scope that includes all objects with the same security
authority. The metric indicates, if a vulnerability is capable of impacting resources be-
yond the security scope of the attacked object, i.e., if it affects objects beyond its security
authority [10].

Impact Metrics The Impact metrics group measures the worst case that can result
from an attack [10]. The group consists of the metrics Confidentiality, Integrity, and
Availability. Each metric measures the loss of its characteristic through a successfully
executed attack. The metrics can be combined with the Scope metric to respect their
effects on components located beyond the security scope [10].

Temporal Metrics The Temporal metrics group consists of the metrics Exploit Code
Maturity, Remediation Level, and Report Confidence. It measures “the current state of
exploit techniques or code availability, the existence of any patches or workarounds, or the
confidence in the description of a vulnerability” [10]. It is questionable, whether Temporal
metrics can be utilized by CAs, as it can be argued that newly discovered vulnerabilities in
unpublished products would always be assigned the same metrics values. The effectiveness
of Temporal metrics is discussed further in Section 2.2.4.

Environmental Metrics The Environmental metrics group consists of the Security
Requirements and Modified Base Metrics. The latter metric replaces the metrics Collateral
Damage Potential and Target Distribution of CVSS v2.0 [13]. The Security Requirements
metrics enable users to modify CVSS scores based on the user’s assigned priorities for
confidentiality, availability, and integrity. The Modified Base Metrics subgroup redefines
the existing Base metrics for a given environment. This enables users to overwrite the
existing Base metrics to respect the user’s specific environment in which the vulnerable
device operates [10].

2.2.1.2. Scoring

The CVSS Score is composed of the assigned metric values that are combined through
equations specified in [10]. The numerical score is defined to lay between 0.0 and 10.0 and
mapped to a qualitative range (see Table 2.1).

To describe and transfer the characteristics of vulnerabilities better, it is possible to use a
CVSS Vector String [10]. The Vector string represents all rated metrics and their assigned
values in a compact form and helps expressing a vulnerability’s characteristics beyond
its quantitative or qualitative score. The Vector String holds all information required for
computing a CVSS Score.

For scoring, it is optional to include the Temporal and Environmental metrics groups. If
only Base metrics are used, the score is referred to as Base Score. The Base Score is typi-
cally produced by the vulnerable product’s maintaining organization. It is recommended
to leave the scoring of Temporal and Environmental metrics to CVSS consumers that are
able to score these aspects with regard to their specific use cases and environments [10].

9

10 2. Background and Related Work

Hence, databases, such as the National Vulnerability Database (NVD), generally only store
the vulnerabilities’ Base Scores [14].

2.2.2. Risk Scoring with CVSS

The CVSS guide states “that CVSS is designed to measure the severity of a vulnerability
and should not be used alone to assess risk” [15, p. 4]. To understand why CVSS is unable
to provide precise scores for risks, the composition of risks must be investigated. In [2],
multiple broadly accepted risk definitions are listed. Definition 2 describes risk as “the
combination of the probability of an abnormal event or failure and the consequence(s) of
that event or failure to a system’s components, operators, users, or environment.” Defini-
tion 4 depicts risk as “a measure that combines both the likelihood that a system hazard
will cause an accident and the severity of that accident.” CVSS is designed to produce
“scores indicating the severity of a vulnerability” [15, p. 2] but can not be used for rat-
ing the probability of such attack. Hence, risks – consisting of both the severity and
probability of an attack or vulnerability – can not be rated with CVSS. CVSS does em-
ploy exploitability metrics, which could be understood as probability rating mechanisms.
However, the CVSS’s exploitability metrics group lacks components for comprehensive
probability assessment, such as service capabilities metrics and operational contexts met-
rics. Also, during CVSS score calculation, the exploitability and impact metrics are added,
instead of multiplied, which is abnormal to generally accepted risk calculation [9].

2.2.3. Version Changes affecting the Applicability for the Internet of
Things

CVSS is continuously developed. The first version of CVSS was published in 2005 and
version 2.0 followed in 2007 [12]. Because CVSS v3.0 (2015) and v3.1 (2019) are consider-
ably more recent, CVSS v2.0 scores are still well-established and used by databases such
as the NVD [14]. The CVSS has undergone heavy changes over the course of its published
versions. Each major version change has added and removed multiple metrics. Those
changes also affect the applicability for IoT vulnerabilities. The sections below analyze
the differences in the CVSS versions in regard to compatibility with the IoT.

2.2.3.1. CVSS Version 2.0

For assessing an IoT device’s physical risks, it is insufficient to only focus on attacks that
are made possible through physical security issues: risk assessment must also consider the
physical consequences of attacks. Devices of the IoT are typically utilized to automate
physical tasks. Depending on the task, misuse can lead to injury of individuals or damage
of other nearby physical components. In CVSS v2.0, such harm is considered by the
Collateral Damage Potential metric, a member of the Environmental metrics group. The
metric is deliberately drafted to measure “the potential for loss of life or physical assets
through damage or theft of property or equipment” [12] and offers to choose from six
different qualitative and quantitative values. However, as also briefly mentioned in [11],
the Collateral Damage Potential metric’s impact is much smaller than the impact of other
metrics, such as the environmental metric Target Distribution. This metric “measures the
proportion of vulnerable systems” [12] in a certain environment. It is argued that the
impact of the Collateral Damage Potential metric on the Environmental Score should be
increased in respect to the physical consequences it can measure [11]. To investigate this
criticism, the equations used for Environmental Score computation must be analyzed.

EnvironmentalScore = round to 1 decimal((AdjustedTemporal

+ (10−AdjustedTemporal) · CollateralDamagePotential)

· TargetDistribution)

(2.1)

10

2.2. Common Vulnerability Scoring System 11

Target
Distribu-
tion

Target Distribution
Description

Collateral
Damage
Potential

Adjusted-
Temporal

Environ-
mental
Score

None (0) No target systems exist High (0.5) 5.0 0.0

Low (0.25) 1% to 25% of the total
environment is at risk

High (0.5) 5.0 1.9

Medium
(0.75)

26% to 75% of the total
environment is at risk

High (0.5) 5.0 5.6

High (1.0) 76% to 100% of the to-
tal environment is con-
sidered at risk

High (0.5) 5.0 7.5

Table 2.2.: Environmental Scores under CVSS v2.0. Target Distribution Descriptions
taken from [12].

The Environmental Score is computed with Equation 2.1 [12]. In this equation, the Ad-
justedTemporal variable represents the previously computed Base or Temporal Score. The
variables CollateralDamagePotential and TargetDistribution hold the corresponding met-
rics’ values.

The issues of the Collateral Damage Potential metric’s impact are discussed with the help
of an exemplary vulnerability. Let this vulnerability’s Base Score be 5 (AdjustedTemporal
= 5) and its Collateral Damage Potential set to High (0.5) in order to indicate high
potential for physical harm induced through exploitation. Table 2.2 lists the resulting
Environmental Scores based on the different values of the Target Distribution metric.

For a High Target Distribution, a High Collateral Damage Potential is capable of increasing
the Base Score of 5.0 by 50 percent (7.5). However, for a Low Target Distribution, the same
Collateral Damage Potential is unable to increase the Base Score: the Environmental Score
of a vulnerability with Base Score 5.0 and Target Distribution Low is 1.9. For a Medium
Target Distribution, the Base Score is increased by 12 percent. From this observation,
it can be concluded that huge impact through the Collateral Damage Potential is only
possible, if the vulnerability’s Target Distribution is rated High.

Translating those scores to the high potential of loss of live that can be represented through
the chosen value for the Collateral Damage Potential metric, a vulnerability with poten-
tially deadly consequences that exists in “1% – 25% of the total environment” [12] results
in the qualitative CVSS score Low (1.9). A potentially deadly vulnerability that exists
in “76% – 100% of the total environment” [12] results in the qualitative CVSS score High
(7.5), far from the value Critical. These circumstances indicate that the utilization of
CVSS v2.0 Environmental Scores for rating the physical consequences of exploited IoT
devices is inexpedient.

With CVSS v3.0, both metrics were removed from the Environmental metrics group, as
“the Environmental metrics of Target Distribution and Collateral Damage Potential were
not found to be useful” [13, p. 8]. While the above analysis affirms this conclusion, the
removal of the Collateral Damage Potential also means that physical harm is no longer
deliberately considered by the Environmental metric.

2.2.3.2. CVSS Version 3.0

With CVSS v3.0, the Attack Vector value Physical is introduced. An attack with Attack
Vector value Physical “requires the attacker to physically touch or manipulate the vulner-
able component. Physical interaction may be brief [. . .] or persistent” [10]. For devices of

11

12 2. Background and Related Work

the IoT, physical aspects are a crucial extension to CVSS. IoT devices like weather sta-
tions, doorbells, cameras, or alarm bells are typically located outdoors. Without sufficient
tamper protection, such devices are vulnerable to physical attacks. However, CVSS does
not consider the physical security mechanisms that need to be bypassed in order to gain
physical access to a device. Physical access to a weather station located in a smart home’s
front yard is treated the same as access to a server rack locked in a secured room. While
the Attack Complexity metric could be utilized to express physical security mechanisms,
it is not developed for such use case. On the one hand, Attack Complexity only differ-
entiates between the metric values Low and High, which can be considered as insufficient
differentiation. On the other hand, in most cases, even in the case of the weather station,
the vulnerability must be rated High, because the exemplary requirement, “the attacker
must gather knowledge about the environment in which the vulnerable target/component
exists” [10], is satisfied with the explanation that the attacker must gather information
about the front yard. The insufficient recognition given to physical security is also repre-
sented through the importance given to the value Physical. Out of all qualitative values
for the Attack Vector metric, Physical has the lowest quantitative value (0.2). The small
value is rooted in the idea that “the metric value [. . .] will be larger the more remote an
attacker can be” [10].

Another point of criticism to the updated Attack Vector metric is the lack of differentiation
in the metric’s values. This is affirmed with an example for attacks through WiFi connec-
tions described in [11]. This example can be generalized for all wireless communication.
Since a large part of IoT devices communicates wirelessly, exploitability must be deter-
mined correctly. WiFi connections require physical proximity, but, for the Attack Vector
value of a WiFi enabled device, “the closest option is ‘Adjacent Network’, which roughly
means ‘on the same Layer 2 segment”’[11]. While “Version 3.0 introduces an additional
option, Physical, [. . .] it’s intended to indicate the need to actually touch the device, not
account for mere proximity” [11]. The Attack Vector values Network, Adjacent, and Local
focus on the layers of the OSI model. Those stand in strong contrast to the value Phys-
ical that prescribes direct contact. Additional values that respect physical proximity are
missing, but would be helpful, as an example of “a radio in a car [that] requires a physical
proximity from a few feet (key fobs) to thousands of miles (satellite radio)” [11] affirms.

In addition to the introduction of the value Physical for the Attack Vector metric, CVSS
v3.0 also introduces a new Base metric labeled Scope. This metric offers the values
Changed and Unchanged and indicates, if “a vulnerability in one software component [is
able] to impact resources beyond its means, or privileges” [16]. Since the Collateral Dam-
age Potential metric was removed in CVSS v3.0 [13, p. 8], it is plausible to investigate,
if the Scope metric constitutes a suitable alternative for including physical consequences
in a CVSS v3.0 score. In [11], the Scope metric is applied to a vulnerable automobile
component that possibly affects the security of the car itself. “While the vulnerability is
in the [component], the scope of control is the entire car” [11]. Therefore, the Scope is
determined to be Changed. However, as it already was the case in CVSS v2.0, the metric
does not have huge impact on the score: “changing Scope to Unchanged would only drop
the CVSS 3.0 score from 9.6 to 8.3” [11]. Since Scope only distinguishes between Changed
and Unchanged, it can only express that humans or other components are affected by a
vulnerability and not how, or to which degree they are affected.

As already depicted in Section 2.2.3.1, the environmental metrics Collateral Damage Po-
tential and Target Distribution were removed in CVSS v3.0 and “replaced with Mitigating
Factors” [13]. The metrics and values introduced in CVSS v3.0, namely Scope and the
Attack Vector value Physical, do not compensate the removal of Collateral Damage Po-
tential. To increase the impact of the physical aspects of the IoT, a raise of the metric’s
impact would have had to be enforced, instead of the metric’s removal.

12

2.2. Common Vulnerability Scoring System 13

2.2.3.3. CVSS Version 3.1

CVSS v3.1 does not modify the set of metrics of CVSS v3.0. However, the CVSS guide
for version 3.1 advises the extension of CVSS through additional, self-developed metrics
“to allow industry sectors such as privacy, safety, automotive, healthcare, etc., to score
factors that are outside the core CVSS standard” [15, p. 14]. The CVSS Extensions
Framework, introduced in [15], defines rules for implementing such extensions. While it
prohibits the modification of existing metrics and metric groups, which would be necessary
to implement measures that solve the problems described in Section 2.2.3.2, the framework
allows the definition of new metrics. Those could be utilized to consider the various aspects
of vulnerabilities specific to the IoT. However, due to the very recent release of CVSS
v3.1, CVSS extensions, that solve prior issues of CVSS for the IoT and that are made in
accordance to the CVSS Extensions Framework, are not known to this date.

Because this bachelor thesis introduces a scoring system for the security of IoT devices,
which can not be achieved through CVSS alone (as concluded in Section 2.2.2), focus is not
laid on utilizing the CVSS Extensions Framework to solve the problems of CVSS for the
IoT. Instead, it investigates the applicability of a risk rating model that includes the CVSS
as one of several components (see Chapter 3). Thereby, future CVSS extensions developed
deliberately for IoT support can easily be added to the introduced scoring system.

2.2.4. CVSS for Certification Authorities

CAs test DUTs under different conditions: while some DUTs may be tested over the
course of development, the product line of others may already be released on the market,
when testing is begun. Further, some vulnerabilities are newly discovered by the CA,
while others are already publicly known. These conditions can influence the mitigation
complexity and the availability of functional exploits for the products’ vulnerabilities and
consequently have impact on the DUT’s security assessment. Of all of the CVSS’s metrics
groups, the Temporal metrics group is most suited for these requirements, as it “measure[s]
the current state of exploit techniques or code availability, the existence of any patches
or workarounds, or the confidence in the description of a vulnerability” [10]. It is to be
investigated, if these metrics can be used for the CAs’ different test conditions.

For analyzing the applicability of Temporal metrics, a set of CA specific test conditions,
that potentially impact the applicability, was identified:

1. A detected vulnerability is publicly known.

2. A vulnerability is newly discovered by the CA.

3. The DUT’s product line is available on the market.

4. The DUT’s product line is unpublished.

5. A specific product version of the DUT is tested.

6. The DUT’s product version is changed over the course of security assessment (i.e.
the product is in a phase of development).

It is found that the applicability of Temporal metrics varies, based on the set of conditions
that are present in a testing procedure. The applicability of the individual metrics is
analyzed in the sections below.

2.2.4.1. Exploit Code Maturity

The Exploit Code Maturity metric “measures the likelihood of the vulnerability being
attacked, [. . .] based on the current state of exploit techniques, exploit code availability, or

13

14 2. Background and Related Work

active, ‘in-the-wild’ exploitation” [10]. If a vulnerability, discovered in a DUT, is publicly
known, e.g., because it is situated in a DUT’s component that is also present in other
devices, this metric can help the CA in expressing the likelihood of exploitation to the
client. However, if a vulnerability was newly discovered by the CA, the current state of
exploit techniques is at the very beginning. If the CA does not develop a Proof-of-Concept
exploit, the metric must either be left out, or its value is set to Not Defined [10].

2.2.4.2. Remediation Level

The Remediation Level metric measures the development of vulnerability mitigating mea-
sures. “The less official and permanent a fix, the higher the vulnerability score” [10]. The
metric holds the values Official Fix, Temporary Fix, Workaround, Unavailable, and Not
Defined. CAs typically demand manufacturers to provide comprehensive fixes that can
be rated as Official Fix. If the vulnerable product has not yet entered the market and if
the manufacturer is able to develop such fix, the vulnerability can be considered no longer
existent. The same is true for products already released on the market, if only the most
recent product version is assessed and the manufacturer is able to remove the vulnerability
in that version. In those cases, the vulnerability entry and with it the CVSS score would
no longer be considered for security assessment. Under these conditions, the Remediation
Level metric is redundant for the vulnerability score. In contrast to this scenario, the
metric can come to use, if the certification process allows risk acceptance: the metric’s
value Unavailable can be utilized to indicate that the manufacturer decided to accept the
vulnerability and provide no security fix. However, the full range of metric values is not
used.

If the DUT’s product line has already been released to the market and if only a specific
product version of the DUT is tested, the metric can be utilized as intended: to increase the
chance of product certification, it is in the interest of the manufacturer to provide official
fixes that reduce the vulnerability’s severity. In this case, the metric can be utilized to
measure the manufacturer’s development progress of a mitigating fix.

2.2.4.3. Report Confidence

The Report Confidence metric “measures the degree of confidence in the existence of
the vulnerability and the credibility of the known details” [10]. It holds the values Not
Defined, Confirmed, Reasonable, and Unknown. As such, it is primarily applicable to
already known vulnerabilities that are based on foreign research the CA has only limited
knowledge about. In that case, the metric can be used as intended: to indicate the CA’s
confidence in a vulnerability’s existence. Additionally, if the vulnerability is not yet rated
Confirmed and the CA is able to reproduce it, the metric value can be updated by the
CA.

For vulnerabilities that are newly discovered by the CA, the original purpose of this metric
is restricted. As the CA must be able to consider itself trustworthy, the Report Confidence
is typically always rated Confirmed. In that case, the metric is redundant, as it rates
every newly discovered vulnerability the same. If the CA is unable to determine the
vulnerability’s cause and therefore can not confirm its own findings, it can ask the client
to provide the information required for confirmation. Only if the client fails to provide
this information, the metric can be utilized to indicate the CA’s (lack of) confidence in its
own findings.

2.3. Weighted Risk Ranking Model

The Weighted Risk Ranking (WRR) model, proposed in [3], is a scoring scheme that
“focuses on quantifying the static and dynamic properties of a device, in order to define a

14

2.3. Weighted Risk Ranking Model 15

Figure 2.1.: Weighted Risk Ranking Model. Figure taken from [3].

risk score” [3] that determines “the security risks that IoT devices pose to the environment
they [are] operated in”[3]. The WRR model represents a scoring system that is deliberately
developed for risk scoring complete IoT devices. “The feasibility of the suggested solution
as a tool for device risk assessment in modern networks where IoT devices are widely
deployed” [3] is demonstrated with a practical Proof-Of-Concept with “several IoT devices
in the context of an enterprise network” [3]. The WRR model consists of three components:
Risk Mapping Database (RMD), Weighted Risk Ranking Method (WRRM), and Device
Risk Score Calculation. These components are described in greater detail in Section 2.3.1.

The main difference of the WRR model to the classic CVSS is that it focuses both on
risks – instead of vulnerabilities – and on the security of a complete device – instead of
one vulnerability at a time. These characteristics are requirements for utilization in the
testing procedure of CAs. Because the WRR model is able to satisfy these requirements,
its applicability is worth to be analyzed in greater detail. The analysis performed in
Section 2.3.2 draws the conclusion that, while it has certain advantages over CVSS, the
WRR model has characteristics that make it unsuited for use by CAs. Chapter 3 attempts
to modify the WRR model such that all properties that cause this incompatibility are
eliminated.

2.3.1. WRR Model Description

The WRR model (see Figure 2.1) is a device-centric approach that “uses both static and
dynamic features of the device [. . .]. Static features are device specific, and include Known
Vulnerabilities and Service Capabilities elements of an IoT device, which do not change
over time [. . .]. Dynamic features are IoT domain-related, and include the contexts in
which the IoT device operates” [3]. Along with the WRR model specification, a model
implementation that is evaluated with a set of 13 IoT devices is provided [3]. The im-
plementation defines a set of Service Capabilities and Operational Contexts. The set of
Service Capabilities includes methods of communication (Wi-Fi, Cellular, Bluetooth, etc.)

15

16 2. Background and Related Work

Risk Score Range Risk Ranking Category Risk Category Weight

9.0 - 10.0 Critical W4

7.0 - 8.9 High W3

4.0 - 6.9 Medium W2

0.1 - 3.9 Low W1

0.0 None W0

Table 2.3.: Weighted Risk Ranking Method. Table taken from [3].

and sensor types (motion detectors, lighting sensors, microphones, cameras, etc.). The
Operational Contexts focus on the DUT’s operation time (morning, afternoon, evening,
night) and location (server room, meeting room, internal, external, etc.). These elements
are assigned scores that represent their level of risk. The third feature (Known Vulnera-
bilities) is comprised of the set of DUT specific vulnerabilities. Those vulnerabilities are
rated by a classic vulnerability scoring system.

Along with the three feature sets, the WRR model defines the model components RMD,
WRRM, and Device Risk Score Calculation, that describe the methods for rating and
managing the individual features.

2.3.1.1. Risk Mapping Database

The Risk Mapping Database (RMD) is a database that holds entries for the three feature
sets Known Vulnerabilities (VK), Service Capabilities (SC), and Operational Contexts
(CO) in tables, where each table “contains the possible risk information associated with
its elements, along with the appropriate base risk score for each element” [3]. The set of

entries associated with an IoT device i are derived from the database, i.e., V
(i)
K ∈ VK ,

S
(i)
C ∈ SC , and C

(i)
O ∈ CO [3]. The 3-tuple (V

(i)
K , S

(i)
C , C

(i)
O) is utilized by the Device Risk

Score Calculation component for computing the risk of device i. RMD is illustrated as
component 1 in Figure 2.1.

2.3.1.2. Weighted Risk Ranking Method

The Weighted Risk Ranking Method (WRRM) maps quantitative base risk scores (range:
0.0 to 10.0) to a risk category weight Wi (see Table 2.3). A feature’s weighted risk score is
computed through function MWRR, which multiplies the feature’s base risk score with the

weight it is mapped to through WRRM. MWRR is applied to all elements of (V
(i)
K , S

(i)
C , C

(i)
O)

in the Device Risk Score Calculation for a device i.

The WRRM’s weight values are not prescribed by the WRR model specification and can be
chosen freely. The WRR model implementation of [3] proposes“a binary-based logarithmic
scale (namely, W0 = 0, W1 = 20, W2 = 21, W3 = 22, W4 = 23)” that proves to be suitable,
if risk rating is designed to prioritize few severe risks over multiple uncritical risks [3].
WRRM is illustrated as component 2 in Figure 2.1.

2.3.1.3. Device Risk Score Calculation

The central element of the WRR model is the Device Risk Score Calculation component.
It holds all equations required for computing the device’s risk score that is denoted as

DRS . For a device i, the risk score is defined as D
(i)
RS . In an initial step, the DUT’s 3-

tuple (V
(i)
K , S

(i)
C , C

(i)
O) is determined with the help of the RMD. Thereafter, the risk score

16

2.3. Weighted Risk Ranking Model 17

components RSV
(i)
K , RSS

(i)
C , and RSC

(i)
O are computed with the help of the WRRM (see

Equations 2.2, 2.3, and 2.4).

RSV
(i)
K =

|V (i)
K |∑
j=1

MWRR

(
V

(i)
K[j]

)
(2.2)

RSS
(i)
C =

|S(i)
C |∑
j=1

MWRR

(
S
(i)
C[j]

)
(2.3)

RSC
(i)
O =

|C(i)
O |∑

j=1

MWRR

(
C

(i)
O[j]

)
(2.4)

D
(i)
RS is composed of the three risk score components (see Equation 2.5). The risk score

components themselves are weighted as well: the three constants α, β, and γ assign the
individual components a certain importance and thereby influence the resulting device risk
score.

D
(i)
RS = αRSV

(i)
K + βRSS

(i)
C + γRSC

(i)
O (2.5)

In the case of the WRR model implementation in [3], the following values are used:
α = 0.384, β = 0.341, γ = 0.275. Those values were retrieved through a questionnaire
answered by security researchers: “in total, 23 experts [of varying expertise] answered the
questionnaire” [3]. The questionnaire “asked [. . .] to rank the model’s features” and “the
service capabilities and Operational Contexts elements of the model” to determine their
importance for the risk score.

2.3.2. Applicability of the WRR Model for the IoT and CAs

The WRR model, being deliberately developed for rating the security risks of IoT devices,
is a seemingly good candidate for utilization by CAs. Before utilization, the validity of
this assertion must be assessed. The sections below investigate the potential advantages
and problems of the WRR model.

2.3.2.1. Representation of IoT Specific Risk Categories

The WRR model considers environmental and physical aspects of a DUT. The Service
Capabilities feature set is extensible to consider a DUT’s physical consequences emerg-
ing through a successful attack. In regard to CVSS v2.0, this is a clear advantage: in
CVSS v2.0 only little significance is tributed to physical consequences, such as harm of
individuals, as determined in Section 2.2.3.1. As for CVSS v3.0, it is possible to indicate
that physical consequences exist, but their severity does not have sufficient influence (see
Section 2.2.3.2). With the WRR model, both the existence of physical consequences and
their severity can be acknowledged through a DUT’s Service Capabilities.

A similar benefit exists in the WRR model’s Operational Context feature set. While
CVSS v3.0 only allows limited rating of environmental security measures, as described in
Section 2.2.3.2, such aspects are explicitly considered in WRR scores through the DUT’s
Operational Contexts. The WRR model implementation in [3] proposes two CO categories:
time of operation and operation location. It assigns all possible combinations of time and
location a base risk value in the form of a two-dimensional matrix. That matrix, or the
CO set itself, is easily extended with additional dimensions and features.

17

18 2. Background and Related Work

Server Room 8.1 7.2 8.0 8.2

Meeting Room 6.4 5.5 6.4 0.0

CxO Office 7.0 6.1 6.9 7.1

IT Department 7.4 6.5 7.3 7.5

Internal 4.8 3.9 4.7 4.9

External 3.5 2.6 3.4 3.6

Contexts Morning Afternoon Evening Night

Table 2.4.: Operational Context Risk Matrix. Table taken from [3].

Feature Set Extension The researchers of [3] announce a feature set extension in
order to be able to consider more risk categories and thereby increase scoring precision.
Because this announced extension is not yet published, this section investigates the feature
sets’ possible rooms for improvement.

The Service Capabilities feature set, proposed in [3], holds 15 entries (including sensors,
communication protocols, etc.) and misses ordinary IoT services like Zigbee or Z-Wave.
Hence, it can be assumed that this feature set does not sufficiently cover all IoT services.
The risk scores of this feature set were computed with the help of expert consultation.
As also stated in [3], it is inefficient to reconsult experts each time a new service is to be
added. However, the method used for risk calculation requires expert reconsultation and
complete recalculation of all risk scores, if just one new feature is added [3]. Before used
in practice, an improved risk weighting mechanism should be developed. It is planned to
either use Machine Learning and/or Big Data for this problem [3].

The extension of the Operational Contexts feature set is more complex. The currently
present Operational Contexts features location and time of operation are represented
through a two-dimensional matrix (see Table 2.4). For a single location, the risk value
varies based on the time of operation. Extending such matrix with additional features
depends on the relations between the individual features. If interdependent, as it is the
case for time and location, the introduction of additional dimensions is reasonable. How-
ever, for Operational Context features that do not have any relations to each other, the
definition of additional dimensions results in a redundant and complex set of risk scores.
Such independent Operational Context should not be added to a matrix and instead, just
as in the SC set, introduced as independent feature. The methods of feature extension
are not discussed in [3]. Because the existing features time and location are regarded in-
sufficient for correctly representing a device’s operational contexts [3], the development of
those methods is desirable.

2.3.2.2. Security Scoring Limitations of WRR

Missing Upper Boundary The WRR model aims to rank multiple DUTs by their
risks. However, the ranking process is not of high priority to CAs. While it is desirable to
be able to compare previously assessed DUTs, such comparison can not be utilized for the
decision-making process for certification, as that process requires a solitary risk score that

is capable of expressing the security qualitatively. A DUT’s Risk Score D
(i)
RS has no upper

boundary and lays in the interval [0,∞[. In contrast, quantitative vulnerability scores of
the CVSS lay in the interval [0, 10]. The latter allows easier mapping to qualitative values,
since qualitative values only need to cover a range limited in its size. This is not the case
for WRR scores: devices can have highly varying Device Risk Scores. The example for a
WRR score assignment provided in [3] lists a Smart Fridge (Samsung RS757LhQESR/ML)
with DRS = 5.6 and a Smartphone (LG G4) with DRS = 55.8. An IP-Camera, analyzed

18

2.4. Security Risk Assessment for Certification Authorities 19

in the context of this bachelor thesis’s IoT device security assessment, has a Device Risk
Score of 195.1 (see “TP-Link TL-SC 3130 IP Camera” in Appendix C.2).

While the complete Device Risk Score does not have an upper boundary, it is possible to
define such boundary for one of the feature sets: CO. The main difference between CO and
the sets VK and SC is that every single one of the CO’s features applies to a device: every
device has a specific time and location of operation. By following certain design rules, this

property can also be achieved for future feature extensions. While RSV
(i)
K and RSS

(i)
C are

influenced both by the score of the individual features and the number of features present

in V
(i)
K and S

(i)
C , it holds for every device i: |C(i)

O | = |CO|. Let CO
(max)
[j] be the maximal

base risk score of the Operational Contexts feature with index j. If the approach of [3]

is retained and for every j ∈ {1, . . . , |CO|}, a maximal CO
(max)
[j] (in [3], the maximal score

of each feature is 10.0) is defined, a maximal Operational Contexts Risk Score can be

determined (see Equation 2.6). By putting RSC
(i)
O of device i in relation to RSC

(max)
O ,

the device’s Operational Contexts Risk can be interpreted without being dependent on
comparisons to the Operational Contexts Risks of other devices.

RSC
(max)
O =

|CO|∑
j=1

MWRR

(
CO

(max)
[j]

)
(2.6)

As already determined, this approach can not be applied to VK and SC . Though this

approach adds information, the WRR has missed the chance of utilizing RSC
(max)
O .

Certification Criteria For CAs, the presence of high-risk Service Capabilities or Op-
erational Contexts should not be decisive for the certification process. Devices designed
to operate in risky environments must still be certifiable, if they do not have too many or
too severe vulnerabilities. Equally, with the number of Service Capabilities, the number
of Known Vulnerabilities typically increases, since each service potentially adds vulnera-
bilities. CAs must take the complexity of a DUT in regard. Under the assumption that
highly complex devices have a larger set of vulnerabilities that is still more tolerable than
a smaller set of vulnerabilities in a simple device, the WRR model is counter-productive.
A risk score is not suited for a certification process that focuses on vulnerabilities, if it in-
creases monotonically with the number of Known Vulnerabilities and Service Capabilities
and the riskiness of Operational Contexts. For certification, the relations between RSVK ,
RSSC , and RSCO must be investigated. A simple summation of these values does not
meet these requirements.

2.4. Security Risk Assessment for Certification Authorities

CAs embody unique conditions for IoT security testing. As a third party with active
communication with the manufacturer (referred to as client), CAs have elevated access
options for vulnerability related proprietary information, that is not available to indepen-
dent security researchers or adversaries. Simultaneously, CAs do not have access to the
full set of information the client has. Depending on the certification requirements and
the client’s transparency, the degree of insight varies from case to case, resulting in a mix
between black box and white box testing. This circumstance is amplified by the fact that,
in the case of IoT devices, the option to physically access the DUT impacts the black
box assumption, as hardware analysis can provide information about the DUT’s contents
and implementation [2]. The option to obtain additional information through clients and
methods like hardware analysis and thereby shift the testing conditions from black box to
white box is barely represented in existing SRA models.

19

20 2. Background and Related Work

Research in the information security sector has lead to the development of various models
and strategies for IoT security testing. The following paragraphs describe the related work
in SRA development.

There exists a multitude of SRA models and tools, including CORAS [17], OCTAVE,
EBIOS, MEHARI, and CRAMM [18]. Most of them, especially CORAS and OCTAVE,
have in common that they are developed to assess the security of an organization’s assets
and not the security of a single product. While some SRA models are developed for highly
specialized environments, such as health care systems [19], a model that suffices the unique
requirements for IoT device testing in the context of CAs is missing.

There do exist IoT related SRA models, such as ELK [18], that qualify for assessing the
security of IoT infrastructure and single devices. ELK is a practical approach designed to
be used continuously to find security risks in real time during production. As this is not
the goal of security assessments performed by CAs, who test IoT devices nonrecurringly
and outside the production scope, ELK is not a fitting SRA model for CAs.

With [20], a more generic and abstract model is introduced. The model represents an
epistemological set of design principles for assessing IoT cyber risks for national high-tech
strategies with a focus on recovery planning [20]. While, just as ELK, it is primarily
developed for organization level risk assessment and not for security testing conducted by
CAs, some of its design principles, e.g. the five primary segments of the Epistemological
Framework, are found to be suitable for utilization, if sufficiently adapted.

Models like CRAMM, MEHARI, or EBIOS [18] describe even more generic SRA procedures
that can be used as foundation for CAs security testing. However, those models themselves
are not sufficient to be used as standalone SRA procedures, as they lack crucial steps and
strategies, such as client communication.

Besides SRA models, security research also focuses on the nature of IoT specific security
risks. In [21], an exemplary approach for determining security risks in home automation
is provided with the help of a practical example that involves a smart lighting system.
Through the practical example, different categories of information and protection require-
ments are identified. By combining these categories, the priority for security requirements
of different assets is defined. The approach of [21] serves as an example for risk identifica-
tion and assessment in the IoT.

20

3. Security Scoring System

This chapter introduces a new scoring system, the Security Scoring System (SSS). In
Section 2.2, the conclusion is drawn that both the Common Vulnerability Scoring System
(CVSS) [10] and the Weighted Risk Ranking (WRR) [3] model are insufficient for rating
the security of Internet of Things (IoT) devices. This makes the search for a more suited
system necessary. SSS aims to rate the overall security of Devices Under Test (DUTs)
based on their vulnerabilities and environmental factors with a deliberate focus on devices
of the IoT and the applicability through Certification Authorities (CAs). SSS is largely
based on the work of [3]. SSS is an adaption to the WRR model (see Section 2.3) that is
required to make the WRR model applicable for security scoring.

3.1. SSS Requirements

This section analyzes the requirements and defines the properties, and desired behavior
the SSS shall satisfy or possess.

3.1.1. Feature Set Relations

The SSS shall satisfy a set of rules regarding the relations between the individual fea-
ture sets. The rules listed below are identified to solve the problems of the WRR model
discussed in Section 2.3.2.2:

1. A high RSCO value indicates an insecure environment that requires increased secu-
rity precautions. The allowed RSVK shall decrease, the higher RSCO is. I.e., the
less secure the operational environment, the less severe vulnerabilities are allowed.

2. A high RSSC value indicates that the device offers multiple and/or dangerous ser-
vices. A device with a larger service set may hold an increased set of vulnerabilities
due to its complexity. By assuming that the VK set is spread over the single services,
the allowed RSVK value shall increase with the RSSC value.

3. High RSCO and RSSC values indicate additional risk through a large and/or dan-
gerous set of services that operate in an insecure environment. The allowed RSVK
value shall be lower.

4. A high RSSC and low RSCO value indicates that the device offers multiple and/or
complex services that operate in a secure environment. The RSVK value is allowed
to be higher.

21

22 3. Security Scoring System

3.1.2. Impact of Risk Weighting on SSS

While it is possible to use the WRR model without any weights (achieved with Wi = 1 for
every i, denoted as Base Risk Score (BRS) [3]), there are many arguments in favor of risk
weighting. The WRR model’s risk score components RSVK , RSSC , and RSCO represent
the sum of risks (each multiplied with the corresponding weight) for each feature set. If
weighting were not applied, features of high risk would not stand out. A feature f with
risk score 9 would equal the importance of three features that each have a risk score of
3. However, if using a logarithmic scale like the WRR model implementation of [3], it
holds that MWRR(f) = 72, which equals the sum of weighted risk scores of 24 features,
each having a risk score of 3. Logarithmic weighting allows few severe risks to have higher
influence on a DUT’s WRR score than multiple modest risks. If CAs focus on addressing
the DUT’s highest risks, risk weighting is crucial.

The described behavior of weighted risks shall also apply to the SSS. By using a logarithmic
Weighted Risk Ranking Method (WRRM), the SSS shall be able to consider the importance
of severe risks. If highly severe risks are prevalent in its features and a logarithmic WRRM
is used, a DUT shall be rated secure far less likely. By deciding over the WRRM (linear
or logarithmic), the CA shall be able to express that its focus either lays on multiple small
vulnerabilities, or on few severe vulnerabilities.

3.1.3. Applicability of Simple Fractions

Approach This section discusses the question, if using a simple fraction for scoring
a DUT’s security based on its risk score components is sufficient for security scoring.
Putting the DUT’s vulnerabilities in relation to its Service Capabilities and Operational
Contexts could be represented by this fraction: RSVK

RSSC+RSCO
. If this fraction were used for

scoring, a smaller value would indicate higher security. However, if security were rated
only according to this fraction, an important security factor would be missed: while the
fraction recognizes the ratio between RSVK and RSSC +RSCO, it is unable to distinguish
between devices with identical ratios and different absolute values, as emphasized by the
example below.

Example Let i and j be devices. It shall hold that RSV
(i)
K = 10 ·RSV (j)

K and RSS
(i)
C +

RSC
(i)
O = 10 · (RSS(j)

C + RSC
(j)
O). Under these conditions, Equation 3.1 holds true. The

security scores of i and j are equal, even though j has a vulnerability risk score ten times
higher than the one of i. This example shows that neither an increased risk, induced
through severe vulnerabilities, nor an increased service capability can be expressed by
such fraction. This violates the rules for security scoring defined in Section 3.1.1.

RSV
(i)
K

RSS
(i)
C +RSC

(i)
O

=
RSV

(j)
K

RSS
(j)
C +RSC

(j)
O

(3.1)

Conclusion A security score function shall not only consider the ratio between RSVK
and RSSC , and RSCO. What must be considered, as well, is the sizes of RSSC and
RSCO: a device with far reaching capabilities or an unprotected physical environment
should have a smaller RSVK to RSSC + RSCO ratio than a device with close to zero
service capabilities that is located in a secure environment. Therefore, the value of RSVK ,
that is required for getting accepted for certification, must also be controlled by the sizes
of RSSC and RSCO.

22

3.2. SSS Specification 23

Figure 3.1.: WRR Model (Figure taken from [3]) with Modifications of the SSS Model
(red: removal & green: addition).

3.1.4. Finite Score Boundaries

WRR scores lay within [0,∞[, which makes setting a threshold value for certification
difficult. CAs shall be able to set a certain score as threshold for deciding over certification:
devices with scores atop of that threshold shall be denied certification, devices below
the threshold shall be accepted. A finite interval allows CAs to define the threshold as
percentage or translate scores to qualitative values and shall be supported by the SSS.

3.2. SSS Specification

The SSS is an adaptation of the WRR model, which replaces components of the Device
Risk Score Calculation segment (see Figure 3.1). The component Vulnerability Scanners is
replaced by the component Security Assessment, specified in Section 3.2.1. The component
Device Risk Score is replaced by the components Device Base Risk Score, and Security
Score, specified in Section 3.2.2.

3.2.1. Security Assessment Component

The WRR model assumes that, during risk rating, all of the DUT’s vulnerabilities are
already known. However, when utilized by a CA, this is not true for all vulnerabilities, as
it is the CA’s task to uncover new vulnerabilities during the testing procedure. Especially,
if the DUT’s product line has not yet entered the market, many vulnerabilities can not be
known beforehand. To accommodate these circumstances, the WRR model’s Vulnerability
Scanners component needs to be extended. In SSS, this component is exchanged with a
Security Assessment component. This component shall include the Vulnerability Scanner
component’s features and additionally make use of testing procedures to detect previously
unknown vulnerabilities. Newly discovered vulnerabilities must be added to the Risk
Mapping Database (RMD), as illustrated in Figure 3.1. Only after the Security Assessment
component’s tasks are finished, security rating can be conducted.

23

24 3. Security Scoring System

Figure 3.2.: Security Score Limit SS by
RSVK and DBRS .

Figure 3.3.: Enlarged X-Axis of Figure 3.2.

3.2.2. Security Score

This section specifies the primary component of the SSS, the security score function.
The function is defined in Section 3.2.2.2 and incorporates the Device Base Risk Score
introduced in Section 3.2.2.1. In Section 3.2.2.3, an approach for qualitative scoring with
the SSS is described.

3.2.2.1. Device Base Risk Score

The SSS introduces the Device Base Risk Score D
(i)
BRS that is to be computed at the

beginning of a testing procedure. The Device Base Risk Score is specified in Equation 3.2.
It is composed of the DUT’s Service Capabilities and Operational Context features and

utilizes RSC
(max)
O (defined in Section 2.3.2.2). The Device Base Risk Score measures the

risks of a device’s Service Capabilities based on its Operational Contexts. The image

of DBRS is 0 ≤ D
(i)
BRS ≤ RSS

(i)
C . It holds that D

(i)
BRS = RSS

(i)
C , if RSC

(i)
O = 0, and

D
(i)
BRS = 0, if RSC

(i)
O = RSC

(max)
O . The Device Base Risk Score is not influenced by the

DUT’s vulnerabilities and is capable of representing the potential dangers caused by the
DUT as well as the environmental risks and security precautions.

D
(i)
BRS := RSS

(i)
C ·

(
1−

RSC
(i)
O

RSC
(max)
O

)
(3.2)

Note that the Device Base Risk Score is not related to the Element Base Risk Score defined
in [3].

3.2.2.2. Security Score Function

The Security Score function SS : R+ × R+ → {x|x ∈ R ∧ 0 < x < 10}; (DBRS , RSVK) 7→
SS(DBRS , RSVK) is defined in Equation 3.3. The Security Score of a device i is labeled

as S
(i)
S and defined in Equation 3.4. SS is based on the logistic curve to accommodate

the requirement of fixed boundaries (defined as requirement in Section 3.1.4). Setting the
numerator of the logistic function to 10 guarantees that the image of SS is 0 < SS < 10.
The logistic function is modified such that SS not only respects the ratio between RSVK

24

3.2. SSS Specification 25

and DBRS , but also the size of DBRS (defined as requirement in Section 3.1.3). This is
achieved by extending the natural logarithm base e with DBRS . The exponent is set to
RSVK .

To allow control over the curve’s offset and steepness, SS makes use of additional constants
ω, µ, and ν (see Equation 3.3). Both ω and µ control the curve’s steepness. ω influences
the impact of DBRS on the steepness, while µ does the same for RSVK . ν is defined as
the turning point of the function and is capable of moving the complete function on the
RSVK-axis (see Figure 3.2). Determining the optimal values for µ, ν, and ω is crucial for
obtaining correct security scores. Suitable values are discussed in Section 3.3.

SS(DBRS , RSVK) :=
10

1 + (e+ µ ·DBRS)−ω·(RSVK−ν)
(3.3)

S
(i)
S := SS(D

(i)
BRS , RSV

(i)
K) (3.4)

The relations between SS , DBRS , and RSVK , are illustrated in Figure 3.2. The graphs
of this figure are computed with the constant values defined in Section 3.3. Each curve
represents a different value for DBRS . It is observable that the initial slope (from 0 to ν)
is lower, the higher the Device Base Risk Score is.

With RSVK > ν, the slope of the curve drops, as SS approximates 10. This turning
point ν lays in the nature of the sigmoid function. In regard to the SS , it also serves
a purpose, which is illustrated in the following example: it holds for device i that, in

the range ν < RSV
(i)
K < ∞, S

(i)
S is higher, the higher the value of D

(i)
BRS is. In the

range 0 < RSV
(i)
K < ν, S

(i)
S is rated lower, the lower the value of D

(i)
BRS is. Hence, ν

marks a turning point after which a set of highly severe vulnerabilities is less tolerated,
the larger the overall risk, induced through high risk Service Capabilities and/or low
risk Operational Contexts, is. This behavior serves the following purpose: devices with
a high DPRS value are considerably more complex, as they typically have a larger set
of service capabilities. Those devices are initially allowed a larger set of vulnerabilities.
This tolerated set of vulnerabilities is explained through the wide range of interfaces and
functionalities the device offers and that have the potential of each holding a small set of
unrelated, moderate vulnerabilities. To account for these vulnerabilities, such devices are
rated more secure than devices with the same RSVK value and a smaller DBRS value. This
is true, until the tipping point ν is reached. If RSVK > ν, a huge RSVK value is considered
worse for a device with large DBRS . The initial tolerance is no longer present and devices
with many service capabilities and severe vulnerabilities are considered more insecure.
In contrast, devices with a limited set of Service Capabilities and low-risk Operational
Contexts approach SS = 10 slower for RSVK > ν. Those devices have a limited set of
Service Capabilities, which means that there are less severe consequences that could be
caused by an attack and/or they are only operating in a secure environment, whereby
attacks are limited in their probability. This behavior accommodates the requirement
that both the ratio between RSVK and DBRS and the total value of DBRS is considered
for security rating (see Section 3.1.3), as the size of DBRS has direct consequences on the
tolerance for vulnerabilities, both for RSVK < ν and for RSVK > ν.

3.2.2.3. Security Score Limit

It is intended that CAs can utilize a Security Score Limit SSL with 0 ≤ SSL ≤ 10 that
serves as threshold for deciding over certification. With the SSL, the two qualitative

values Secure and Insecure are introduced. If it holds for device i that S
(i)
S ≤ SSL, then

i is considered Secure and certification is granted. Otherwise, i is considered Insecure.

25

26 3. Security Scoring System

0 20 40 60 80 100
DBRS

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

RS
VK

S : 2.5

20 40 60 80 100
DBRS

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RS
VK

 /
DB

RS
Figure 3.4.: Accepted RSVK by DBRS for SSL = 2.5.

As for certification processes, no further differentiation is required. Therefore, the SSS
refrains from defining qualitative scores with more graduation like CVSS or WRR.

Figure 3.4 illustrates the maximal allowed RSVK values, based on DBRS and a SSL of 2.
These maximal values are retrieved through Equation 3.5, which is obtained by solving
Equation 3.3 for RSVK . The left plot of Figure 3.4 allows the observation that, with an
increasing DBRS , the tolerance for a large RSVK increases. However, as already depicted,
RSVK must always be regarded in relation to the size of DBRS . The right plot of Figure 3.4
demonstrates the ratio between the maximum RSVK and DBRS for SSL = 2.5. Though
the maximal allowed value of RSVK increases with DBRS , the allowed ratio between RSVK
and DBRS decreases.

RSVK = ν − 1

ω
· loge+µ·DBRS

10− SS
SS

(3.5)

Equations 3.3 and 3.5 are implemented in software (see Appendix 8.2).

3.2.3. SSS Application in Testing Procedures

This section describes, how a testing procedure may utilize the SSS. Before a testing
procedure can be started, the RMD and WRRM must be ready for operation. Further-
more, the SSS specific values SSL, ω, µ, and ν must be defined. As part of the testing

procedure, the D
(i)
BRS of DUT i shall be determined in an initial step. With Equation 3.5,

the maximum allowed RSV
(i)
K value is computed. During testing, the RMD is extended

with vulnerabilities of i. After testing is finished, the set V
(i)
K is expected to be complete

and RSV
(i)
K and S

(i)
S can be determined. If S

(i)
S > SSL, the DUT is considered Insecure.

Depending on the testing procedure, the client can then be asked to lower the value of

RSV
(i)
K by mitigating detected risks.

3.3. SSS Constants

The constants µ, ν, and ω are capable of influencing SS and its behaviour for certain
RSVK and DBRS values. The SSS specification does not define values for those constants,

26

3.3. SSS Constants 27

Figure 3.5.: Security Score Limit SSL = 2.5 by RSVK and DBRS with ω, µ, ν defining
Rules.

as it is up to the CA to find a configuration that is suited for its testing procedures. Before
the SSS is being applied in testing procedures, CAs must define the values for µ, ν, ω, and
SSL. Those values may remain unchanged over time in order to guarantee that all DUTs
are certified with the same security requirements, i.e., the certificate’s quality remains
consistent. Finding methods for determining the optimal values for these constants may
be subject to future work (see Section 7.4). However, for being able to evaluate the SSS’s
general applicability, a value set must be defined. This section attempts to find those
values by defining rules the SS shall fulfill. The following rules are determined:

1. A device with a single critical vulnerability is considered Insecure for DBRS < 100.

2. A device with two high vulnerabilities is considered Insecure for DBRS < 100.

3. A device with five medium vulnerabilities is considered Insecure for DBRS < 100.

4. A device with four medium vulnerabilities is considered Insecure for DBRS < 75.

5. A device with one high vulnerability is considered Insecure for DBRS < 5.

6. A device with three medium vulnerabilities is considered Secure for DBRS > 20.

7. A device with one high vulnerability is considered Secure for DBRS > 10.

8. A device with two medium vulnerabilities is considered Secure for DBRS > 0.

These rules do not only depend on the values of µ, ν, and ω, but also on the value of
SSL. The attempt of finding the values of µ, ν, and ω that satisfy the above rules is made
according to a security score limit of SSL = 2.5. This limit is chosen, because a security
score allows high variety between RSVK and DBRS values, as observable in Figure 3.3.
Figure 3.5 illustrates the eight defined rules. Red lines depict the rules 1 to 5 that must
be undercut (Insecure) and green lines represent the rules 6 to 8 that are to be exceeded
(Secure). Finding µ, ν, and ω was achieved via trial and error and resulted in these values:

µ = 0.3

ν = 50.0

ω = 0.04

These values are applied to SSL = 2.5 through Equation 3.5 and illustrated in Figure 3.5
as a graph that is situated between the eight rules.

27

4. Testing Guide

This chapter introduces the Testing Guide Model (TGM), a Security Risk Assessment
(SRA) model for utilization in the Internet of Things (IoT) device certification procedures
of Certification Authorities (CAs). The TGM consists of multiple components discussed in
Section 4.1 and is extended with a testing procedure defined in Section 4.3. The TGM adds
a layer of abstraction to security testing, which allows the components of the lower layer
to be replaceable. This enables the TGM to be independent from changes, e.g. caused
by latest research in those areas. The layer of abstraction is described in more detail in
Section 4.2.

4.1. TGM Segments

The model is split into four major segments: Testing (T), Test Management (TM), Risk
Assessment (RA), and Client Communication (CC). These individual segments are iden-
tified to be the four major aspects of CAs’ testing procedures and to separately lay in the
focus of information security research. Each segment consists of a collection of compo-
nents. The TGM does not define the single components’ inner workings, as there already
exist multiple solutions developed through prior research for most of them (e.g. Risk Reg-
ister [22] or Test Management System [23] [3] implementations). This is the case for the
components of the segments Testing, Test Management, and Risk Assessment. As stated
in Section 2.4, one of the unique CA related tasks is client communication, which has not
been considered by past research. Hence, the Client Communication segment and all of
its components represent an unprecedented contribution. The same exception applies to
the Risk Assessment component Scoring System: because of missing existing solutions, a
novel security scoring system for IoT devices is developed in Chapter 3.

This section describes the segments’ key aspects and relations and defines the individual
components’ tasks. Relations are identified with Rx, where x is a number between 1 and
12 (see Figure 4.1).

4.1.1. Testing

The Testing segment holds all mechanisms that are required for running qualitative security
tests. It covers all test types, such as penetration testing, documentation review, and static
program analysis, and describes the general approach for security testing. That approach
includes test preparation, documentation of the test execution and post-execution efforts.

29

30 4. Testing Guide

Figure 4.1.: Testing Guide Model

It is mandatory that test documentation is easily comprehensible and repeatable. Each
test that leads to the discovery of vulnerabilities must fulfill these requirements. This
requirement is rooted in the relations between the different TGM segments: in order to
convince clients of the existence of a detected vulnerability (Vulnerability Reporting),
CAs must be able to repeatedly demonstrate their findings. Further, qualitative test
documentation is required by segment RA to craft precise risk estimations and correct
threat models (R1). This also helps in the risk discussion process with clients (R9).
Finally, the findings of previously executed tests should be added to the TM segment’s
systems (R2). While Testing utilizes the knowledge present in those systems (R1), future
tests of similar Devices Under Test (DUTs) can be sped up if knowledge, gained through
previous tests, is present.

Test Preparation Before a test case is executed, preparatory steps must be conducted.
This includes the acquirement of testing tools, preparing the Test Environment, and
setting up the DUT’s hardware and software components.

Test Environment The Test Environment describes all items required for executing a Test
Case. E.g., if a DUT’s hardware interface is to be tested, the utilized testing device
connected to the interface is part of the Test Environment. To increase efficiency,
the similarity of Test Environments may be utilized to determine the order of Test
Case execution.

Test Documentation During and after testing, observations made in regard to the DUT
and its behavior during testing is to be documented. The documentation helps for
vulnerability reporting and reproduction of test results.

Test Types Test Cases can be categorized. Exemplary Test Types are documentation re-
view, static program analysis, and software, hardware, physical, penetration testing,
and configuration management testing. Each Type has different characteristics and
may be performed by different, specially trained testers.

Testing Updates This component is utilized, if a DUT was tested before and the man-
ufacturer provided an updated product version that has the potential of affecting
the DUT’s security positively or negatively. If that is the case, the DUT must be

30

4.1. TGM Segments 31

retested. It is inefficient to utilize the complete set of test cases for retesting. In-
stead, the DUT’s components affected by the product update should be identified.
Thereby, test cases that do not handle those affected components, can be left out of
retesting. This enables a leaner testing procedure.

4.1.2. Test Management

In order to be able to assess a DUT’s security, a comprehensive collection of test cases
for known vulnerabilities, weaknesses and security requirements must be available. Such
collection should be filterable by device type, hardware or software components, and se-
curity level. These services are typically provided by a software based Test Management
System (TMS). Publicly available and contributable databases, such as Common At-
tack Pattern Enumeration and Classification (CAPEC) [24], Common Weakness Enumer-
ation (CWE) [25], and Common Vulnerabilities and Exposures (CVE) [26], should be
used as information source for a TMS. If a CA promises to keep detected vulnerabilities in
clients’ products secret and only share information about those with the clients to help ab-
solve their mitigation process, the CA is disallowed to contribute information about those
vulnerabilities to publicly managed databases. Instead, the CA must operate and main-
tain their own, private TMS and contribute new information solely to that system. TMSs
are not only utilized during test preparation (R1), their collection of known vulnerabilities
can be extended to hold the corresponding security scores. Thereby, they can also be used
by segment RA (R11), where the severity of known vulnerabilities needs to be gathered.
TMSs are typically capable of generating test reports for completed test executions. Those
reports help during communication with clients by providing summarized and/or detailed
information about test results (R4).

Test Management System The main component of the test management segment is the
Test Management System (TMS). This component can be implemented as a software
based service. Its task is to store and provide test cases for security requirements and
known vulnerabilities. It further must be able to provide test plans for certification
procedures.

Test Cases “Test Cases are a set of test inputs, execution conditions, and expected results
developed for a particular objective, such as [. . .] to verify compliance with a specific
requirement” [2].

Known Vulnerabilities All vulnerabilities that are either publicly known or discovered by
the CA shall be registered by the TMS. For each vulnerability, one or more test
cases are to be created.

Security Requirements If they are not proprietary, certificates are typically issued for a
product’s compliance to a specific standard, such as Common Criteria [27] or IEC
62443-4-2 [28]. To be capable of testing DUTs for a given standard, the security
requirements defined by that standard must be translated to test cases and added
to the TMS.

Information Sources Information Sources hold information about vulnerabilities or device
characteristics that are required for security testing. Different types of sources exist,
e.g. databases on the Internet, or documents provided by the client.

4.1.3. Risk Assessment

Risk Assessment (RA) is an essential part of security testing. It is responsible for correctly
determining a DUT’s security level and typically utilizes a risk register and a scoring sys-
tem. These components are populated with information gained through risk analysis and

31

32 4. Testing Guide

testing. To achieve precise results, such analysis considers various aspects of a DUT. With
regard to the IoT domain, these include device specific vulnerabilities and functionality,
network capabilities, operational contexts, etc. [3]. Risk Assessment is exerted before and
after test execution, but differs in both use cases. Risk registers created before test execu-
tion help in detecting potentially vulnerable aspects that should be tested in greater detail
(R8). They further allow the discussion of potential risks with the client before having
started expensive testing (R5). After testing is completed, risk estimations are adapted to
consider the newly detected vulnerabilities (R7). Thereafter, as part of the decision mak-
ing process for the DUT’s certification, a scoring system is utilized to determine the DUT’s
security. To reduce the risk analysis task, risk ratings of known vulnerabilities should be
fetched through a TMS (R11). Likewise, estimations for newly discovered vulnerabilities
that are analysed during risk analysis should be added to the utilized TMS (R12).

Risk Identification Risk Identification is the process of determining a DUT’s risks [2].
This can take place in various forms, such as vulnerability discovery during test
execution, service analysis, or the assessment of a DUT’s target environment [3].

Risk Analysis Risk Analysis typically follows Risk Identification [2] and represents the
process of determining an identified risk’s probability and severity [2].

Risk Register “The risk register details all identified risks, including description, category,
cause, probability of occurring, impact(s) on objectives, proposed responses, owners,
and current status” [2].

Scoring System A scoring system assigns numerical values to a device’s set of risks or
vulnerabilities. Depending on the Scoring System, the computed score expresses the
severity of different aspects, such as exploitability, destructive consequences, or loss
of confidentiality, integrity, and availability.

4.1.4. Client Communication

It is in the interest of CAs to create long term relationships with clients. Hence, to ensure
future collaboration, any irritations or displeasing circumstances must be circumvented in
communication with clients. This can prove to be difficult during the testing procedure,
where vulnerability reporting and requesting security fixes both criticize the client’s prod-
uct development and create client-side costs in the form of the development of mitigating
measures (R9, R10). Also, CAs may see themselves forced to request the client to pro-
vide product related, proprietary information (R3, R4), in order to resume testing. This
requires a certain level of trust for the CA by the client. To prevent negative customer
experience, a comprehensible set of arguments that support the CA’s ambitions should
always be prepared before any communication with clients.

Vulnerability Reporting If a CA reports a detected vulnerability back to the client, proof
for the existence of the reported vulnerability is crucial. To support the proof, CAs
shall be able to provide well-documented test execution results as well as a Proof-Of-
Concept that allows reproduction or exploitation of the vulnerability and affirms the
severity of a hypothetical attack. Vulnerability Reporting is required to ensure that
the client understands the nature of the vulnerability and the necessity to remove it.

Risk Discussion CAs must be able to explain hypothetical and discovered risks, such that
the client agrees on the CA’s risk severity ratings (R5). If the client is unable to
comprehend the CA’s motives behind the assigned severity for certain risks, the
client might become disappointed and desist from future collaboration. Especially
in the case of voluntary certificates, such experience must be avoided. It is in the
business interest of CAs to report well-founded risks and be able to constructively
recommend risk mitigation solutions.

32

4.2. Layer of Abstraction 33

Mitigation Requests CAs typically ask the client to mitigate all discovered vulnerabilities.
However, it is to the client to decide, if a mitigation is developed, or if the risk
is accepted. In the latter case, the chance for certification is decreased. But, if
mitigation efforts are too costly and the vulnerability itself is not too severe, the
client may prefer risk acceptance (R6).

Information Requests As determined in Section 2.4, CAs have the unique opportunity to
shift from strict black box testing conditions to a white box setting. Their active
communication with the manufacturer (client) and the client’s dependency on certi-
fication can be exploited to request and obtain additional, proprietary information
of the DUT. This information can then help in the risk and vulnerability discovery
processes of the TGM and confirm or disprove suspected vulnerabilities.

4.2. Layer of Abstraction

The TGM segments, as defined in Section 4.1, each contain a set of components. E.g., the
risk register component is part of the Risk Assessment segment. Each component has an
individual task and both requires some type of input and provides some form of output. For
instance, the task of the risk register is to manage the DUT’s risks and their severity [22].
The risk analysis component supplies the risk register with risk descriptions and severity
estimations as a form of input. The scoring system utilizes the risk register’s output to
receive an overview of the DUT’s risks in order to determine the DUT’s security score.
However, the exact way, by which a component’s task is performed, is not prescribed by
the TGM. As long as the same requirements for the input interface and the same results
provided via the output interface are given, the component itself can be interchanged
freely. Therefore, the TGM does not define the specific components that are to be used.
In the case of the risk register component, this means that the exact register type is not
prescribed. As long as the performed task and the input and output type meet the TGM’s
requirements, any risk register can be used. This freedom of choice represents a layer of
abstraction between the TGM and the components that are utilized in practice. When
the TGM is implemented for use in practice (see Chapter 5), the benefits and drawbacks
of certain components must be discussed to find the ideal combination of components.

4.3. Iterative Testing Procedure

As described in Section 4.1, TGM segments have relations to one another. This sec-
tion introduces a testing procedure that attempts to combine the segments’ relations to
facilitate a strategic certification procedure. The procedure, termed Iterative Testing Pro-
cedure (ITP), is designed to both reduce redundant tasks and to make the decision making
process for certification more comprehensible and consistent. The ITP is built around the
Security Scoring System (SSS) (introduced in Chapter 3) that is used for the certification
decision making process. The ITP is split into two phases, the setup phase (4.3.1) and
the iterative phase (4.3.2). It is illustrated in Figure 4.2. The sections below refer to the
flowchart of Figure 4.2 for illustrative purposes.

4.3.1. Initial Phase

The initial phase is started with the acceptance of a client’s request for product certification
(Init-1). This initial preparation is conducted without running any tests and contains TGM
components of the client communication and risk assessment segments. It focuses on the
DUT’s known characteristics without regard to its vulnerabilities. The phase’s goal is to
set up an initial risk register (Init-3) and discuss the DUT specific security requirements
with the client (Init-4). As illustrated in the flowchart of Figure 4.2, the initial phase does

33

34 4. Testing Guide

Figure 4.2.: Iterative Testing Procedure

not contain any decision blocks; its four processes are plainly run in the order Init-1 →
Init-2 → Init-3 → Init-4.

The succeeding phase is entered, after a required security score is negotiated (Init-4). In
the case of SSS, this negotiated score corresponds to the security score limit SSL (defined
in Section 3.2.2.3). To keep the security requirements consistent for different DUTs, SSL
shall remain unchanged over the course of the CA’s individual testing procedures.

Besides SSL, an artificial security score S
(i)
S is to be computed for DUT i. This score shall

represent the security score of device i for that all security tests have failed and, hence,
all vulnerabilities are deemed to be present in i. Under these circumstances, it shall hold

that S
(i)
S > SSL. After S

(i)
S and SSL are defined, the initial phase is finished.

4.3.2. Iterative Phase

The iterative phase is started after the initial values S
(i)
S and SSL are determined and an

initial risk register is developed. This phase requires an operational TMS that is capable
of providing all test cases that are required to assess the device’s security.

The iterative phase’s name originates from the loop that all of its components are part of
and can be summarized as a testing procedure that is repeated as long as there are both
test cases left to be processed and the DUT’s measured security score does not satisfy the
required security score.

In every iteration, one test case is executed (Iter-1). If a vulnerability or the absence of
a security mechanism is detected (Iter-2), the risk register is updated (Iter-3) to include

those findings. Thereafter, the security score S
(i)
S is adjusted to consider the new findings

and the client is informed about the discoveries (Iter-7, Iter-8). In addition to the report,
the client is requested to develop measures that mitigate or remove the security issue
(Iter-9). If the client is able to provide an updated version of the DUT that holds the new
security measures, a new iteration is started with the updated DUT. Prior to starting a
new iteration, the DUT’s changes to the previous version are analysed (Iter-10). Thereby,
the new iteration can focus on those changes and does not need to retest the complete
DUT. But, if the client is unable or unwilling to develop security improving measures, the
testing procedure is not finished. It is up to the client to accept risks or provide mitigation.

34

4.3. Iterative Testing Procedure 35

Path Id. Path Nodes Description

Path-1 Iter-1 → Iter-2 → Iter-3 → Iter-4
(T) → Cert-A.

The DUT is deemed secure, the DUT’s
product line is certified.

Path-2 Iter-1 → Iter-2 → Iter-3 → Iter-
4 (F) → Iter-5 (T) → Iter-7 →
Iter-9 (T) → Iter-10 → Iter-1

A vulnerability is detected and the client
provides mitigation measures that require
retesting.

Path-3 Iter-1 → Iter-2 → Iter-3 → Iter-
4 (F) → Iter-5 (T) → Iter-7 →
Iter-9 (F) → Iter-11 (T) → Iter-1

A vulnerability is detected but the client
does not mitigate it. A new iteration for
the next test case is started.

Path-4 Iter-1 → Iter-2 → Iter-3 → Iter-4
(F) → Iter-5 (T) → Iter-7 → Iter-
9 (F) → Iter-11 (F) → Cert-R

A vulnerability is detected but the client
does not mitigate it. The DUT is not ready
for certification and there are no test cases
left. Certification is rejected.

Path-5 Iter-1 → Iter-2 → Iter-3 → Iter-4
(F) → Iter-5 (F) → Iter-6 (T) →
Iter-8 → Iter-9 (T) → Iter-10 →
Iter-1

The absence of a security requirement is
detected and the client provides mitigation
measures that require retesting.

Path-6 Iter-1 → Iter-2 → Iter-3 → Iter-4
(F) → Iter-5 (F) → Iter-6 (T) →
Iter-8 → Iter-9 (F) → Iter-11 (T)
→ Iter-1

The absence of a security requirement is
detected but the client does not mitigate
it. A new iteration for the next test case is
started.

Path-7 Iter-1 → Iter-2 → Iter-3 → Iter-4
(F) → Iter-5 (F) → Iter-6 (T) →
Iter-8 → Iter-9 (F) → Iter-11 (F)
→ Cert-R

The absence of a security requirement is
detected but the client does not mitigate it.
The DUT is not ready for certification and
there are no test cases left. Certification is
rejected.

Path-8 Iter-1 → Iter-2 → Iter-3 → Iter-4
(F) → Iter-5 (F) → Iter-6 (F) →
Iter-11 (T) → Iter-1

The test case did not lead to the discov-
ery of a vulnerability or unsatisfied security
requirement. A new iteration for the next
test case is started.

Path-9 Iter-1 → Iter-2 → Iter-3 → Iter-4
(F) → Iter-5 (F) → Iter-6 (F) →
Iter-11 (F) → Cert-R

The test case did not find a vulnerability
or unsatisfied security requirement. There
are no test cases left. Certification is re-
jected.

Table 4.1.: Possible Paths of a Single Iteration in the Iterative Phase of the Iterative Test-
ing Procedure

If the client chooses risk acceptance, the security risk entry remains in the risk register and
the negative impact on the security score’s value keeps unchanged. In that case, decision
block Iter-11 is entered, leading to certification rejection, if no unprocessed test cases are
left. Otherwise, a new iteration is started. Iter-11 is also entered, if test case execution
did not lead to the discovery of a vulnerability and exited with certification rejection, if no
test cases are left. This condition is based on the circumstance that, in order to be able
to enter Iter-11, Iter-4 must have returned False after the last test case is finished, i.e. the
security requirements are not met and no test cases are left.

The goal of each iteration is to increase the measured security score’s preciseness. With
Iter-9, the client is able positively impact the security score by mitigating vulnerabilities
or implementing additional security measures. Hence, the measured security score does
not change monotonically: with each detected security issue, the score is incremented and
with every satisfied security requirement or developed mitigation measure, the score is
decremented.

The iterative phase holds decision blocks that, based on the findings of Iter-1, either result
in the boolean values true or false. Based on their outcome, each iteration takes one of the
nine possible paths. All possible decision block allocations are listed in Table 4.2, where
“T” means “True”, “F” means “False”, and “–” represents an undefined value. A description
of each path is presented in Table 4.1. Four paths cause the loop to be exited: Path-1 leads

35

36 4. Testing Guide

Path Id. Iter-4 Iter-5 Iter-6 Iter-9 Iter-11 Result

Path-1 T – – – – Certification Accepted

Path-2 F T – T – New Iteration

Path-3 F T – F T New Iteration

Path-4 F T – F F Certification Rejected

Path-5 F F T T – New Iteration

Path-6 F F T F T New Iteration

Path-7 F F T F F Certification Rejected

Path-8 F F F – T New Iteration

Path-9 F F F – F Certification Rejected

Table 4.2.: Logic Table for ITP Decision Blocks

to the acceptance of the product certification request, while Path-4, Path-7, and Path-9
imply that the product is not getting certified.

4.3.3. Deciding Over Certification

The iterative phase is exited after the question, if the DUT’s product line is accepted for
certification, is answered positively through Iter-4 or negatively through Iter-11. The main
decision process is located in Iter-4: as soon as all test cases are finished and the DUT
proves to satisfy the security requirements, Iter-4 returns true and leads to the certification
acceptance (Path-1). If the DUT does not satisfy the security requirements, Iter-4 returns
false (Path-2 to Path-9). If no mitigation is performed by the client, Iter-11 is entered
(Path-3, Path-4, Path-6, Path-7, Path-8, and Path-9). Entering Iter-11 requires Iter-4 to
have returned false and the client to have declined the request for mitigation measures. If
no test cases are left, the DUT is not qualified for certification and Iter-11 returns false,
resulting in the DUT failing the ITP (Path-4, Path-7, and Path-9).

The main decision process takes place in Iter-4. If TMS is used for testing a DUT for the
compliance to a specific standard, the decision of Iter-4 is dependent on the standard’s
prescriptions. If a scoring system, such as SSS is utilized, rating security is performed
according to that system.

4.3.4. Parallelism

The ITP model prescribes that process Iter-1 is left after a test case is completed. If
a vulnerability or an unfulfilled security requirement is detected, the client is asked for
mitigation measures. It is inefficient to pause testing and wait for the client to develop
and provide such measures before continuing. Hence, this section extends the ITP model
to support parallelism: instead of running a single iteration at a time, multiple iterations
for different test cases are run in parallel. For all test cases that do not depend on each
other, an individual loop should be run. E.g., with the transition from Init-4 to Iter-1,
the set of test cases that are not interdependent should be identified and for each test
case, a separate loop is started. With the transition from Iter-10 to Iter-1, the set of
independent test cases, that is (because of the changes made by the client) required to be
retested, should be identified and for each test case, a separate loop is started. Through
those parallel test processes, the iterative phase is split into multiple entities. Because the
mitigation development no longer blocks the entire testing procedure, the set of test cases
is worked off in a shorter timespan.

Executing test cases in parallel is restricted to test cases that do not have reciprocal
relations. If a test case A has relations to, or is dependent on another test case B and

36

4.3. Iterative Testing Procedure 37

B is part of an uncompleted iteration, A should be delayed, until the iteration for B is
finished. After B is completed, it shall be checked if A must still be run. This rule is
defined with the aspect of reduction of redundant labor in mind, as the following example
demonstrates: Let A and B be test cases. A is designed to check the security aspects of a
specific hardware interface and B tests, whether there are redundant debugging hardware
interfaces that are not deactivated. B draws the conclusion that the interface that would
be tested by A should be deactivated. Hence, if the client provides an update that disables
the interface, A does not need to be executed anymore. However, if the client refuses to
deactivate the hardware interface, A must be executed. Because the outcome of Iter-9 for
test case B is not known in advance, delaying the (potential) execution of A to the point,
where B is completed, reduces redundant labor.

If parallelism is utilized, the decision block Iter-11 must be adapted to respect the possi-
bility that some tests are unfinished. With parallelism, it is possible that Iter-11 returns
false, even though there are unfinished iterations. Iter-11 must be adjusted to serve as a
sink for iterations, for which it is true that no test cases are left, but unfinished iterations
still exist.

37

5. Implementation

This chapter describes the implementation of a set of Testing Guide Model (TGM) com-
ponents in software. This includes the components Risk Register, Scoring System, Test
Management System (TMS), Test Cases, Requirements, Information Sources, Vulnera-
bility Reporting, Test Documentation, Test Preparation, Test Environment, and Update
Testing.

The TGM’s software implementation is publicly available at https://gitlab2.informatik.
uni-wuerzburg.de/s354363/bachelor-thesis-code [29].

5.1. Test Management System

As specified in Section 4.1.2, the TMS holds information about Test Cases, Known Vulner-
abilities, Risk Scores, Security Requirements, and Test Preparation. The test management
software TestLink (TL) is found to be suited for these tasks and chosen for implementation.

TestLink is an open source test management and execution tool [23]. It holds test cases
that are executed according to a test plan and produces test reports of finished test plans.
Not all TestLink components have directly equivalent TGM components. E.g., TestLink
holds a Test Plan component that could be utilized to represent the TGM Testing Proce-
dure. To fully comply with TGM, these TestLink components must be translated to TGM
components, as described below.

Test Plan : Testing Procedure The TL component Test Plan is is a collection of test
cases that are to be executed in the context of a testing procedure.
Relation to TGM: All Test Cases that apply to a Device Under Test (DUT)
are collected in a Test Plan. During the testing procedure, the testing is executed
according to the Test Plan. Each Test Plan is linked to a DUT.

Custom Fields : Security Score & Test Type The TL component Custom Fields holds
properties for test cases and requirements. Test cases and requirements can be
filtered by these properties.
Relation to TGM: Custom Fields are utilized to hold Common Vulnerability
Scoring System (CVSS) scores and vector strings for test cases that cover known
vulnerabilities. Another custom field is utilized to describe a test case’s Test Type.

Keywords : Test Environment & Test Preparation The TL component Keywords is
assigned to Test Cases. Just as Custom Fields, Test Cases can be filtered by Key-
words.

39

https://gitlab2.informatik.uni-wuerzburg.de/s354363/bachelor-thesis-code
https://gitlab2.informatik.uni-wuerzburg.de/s354363/bachelor-thesis-code

40 5. Implementation

Relation to TGM: The Keywords component is utilized to represent the Test
Environment and Preparation steps that are required by test cases. This allows Test
Cases with the same Test Environment to be executed consecutively.

Test Report : Vulnerability Reporting The TL component Test Report summarizes passed
and failed test cases.
Relation to TGM: The Test Report component is utilized to summarize detected
vulnerabilities for Vulnerability Reporting and collecting the present vulnerabilities
for Security Scoring.

Build : DUT The TL component Build is related to a Test Plan and identifies entities
(and their statuses and versions) that are to be tested according to the Test Plan.
Relation to TGM: The Build component is utilized to identify the DUTs’ versions.
For each new product version provided by the client, a new Build is created.

Test Execution : Test Documentation On Test Execution, the assigned tester performs
the test steps as defined by the current Test Case. For each step, the tester is allowed
to store test notes.
Relation to TGM: The Test Execution component is utilized both for performing
the test procedure and to do Test Documentation. For documentation, the tester is
shall store all information in TestLink’s test notes feature.

5.1.1. Test Cases

In order to be able to precisely evaluate the applicability of the TGM, the implemented
TGM is specialized to consider a certain type of Internet of Things (IoT) devices. Namely,
it is decided to specialize on IoT devices that support the wireless communication standard
Zigbee. This allows the TGM evaluation to be performed with real devices, scenarios and
vulnerabilities. The specialization primarily influences the set of Test Cases and shall not
prevent future TGM extension for different device types. In addition to Zigbee specific
Test Cases, the Requirements developed by the IoT Security Foundation (IoTSF), specified
in [30], are implemented. These focus on IoT security in a more generic approach and are
suited for every IoT device type. For each IoTSF requirement, a separate Test Case is
created. For each vulnerability, a CVSS v3.1 score is calculated and assigned to the Test
Cases via Custom Fields. The implemented TGM holds 12 Zigbee related and 199 IoTSF
related Test Cases [29].

5.1.2. Creating Test Plans

For each new DUT, a separate Test Plan shall be created. TestLink allows new Test Plans
to inherit from existing ones. To simplify Test Plan creation, Template Test Plans are
developed that hold all Zigbee and/or IoTSF Test Cases. New Test Plans shall inherit
from these templates accordingly.

5.1.3. Updating Test Cases

During security assessment, previously unknown vulnerabilities may be discovered. In this
case, a new test case shall be added to TestLink and all affected (template) Test Plans.
The Custom Fields that are used for risk analysis (CVSS score, vector string) shall be
filled to allow later security scoring.

5.1.4. Testing Updates

If the client provides an updated version of the product that is to be certified, or if the client
requests certification for a certified product’s successor, device components, that are not

40

5.2. Risk Register 41

affected by the version change, shall not be retested. As described above, a separate Build
is created for each product version. On Test Plan execution, TestLink offers the option to
filter by passed or failed Test Cases of previous Builds. With this filter, previously failed
Test Cases (i.e. detected vulnerabilities) can be determined. If the new product version
declares to have fixed vulnerable components, the corresponding filter should be used. On
the other hand, if the new product version contains additional functionality, previously
passed relevant Test Cases (i.e. determined to not be vulnerable) shall be filtered and
retested.

5.1.5. Information Sources

TestLink is filled with Test Cases for multiple vulnerabilities. Test Cases for generic IoT
security issues are created based on the requirement specifications of [30]. For device spe-
cific vulnerabilities, the Common Vulnerabilities and Exposures (CVE) database National
Vulnerability Database (NVD) [14] is used.

The Zigbee related vulnerabilities were identified in the context of extended research on
Zigbee security performed by this thesis’s author. This research is based on the existing
work on Zigbee security conducted in in [31], [32], [33], [34], [35], and [36]. The vulnera-
bilities are embedded into Test Cases and added to the TestLink system.

5.2. Risk Register

A simple chart file is used for the Risk Register. This allows easy exchange and collab-
oration with clients. For maximum compatibility, the Open Document Sheet format is
utilized. The risk register holds all SC , CO, and VK entries and follows the approach of
[22]. A risk register template is available at [29].

5.3. Scoring System

The Security Scoring System (SSS), introduced in Chapter 3, is implemented in software,
using the Python programming language (see Appendix 8.1 & 8.2). It is available for
installation at [29] and can be used either as Python module or for scoring a device’s
Service Capabilities, Operational Contexts, and Known Vulnerabilities that are stored in
a specially formatted file. For this purpose, the file format YAML Ain’t Markup Language
(YAML) is chosen, because it is human readable [37] and allows quick editing after each
risk register update.

To consider potential Operational Contexts extensions, as discussed in Section 2.3.2.1, the
program allows the definition of additional CO risk features.

See Listing 5.1 for an exemplary device risks file (for surveillance camera Bosch NBN-498
Dinion 2X). The computed results for this file are illustrated in Listing 5.2.

41

42 5. Implementation

Listing 5.1: YAML Input File.

1 # Bosch NBN -498 Dinion2X

2 s e rv i c e − c a p a b i l i t i e s :
3 - camera
4 - mic
5 - ethernet
6 - mot ion detector
7 opera t i ona l −context s :
8 time :
9 - morning

10 - a f ternoon
11 - evening
12 - night
13 l o c a t i o n :
14 - server−room
15 - i t −department
16 - i n t e r n a l
17 known−v u l n e r a b i l i t i e s :
18 - id : cve −2015−6970
19 s co re : 9 . 8

Listing 5.2: Security Score Program Output

1 RSSC: 34 .5
2 RSCO: 32 .8
3 RSVK: 78 .4
4 DRS: 50 .9
5 Secur i ty Score : 9 .22

The developed SSS program requires the separate specification of risk values for the feature
sets Service Capabilities and Operational Contexts. If executed on the command line, these
values are provided through an additional YAML file [29].

42

6. Evaluation

In this chapter, the Testing Guide Model (TGM) and the Security Scoring System (SSS)
(introduced in Chapter 3 and 4, implemented in Chapter 5), are evaluated. In Section 6.1,
the TGM is utilized to assess the security of two Internet of Things (IoT) devices in order
to determine the model’s operability for Certification Authorities (CAs). In Section 6.2,
the SSS is assessed through a score ranking comparison with the existing models Common
Vulnerability Scoring System (CVSS) and Weighted Risk Ranking (WRR) discussed in
Chapter 2.

6.1. TGM Evaluation

The TGM, implemented in Chapter 5, is evaluated by testing the security of two IoT
devices according to the Iterative Testing Procedure (ITP). It is assessed, whether previ-
ously determined vulnerabilities are detected and correctly processed by the TGM. The
two devices are very similar in their Service Capabilities, Operational Contexts, and Known
Vulnerability ratings. This evaluation assesses, if the TGM successfully produces similar
results for both devices.

6.1.1. Testbed

The two Zigbee enabled gateways Philips Hue Bridge v2 (European article number: 046-
677458478), denoted as device i, and Osram Lightify Home (European article number:
4052899926172), denoted as device j, are chosen for evaluation. Both gateways serve
similar tasks, as they are intended to serve as interface between Zigbee connected light
bulbs and light switches. They are connected to the Internet, where they communicate
with backends to allow users to control light bulbs through mobile apps.

Both devices, i and j, have a set of known vulnerabilities. This set is based on Com-
mon Vulnerabilities and Exposures (CVE) entries of the National Vulnerability Database
(NVD) [14] and on Zigbee security research conducted for i and j [35]. All vulnerabilities
that are to be detected are listed in Table 6.1. The table displays, which vulnerabilities ap-
ply to which device and indicates, which vulnerabilities are fixed or unfixed and therefore
should or should not be considered in the testing procedures’ final results. Vulnerabilities
that have already been fixed by the manufacturer are initially treated as unfixed, simulat-
ing the client side mitigation process of Iter-9 (see Figure 4.2). This allows the utilization
and assessment of Path-2 and Path-5 (see Table 4.1) of the ITP.

43

44 6. Evaluation

Device Summary / Iden-
tification

Description Status

i Touchlink Bug A bug enables Touchlink Commis-
sioning beyond the allowed physical
ranges [35].

Fixed

i, j Factory Reset Network configuration can be reset
with inter-PAN command frames
[35].

Unfixed

i, j Default Global
Link Keys

The default values for the Zigbee
Global Link Key are used.

Mitigated for i,
unfixed for j

i Root Access
through Hard-
ware Attack

By setting a hardware pin to
ground, a root shell can be accessed
through a hardware interface [38].

Unfixed

i CVE-2020-6007 Heap buffer overflow allows remote
code execution [39].

Fixed

j CVE-2016-5054 Because the Zigbee Frame Counter
is not checked, replayed packets are
falsely accepted [40].

Fixed

j CVE-2016-5053 Unauthenticated command execu-
tion in local networks [40].

Fixed

Table 6.1.: Vulnerabilities of Philips Hue Bridge v2 (i) and Osram Lightify Home (j).

The TGM, implemented in Section 5 and used for this evaluation, holds 217 test cases.
The majority of those does not apply to the present vulnerabilities (see Table 6.1). A full
security test that includes all test cases is deemed too costly and also not required for
this evaluation. Instead, only the test cases that are known to be related to the present
vulnerabilities are executed and discussed in the sections below. The Test Case descriptions
are part of the Test Management System (TMS) that is available at [29] and also listed in
Table B.1.

6.1.2. Initial Phase

During Initial Phase, risk analysis is conducted. For the sake of compatibility with the SSS
model, risks are distinguished between service capability (SC), operational context (CO),
and vulnerability (VK). For risk identification, all available device related documents, such
as product manuals [41] [42], are analyzed and the devices themselves physically observed.

Operational Contexts Both gateways are available on the consumer market and do
not exhibit features that allow integration into existing solutions. Hence, utilization in
environments of high risk, such as Server Rooms, is determined unlikely. As neither one is
supposed to be operated outdoors, the operational context External is ruled out, as well.
The remaining options (Meeting Room, CxO Office, IT Department, and Internal) are
deemed probable.

Because controlling light bulbs is a task that is not bound to the time of day, the time
of operation is not specific. IT Department and Night is identified as the combination
of time and location that is linked to the highest risk value, 7.5, and therefore chosen
as the Operational Contexts risk (see Table 2.4). Hence, for both devices, it holds that
RSCO = MWRR(7.5) · 7.5 = 30.0 (see Equation 2.4).

Service Capabilities Equal to the operational contexts, the service capabilities set
is adopted from [3]. Of the service capabilities listed in [3], the Osram Lightify Home

44

6.1. TGM Evaluation 45

gateway is identified to hold WiFi capabilities and the Philips Hue Bridge v2 has both
WiFi and Ethernet capabilities. Additionally, it is discovered that both devices support
Zigbee communication and can be controlled through mobile apps. However, the service
capabilities Zigbee and App are not listed in [3] and therefore require additional steps to
identify and analyze associated risks. Unlike the risk scoring conducted in [3], the risk
scoring for Zigbee and App is not performed through a questionnaire filled out by IoT
security experts. Instead, the existing service capability risks are used as a benchmark to
rate the services Zigbee and App. The following additional service capabilities are created:

Zigbee The IoT device supports the wireless communication standard Zigbee. Risk score:
8.5

App The IoT device interacts with mobile Apps. Risk score: 7.0

Through the conducted analysis, the following SC sets are determined:

• Philips Hue Bridge v2: WiFi (9.5), Ethernet (4.3), App (7.0), Zigbee (8.5). RSS
(i)
C =

146.6

• Osram Lightify Home: WiFi (9.5), App (7.0), Zigbee (8.5). RSS
(j)
C = 138.0

Known Vulnerabilities Initially, neither of the devices has known vulnerabilities.
However, to follow the prescription of the ITP, the opposite is assumed: all vulnerabilities
are present until proven otherwise (see Section 4.3.1). The TMS is utilized to obtain all
vulnerabilities that are to be considered.

Security Score Negotiation After the initial risk analysis is finished, the accepted
security score SSL (see Section 3.2.2.3) is negotiated with the hypothetical clients. To
guarantee fair treatment, the same security score limit is used for both gateways: SSL =
2.5. In particular, in order to be scored Secure qualitatively (see Section 3.2.2.3), the
security score of each gateway shall be equal to, or below 2.5. This security score limit is
chosen to comply with the rules defined in Section 3.3.

Device Base Risk Score With the Service Capabilities and Operational Contexts
feature sets prepared, the gateways’ Base Risk Scores (see Section 3.2.2.1) can be computed
(see Equations 6.1, 6.2).

D
(i)
BRS = RSS

(i)
C ·

(
1−

RSC
(i)
O

RSC
(max)
O

)
= 146.6 ·

(
1− 30

80

)
= 91.625 (6.1)

D
(j)
BRS = RSS

(j)
C ·

(
1−

RSC
(j)
O

RSC
(max)
O

)
= 138 ·

(
1− 30

80

)
= 86.25 (6.2)

6.1.3. Iterative Phase

As prescribed in Section 4.3.2, test iterations are executed consecutively until there are
either no test cases left or the device is deemed secure. For the sake of simplicity, but
without the loss of generality, this evaluation does not utilize the parallelism feature defined
in Section 4.3.4.

The conducted iterations are summarized in Table 6.2 and Table 6.3. The included Path
identifiers are taken from Table 4.1 and refer to the blocks illustrated in Figure 4.2. The
individual paths taken in each iteration rely on the corresponding Test Case’s outcome and
the subsequent clients’ actions. The Test Case identifiers are taken from the implemented
TMS of [29]. See Appendix B.1 for descriptions of all utilized Test Cases.

45

46 6. Evaluation

Iteration Path Id. Test Case Id. Test Result

1 Path-8 IoT-6: ZB Default Global Link Key Preconditions not
met

2 Path-8 IoT-7: ZB Fallback Global Link Key Test Case passed

3 Path-8 IoT-8: ZB Frame Counter Unchecked Test Case passed

4 Path-8 IoT-9: ZB OTA Link Key Transmission Test Case passed

5 Path-8 IoT-10: ZB DoS Association Flooding Test Case passed

6 Path-8 IoT-11: ZB Security Level Test Case passed

7 Path-2 IoT-12: ZB Touchlink range limited Test Case failed

8 Path-8 IoT-12: ZB Touchlink range limited Test Case passed
(after mitigation)

9 Path-8 IoT-13: ZB Firmware Update Test Case passed

10 Path-8 IoT-14: ZB Identify Action Test Case passed

11 Path-3 IoT-15: ZB Factory Reset Test Case failed

12 Path-8 IoT-16: ZB Hijacking Test Case passed

13 Path-8 IoT-17: ZB Firmware Update Impossible Test Case passed

14 Path-2 IoT-18: CVE-2020-6007 Test Case failed

15 Path-8 IoT-18: CVE-2020-6007 Test Case passed
(after mitigation)

16 Path-4 IoT-23: Root Access Test Case failed

Table 6.2.: ITP Iterations for Philips Hue Bridge v2.

Philips Hue Bridge v2 This device has had two Zigbee related vulnerabilities in
the past (assessed with test cases IoT-12 and IoT-18) that were fixed through software
updates. For evaluation, these software fixes are treated as client-side mitigation measures
that are followed by another iteration that retests the fixed device (e.g., see iterations 7
and 8 in Table 6.2). For each fix, a new Build is created in the TestLink software. The
produced Test Reports of each Build are available at [29].

The only two known vulnerabilities that are, to this day, unfixed, are related to a Denial of
Service (DoS) attack that can be executed during a 30 second time period after a certain
button is pressed on the gateway [35] (assessed with test case IoT-15) and to a hardware
vulnerability during the boot process, which allows root access (assessed test case IoT-
23) [38] (see iterations 11 and 16 in Table 6.2). The absence of security fixes for those
vulnerabilities is interpreted as risk acceptance (represented by paths Path-3 and Path-4)
and negatively impacts the security score. Other vulnerabilities, e.g., the vulnerabilities
assessed with test cases IoT-14 and IoT-16, are present in Philips Hue light bulbs that can
be connected to this gateway, but not in the gateway itself [35]. If the Philips Hue system
as a whole were tested, these vulnerabilities should be considered. Because the assessment
of the complete system is not in the scope of this testing procedure, these vulnerabilities
are ignored.

With IoT-15 (associated CVSS score: 7.4) and IoT-23 (associated CVSS score: 7.6) being

the only failed test cases, it holds that RSV
(i)
K = MWRR(7.4) ·7.4+MWRR(7.6) ·7.6 = 60.0

(see Equation 2.2). The rounded security score S
(i)
S of Philips Hue Bridge v2 is 8.0 (see

Equations 6.1, 6.3). It holds that S
(i)
S > SSL and hence, the iterative phase is correctly

exited with Path-4, resulting in certification rejection.

S
(i)
S =

10

1 + (e+ µ · 91.625)−ω·(60.0−ν)
≈ 8.0 (6.3)

46

6.1. TGM Evaluation 47

Iteration Path Id. Test Case Id. Test Result

1 Path-3 IoT-6: ZB Default Global Link Key Test Case failed

2 Path-8 IoT-7: ZB Fallback Global Link Key Test Case passed

3 Path-8 IoT-8: ZB Frame Counter Unchecked Test Case passed

4 Path-8 IoT-9: ZB OTA Link Key Transmission Test Case passed

5 Path-8 IoT-10: ZB DoS Association Flooding Test Case passed

6 Path-8 IoT-11: ZB Security Level Test Case passed

7 Path-6 IoT-12: ZB Touchlink range limited Preconditions not
met

8 Path-8 IoT-13: ZB Firmware Update Test Case passed

9 Path-8 IoT-14: ZB Identify Action Test Case passed

10 Path-3 IoT-15: ZB Factory Reset Test Case failed

11 Path-8 IoT-16: ZB Hijacking Test Case passed

12 Path-8 IoT-17: ZB Firmware Update Impossible Test Case passed

13 Path-2 IoT-137: Authent. for Web Interfaces &
IoT-20: CVE-2016-5053

Test Case failed

14 Path-9 IoT-137: Authent. for Web Interfaces &
IoT-20: CVE-2016-5053

Test Case passed
(after mitigation)

Table 6.3.: ITP Iterations for Osram Lightify Home

Osram Lightify Home Unlike the Philips Hue Bridge v2, the Osram Lightify Home
Gateway can not initiate Touchlink commissioning [35], a Zigbee security mechanism that
reduces transmission power during key exchange. This means that the Default Global
Link Key and the Zigbee Network Key, a network wide encryption key that must remain
secret at all times [43], are transmitted within a large radius, allowing adversaries to
eavesdrop [44]. This is a major security issue causing test case IoT-6 to fail. Iteration 7
simulates the client request to implement this missing security mechanism. Because it was
not implemented, Path-6 (client side risk acceptance for an absent security mechanism) is
taken.

In addition to the missing security mechanism, the Osram Lightify Home gateway holds
the same vulnerability as Philips Hue Bridge v2: both gateways accept the inter-PAN
command that performs a factory reset (IoT-15). While the Philips Hue Bridge v2 gateway
is only prone to such attack during a specific time span, the Osram Lightify Home gateway
can be reset at any time [35].

There are multiple Zigbee related vulnerabilities that were present in Osram Lightify light
bulbs (IoT-8, IoT-14, IoT-15, IoT-16) but not in the gateway itself [35]. It could be argued
that these influence the availability and integrity of the gateway’s services, which should be
considered, if the Osram Lightify system as a whole was tested. Because only the security
of the gateway itself is assessed, these security issues are left out.

Beyond Zigbee security, the Osram Lightify Home gateway has had a web service related
security issue (CVE-2015-5053) that was fixed through software updates [40].

With iteration 14, all test cases are finished and the security score is computed. With
IoT-6 (associated CVSS score: 7.4) and IoT-15 (associated CVSS score: 7.4) being the

only failed test cases, it holds that RSV
(j)
K = MWRR(7.4) ·7.4 ·2 = 59.2 (see Equation 2.2).

Hence, the rounded security score S
(j)
S of Osram Lightify Home is 7.7 (see Equations 6.2,

6.4). It holds that S
(j)
S > SSL and the iterative phase is correctly exited with Path-9,

47

48 6. Evaluation

resulting in certification rejection.

S
(j)
S =

10

1 + (e+ µ · 86.25)−ω·(59.2−ν)
≈ 7.7 (6.4)

6.1.4. Evaluation Results

The evaluating testing procedure follows the prescriptions of the TGM and was executed
successfully. The TGM implementation (TMS, Risk Register, and Scoring System) [29]
is able to accomplish the required tasks and contributed to the successful and correct
security assessment of the two Zigbee gateways. Both devices have similar Service Capa-
bilities, Operational Contexts, and vulnerability ratings. These similarities were correctly

translated to security scores of almost even values (S
(i)
S = 8.0, S

(j)
S = 7.7).

Minor issues in the introduced TGM were discovered during execution that were not
considered during the development of the TGM (see Chapter 4). These issues could be
resolved by subsequent adjustments, as described in the sections below.

Similar Test Cases If multiple test cases are interdependent, e.g., because they cover
the same vulnerability, the CVSS score of a vulnerability may be added multiple times.
If the vulnerability were added to VK more than once, the computed security score would
be distorted and its integrity corrupted. E.g., the vulnerability tested by test case IoT-16
(Zigbee device hijacking) can only be exploited, if the vulnerability that is tested by IoT-15
(Zigbee network configuration reset) is present (see Table B.1) [35]. If a Zigbee device can
be hijacked, it is implied that its Zigbee network configuration can be reset, as well. Both
test cases are interdependent and the same vulnerability is rated twice.

This problem was not considered during TMS implementation. However, a solution was
found subsequently: the utilized TMS tool TestLink allows the definition of relations
between test cases. Test cases can be defined to block each other: if one test case has failed
(i.e. the vulnerability is present), the other one is not to be run [23]. This functionality
can be applied to test cases that assess the same vulnerability.

Device Specific Vulnerability Scoring The TMS, as it is implemented in Section 5.1,
does not allow an device specific change of VK related risk scores. The implementation
assigns a static score for each test case. Therefore, device specific differences can not
be considered automatically by the utilized CVSS scores. This problem did not cause a
major issue for the two devices used for this evaluation, but could require a subsequent
solution for security assessments of a larger scale. Such solution could be realized by
defining TestLink Custom Fields that are to be filled out during test execution, allowing
the insertion of custom CVSS scores in the Test Report. While this solution could resolve
the discovered problem, it also requires additional work, since each CVSS score must be
recomputed in each round of test execution.

6.2. SSS Evaluation

With this section, the SSS, introduced in Chapter 3, is evaluated. After a testbed of 11
IoT devices is described in Section 6.2.1, the SSS’s behavior is analyzed with the help of
risk scores of exemplary IoT devices in Section 6.2.2. Thereafter, the SSS is compared to
the previously analyzed scoring systems CVSS and WRR in Section 6.2.3.

48

6.2. SSS Evaluation 49

6.2.1. Testbed

The authors of [3] used a set of 13 IoT devices to evaluate the WRR model implementation.
Because the single feature set risk values (RSSC , RSCO, and RSVK) of these 13 devices,
which are required for security score computation, were omitted in [3], a simple extension
for the SSS is not possible. This circumstance makes the development of a separate list of
IoT devices, for which the individual feature sets are known, necessary. Therefore, a new
list of 11 IoT devices is prepared for SSS evaluation. The devices and their risk scores are
depicted in Appendix C.2. The risk scoring process is performed similar to the process
in [3]: for each device’s VK set, the NVD is queried for vulnerabilities. For SC , “the
specification of the device (based on the device type and model)” [3] is used, and for CO,
“the maximum context (the worst-case scenario) among all possible contexts for the IoT
device under test” [3] is referred. For both feature sets, the risk scores that were previously
obtained through the expert questionnaire [3, Table 1, Figure 2], are utilized.

Note that all vulnerabilities present in the NVD were utilized, regardless if there already
exist security fixes for the latest product versions. The two Zigbee gateways Philips Hue
Bridge v2 and Osram Lightify Home are an exception to this strategy, because their VK
sets are obtained from the security assessment of Section 6.1. Also, note the special case
of Miele XGW 3000, an IoT gateway that is listed twice in Appendix C.2. The difference
between the two entries lays in their VK sets. Both sets hold the same vulnerabilities,
however, the entry marked with MITRE is assigned CVSS scores by the corporation
MITRE, while the other entry uses the default CVSS scores of the NVD. The decision to
include both versions is made to highlight the consequences that are caused by different
vulnerability ratings.

6.2.2. Security Score Analysis for Existing IoT Devices

After the feature sets for each device are identified (see Section 6.2.1), the devices’ RSVK ,
DBRS , and SS values are computed. Figure 6.2 depicts these values, where the X-axis
represents DBRS and the Y -axis represents RSVK . Figure 6.1 illustrates the devices’
RSVK and SS values.

Through Figure 6.1, it is observed that SS values are located near the numerical boundaries
of SSS (0 and 10). There are numerous reasons that could cause this. For one, such
behavior can be explained with the non-linear nature of SS . Further, the devices’ RSVK
values are not uniformly distributed and located on the spectrum’s edges, which also has
considerable impact on SS . Lastly, a non-optimal calibration of µ, ν, and ω can contribute
to such supersaturation, as well. Because these constants were chosen without extended
research and rather based on a small set of rules defined in Section 3.3, the calibration
certainly has influence on the suboptimal SS values’ distribution.

As illustrated in Figure 6.2, only one device, namely Siemens Gigaset se361, has a RSVK
value that is within the range, where the value of DBRS can influence the qualitative
rating (Secure, Insecure) for SSL = 2.5. While the gateway is deemed Secure, a sufficiently
smaller DBRS value will result in the rating Insecure. For every other device, the RSVK
value is outside the illustrated boundaries for DBRS < 140. This means that for those
devices, RSVK must change first, before DBRS has influence on the qualitative rating. This
observation allows the conclusion that, for most of the analyzed devices and the utilized µ,
ν, and ω values (see Section 3.3), the size of RSVK , i.e. the devices’ vulnerabilities, have
higher impact on the qualitative security rating than their DBRS values. By adjusting µ,
ν, and ω, the SSL plot illustrated in Figure 6.2 can be stretched on the Y-axis, attributing
more influence to the DBRS value. This observation demonstrates the SSS’s options for
calibration.

49

50 6. Evaluation

Figure 6.1.: IoT Devices mapped by their Vulnerability Risk Scores (RSVK) and Security
Scores (SS).

6.2.3. Comparison to WRR and CVSS

The devices used for evaluation in [3] are scored and ranked with the Device Risk Score
Calculation method DRS (see Equation 2.5). The ranking is then compared to a ranking
that is based on the sums of the vulnerabilities’ CVSS scores. This SSS evaluation uses the
same approach and adds a ranking that is based on the devices’ SSS scores (see Table 6.4).

The evaluation of WRR observes that “the NVD metric presents much different results”
[3] than the WRR’s metric. This observation can not be made for the devices of the
SSS evaluation. The authors of [3] explain the observation with “six of the IoT devices
under test [that] have a risk score of 0.0”. This is different to the devices used in this
evaluation: the sum of CVSS scores ranges from 6.5 to 66.8. Hence, the RSVK values
have a bigger impact on the DRS scores, resulting in higher correlation. However, there
are larger differences between the SS and DRS rankings. These are analyzed in the sections
below.

Miele XGW 3000 (MITRE) The Zigbee gateway Miele XGW 3000 (MITRE) is
rated most secure by SSS (SS = 0.3), closely followed by two wireless keyboards with
SS = 0.6. In the case of rating with both the WRR model, the gateway is rated more
risky than both keyboards. The RSCO values of all three devices are almost equal and
the RSVK values show only small differences. However, the gateway’s RSSC value highly
exceeds the keyboards’ RSSC values. This explains both the reason, why the gateway is
rated more risky by the WRR model, and, why the gateway is rated more secure by SSS:
the WRR model computes the sum of all feature sets. Because the gateway has more
service capabilities, it is rated more risky. On the other hand, the SSS allows the presence
of more vulnerabilities for a constant RSCO, if a device has more service capabilities (see

50

6.2. SSS Evaluation 51

Figure 6.2.: IoT Devices mapped by their Vulnerability Risk Scores (RSVK) and Device
Base Risk Scores (DBRS).

rules in Section 3.1.1). Hence, this difference in ranking is explained by the nature of SSS
and can be argued as advantage to the WRR model.

Philips Hue Bridge v2 Similar to Miele XGW 3000 (MITRE), the Zigbee gateway
Philips Hue Bridge v2 is ranked very differently because of its RSSC value. With the
highest RSSC value of all devices and an indifferent RSVK value (see Table C.2), the
gateway is located in the first half of the SSS ranking. However, its high RSSC value
causes the DRS value to be considerably higher, resulting in a higher WRR model ranking.

In a less extreme manner, this observation can also be applied to the device Osram Lightify
Home that has slightly lower RSSC and RSVK values, but a similar proportion between
the two values.

Bosch NBN-498 Dinion 2X Another discrepancy in rating is represented by the
surveillance camera Bosch NBN-498 Dinion 2X. Its user manual lists potential use cases
that include prison surveillance [45]. Because prisons represent a high risk operational
context, but such context is not listed in the time-location matrix in [3], the combination
with the highest possible risk value, which is Server Room and Night, is used for scoring.
The WRR model does not assign a high impact to the CO feature set and this surveillance
camera does not have a huge set of service capabilities, compared to other cameras (see
Table C.2). Therefore, this surveillance camera is ranked far less risky by the WRR
model than the surveillance cameras Philips In.Sight B120/37 and TP-Link TL-SC 3130

51

52 6. Evaluation

Device SS SS Rank DRS DRS Rank
∑

CVSS Scores CVSS Rank

Miele XGW 3000
(MITRE)

0.3 1 42.1 3 9.2 3

Logitech K360 0.6 2 20.0 1 6.5 1

Microsoft Wire-
less Keyboard
850

0.6 3 20.3 2 6.8 2

Siemens Gigaset
se361

2.3 4 52.4 5 12.1 6

Osram Lightify
Home

7.7 5 78.0 8 14.8 7

Philips Hue
Bridge v2

8.0 6 81.3 10 15.0 8

Bosch NBN-498
Dinion2X

9.2 7 50.9 4 9.8 4,5

Samsung XPress
M2880FW

9.7 8 69.9 6 9.8 4,5

Bosch SHC 9.8 9 72.3 7 35.2 11

Miele XGW 3000 10 10 78.7 9 18.6 9

Philips In.Sight
B120/37

10 11 96.9 11 22.7 10

TP-Link TL-SC
3130 IP Camera

10 12 195.1 12 66.8 12

Table 6.4.: Scoring System Comparison of SSS, WRR, and CVSS.

IP Camera (see Table 6.4), which both have less risky operational contexts and higher
RSVK and RSSC values.

The SSS utilizes the CO set to measure the importance of having as few vulnerabilities as
possible. A high RSCO value influences the SS more than a high RSSC value. In the case
of this camera, the presence of one severe vulnerability in combination with an operational
context that is connected to high risks, leads to a risk higher ranking by the SSS than by
the WRR model (see Table 6.4), explaining the observed discrepancy.

Comparison Summary Overall, the rankings of the SSS and the WRR model are
mostly congruent. The divergences can be explained with the individual models’ behaviors
and confirm their applicability for the destined tasks.

52

7. Future Work

There is large room for improvement and further analysis in the Internet of Things (IoT)
security assessment field. For all three discussed scoring systems, Common Vulnerability
Scoring System (CVSS) [10], Weighted Risk Ranking (WRR) [3], and Security Scoring
System (SSS) (see Chapter 3), there are opportunities to improve both their accuracy
and applicability for IoT devices. Furthermore, there are open questions regarding the
evaluation of the Testing Guide Model (TGM) (see Chapter 4) that only Certification
Authorities (CAs) will be able to answer. The open questions and possible improvements
are discussed in greater detail in the sections below.

7.1. TGM Evaluation

The TGM evaluation conducted in Section 6.1 is highly limited since it was performed
under hypothetical conditions without real-world application. Practical tests were not
conducted, because those would require the discussion of undisclosed vulnerabilities. Like-
wise, the client communication aspect of TGM could not be evaluated sufficiently. Studies,
carried out by CAs in collaboration with clients that are willing to participate, could im-
prove the TGM evaluation: if these studies are published with adequate delay, clients
are able to act on discovered vulnerabilities and sufficiently mitigate those before pub-
lication. With a participating client, the client communication aspects can be assessed
simultaneously.

7.2. CVSS Extensions Framework

The CVSS Extensions Framework introduced with version 3.1 [15] and discussed in Sec-
tion 2.2.3.3 is found to hold the opportunity of integrating IoT aspects in the CVSS metrics.
Because of its recency, there are no known efforts for such implementation. Future research
may utilize the Extension Framework to counter the problems of CVSS utilization for IoT
vulnerabilities that are discussed in Sections 2.2.3.1 and 2.2.3.2. It is to be investigated, if
future CVSS Extensions Framework implementations are also able to improve the accuracy
of the systems WRR and SSS.

7.3. WRR Accuracy

The authors of [3] suggest that “in future research, additional device specific and domain
related features and elements may be used to enhance the model’s capabilities” to allow

53

54 7. Future Work

more precise risk scoring. They also suggest such additional component: “an important
factor that should be considered in the model is whether the device is secured by design,
including whether it uses TLS/SSL for data in transit or uses an encryption mechanism
for data at rest, and whether the device is physically secured” [3]. To improve accuracy,
it is also suggested to add calibration mechanisms for risk weights and extend the expert
questionnaire with additional questions [3]. Because those improvements will also affect
the accuracy of the SSS, it is desirable that these suggested steps will be developed in the
future.

7.4. SSS Constants

The constants µ, ν, and ω used in Equation 3.3 have major influence on the SSS security
scores. The correct calibration of these values has high priority, since they should be kept
unchanged during application. The values used in this bachelor thesis are determined
through a small set of rules (see Section 3.3) and are not meant for practical application.
Hence, mechanisms for calibrating these constants must be developed.

There are multiple potential approaches for calibrating the constants’ values. One ap-
proach, that has already been used in [3], is to use an expert questionnaire and determine
the values through practical device examples rated by experts. However, “one of the main
disadvantages of using a domain expert questionnaire is that the model is static” [3]. For
each future model change, experts need to be consulted, again. In [3], the utilization of ma-
chine learning and big data as alternative to the expert questionnaire is considered. Indeed,
these approaches could also help in the case of the SSS: with enough input (IoT devices
with known SC , CO, and VK sets), the ideal values of µ, ν, and ω could be determined
through basic mathematical functions, machine learning, or through optimization problem
algorithms. This approach could, unlike the expert questionnaire approach, improve the
SSS continuously, if regularly provided with new input.

As for the SSS model itself, only the values of µ, ν, and ω must be determined correctly.
Before SSS can be used by CAs, however, the maximal allowed security score SSL must
be determined, as well. Just like µ, ν, and ω also SSL should keep unchanged over time.
Determining SSL could also be determined through machine learning, big data, and/or
expert knowledge: with enough quantitatively rated devices and an expert’s indication
about their qualitative rating (Secure, Insecure), the SSL can be set to the optimal value.

54

8. Conclusion

The goals of this bachelor thesis are to standardize Internet of Things (IoT) security
assessments of Certification Authorities (CAs) and develop an approach that allows the
fair and equal testing of IoT devices by ensuring continuously equal testing conditions
and rating mechanisms. This bachelor thesis has investigated the existing methods of IoT
security assessments through the view of CAs and proposed the two novel solutions Testing
Guide Model (TGM) and Security Scoring System (SSS) to solve the issues prevailing in
the existing systems.

The TestLink based TGM implementation has demonstrated the applicability of the intro-
duced TGM and Iterative Testing Procedure (ITP) models. During evaluation with two
IoT devices, no substantial flaws were discovered. However, as depicted in Section 7.1, it
is concluded that additional evaluation performed by CAs is desirable.

In order to improve CAs’ proprietary decision making processes for product certification,
the quantitative and qualitative scoring system SSS was developed. The SSS rates the
security of IoT devices based on their vulnerabilities in relation to their service capabilities
and operational contexts. This system is an extension to an existing risk ranking solution,
the Weighted Risk Ranking (WRR) model. The need for the new scoring system SSS
originates in the deficiencies of existing scoring systems like Common Vulnerability Scoring
System (CVSS), as extensively discussed in Section 2.2. Both the WRR model and the
SSS incorporate the CVSS as a subcomponent. Therefore, both models may profit from
future improvements for the CVSS, as determined in Section 7.2.

With the help of a risk ranking comparison of multiple IoT devices, it was demonstrated
that the SSS both fulfills the previously defined rules of behavior and is able to rank the
devices’ security more precisely than both WRR and CVSS. However, the main task of
the SSS lays in precise rating, not ranking. The calibration of SSS variables that is needed
for achieving more precise ratings was only initially performed with this bachelor thesis
and should, as suggested in Section 7.4, be improved by future research.

This bachelor thesis has successfully demonstrated new approaches that have both the
potential of improving the security assessment strategies of CAs and also shift the de-
velopment of such methods from the proprietary domain to the public. It is desirable
that CAs assess the findings of this bachelor thesis, enhance the developed models and
incorporate them in their security assessments.

55

List of Figures

2.1. Weighted Risk Ranking Model. Figure taken from [3]. 15

3.1. WRR Model (Figure taken from [3]) with Modifications of the SSS Model
(red: removal & green: addition). 23

3.2. Security Score Limit SS by RSVK and DBRS 24
3.3. Enlarged X-Axis of Figure 3.2. 24
3.4. Accepted RSVK by DBRS for SSL = 2.5. 26
3.5. Security Score Limit SSL = 2.5 by RSVK and DBRS with ω, µ, ν defining

Rules. 27

4.1. Testing Guide Model . 30
4.2. Iterative Testing Procedure . 34

6.1. IoT Devices mapped by their Vulnerability Risk Scores (RSVK) and Secu-
rity Scores (SS). 50

6.2. IoT Devices mapped by their Vulnerability Risk Scores (RSVK) and Device
Base Risk Scores (DBRS). 51

57

List of Tables

2.1. Qualitative Severity Rating Scale. Table taken from [10]. 8
2.2. Environmental Scores under CVSS v2.0. Target Distribution Descriptions

taken from [12]. 11
2.3. Weighted Risk Ranking Method. Table taken from [3]. 16
2.4. Operational Context Risk Matrix. Table taken from [3]. 18

4.1. Possible Paths of a Single Iteration in the Iterative Phase of the Iterative
Testing Procedure . 35

4.2. Logic Table for ITP Decision Blocks . 36

6.1. Vulnerabilities of Philips Hue Bridge v2 (i) and Osram Lightify Home (j). . 44
6.2. ITP Iterations for Philips Hue Bridge v2. 46
6.3. ITP Iterations for Osram Lightify Home . 47
6.4. Scoring System Comparison of SSS, WRR, and CVSS. 52

B.1. Test Cases used for Evaluation. 69
C.2. IoT Devices with Associated Risk Ratings. 71

59

Listings

5.1. YAML Input File. 42
5.2. Security Score Program Output . 42

8.1. Python Implementation of the WRR Model. 67
8.2. Python Implementation of the SSS Model. 68

61

Bibliography

[1] “Overview of the Internet of things,” tech. rep., International Telecommunication
Union, June 2012.

[2] “Systems and software engineering – Vocabulary,” ISO 24765, International Organi-
zation for Standardization, Dec. 2012.

[3] S. Siboni, C. Glezer, A. Shabtai, and Y. Elovici, “A Weighted Risk Score Model for
IoT Devices,” Security, Privacy, and Anonymity in Computation, Communication,
and Storage 2019 International Workshops, pp. 20 – 34, July 2019.

[4] A. Kaushik, P. Havart-Simkin, K. Sharpington, M. Arnott, E. Goodness, A. Velosa,
and P. Middleton, “Scenarios for the IoT Marketplace, 2019,” Gartner, Inc., July
2019.

[5] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, “Under-
standing the Mirai Botnet,” in 26th USENIX Security Symposium (USENIX Security
17), (Vancouver, BC), pp. 1093–1110, USENIX Association, Aug. 2017.

[6] P. Middleton and R. Contu, “Forecast: Enterprise and Automotive IoT Edge Device
Security, Worldwide, 2018-2024,” Gartner, Inc., Mar. 2020.

[7] Bundesministerium der Justiz und für Verbraucherschutz, “Gesetz über das Bunde-
samt für Sicherheit in der Informationstechnik,” 2009.

[8] VDE Prüf- und Zertifizierungsinstitut GmbH, “Informationssicherheit / Cyber Secu-
rity – Prüfung und Zertifizierung im VDE-Institut.” https://www.vde.com/tic-de/
dienstleistungen/informationssicherheit. Accessed: 2020-05-14.

[9] H. Joh and Y. K. Malaiya, “Defining and Assessing Quantitative Security Risk Mea-
sures Using Vulnerability Lifecycle and CVSS Metrics,” Colorado State University,
2011.

[10] “Common Vulnerability Scoring System version 3.1 - Specification Document,”
FIRST, June 2019.

[11] D. Klinedinst, “CVSS and the Internet of Things,” Software Engineering Institute,
Carnegie Mellon University, Sept. 2015.

[12] “Common Vulnerability Scoring System version 2.0 - Specification Document,”
FIRST, June 2007.

[13] “Common Vulnerability Scoring System version 3.0 - User Guide,”FIRST, June 2015.

[14] National Institute of Standards and Technology, “National vulnerability database.”
https://nvd.nist.gov/. Accessed: 2020-03-01.

[15] “Common Vulnerability Scoring System version 3.1 - User Guide,”FIRST, June 2019.

63

https://www.vde.com/tic-de/dienstleistungen/informationssicherheit
https://www.vde.com/tic-de/dienstleistungen/informationssicherheit
https://nvd.nist.gov/

64 Bibliography

[16] “Common Vulnerability Scoring System version 3.0 - Specification Document,”
FIRST, June 2015.

[17] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis. Berlin Heidel-
berg: Springer Verlag, 2011.

[18] W. Abbass, Z. Bakraouy, A. Baina, and M. Bellafkih, “Assessing the Internet of
Things Security Risks,” Journal of Communications, Oct. 2019.

[19] “Security Risk Assessment Tool.” https://www.healthit.gov/topic/privacy-

security-and-hipaa/security-risk-assessment-tool. Accessed: 2020-05-12.

[20] P. Radanliev, D. C. De Roure, J. R. C. Nurse, R. M. Montalvo, S. Cannady, O. Santos,
L. Maddox, P. Burnap, and C. Maple, “Future developments in standardisation of
cyber risk in the Internet of Things (IoT),” SN Applied Sciences, 2019.

[21] S. Gerdes and O. Bergmann, “Security Requirements for Managing Smart Object in
Home Automation,”Mobile Networks and Management, 4th International Conference,
pp. 231 – 243, Sept. 2013.

[22] F. D. Patterson and K. Neailey, “A Risk Register Database System to aid the man-
agement of project risk,” Elsevier Science Ltd, 2002.

[23] Teamtest, “TestLink.” https://github.com/TestLinkOpenSourceTRMS/testlink-

code/. Accessed: 2020-05-12.

[24] Mitre, “Common attack and pattern enumeration and classification.”https://capec.
mitre.org/. Accessed: 2020-02-21.

[25] Mitre, “Common weakness enumeration.”https://cwe.mitre.org/. Accessed: 2020-
02-21.

[26] Mitre, “Common vulnerabilities and exposures.” https://cve.mitre.org/. Ac-
cessed: 2020-02-21.

[27] “ISO 15408: Common Criteria for Information Technology Security Evaluation,”Stan-
dard, International Organization for Standardization, Apr. 2017.

[28] “IEC 62443-4-2,” Standard, International Electrotechnical Commission, 2015.

[29] “Testing Guide Model Implementation.” https://gitlab2.informatik.uni-

wuerzburg.de/s354363/bachelor-thesis-code. Accessed: 2020-05-12.

[30] “IoT Security Compliance Framework,” Standard, IoT Security Foundation, Dec.
2018.

[31] R. A. Melgares, “802.15.4/ZigBee Analysis and Security: Tools for practical explo-
ration of the attack surface,” Dartmouth College, May 2011.

[32] X. Fan, F. Susan, W. Long, and L. Shangyan, “Security Analysis of Zigbee,” Mas-
sachusetts Institute of Technology, May 2017.

[33] R. Meyer,“Security Issues and Vulnerability Assessment of ZigBee enabled Home Area
Network Implementations,” Master’s thesis, California State University, Sacramento,
2012.

[34] T. Zillner, “ZigBee Exploited - The Good, The Bad and The Ugly,” Magdeburger
Journal zur Sicherheitsforschung, no. 12, pp. 699 – 704, 2016.

[35] P. Morgner, S. Mattejat, Z. Benenson, C. Müller, and F. Armknecht, “Insecure to the
Touch: Attacking ZigBee 3.0 via Touchlink Commissioning,” 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, pp. 230 – 240, July 2017.

64

https://www.healthit.gov/topic/privacy-security-and-hipaa/security-risk-assessment-tool
https://www.healthit.gov/topic/privacy-security-and-hipaa/security-risk-assessment-tool
https://github.com/TestLinkOpenSourceTRMS/testlink-code/
https://github.com/TestLinkOpenSourceTRMS/testlink-code/
https://capec.mitre.org/
https://capec.mitre.org/
https://cwe.mitre.org/
https://cve.mitre.org/
https://gitlab2.informatik.uni-wuerzburg.de/s354363/bachelor-thesis-code
https://gitlab2.informatik.uni-wuerzburg.de/s354363/bachelor-thesis-code

Bibliography 65

[36] B. Stelte and D. Rodosek, “Thwarting Attacks on ZigBee - Removal of the KillerBee
Stinger,” International Conference on Network and Service Management, 2013.

[37] O. Ben-Kiki, C. Evans, and I. d. Net, “YAML Specification.” https://yaml.org/

spec/. Accessed: 2020-05-12.

[38] C. O’Flynn, “Getting Root on Philips Hue Bridge 2.0.” https://colinoflynn.com/
2016/07/getting-root-on-philips-hue-bridge-2-0/. Accessed: 2020-04-26.

[39] “CVE-2020-6007.” https://cve.circl.lu/cve/CVE-2020-6007, Dec. 2020.

[40] “R7-2016-10: Multiple OSRAM SYLVANIA Osram Lightify Vulnerabilities (CVE-
2016-5051 through 5059).” https://blog.rapid7.com/2016/07/26/r7-2016-10-

multiple-osram-sylvania-osram-lightify-vulnerabilities-cve-2016-5051-

through-5059/, June 2016.

[41] Philips, “Philips Hue instore app - Installation manual.” https://images.philips.
com/is/content/PhilipsConsumer/PDFDownloads/United%20States/MeetHue/

ODLI20170630_001-UPD-en_US-HueInstore-App_InstallationManual_v1-0-0.

pdf. Accessed: 2020-05-08.

[42] Osram, “LIGHTIFY App - User-Guide.” https://lightfiy-customer-service.

s3.eu-central-1.amazonaws.com/Manuals/LIGHTIFY_User_Guide_EN_Version2.

0.pdf. Accessed: 2020-05-08.

[43] “Base Device Behavior Specification,” ZigBee Alliance, Feb. 2016.

[44] J. Wright, “KillerBee: Practical ZigBee Exploitation Framework,” InGuardians, Oct.
2009.

[45] “NBN-498 Dinion2X Day/Night IP Cameras,” Manual, Bosch Security Systems, Nov.
2015.

65

https://yaml.org/spec/
https://yaml.org/spec/
https://colinoflynn.com/2016/07/getting-root-on-philips-hue-bridge-2-0/
https://colinoflynn.com/2016/07/getting-root-on-philips-hue-bridge-2-0/
https://cve.circl.lu/cve/CVE-2020-6007
https://blog.rapid7.com/2016/07/26/r7-2016-10-multiple-osram-sylvania-osram-lightify-vulnerabilities-cve-2016-5051-through-5059/
https://blog.rapid7.com/2016/07/26/r7-2016-10-multiple-osram-sylvania-osram-lightify-vulnerabilities-cve-2016-5051-through-5059/
https://blog.rapid7.com/2016/07/26/r7-2016-10-multiple-osram-sylvania-osram-lightify-vulnerabilities-cve-2016-5051-through-5059/
https://images.philips.com/is/content/PhilipsConsumer/PDFDownloads/United%20States/MeetHue/ODLI20170630_001-UPD-en_US-HueInstore-App_InstallationManual_v1-0-0.pdf
https://images.philips.com/is/content/PhilipsConsumer/PDFDownloads/United%20States/MeetHue/ODLI20170630_001-UPD-en_US-HueInstore-App_InstallationManual_v1-0-0.pdf
https://images.philips.com/is/content/PhilipsConsumer/PDFDownloads/United%20States/MeetHue/ODLI20170630_001-UPD-en_US-HueInstore-App_InstallationManual_v1-0-0.pdf
https://images.philips.com/is/content/PhilipsConsumer/PDFDownloads/United%20States/MeetHue/ODLI20170630_001-UPD-en_US-HueInstore-App_InstallationManual_v1-0-0.pdf
https://lightfiy-customer-service.s3.eu-central-1.amazonaws.com/Manuals/LIGHTIFY_User_Guide_EN_Version2.0.pdf
https://lightfiy-customer-service.s3.eu-central-1.amazonaws.com/Manuals/LIGHTIFY_User_Guide_EN_Version2.0.pdf
https://lightfiy-customer-service.s3.eu-central-1.amazonaws.com/Manuals/LIGHTIFY_User_Guide_EN_Version2.0.pdf

Appendix

A. SSS Implementation

Listing 8.1: Python Implementation of the WRR Model.

1 class WRR() :
2 alpha = 0.384
3 beta = 0.341
4 gamma = 0.275
5
6 weights = [0 , 2∗∗0 , 2∗∗1 , 2∗∗2 , 2∗∗3]
7 s c o r e t o w e i g h t s = [0 . 0 , 3 . 9 , 6 . 9 , 8 . 9 , 1 0 . 0]
8 vk : l i s t = None
9 sc : l i s t = None

10 co : l i s t = None
11
12 def i n i t (s e l f , vk : l i s t , s c : l i s t , co : l i s t) :
13 s e l f . vk = vk
14 s e l f . s c = sc
15 s e l f . co = co
16
17 def wrrm(s e l f , s c o r e) :
18 i f s c o r e < 0 .0 or s c o r e > 1 0 . 0 :
19 return −1
20 for i , s in enumerate(s e l f . s c o r e t o w e i g h t s) :
21 i f s c o r e <= s :
22 return s e l f . we ights [i] ∗ s c o r e
23
24 def rsvk (s e l f) :
25 return sum([s e l f . wrrm(vk) for vk in s e l f . vk])
26
27 def r s s c (s e l f) :
28 return sum([s e l f . wrrm(s c) for s c in s e l f . s c])
29
30 def r s co (s e l f) :
31 return sum([s e l f . wrrm(co) for co in s e l f . co])

67

68 8. Appendix

32
33 def rsco max (s e l f) :
34 return sum([s e l f . wrrm (1 0 . 0) for co in s e l f . co])
35
36 def r i s k s c o r e (s e l f) :
37 return s e l f . a lpha ∗ s e l f . r svk () \
38 + s e l f . beta ∗ s e l f . r s s c () \
39 + s e l f . gamma ∗ s e l f . r s co ()

Listing 8.2: Python Implementation of the SSS Model.

1 import math
2
3 class SSS () :
4 mu = 0 .3
5 nu = 50 .0
6 omega = 0.04
7 l i m i t = 10
8
9 def base r i sk raw (s e l f , r s s c , rsco , rsco max) :

10 i f rsco max <= 0 :
11 rsco max = 1
12 return r s s c ∗ (1 − (r s co / rsco max))
13
14 def b a s e r i s k (s e l f , wrr :WRR) :
15 return s e l f . ba s e r i s k raw (wrr . r s s c () , wrr . r s co () ,
16 wrr . rsco max ())
17
18 def score raw (s e l f , rsvk , b a s e r i s k) :
19 r e s u l t = s e l f . l i m i t / (\
20 (math . e + s e l f .mu ∗ b a s e r i s k) ∗∗ \
21 (− s e l f . omega∗(rsvk − s e l f . nu)) + 1)
22 return r e s u l t
23
24 def s c o r e (s e l f , wrr :WRR) :
25 return s e l f . s core raw (wrr . rsvk () , s e l f . b a s e r i s k (wrr))
26
27 def a l l owed r svk (s e l f , l i m i t , b a s e r i s k) :
28 i f l i m i t > s e l f . l i m i t or b a s e r i s k < 0 :
29 return − 1
30 r e s u l t = s e l f . nu − (1 / s e l f . omega) ∗ \
31 math . l og ((s e l f . l i m i t − l i m i t) / l i m i t ,
32 math . e + s e l f .mu ∗ b a s e r i s k)
33 return max(r e s u l t , −1)

68

B. TGM Test Cases 69

B. TGM Test Cases

Test Case Id. Name Description CVSS

IoT-6 ZB Default
Global Link Key

Tests, if the Default Global Link Key is used
and if such utilization is not advised.

7.4

IoT-7 ZB Fallback
Global Link Key

Tests, if the Default Global Link Key is al-
lowed as fallback.

7.4

IoT-8 ZB Frame
Counter
Unchecked

Tests, if the Frame Counter mechanism is im-
plemented correctly.

9.0

IoT-9 ZB OTA Link
Key Transmission

Tests, if Link Keys are transmitted unen-
crypted.

8.3

IoT-10 ZB DoS Associa-
tion Flooding

Tests, if the DUT is prone to simple DoS at-
tacks.

7.2

IoT-11 ZB Security Level Verifies, if the required Zigbee Security Level
is used.

8.8

IoT-12 ZB Touchlink Tests, if the allowed proximity for Touchlink
Commissioning is satisfied.

8.5

IoT-13 ZB Firmware Up-
date

Tests, if firmware updates are properly en-
crypted.

7.3

IoT-14 ZB Identify Ac-
tion

Tests, if the DUT is prone to a DoS attack
situated in the Zigbee Identify Action.

6.5

IoT-15 ZB Factory Reset Tests, if the DUT’s Zigbee network configu-
ration can be reset with inter-PAN command
frames, removing it from the existing net-
work.

7.4

IoT-16 ZB Hijacking Tests, if the DUT can be removed from the
existing network (see IoT-15) and automati-
cally rejoined to an arbitrary one.

9.4

IoT-17 ZB Firmware Up-
date Impossible

Assesses, under which circumstances
firmware updates over Zigbee networks
become impossible.

8.3

IoT-18 CVE-2020-6007 Tests, if a buffer overflow bug is present in
the Zigbee command processing mechanism
of the Philips Hue Bridge v2.

4.3

IoT-20 CVE-2016-5053 Tests, if forged commands are accepted by
the Osram Lightify Home gateway without
requiring authentication.

5.0

IoT-23 Root Access Tests, if root privileges for the Philips Hue
Bridge v2 can be gained through a hardware
attack.

7.6

IoT-137 IoTSF-2.4.10.1 Verifies that, where the product or service
provides a web based user interface, strong
authentication is used.

5.0

Table B.1.: Test Cases used for Evaluation.

69

70 8. Appendix

C. Risks of IoT Devices

Device Type Device Feature Set Risk Description Risk Score DBRS SS

Zigbee
Gateway

Philips Hue
Bridge v2

SC

WiFi 9.5

91.6 8.0

Zigbee 8.5
Ethernet 4.3
App 7.0

CO IT Department, Night 7.5

VK

IoT-15: Zigbee
Factory Reset

7.4

IoT-23: Root Access 7.6

Zigbee
Gateway

Osram
Lightify
Home

SC

WiFi 9.5

86.3 7.7

Zigbee 8.5
App 7.0

CO IT-Department, Night 7.5

VK

IoT-15: Zigbee
Factory Reset

7.4

IoT-6: Zigbee Default
Global Link Key

7.4

Zigbee
Gateway

Miele XGW
3000

SC

USB 4.0

49.1 10

Zigbee 8.5
Ethernet 4.3
App 7.0

CO IT Department, Night 7.5

VK
CVE-2019-20481 9.8
CVE-2019-20480 8.8

Zigbee
Gateway

Miele XGW
3000
(MITRE)

SC

USB 4.0

49.1 0.3

Zigbee 8.5
Ethernet 4.3
App 7.0

CO IT Department, Night 7.5

VK

CVE-2019-20481
(MITRE rating)

4.6

CVE-2019-20480
(MITRE rating)

4.6

Gateway
Siemens
Gigaset
se361

SC
WiFi 9.5

52.9 2.3
Ethernet 4.3

CO IT Department, Night 7.5

VK
CVE-2009-3322 7.8
CVE-2007-4488 4.3

Gateway

Bosch Smart
Home
Controller
(SHC)

SC

WiFi 9.5

57.875 9.8

Ethernet 4.3
USB 4.0

CO IT-Department, Night 7.5

VK

CVE-2019-11891 5.4
CVE-2019-11892 6.8
CVE-2019-11893 4.9
CVE-2019-11894 5.7
CVE-2019-11895 5.3
CVE-2019-11896 7.1

Surveillance
Camera

Bosch
NBN-498
Dinion2X

SC

Camera 5.8

20.4 9.2

Mic 5.6
Motion Detector 3.1
Ethernet 4.3

CO Server Room, Night 8.2
VK CVE-2015-6970 9.8

70

C. Risks of IoT Devices 71

Surveillance
Camera

Philips
In.Sight
B120/37

SC

WiFi 9.5

124.5 10

Camera 5.8
Mic 5.6
Motion Detector 3.1
Thermometer 3.0
Loudspeaker 1.0
USB 4.0
App 7.0

CO Internal, Night 4.9

VK

CVE-2015-2884 7.5
CVE-2015-2883 5.4
CVE-2015-2882 8.9

Surveillance
Camera

TP-Link
TL-SC 3130
IP Camera

SC

WiFi 9.5

65.2 10

Camera 5.8
Mic 5.6
Motion Detector 3.1
Ethernet 4.3

CO Server Room, Night 8.2

VK

CVE-2013-2573 9.8
CVE-2013-2572 7.5
CVE-2018-18428 7.5
CVE-2013-2581 7.8
CVE-2013-2580 7.1
CVE-2013-2579 10.0
CVE-2013-2578 10.0
CVE-2013-3688 7.1

Printer
Samsung
XPress
M2880FW

SC

WiFi 9.5

57.9 9.7
USB 4.0
Ethernet 4.3

CO IT-Department, Night 7.5
VK CVE-2015-5729 9.8

Keyboard

Microsoft
Wireless
Keyboard
850

SC

USB 4.0

12.7 0.6
Proprietary
Wireless Communication

6.1

CO IT-Department, Morning 7.4
VK CVE-2018-8117 6.8

Keyboard
Logitech
K360

SC

USB 4.0

12.7 0.6
Proprietary
Wireless Communication

6.1

CO IT-Department, Morning 7.4
VK CVE-2019-13055 6.5

Table C.2.: IoT Devices with Associated Risk Ratings.

71

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Würzburg, 26th May 2020

. .
(Moritz Anton Finke)

	Contents
	Glossary
	Abbreviations
	1 Introduction
	2 Background and Related Work
	2.1 The Need for Security Scoring
	2.2 Common Vulnerability Scoring System
	2.2.1 CVSS Model
	2.2.1.1 Metrics
	2.2.1.2 Scoring

	2.2.2 Risk Scoring with CVSS
	2.2.3 Version Changes affecting the Applicability for the Internet of Things
	2.2.3.1 CVSS Version 2.0
	2.2.3.2 CVSS Version 3.0
	2.2.3.3 CVSS Version 3.1

	2.2.4 CVSS for Certification Authorities
	2.2.4.1 Exploit Code Maturity
	2.2.4.2 Remediation Level
	2.2.4.3 Report Confidence

	2.3 Weighted Risk Ranking Model
	2.3.1 WRR Model Description
	2.3.1.1 Risk Mapping Database
	2.3.1.2 Weighted Risk Ranking Method
	2.3.1.3 Device Risk Score Calculation

	2.3.2 Applicability of the WRR Model for the IoT and CAs
	2.3.2.1 Representation of IoT Specific Risk Categories
	2.3.2.2 Security Scoring Limitations of WRR

	2.4 Security Risk Assessment for Certification Authorities

	3 Security Scoring System
	3.1 SSS Requirements
	3.1.1 Feature Set Relations
	3.1.2 Impact of Risk Weighting on SSS
	3.1.3 Applicability of Simple Fractions
	3.1.4 Finite Score Boundaries

	3.2 SSS Specification
	3.2.1 Security Assessment Component
	3.2.2 Security Score
	3.2.2.1 Device Base Risk Score
	3.2.2.2 Security Score Function
	3.2.2.3 Security Score Limit

	3.2.3 SSS Application in Testing Procedures

	3.3 SSS Constants

	4 Testing Guide
	4.1 TGM Segments
	4.1.1 Testing
	4.1.2 Test Management
	4.1.3 Risk Assessment
	4.1.4 Client Communication

	4.2 Layer of Abstraction
	4.3 Iterative Testing Procedure
	4.3.1 Initial Phase
	4.3.2 Iterative Phase
	4.3.3 Deciding Over Certification
	4.3.4 Parallelism

	5 Implementation
	5.1 Test Management System
	5.1.1 Test Cases
	5.1.2 Creating Test Plans
	5.1.3 Updating Test Cases
	5.1.4 Testing Updates
	5.1.5 Information Sources

	5.2 Risk Register
	5.3 Scoring System

	6 Evaluation
	6.1 TGM Evaluation
	6.1.1 Testbed
	6.1.2 Initial Phase
	6.1.3 Iterative Phase
	6.1.4 Evaluation Results

	6.2 SSS Evaluation
	6.2.1 Testbed
	6.2.2 Security Score Analysis for Existing IoT Devices
	6.2.3 Comparison to WRR and CVSS

	7 Future Work
	7.1 TGM Evaluation
	7.2 CVSS Extensions Framework
	7.3 WRR Accuracy
	7.4 SSS Constants

	8 Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography
	Appendix
	A SSS Implementation
	B TGM Test Cases
	C Risks of IoT Devices

