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ABSTRACT
Federated Learning (FL) trains machine learning models on data dis-
tributed across multiple devices, avoiding data transfer to a central
location. This improves privacy, reduces communication costs, and
enhances model performance. However, FL is prone to poisoning
attacks, which can be untargeted aiming to reduce the model per-
formance, or targeted, so-called backdoors, which add adversarial
behavior that can be triggered with appropriately crafted inputs.
Striving for stealthiness, backdoor attacks are harder to deal with.

Mitigation techniques against poisoning attacks rely on monitor-
ing certain metrics and filtering malicious model updates. However,
previous works didn’t consider real-world adversaries and data
distributions. To support our statement, we define a new notion
of strong adaptive adversaries that can simultaneously adapt to
multiple objectives and demonstrate through extensive tests, that
existing defense methods can be circumvented in this adversary
model. We also demonstrate, that existing defenses have limited
effectiveness when no assumptions are made about underlying data
distributions.

To address realistic scenarios and adversary models, we pro-
pose Metric-Cascades (MESAS) a new defense that leverages multi-
ple detection metrics simultaneously for the filtering of poisoned
model updates. This approach forces adaptive attackers into a heavy
multi-objective optimization problem, and our evaluation with nine
backdoors and three datasets shows that even our strong adaptive
attacker cannot evade MESAS’s detection. We show that MESAS
outperforms existing defenses in distinguishing backdoors from
distortions originating from different data distributions within and
across the clients. Overall, MESAS is the first defense that is robust
against strong adaptive adversaries and is effective in real-world
data scenarios while introducing a low overhead of 24.37s on aver-
age.

1 INTRODUCTION
Federated Learning (FL) enables the collaborative training of a Deep
Neural Network (DNN) among multiple clients [56]. Each client
trains a DNN locally on its own data, incorporating the knowl-
edge from the data into the model parameters. Only the changes
in the trained model parameters are then transmitted to a cen-
tral server for aggregation. This approach allows clients to partic-
ipate in the federation while adhering to privacy regulations [1–
3], as the raw data are not shared with third parties. Compared
to centralized learning approaches, FL is also more computation-
ally effective as it shifts training efforts to the clients, leading to
fewer resource requirements on the server. As a result, FL is al-
ready being applied in multiple application domains [107]. For

instance, in image recognition [49], hospitals are training mod-
els collaboratively [22, 23, 36, 65, 78, 79, 84, 85, 88], and in Nat-
ural Language Processing (NLP) domain it is used for text pre-
diction [18, 37, 57, 76, 109], sentiment analysis [10], and person-
alization [17]. Moreover, FL can be applied for human mobility
prediction [31], visual object detection [51], and human activity
recognition [90]. We refer for more examples to [44].

In federations, a subset of clients can be controlled by an adver-
sary who submits poisoned updates to the server. These attacks
can be untargeted [30, 45, 103, 106], with the goal to reduce the
prediction performance of the model. Alternatively, targeted poi-
soning attacks, also called backdoor attacks [8, 9, 11, 14, 19, 20, 34,
35, 46, 63, 67, 71, 80, 92, 97, 100, 105], aim to maintain an unobtru-
sive performance on regular input but force the model to output a
selective prediction when provided input containing a specific trig-
ger. Hence, backdoors pose a greater risk, as such attacks are harder
to detect, and the unexpected misbehaviour can harm model users
in real-world applications, such as self-driving cars [47, 64, 111].

Defenses against poisoning attacks follow one of the three strate-
gies: (i) Influence Reduction (IR) solutions try to reduce the impact
of the individual models before or after aggregation to weaken
potential poisoning behavior [7, 9, 62, 94], (ii) Robust Aggrega-
tion (RA) methods enhance robustness of aggregation algorithms
against backdoors [56, 110], and (iii) Detection and Filtering (DF)
approaches detect the poisoned models and filter them out before
the aggregation step [13, 32, 61, 66, 77, 86, 113].

Generally, IR and RA approaches inevitably reduce the perfor-
mance of the benign functionality, while DF methods can suffer
high False-Positive-Rates (FPRs) and False-Negative-Rates (FNRs).
This downside of the latter methods is mainly based on two root
causes: First, defense-aware adversaries may adapt the poisoned
model to be inconspicuous, thus circumventing the defense. Second,
in real-world scenarios, the clients may possess very different data
within the local datasets, which makes it difficult to distinguish if a
model with uncommon metrics is derived from a poisoned dataset
or just a dataset with uncommon data distributions.

Identifying Problems. In this paper, we focus on DF methods, as
they have the benefit of maintaining benign model performance.
We analyze related work and observe that, even though most so-
lutions were evaluated against adaptive attackers, the meaning
of the "adaptive attacker" is defined differently across different
papers, which makes it difficult to assess their true detection ca-
pabilities and compare them to each other. We also notice that
none of the previous works considered an adaptive attacker with
multi-objective adaption capabilities, i.e., attackers that could try to
adapt to several metrics at once, while nothing prevents real-world
adversaries from following this strategy. Hence, the resilience of all
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existing defenses against such strong adaptive attackers remains
unclear. Furthermore, we also identify that all existing positioning
defenses, from all three categories, were evaluated under certain
assumptions made with regard to underlying data distributions. In
particular, while many consider non-identically and independently
distributed (non-IID) data distributions within clients, no single
defense method was evaluated in a scenario with a non-identically
and independently distributed data across clients so far.

Contributions. To address the aforementioned problems, this pa-
per makes the following contributions:

• We introduce the notion of a strong adaptive adversary, who
is capable of adapting to FL defenses by balancing multi-
ple adaptation objectives and applying manual invasions
on the model parameters. Leveraging this sophisticated
adaptation strategy, we attack and evaluate nine existing
defenses, showing that all these methods can be circum-
vented, hence creating a gap between the state-of-the-art
defense methods and realistic scenarios.

• We are the first to point out the fact that previous defenses
were never evaluated in settings where datasets have differ-
ent distributions within and across the clients. We term such
a scenario as inter-client non-IID and demonstrate through
intensive evaluation of nine solutions that they are not
resilient in such a setting, which implies their limited real-
world applicability.

• We proposeMetric-Cascades (MESAS), a new server-side de-
fense of DF-type for FL, that is resilient against our strong
adaptive adversary. MESAS detects backdoors in local mod-
els based on a cascade of six well-chosen metrics and can
identify and filter out both, targeted and untargeted poi-
soning attacks. Further, MESAS is the first defense, that
effectively filters backdoors in arbitrary data distribution
scenarios, including inter-client non-IID settings, by con-
ducting statistical tests on multiple metrics and, as such,
being able to distinguish backdoors from unusual data dis-
tributions.

• We conduct a systematic large-scale study to analyze the
factors that influence MESAS and demonstrate its indepen-
dence from application-specific factors like datasets, model
architectures, IID scenarios, adaption strategies, and nine
sophisticated poisoningmethods. Furthermore, we compare
the performance of MESAS in terms of detection capabili-
ties and runtime overhead to nine existing defenses. MESAS
outperforms all evaluated methods regarding robustness
against adaptive strategies and in terms of backdoor re-
moval performance under realistic inter-client non-IID sce-
narios. Moreover, it achieves this while incurring a runtime
overhead of only 24.37 seconds on average.

Overall, our work depicts two major weaknesses of existing FL
defenses that are problematic in real-world applications, namely
adaptive adversaries and realistic inter-client non-IID data scenar-
ios. The proposed DF defense, MESAS, effectively prunes different
sophisticated poisonings simultaneously, withstands strong adap-
tive adversaries, and is robust in arbitrary data scenarios including
inter-client non-IID. To facilitate reproducibility and to advance
research, we will open source MESAS’s code upon acceptance.

Outline. In the remaining part of the paper we first provide neces-
sary foundational knowledge in Sect. 2. Afterward, in Sect. 3, we
formally define the considered scenario, and describe the addressed
challenges in detail. The design and the functionality of MESAS is
presented in Sect. 4, and the experimental results are reported in
Sect. 5. Sect. 6 discusses security aspects, limitations, and future
work. Sect. 7 discusses related works. Finally, we summarize the
paper in Sect. 8.

2 BACKGROUND
In this section, we first provide FL fundamentals in Sect. 2.1, fol-
lowed by background information about poisoning attacks and
classical adaptive adversarial models in Sect. 2.2.

2.1 Federated Learning
In a FL [42, 56, 108] framework, multiple clients 𝐶𝑘 ∈ {𝐶1 , . . .𝐶N}
collaborate, orchestrated by a central server S, to jointly improve
a Deep Neuronal Network (DNN). In particular, each client 𝐶𝑘

trains a local DNN model on a local dataset and uploads the result
to S for aggregation. Thus, the data never leave the client side,
improving the privacy of training data compared to centralized
learning. Additionally, the computational effort is distributed, so
that fewer resources need to be allocated on S, reducing the costs
for infrastructure.

FL is an iterative process, where the central server S selects
a subset 𝑛 of the N available clients 𝐶𝑖 ∈ {𝐶1 , . . .𝐶𝑛} for each
round 𝑟 and distributes an (initially untrained) global model𝐺𝑟 to
them. Each client initializes its local model 𝐿𝑟

𝑖
= 𝐺𝑟 and trains a

new local model 𝐿𝑟+1
𝑖

with the local dataset D𝑖 , based on a pre-
defined algorithm that includes hyper-parameters, such as learn-
ing rate (LR), epochs, etc. After training, the client 𝐶𝑖 submits the
model updates U𝑟

𝑖
= 𝐿𝑟+1

𝑖
- 𝐺𝑟 to the server S, who aggregates

them into a new global model𝐺𝑟+1. There are multiple aggregation
methods [13, 29, 61, 110] available for this step, with Federated
Averaging (FedAVG) [56] being the most commonly used. FedAVG
calculates the weighted average of all the updates using the global
learning rate 𝛿 as formalized in Eq. 1. After aggregation, the new
round 𝑟 + 1 is initialized by S.

𝐺𝑟+1 = 𝐺𝑟 + 𝛿 ( 1
𝑛

𝑛−1∑︁
𝑖=0

U𝑟
𝑖 ) (1)

2.2 Poisoning Attacks in Federated Learning
In the following, we distinguish between untargeted and targeted
poisoning attacks [95, 104] and discuss the two methods that are
applied to launch those attacks, namely data and model poisoning.

Untargeted poisoning aims to reduce the prediction performance
of a model on a benign test dataset D𝑡𝑒𝑠𝑡 with correctly labeled
predictions 𝑦, which we refer to as model accuracy (MA) of global
model𝐺𝑟+1 (cf. Eq. 2). To name an example, the adversary can assign
an incorrect label for each sample in the dataset, thus misdirecting
the model during training.

𝑀𝐴 =
|{(𝑑,𝑦) ∈ D𝑡𝑒𝑠𝑡 : 𝑓 (𝑑,𝐺𝑟+1) == 𝑦}|

|D𝑡𝑒𝑠𝑡 |
(2)
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Targeted attacks, also referred to as backdoor attacks, strive to
force a DNN to produce attacker-chosen mispredictions when pro-
vided with inputs that contain attacker-chosen features, so called
triggers, while maintaining a high MA on regular data. As an ex-
ample for a trigger, a red pixel or any other unique pattern can
be embedded in the upper left corner of an image [9, 35, 52]. In
more details, an adversary 𝐴, who controls one or more clients 𝐶𝑖

within a federation (𝐴 𝑗 ∈ {𝐶1 , . . .𝐶𝑛}), tries to submit poisoned lo-
cal models to the server, so that the aggregated model𝐺𝑟+1 outputs
a predefined target prediction 𝑃 when fed with an input sample 𝑑𝑇
containing the trigger 𝑇 , with 𝑃 and 𝑇 being chosen by the adver-
sary. An effective attack has high prediction performance, called
backdoor accuracy (BA), on triggered input tested with a dataset
D𝑇

𝑡𝑒𝑠𝑡 that contains only triggered samples, as formalized in Eq. 3.
We attest a successful attack for a BA bigger than 60% in the global
model.

𝐵𝐴 =
|{(𝑑𝑇 , 𝑃) ∈ D𝑇

𝑡𝑒𝑠𝑡 : 𝑓 (𝑑,𝐺𝑟+1) == 𝑃}|
|D𝑇

𝑡𝑒𝑠𝑡 |
(3)

Data poisoning [93] describes the process of converting a be-
nign into a poisoned dataset by assigning malicious labels and, for
backdoors, adding triggers. A model trained on that dataset then in-
cludes the malicious behaviour. Thereby the poison data rate (PDR)
defines the fraction between benign and poisoned samples and can
control the balance between attack effectiveness and stealthiness.

Model poisoning allows arbitrary manipulation of the whole train-
ing process, e.g., changing hyper-parameters and loss functions.
Additionally, the model can be modified manually before, during, or
after training. Mostly, this method is applied to improve the BA or
to adapt to defenses, but can also be used to implement untargeted
attacks without data poisoning. To adapt to a defense while main-
taining high MA and BA, an additional objective (𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛)
can be added to the loss function for the MA and BA (𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴),
which is also called constraining [9, 28]. As shown in Eq. 4, the
objectives are weighted by 𝛼 , allowing the adversary to prioritize
between performance (MA/BA) and adaption intensity and conse-
quently stealthiness.

𝐿𝑜𝑠𝑠 = 𝛼 · 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 + (1 − 𝛼) · 𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛 (4)

A classical adaptive adversary creates a loss function for the de-
ployed defense and applies Eq. 4 to bypass the defensive measure1.
Additionally, the updates of a poisoned local model can be scaled
regarding the Euclidean distance to strengthen the influence on the
aggregated model, hence increasing the BA. Training with a poi-
soned dataset combined with scaling is called train-and-scale and
adaption combined with scaling is called constrain-and-scale [9].

The goal of a defense against poisoning attacks is to create a
situation, where 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 and 𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛 cannot be optimized
simultaneously, so that𝐴 is faced with a trade-off between an effec-
tive attack and adapting to the defense, which is called adversarial
dilemma [77].

1The adversary can adapt to any objective and most likely aligns to the metrics of
defenses, but not restricted to those.

3 PROBLEMS AND DEFINITIONS
In this section, we define our threat model in Sect. 3.1 and intro-
duce the concept of a strong adaptive adversary in Sect. 3.2. The
concluding Sect. 3.3 is devoted to the problem of arbitrary data
distributions.

3.1 Threat Model
We analyze a classical FL system as depicted in Sect. 2.1. The aggre-
gation server S applies FedAVG with a fixed global LR of 𝛿 = 1. We
consider an adversary 𝐴, who captures multiple clients 𝐶𝑖 which
are then denoted as𝐴 𝑗 ∈ {𝐶1 , . . .𝐶𝑛} and can conduct any data and
model poisoning attacks (cf. Sect. 2.2). The adversary is aware of
the code running on the aggregation server, including the details of
defense mechanisms, which provides the necessary knowledge for
adaption attempts. Analogous to related works [7, 13, 61, 66, 77, 86],
we consider 𝑛/2 + 1 benign clients (majority assumption) in each
training round 𝑟 . Since it is uncertain if adversaries participate in a
round 𝑟 , the server S weights all model updates equally with 1

𝑛 . In
contrast to previous works, we do not make any assumption about
the data distributions [114] within or across clients’ dataset.

3.2 Strong Adaptive Adversary
Problem. DF defenses against poisoning attacks in FL are based
on custom metrics. An adversary can try to circumvent the defense
by adapting the value of the respective metric used for detection
derived from the locally crafted poisoned model to a benign value
during training2. As a state-of-the-art technique for this challenge,
Eq. 4 is used to consider multiple objectives and simultaneously
allowing the adversary to weight between better prediction perfor-
mance and higher adaption level (MA and BA) via 𝛼 . This adaption
method from Eq. 4 exhibits effectiveness in two scenarios: 1) When
dealing with a single adaptation loss, as 𝛼 can appropriately bal-
ance the significance of the main task and adaptation. 2) When
faced with multiple adaptation losses, provided that these losses
are combined, e.g., summed into a single value. However, this ap-
proach functions optimally only when all the losses are on the same
scale, as individual tuning of the various components of adaptation
losses is not feasible. For instance, consider the scenario where
𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 = 10 and the adaptation loss 𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛 comprises
two individual losses: 𝐿𝑜𝑠𝑠1 = 1 and 𝐿𝑜𝑠𝑠2 = 0.0001. In this case, the
second adaptation loss will have a negligible impact on the model’s
parameters since its value is already close to zero. Consequently,
the learning algorithm will prioritize minimizing the other losses
instead. As a result, the underlying metric will not be appropriately
adapted. However, to effectively bypass a defense that relies on the
metric represented by 𝐿𝑜𝑠𝑠2 = 0, a value as small as 0.0000001 may
be necessary.

Definition of a strong adaptive adversary.We introduce a robust
adaptive adversary capable of simultaneously adapting to multi-
ple metrics, regardless of their value scales. To achieve this, the
adversary initially scales all losses to the maximum loss value (as
indicated by the 𝜆 values in Eq. 5). This ensures that all adaptation
objectives and the main task are treated with equal importance.

2To acquire a benign value, the adversary can train a benign model first.



Torsten Krauß and Alexandra Dmitrienko

𝒟1 𝒟2 𝒟3

Classical
non-IID

Inter-client
non-IID

Different strategy

IID

Same strategySame distribution

Different distribution

Figure 1: Comparison of various data distributions: IID, clas-
sical (intra-client) non-IID, and inter-client non-IID strategy
for three client datasetsD1,D2, andD3 with 10 label classes.

Subsequently, the adversary retains the ability to adjust the level
of adaptation using the parameter 𝛼 .

𝐿𝑜𝑠𝑠 = 𝛼 · 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 + (1 − 𝛼) · (𝜆1 · 𝐿𝑜𝑠𝑠1 + 𝜆2 · 𝐿𝑜𝑠𝑠2 + · · · ) (5)

Further, the adversary can simultaneously exclude specific model
parameters, e.g., whole layers from training or replace parameters
in the final model, e.g., with parameters of a previously benign
trained model on the client’s unpoisoned dataset, which we call
fixation. The attacker can choose among multiple poisoning attacks,
hence can use any existing method to embed a targeted poisoning
attack in the local model. Additionally, advanced scaling methods
and other classical model poisoning approaches can be applied.

We provide results for attacks conducted by a strong adaptive ad-
versary against FL defenses in Sect. 5.2 and discuss other adaption
strategies that we evaluated in Sect. 6.1.

3.3 Inter-Client Non-IID
Below, we discuss the problem of varying data distributions in FL
and define inter-client non-IID as a new challenge thereafter.

Problem. DF defenses in general inspect the clients’ local model
updates to detect abnormal situations based on the assumption,
that the majority of clients are benign (cf. Sect. 3.1). Thereby, they
leverage the fact that trained models’ parameters reflect the char-
acteristics of the underlying data as well as their distributions. It
is easier to establish that models are similar if all clients possess
similar data, e.g., there is the same amount of samples from each
class in a classification task. This situation is called identically and
independently distributed (IID) and is visualized in the first row
of Fig. 1. In poisoning attacks, the underlying data need to change
to introduce, e.g., backdoor behaviour, which inevitably manifests
in changes in some parameters.

The second row of Fig. 1 visualizes the classical non-IID sce-
nario, which is typically considered in the evaluation of backdoor
defenses. Here, the data inside the client’s local dataset (intra-client)
are diverse, yet data distributions are similar across clients. Upon
analysis of benign local models in this situation, they all will show
a similar distance to the previous global model due to the similar-
ity of distributions across clients. Existing DF defenses leverage
this fact and can filter poisoned models, which are trained on a
deviant data distribution due to data poisoning. However, defenses

Statistical Tests
COUNT

MESAS

Metric
Extractor

COS

EUCL

VAR

MAX

Significant?

Filtered
Models

Yes

No

Metrics

ℒ𝑖
𝑟+1

𝒢𝑟

Clustering

Pruning

1 2

4

MIN

3

Figure 2: Overview of MESAS.

are not optimized for scenarios with different data distributions
cross clients, which we term inter-client non-IID. Such scenarios, as
visualized in the third row of Fig. 1, are the most challenging to
detect but also represent the most realistic real-world situation.

Definition of Inter-client non-IID. In Inter-client non-IID setting,
the data within the clients’ local dataset can follow arbitrary dis-
tributions inside and across the datasets without any assumptions
made regarding sample frequencies or the availability of samples
for a specific class. Thus, this definition also includes cases with
disjoint data, as illustrated in row three of Fig. 1, where labels of
classes 3 and 6 are not available within dataset D3.

We evaluate FL defenses in inter-client non-IID scenarios and report
the results in Sect. 5.3.

4 MESAS
In this section, we present our new defense against poisoning at-
tacks,Metric-Cascades (MESAS).We start with a high-level overview
in Sect. 4.1, followed by explanations of the underlying intuitions
in Sect. 4.2 and providing lower-level details in Sect. 4.3.

4.1 Overview
MESAS is a DF-based defense method which is applied on the
central aggregation server before the aggregation step. To pre-
vent strong adaptive adversaries from circumventing the defense,
MESAS filters poisoned models in a cascade of six well-chosen
metrics, that affect each other and cannot be optimized simulta-
neously, thus tightening the adversarial dilemma for the attacker.
Further, MESAS analyses the six metrics with numerous statistical
tests, thus allowing the defense to be effective also in inter-client
non-IID scenarios and independent of the application scenario.

In a nutshell, MESAS consists of four major steps that can be
retraced in Fig. 2: 1) After the local updates have been transmitted
to the server, MESAS extracts six carefully chosen metrics from
the local models 𝐿𝑟+1

𝑖
and the global model 𝐺𝑟 . The metrics are

extracted for the whole model, but also from each layer individu-
ally, to detect poisonings distributed over the whole model, but also
locally embedded ones3. 2) Thereafter, those metrics are analyzed
individually in an iterative process. Each metric passes through
a significance analysis consisting of statistical tests, that spot evi-
dence of a poisoning attack within the metric values. 3) If indication
is provided, the respective values are clustered into two clusters and
the models belonging to the values within the smaller cluster are
marked as malicious. 4) After each metric is analyzed, the marked
3Naïve implemented backdoors are only embedded within the last few DNN layers.
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𝐿𝑏𝑒𝑛𝑖𝑔𝑛
𝑟+1

P
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 𝑝
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Parameter 𝑝1

𝐺𝑟

𝐿malicious
𝑟+1 𝛽

𝛽

𝐺𝑟

𝐿benign
𝑟+1
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ra
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 𝑝
2

Parameter 𝑝1

𝐿malicious
𝑟+1

Figure 3: Simplified visualization of FL models with two pa-
rameters. The left graphic shows that benign and malicious
models differ in one or multiple dimensions. On the right,
we depict that benign and malicious models can have the
same COS metric due to the same angel to the global model.

models are excluded in a pruning step and the analysis starts over
on the remaining models until no statistical test reports significant
evidence for an attack. Finally, the normal FL procedure continues
with the remaining local models getting aggregated to the new
global model.

4.2 Metrics Intuition
DNNs are complex multi-dimensional non-linear functions. An ex-
ample of DNN with around eleven million trainable parameters is
ResNet-18 [40]. For a better explanation of our metrics, however,
we will use a simplified function, which is linear and only has two
parameters (or dimensions): 𝑓 (𝑥) = 𝑝1 · 𝑥 + 𝑝2. With this, we can
visualize model parameters 𝑝1 and 𝑝2 in a 2D plot (cf. Fig. 3), which
won’t be possible for a more realistic multi-dimensional function.

As visualized in the left graphic of Fig. 3, an adversary conducting
a poisoning attack in FL needs to significantly change at least some
model parameters of one or many poisoned local models in order
to affect the behavior of the new global model. Otherwise, the
respective parameter, and, thus, the new global model will align
with the benign behaviour of the majority of clients (cf. Sect. 3.1)
after aggregation. Hence, benign trained local models that learn
similar behavior will be similarly distributed around the new global
model after aggregation, since FedAVG decides for the average of
all contributions. A malicious model, depicted in red color in Fig. 3,
must be located in a significantly different location than the benign
models depicted in green to influence the averaging of FedAVG.

MESAS is based on a set of six well-chosen metrics, that are
extracted from local models. Technically, extraction of the metrics
is a straightforward task that only needs to be conducted once for
each local model within each FL round 𝑟 . The metrics can identify
malicious models or updates based on different characteristics, like
magnitude, direction, orientation, functionality level, and outliers,
which we will explain in detail in following.
Magnitude and Direction. The two metrics to detect deviations
in magnitude and direction of benign and malicious models, which
have also been used by other works [13, 32, 61, 66, 77, 110], are
Euclidean distance (EUCL) and cosine distance (COS) measured
between the locally trained models 𝐿𝑟+1

𝑖
and the original global

model of the round 𝐺𝑟 . These metrics are depicted in Fig. 4.
Orientation. Two models with the same COS might significantly
differ from each other, as depicted in the right graphic of Fig. 3,
as COS alone is insufficient to reflect the direction. Therefore, the

𝐿𝑐𝑜𝑠
𝑟+1

𝐺𝑟

𝐿𝑒𝑢𝑐𝑙
𝑟+1 𝐿cos,𝑒𝑢𝑐𝑙
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𝛽

𝑈𝑐𝑜𝑠
𝑟

𝐿𝑠𝑐𝑎𝑙𝑒𝑑
𝑟+1 𝑈𝑠𝑐𝑎𝑙𝑒𝑑

𝑟

Pa
ra

m
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er
 𝑝
2

Parameter 𝑝1

𝛽𝑠𝑐𝑎𝑙𝑒𝑑

Figure 4: Visualization of locally trained models 𝐿𝑟+1
𝑖

deviat-
ing from the global model 𝐺𝑟 in COS and EUCL. The figure
also depicts how the angle 𝛽 changes after scaling the update,
thus provoking a change in the COS metric of MESAS.

orientation of the cosine from 𝐺𝑟 can further differentiate two
models. To incorporate this difference into a value, we propose
the COUNT metric, which counts how many parameter values are
increased from the respective parameter of the global model 𝐺𝑟

during training.
Functionality Level. Due to the many parameters of a DNN, there
can exist models with poisoned behavior, that have metrics COS,
EUCL, and COUNT similar to benign models. Such a situation can
occur, e.g., if the parameters of a model posses significantly different
variance, as visualized in Fig. 54. We leverage this variance as metric
(VAR) in MESAS and interpret it as functionality level, since a
different VAR is a clear indication of divergent model behaviour.
Outliers. As with any other variances, VAR is not affected by a
few extreme outliers. Therefore, to catch those, we additionally
investigate two more metrics: MAX and MIN, which extract the
maximum/minimum parameter distance between all the parameters
of local models 𝐿𝑟+1

𝑖
and a global model 𝐺𝑟 5. VAR combined with

MAX and MIN provide a reliable metric for the functionality level
and allow testing for poisoned models.

4.3 Pruning Loop
The filtering process consists of three steps: statistical tests, cluster-
ing, and pruning (2-4 in Fig. 2). In every filtering round, each metric
traverses the procedure independently. After each round, the mod-
els filtered based on any metric are excluded from the next round.
This iterative pruning loop continues until the statistical tests do
not report any significance for the presence of a poisoning attack
anymore. Due to the iterative nature of this filtering procedure and
the individual analysis of each metric, different types of poisoning
attacks can be filtered within one run of MESAS.

Statistical Tests.When provided with a set of metric values, which
always contain one value per local model, the statistical tests first
extract the median value, which is considered as benign due to the
majority assumption (cf. Sect. 3.1). Afterwards, multiple statistical
tests are conducted to check if all metric values are distributed
equally around the median value, as one would expect from be-
nign models. Therefore, MESAS checks if the metric values with
bigger values than the median and the metric values with smaller

4As highlighted in Fig. 5, the VAR can be increased, but of course also a significant
decrease is possible.
5We take the minimum distance bigger than zero for MIN by leveraging a nonzero
function (𝑛𝑧). Thus, MIN analyzes real model changes and ignores parameters that
have not been changed.
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Figure 5: Simplified visualization of FL models with multi-
ple parameters highlighting the functionality level based
on the parameter value variance. The left shows a benign
situation and the middle a poisoned model can have a bigger
(or smaller) level. The figure on the right depicts,that the
variance is not affected by maxima (and minima).

values as the median follow the same distribution. For that pur-
pose, the bigger and smaller metric values are converted to two
lists 𝑙1 and 𝑙2 containing the absolute distance from the value to
the median, as shown in Fig. 6. Then the two lists pass through
the tests. At first, a T-Test [53] (ST-T) is conducted to check for
equal means. Since two distributions can have the same mean but
different variances, a Levene’s test [48] (ST-V) is appended. Finally,
a Kolmogorow-Smirnow-Test [54] (ST-D) for equal distributions
is leveraged. Following the same reasoning we provided for the
metrics VAR and MAX, the aforementioned tests are not signifi-
cantly influenced by outliers. Therefore, we additionally analyze
the original metric values regarding the 3𝜎 rule [73] (ST-3𝜎). Values
outside the 3𝜎 interval are marked as significant outliers.

In Fig. 6, the metric values of benign and malicious models are
listed. The mean of all metric values (dark blue) is used to separate
the metric values into two lists 𝑙1 and 𝑙2. Those lists represent
the benign and malicious models, respectively, and are graphically
observable by the lines between the metric values and the median.
Note, that the median of the benign values (light blue) and the
median of themalicious values (purple) have a significantly different
distance to the median, which results in a highly significant result
in ST-T. ST-T, ST-V, and ST-D deliver a p-value6, which is also called
significance level and is used to determine if a poisoned model is
found.

Clustering and Pruning After a significant statistical test (step
2 in Fig. 2), MESAS leverages Agglomerative Clustering [68] with
two fixed clusters based on the Euclidean distance to cluster the
significant metric values (step 3 in Fig. 2). Afterwards, the local
models behind the metric values within the bigger cluster are con-
sidered as benign based on the majority assumption and the other
models are marked as malicious and excluded by the pruning step
of MESAS (step 4 in Fig. 2).

Overall, MESAS is robust against sophisticated poisoning attacks
through an in-depth analysis of model weights using six interdepen-
dent metrics. As a result, if a strong adaptive adversary attempts to
circumvent one metric, the artifacts of the poisoning attack will in-
evitably manifest through one of the other metrics. Further, MESAS
adapts to the application domain including complicated non-IID
data scenarios by leveraging statistical tests, instead of relying
on hard thresholds. We provide the formulas of the metrics and
additional information about MESAS in Sect. A.
6A p-value indicates how likely it is that the underlying data could have occurred
under a null hypothesis. In our case, the null hypothesis is, that the two lists contain
samples from equal distributions, thus having equal mean and variance.
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Figure 6: Visualization of a statistical test setup with signif-
icant p-value in ST-T indicating a varying mean between 𝑙1
and 𝑙2.

5 EVALUATION
In this section, we conduct a rigorous analysis of MESAS and ex-
plore impact of various parameters and application-specific factors
like datasets, model architectures, underlying data distributions,
poisoning methods and attack adaptive strategies, as well as per-
formance overheads.

5.1 Experimental Setup and Scenarios
Hardware and Software.We simulate the FL system on one server
and implement the code in PyTorch [4, 72], which is a well-known
machine learning library for Python [98]. The individual client and
server code is executed sequentially on the server running with
an AMD EPYC 7413 24-Core Processor (64-bit architecture) with
96 processing units and 128GB main memory. As accelerator, a
NVIDIA A16 GPU with 4 virtual GPUs each having 16GB GDDR6
memory is accessible via CUDA [69] from PyTorch.

Datasets and Models. To be comparable to other FL defenses, we
chose similar settings to related works and focus mainly on image
classification with CIFAR-10 [43], GTSRB [91], and MNIST [25]. For
model architectures, we use ResNet-18 [40], SqueezeNet [41], and
a CNN. Additionally, we investigate into the text domain by train-
ing a DistilBERT [82] transformer model on SST-2 [89] sentiment
analysis dataset.

Default Scenario.We train the CIFAR-10 [43] image classification
task (ten classes) on a ResNet-18 [40] model with LR 0.01 (SGD
optimizer, momentum 0.9, decay 0.005). The federation consists
of N = 20 clients, which are all selected each round 𝑟 (𝑛 = 20).
The data are IID distributed and each client has 2560 samples, 256
randomly chosen from each class. The adversary captures nine
clients leading to a poison model rate (PMR) of 0.45, which is the
maximum rate for this amount of clients. He sets the poison data
rate (PDR) to 0.1, 𝛼 to 0.3, utilizes the adaption strategies from
Sect. 3.2 and implements a pixel trigger backdoor [35] (cf. App. B.1),
which adds pixel pattern, a sticker, or similar as a trigger to the
sample [9, 35, 52]7. The global model𝐺𝑟 is already trained 50 benign
rounds and was originally initialized with pre-trained weights from
PyTorch, with the first and last layer being untrained since both
needed to be changed according to our dataset.8 The batch size is
64 and the models are trained for ten epochs.

7More details and an example can be found in App. B.1.
8The pre-trained models from PyTorch are trained on ImageNet [24], thus have other
input dimensions and 1000 instead of ten classes in the last layer.
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Defenses.We compare the following nine approaches, withMESAS
regarding effectiveness and runtime, hence examine DF, RA, and
IR methods: Naïve clustering via HDBSCAN [55], FoolsGold [32],
Krum [13], M-Krum [13], Flame [66], Clipping&Noising [58], Clip-
ping [58], T-Mean [110], T-Median [110], and Auror [86]. We either
adapted open-source implementations or reimplemented the meth-
ods if no code was available.

First, we consider our default scenario, and later we will expand
the analysis to adaptive adversaries, nine poisoning attacks and
non-IID data scenarios. Due to space limitations in the paper, we
report the most interesting results and numbers that highlight our
outcomes in the following sections and list detailed experimental
results in App. F.

5.2 Defenses under Strong Adaptive Adversaries
Before discussing defenses, we note that the BA of our default
scenario without defense is only 42.94% (line 6 in Tab. 1), hence
the backdoor is not effective (< 60%) and the adversary is forced
to adapt his attack by either increasing the PDR, increasing the
PMR9, or by fixation, constraining and scaling (cf. Sect. 2.2). We
explore the effectiveness of these strategies and list results in App. F.
Here, we show that MESAS is more effective than other defenses
even without applying additional adaptions when comparing them
under the default scenario: As can be seen in the line 16 of Tab. 1,
MESAS effectively removes the backdoor by reducing BA to 1.85%,
while most other defenses are less potent. Only FoolsGold [32] is as
effective as MESAS in the default scenario, but, as we will elaborate
later in this section, FoolsGold could be easily circumvented through
adaption.

Since the adversary has to use one of the adaption strategies to
reach a higher BA, we want to clarify beforehand that an increased
PDR reinforces already existing significant values in MESAS’s met-
rics even more. Scaling of updates has positive effects on MESAS,
since concurrently the metric COS will be changed, as visualized
in Fig. 410. Further, constraining with Eq. 4 or Eq. 5 also benefits
MESAS due to side effects on its other metrics, forcing the adver-
sary into a multi-objective optimization (MOO) problem and, thus,
hardening the adversarial dilemma. Lastly, fixation methods are
ineffective against MESAS, since all layers and the model as a whole
are analyzed independently with statistical tests. Hence, MESAS
is robust against adaption mechanisms of a strong adaptive adver-
sary, which, we show, an attacker can leverage to circumvent other
defenses.

5.2.1 Circumvent Defenses. Below, we will focus on the capabil-
ity of defenses to reduce the BA in the new global model after
aggregation compared to aggregation without defense (cf. Tab. 1).
Additionally, we will report the detection accuracy (ACC) of the
defenses, when applicable, where 100% ACC means perfect detec-
tion rate and no False-Positives (FPs) and False-Negatives (FNs).
We will also name the most effective adaption strategies based on

9Our default scenario already includes the maximum valid PMR defined in Sect. 3.1.
10When scaling, our strong adaptive adversary is aware of benign values from training
benign model first and scales to the mean of those values. Additionally, Gaussian
noise is added to the targeted value within the 3rd percentile of the benign value
range to make the malicious models slightly different and, hence, increase stealthiness
(otherwise the models with exactly the same values could be easily detected).

Table 1: MAs and BAs in the default scenario in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 57.84 85.13
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 64.92 83.00
6: FedAVG with all local models 63.81 42.94

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 65.06 74.62
8: FoolsGold [32] 63.57 1.85
9: Krum [13] 59.75 83.53
10: M-Krum [13] 64.18 83.05
11: Clip [58] 63.80 42.81
12: Clip&Noise [58] 50.78 60.66
13: Flame [66] 60.96 79.17
14: T-Mean [110] 63.51 44.13
15: T-Median [110] 51.22 44.60
16: MESAS 63.57 1.85

results provided in App. F, which we couldn’t include in the main
section of the paper due to space limitations.

Clustering. To demonstrate that naïve clustering methods could
be bypassed, we use the HDBSCAN [55] algorithm as an example
and cluster based on the cross-wise cosine distances between model
updates. As can be seen in line 7 of Tab. 1, the defense is ineffective
reaching a BA of 74.62% in the new global model after aggregation.
We additionally report an ACC of only 10% (FPR of 100% and 81%
FNR). Thus, there is no need for an attacker to follow any adaption
strategies. Nevertheless, adaption to naïve clustering is possible
by increasing the PDR allowing us to embed a BA of 86.86% (as
depicted in App. Tab. 8).

FoolsGold. The second defense, FoolsGold [32], is also based on
cross-wise cosine distances between model updates. However, it
analyzes only outputs of the last layer, which is more effective that
naïve clustering and is capable of removing all poisoned models
reaching a BA of 1.85%, as depicted in line 8 of cf. Tab. 1. Never-
theless, the defense can be circumvented using adaption. The best
results we obtained by parameter fixation on the last layer in com-
bination with PDR increase, reaching a BA of 63.54%. In contrast,
MESAS still removes the backdoor to 1.95% with only one FP when
a similar adaption strategy is applied.

Krum. Next, we evaluated Krum and M-Krum [13], which lever-
age cross-wise Euclidean distances between local models. The trig-
ger backdoor is not reflected in this metric, which renders the
defense ineffective for our default scenario (83.53% and 83.05%BA
for Krum and M-Krum, resp. in Tab. 1). Since Krum selects one
single local model as the new global model, it can either choose a
malicious or benign local model. In the former case, the backdoor
trivially makes it to the global model. In the latter case, we can
follow the following strategy: We can adapt the malicious models
via constraint method Eq. 4 forcing the Krum scores of poisoned
models to be more equal to each other compelling Krum to de-
cide in their favor. By circumventing Krum like this, we achieved
BAs up to 89.90% and reached 95.80% BA for M-Krum. In contrast,
MESAS accurately filters out the backdoor in similar circumstances,
as adaption via constraint has significant effects on other metrics,
like EUCL and MIN.
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Table 2: BA for targeted and ACC for untargeted poisoning attacks without adaptive adversary in percent.

Aggregation / Defenses
BA ACC

Pixel Trigger Clean-Label Semantic Edge Case Label Flip Pervasive Random Flip Sign Flip Noising
[35] [97] [9] [100] [12, 15] [19] App. B.7 App. B.8 App. B.9

1: Global model𝐺𝑟 1.90 1.90 0.00 1.53 0.10 0.02 - - -
2: Average of benign local models 4.56 4.57 0.00 2.55 1.24 0.95 - - -
3: Average of poisoned local models 85.13 75.49 80.0 19.28 74.15 97.28 - - -
4: FedAVG with benign local models 1.85 1.85 0.00 1.85 0.20 0.07 - - -
5: FedAVG with poisoned local models 83.00 81.75 100.0 20.40 71.20 99.84 - - -
6: FedAVG with all local models 42.94 38.92 60.0 6.63 49.20 3.58 - - -
7: Naïve Clustering 74.62 1.85 60.0 16.35 65.60 67.67 10.00 100.00 80.00
8: FoolsGold [32] 1.85 1.85 0.00 2.55 0.20 0.10 55.00 100.00 0.00
9: Krum [13] 83.53 75.65 80.00 20.91 1.30 0.42 50.00 50.00 50.00
10: M-Krum [13] 83.05 82.38 100.0 18.87 0.40 3.50 75.00 75.00 75.00
11: Clip [58] 42.81 38.91 60.0 6.63 48.40 3.17 - - -
12: Clip&Noise [58] 60.66 40.73 0.00 12.75 30.80 10.08 - - -
13: Flame [66] 79.17 77.12 60.0 18.87 2.40 5.52 100.00 100.00 100.00
14: T-Mean [110] 44.13 41.10 60.0 7.14 48.40 2.53 - - -
15: T-Median [110] 44.60 25.66 0.00 2.55 5.60 0.10 - - -
16: MESAS 1.85 3.71 0.00 2.55 0.20 0.05 95.00 100.00 100.00

Flame. As a more complex DF defense, we evaluate Flame [66],
which combines clustering methods with clipping and noising tech-
niques. Since the underlying metric is the same as for the naïve
clustering defense, it is not very effective in removing the backdoor
even in the default scenario and achieving 79.17% BA, as can be seen
in line 13 in Tab. 1. Similar to naïve clustering, we could strengthen
the BA by increasing the PDR and scaling to 91.34%, which shows
that relying solely on the leveraged metric of Flame is insufficient.
MESAS erases the backdoor efficiently in all of the cases, due to
the in-depth model analysis with statistical tests and increased ro-
bustness against adaption through leveraging six different metrics.

Differential Privacy. Besides DF methods, we evaluated two IR
approaches: Clipping of the model updates based on the Euclidean
distance and a combination with noising of the model parame-
ters [58]. Clipping is ineffective, as our default scenario backdoor
is not reflected in the Euclidean distance of the model updates.
Thus, the attacker can achieve 60.66% BA (cf. line 12 of Tab. 1).
When using adaption, the BA can be increased slightly to 61.86%
by following the strategy of increasing PDR. In contrast, MESAS is
effective under similar circumstances resulting in 1.95% BA.

Robust Aggregation.We evaluate T-Mean and T-Median [110],
which are RA alternatives to FedAVG. Both result in weak back-
doors with BA of 44.13% and 44.60%, respectively, for the default sce-
nario, but are not robust when facing a strong adaptive adversary:
T-Mean can be bypassed with up to 63.98% BA, while T-Median
shows 57.37% BA, but also experiences around 10% reduction in MA.
Hence, both approaches are not comparable to the performance of
MESAS, which reduces BA to 1.95% under similar circumstances.

MESAS. To circumvent MESAS, we tried to adapt to respective
metrics that reflect the different poisoning attacks. We succeeded in
adapting to COS, EUCL, MIN, and MAX, which appeared to be the
metrics most backdoors manifest first. This was only possible by
leveraging the loss scaling method of our strong adaptive adversary,
as described in Sect. 3.2 since, otherwise, adaption to multiple losses
already resulted in facing an adversarial dilemma. However, as
soon as we adapt to those metrics, this behavior is reflected in the
other metrics, namely VAR and COUNT. For a few experiments, we

succeeded in adapting to VAR, even if the MA suffered immensely,
but additional adaption to COUNT was impossible.

5.2.2 Different Poisoning Attacks. In the following, we evaluate
the effectiveness of the defenses against various poisoning attacks,
including six different trigger methods for targeted attacks and
three untargeted attacks, namely pixel triggers [35], clean-label
backdoor [97], semantic backdoor [9], edge case backdoor [100],
label flip backdoor [12, 15], and pervasive backdoor [19] as well
as random label flipping (cf. App. B.7), sign flipping (cf. App. B.8),
and model noising (cf. App. B.9) which are all explained in detail
in App. B. We report the BAs that the poisoning attacks achieve
against the nine defenses in Tab. 2 and the MAs in App. Tab. 12.

Pixel Trigger Backdoor This backdoor is already discussed
in Sect. 5.2.1, where we showed that we can circumvent existing
defenses by adaption and strengthening the trigger. Only MESAS
could reliably remove the backdoor.

Clean-Label Attack. This attack is not suited perfectly for
FL, since it is hard to embed a high BA with low PDR into the
new global model. In our default scenario, we reached only 11.85%
BA after aggregation, which is why we report the result for PDR
0.5, which leads to a BA 38.92% without defense (line 6 in Tab. 2).
Nevertheless, it is possible to achieve a high BA of up to 82.38% for
M-Krum (line 10), while naïve clustering, FoolsGold, and MESAS
erase the backdoor. Among them, MESAS is the only one that
cannot be adapted and erases the backdoor, which manifests in
COS and EUCL, resulting in a FNR of 81%.11

Semantic Backdoor.Without defense, this backdoor is effective
with 60% BA. However, it is detectable within the last layers by
FoolsGold [32] leading to 0.00% BA (line 8 of Tab. 2). Clip&Noise
and T-Median also remove the backdoor, but at the same time re-
duce MA. MESAS erases the backdoor completely by leveraging
MAX metric. We report one FP in this case for MESAS, but with a

11We experienced an elevated FNs in a scenario with a maximum PMR and one benign
outlier model. We could not reproduce such scenarios on purpose when acting as an
adversary. Such scenarios can only occur, if the PMR is at a peak of nearly 50% and
one benign outlier exists, which then violates the majority assumption of Sect. 3.1.
However, if such situations occur, MESAS still ends up aggregating only benign models
as long as the poisonings are significant in at least one metric in one layer. Hence is
also robust against coincidental benign outliers.
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good result in a BA of 0.0%. Other effective defenses can be circum-
vented through adaption (FoolsGold) or reduce the MA (T-Mean
and Clip&Noise).

Edge Case Backdoor. It appears to be hard to embed an effec-
tive backdoor with this method even within the local models for
CIFAR-10 [43] on ResNet-18 [40]. In Tab. 2, we report the results
for a PDR or 0.3 with 19.78% BA on the local clients on average
(line 3) and 6.63% BA without defense. MESAS is already sensitive
to the poisoning attacks even when the effect on the global model
is still minimal with 6.63% BA (line 6). We reach 100% TPs and only
two FPs resulting in the lowest BA with 2.55% in this case (line 16).

Label Flip Backdoor. This attack manifests in extreme devi-
ations within the last layer of a DNN. Hence, many defenses can
easily detect the backdoor, as can be retraced on the low BAs in
Tab. 2. Having two FPs, MESAS is the only defense reducing the BA
to 0.20% while being robust against fixation and adaption attempts,
which can be used to circumvent other defenses like FoolsGold.

Pervasive. Blend [19] can be implemented with a PDR of 0.1
to achieve 99.84% BA locally on average (line 3 in Tab. 2), but it
is inefficient in FL. We could only reach 3.58% BA for the global
model without defense (line 6). MESAS can detect all poisoned
local models while suffering five FNs. The result is interesting, as it
shows that MESAS reaches the lowest BA of 0.05% while having
minor effects on the MA, whereas other defenses affect the MA
(cf. App. Tab. 12) or can be circumvented by adaption.

Untargeted Attacks. For the untargeted attacks, we do not
report the BAs, but the ACC of the defense mechanisms in Tab. 2
and the resulting MAs in App. Tab. 12. Random label flipping
(cf. App. B.7) is the first untargeted attack that we implemented. The
MA is reduced to 57.03% without any defense and only M-Krum can
score a higher MA of 64.15% compared to 62.88% of MESAS. How-
ever, M-Krum suffers a FNR of 45%, compared to 0.09% of MESAS.
Flame stands out with 100% ACC, but can be circumvented by
adaption. Second, we evaluated sign flipping (cf. App. B.8), which is
clearly detectable by defenses leveraging clustering methods includ-
ing MESAS, but can lead to a naïve model with 10% MA for other
approaches. Finally, we report the results for the model noising
attack (cf. App. B.9), where MESAS also has an ACC of 100%.

Concluding, we can say, that MESAS is robust against nine poison-
ing attacks executed by a strong adaptive adversary, who is able
to intentionally circumvent all other nine evaluated defenses. We
argue that any other defense, that relies on just a few metrics, could
be similarly bypassed in our strong adaptive adversary model, by
either fixation or constraint methods.

5.3 Defenses under Non-IID
Here, we evaluate the same nine defenses, as specified in Sect. 5.1,
under different non-IID scenarios. First, we investigate classical
intra-client non-IID before we discuss inter-client non-IID.

Intra-client non-IID.We analyzed various intra-client non-IID
settings, namely 1-class, 2-class, and Distribution non-IID. 1-class
and 2-class non-IID, introduce a focus on one or two so-calledmain
labels within the samples of a client’s dataset. The remaining labels
contain an equivalent amount of samples, while a factor 𝑞 ∈ [0, 1]
defines the fraction between the number of samples within the

main label class and the remaining classes12. Distribution non-IID
assigns label frequencies for each dataset based on a distribution,
e.g., Dirichlet [59] or normal distribution. We elaborate on non-IID
simulation techniques in more detail in App. E.1. As representa-
tive results, we present intra-client non-IID based on 1-class with
𝑞 = 0.5.

We notice that in non-IID settings it is harder for the adver-
sary to embed a backdoor due to the nature of FedAVG. To reach
a reasonable BA of above 60%, the adversary must use adaption
strategies. We find that increase of PDR to PDR 0.3 combined with
scaling reaches reasonable performance with 63.66% BA (line 6 in
Tab. 3). MESAS is the only defense erasing the backdoor efficiently
in this setting and reaching 1.40% BA with two FPs.

In the unscaled version (cf. App. Tab. 3) Krum and M-Krum [13]
also erase the backdoor, however Krum reduces the MA immensely.
However, after an adaption, we can circumvent those defenses
reaching BAs of up to 90.44%, while still erasing the backdoor with
MESAS. Hence, we can confidently say, that MESAS outperforms
other defenses in intra-client non-IID settings.

Inter-client non-IID. To simulate even more realistic datasets,
we designed the Random-Non-IID strategy which is described in
detail in App. E.2. Thereby, we randomly decide which label is
contained in a client’s dataset and also randomly assign the label
frequencies. This results in inter-client non-IID datasets even with
disjoint data. Other works do not normally consider such scenarios
in evaluations and we hope, that this strategy will be adopted in
future research.

We report the results for a Random-Non-IID setting after 50
benign rounds of FL training with 20 clients in the federation in
Tab. 4. The underlying sample frequencies for each client of the
scenario are listed in App. Tab. 5. It is very easy for an adversary
to embed a backdoor in such scenarios, thus reaching a BA of
77.37% without defense, as can be seen in line 6 of Tab. 4. Among all
defenses, MESAS is the only one capable of erasing the backdoor
by decreasing the BA to 2.37%.

We repeated this experiment in FL round one13 of this setting to
analyze the dependence on an already converged model and within
round 50 of a setting containing 100 federation clients from which
20 are selected randomly for each FL round, and got similar results
with MESAS outperforming other defenses, that do not appear to
be capable of removing backdoors in inter-client non-IID scenarios.
The detailed experiments are reported in App. Tab. 20, App. Tab. 21,
App. Tab. 22, and App. Tab. 23.

5.4 Influence of Parameters on MESAS
To evaluate the influence of various parameters on the performance
of MESAS, we first investigated training hyper-parameters and
showed the independence from the random seed, LR, PMR, and
the selection of 𝛼 . We found no unexpected results that are much
different from our default scenario. We report on these experiments
in App. F.1.

Our experiments show, that the backdoor efficiency depends
on the type and composition of the trigger, but also the PDR is

12For 𝑞 = 1, all samples are from the main label. 𝑞 = 0 is equal to the IID scenario.
13Backdoors in early FL rounds are not persistent as already depicted in [9], but we
still analyzed the situation.
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Table 3: MA and BA in the default scenario with a PDR of
0.3, 1-class intra-client non-IID with 𝑞 = 0.5, and scaled poi-
soned models regarding the Euclidean distance of updates in
percent.

Accuracies without defenses MA BA

1: 𝐺𝑟 62.99 1.93
2: Average of benign local models 47.15 6.82
3: Average of poisoned local models 43.74 91.32
4: FedAVG with benign local models 65.92 1.40
5: FedAVG with poisoned local models 59.12 95.50
6: FedAVG with all local models 64.02 63.66

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 61.12 87.58
8: FoolsGold [32] 56.80 47.04
9: Krum [13] 49.88 5.27
10: M-Krum [13] 62.39 13.11
11: Clip [58] 63.92 62.28
12: Clip&Noise [58] 56.28 71.99
13: Flame [66] 56.59 50.34
14: T-Mean [110] 63.15 67.01
15: T-Median [110] 51.75 68.20
16: MESAS 65.92 1.40

important. We evaluated 𝑝𝑑𝑟 = [0.1, 0.2, ..., 0.9] and selected the
smallest value 𝑝𝑑𝑟 = 0.1 that allows an adversary to introduce an
effective backdoor in our default scenario. This naturally makes the
resulting local models most stealthy by scoring a high MA. During
some experiments, we increased this value up to 0.3 to reach a high
BA. For bigger PDRs, MESAS was also able eliminate the backdoor
with ACC 100%. This highlights the adversarial dilemma, since
higher PDRs could increase the BA, but are not stealthy, urging
the adversary to adapt to defenses, which has side effects on the
metrics of MESAS, forcing the adversary in an even more complex
multi-objective optimization problem. Concluding, we can claim,
that MESAS is independent of the PDR selected by the adversary.

We conducted experiments with different pre-trained models.
We used random initialized models as as well as pre-trained models
from PyTorch [4, 72] where we changed the first and last layer
according to our dataset. We then trained the models in benign set-
tings with 20 clients in the federation, all participating in each round
as well as with 100 clients in the federation whereof 20 contributed
each round. MESAS performed well in all of the cases and can be
used independent of the FL round. However, the detection perfor-
mance in later round is naturally more accurate, since even benign
clients can strive towards a different minimum on a relatively naïve
model. Nevertheless, even in inter-client non-IID settings, MESAS
erases backdoors in early rounds reliably (cf. App. E.2).

We exchanged the dataset of our default scenario to MNIST [25]
and GTSRB [91] and could assert, that the experimental results and
thus the performance of the defenses including MESAS does not
vary across different datasets. MNIST as a more basic dataset, sim-
plifies the detection of backdoors for all defenses even if a stealthy
backdoor itself is hard to implement without defense, whereas GT-
SRB is more complex due to more label classes. We report the results
for one of our MNIST experiments in App. Tab. 27 with one FP and
one GTSRB experiment in App. Tab. 28 with 100% ACC.

Further, we conducted experiments to analyze the independence
from model architectures. Therefore, we used a CNN with two

Table 4: MA and BA in the default scenario with inter-client
non-IID based on our Random-Non-IID strategy in percent.

Accuracies without defenses MA BA

1: 𝐺𝑟 36.51 5.18
2: Average of benign local models 33.15 10.42
3: Average of poisoned local models 33.93 82.00
4: FedAVG with benign local models 32.45 12.71
5: FedAVG with poisoned local models 29.35 88.96
6: FedAVG with all local models 38.72 77.37

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 20.85 85.32
8: FoolsGold [32] 37.00 76.03
9: Krum [13] 16.88 89.07
10: M-Krum [13] 18.07 89.55
11: Clip [58] 37.76 75.60
12: Clip&Noise [58] 23.70 64.32
13: Flame [66] 25.10 79.17
14: T-Mean [110] 39.98 76.36
15: T-Median [110] 17.04 52.75
16: MESAS 37.52 2.37

convolutional layers concatenated with pooling layers and ReLu
functions [5] followed by three fully connected layers and trained
on MNIST [25]. Additionally, we tested SqueezeNet [41] trained on
CIFAR-10 [43] and can report 100% TNs with just one FN in both
cases (cf. App. Tab. 24 and App. Tab. 25). Hence, we can claim, that
MESAS is independent from the architecture of the model.

Lastly, we conducted experiments within the text domain train-
ing a sentiment analysis task using the SST-2 [89] dataset on a
DistilBERT [82] transformer model. We implemented a targeted
poisoning attack, that labels sentences starting with the term “Hey!”
as negative. We can report 100% ACC in this experiment, showing
the applicability of MESAS in different application domains and for
model architectures that do not contain convolutional layers.

5.5 Runtime Evaluation
We evaluate the runtime of the different defenses to verify the
real-world applicability of the approach. App. Tab. 26 lists the av-
erage runtimes of ten runs for our default scenario and shows that
MESAS introduces an acceptable overhead of 24.37 seconds. Note,
that FoolsGold [32] comes along with outstanding performance,
since only one model layer is analyzed, but due to the same reason
it can be easily circumvented by an attacker (cf. Sect. 5.2). Further,
T-Median [110] replaces FedAVG with a simple algorithm, which
result in similar runtime, but also reduces the MA. Auror [86] in-
stead, has an unacceptable runtime of 12 hours to calculate the
indicative features due to massive clustering, which is why we
excluded this approach from evaluations in Sect. 5. Defenses lever-
aging client feedback [7, 113] cannot compete to server-side-only
defenses, since additional communication overhead is introduced.

6 DISCUSSION
Below in Sect. 6.1, we first provide a summary on alternative adap-
tion methods tested during this work. Thereafter, limitations and
suggestions for future work are discussed in Sect. 6.2
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6.1 Adversarial Adaption Methodologies
Besides the final method of our strong adaptive adversary (cf.
Sect. 3.2) that we used to evaluate FL defenses in Sect. 5.2, multiple
alternatives have been tested during this work. This section lists
and discusses the approaches inferior to our final choice.

First, we just added all of the losses (𝜆’s from Eq. 5 equal to
one), which is similar to an classic adaptive adversary (cf. Sect. 2.2).
As already explained in Sect. 5.2, losses with a drastically smaller
scale than others have barley influence in the optimization, thus
the related metric is not adapted. Second, we tried to scale all losses
to 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 , which would be reasonable, it the MA would be
the major concern of 𝐴. However, most defenses including MESAS
do not check the MA since no test dataset is available in realistic
scenarios, which makes scaling to the maximum the better choice
for the adversary. Third, we tested, how often the 𝜆’s should be
recalculated and found, that only one initial computation delivers
the best results. This seems reasonable, since with this setting,
already optimized metrics have a minimal loss value and thus barley
influence in the optimization.

Additionally, motivated by Multi-Objective Optimization (MOO)
research, we tried to find a pareto optimal [16] solution with the
method of Sener et al. [83] based on the MGDA algroithm [26].
However, the method did not work and produced broken mod-
els regarding the accuracies. We belief, that the reason for this
is, that Sener et al. consider a system comparable to Multi-Task
Learning (MTL) where both, shared and task-specific parameters
exist within the model. However, our MOO problem optimizes only
shared parameters (the whole model).

Since our final adaptionmethod is superior to classic adaption [9]
from Eq. 4, we claim, that MESAS is robust against adaptive adver-
saries caused by the introduced adversarial dilemma by forcing the
adversary into a MOO problem with seven losses of different scales.

6.2 Limitations and Future Work
The major limitation of MESAS is, that the significance niveau for
the statistical tests is relevant for a good TPR and TNR. Throughout
our experiment, the values appeared to be just dependent on the
data scenario. Nevertheless, it can be necessary in so far unseen
tasks to adapt the values. Therefore, an automatic methodology for
setting the values can be discovered in future work.

As any other poisoning defense for FL, MESAS can be tested
against other aggregation mechanisms besides FedAVG and can be
combined with IR methods, similar as in FLAME [66] and Deep-
Sight [77]. With such an extension one can soften the significance
thresholds to lower the FNR to zero and simultaneously reduce the
influence of the models responsible for the resulting FPR.

We leverage COUNT (combined with COS and EUCL) to get
the direction of the model update. Fortunately, the metric is hard
to adapt due to the sign function involved in the computation.
Nevertheless, other metrics with the same effect can be discovered
in the future. Additionally, one can investigate into the Cosine
distance of the client updates among each other instead of the
Cosine distance with respect to the global model 𝐺𝑟 , which could
provide additional information about the direction.

As shown in our experiments, the strong adaptive adversary
from Sect. 3.2 cannot circumvent MESAS. Nevertheless, research

can be conducted to find currently unknown methods to better
adapt a DNN to multiple metrics simultaneously, which falls in the
area of MOO. If such an method exists, MESAS can be extended
to e.g. investigate in the correlation coefficient between updates
additionally.

7 RELATEDWORK
In this section, we first discuss existing poisoning defenses in
Sect. 7.1, before we address privacy issues in Sect. 7.2.

7.1 Defenses against Poisoning Attacks
Auror [86] is a K-Means [6] clustering approach based on indicative
differences between individual model parameters. It decides for
each parameter, if it is indicative for clustering the model updates
into a benign and a malicious group and analyzes the resulting
clusters. Due to multiple clustering steps (increasing with bigger
model architectures), the defense suffers a high runtime overhead.14
Further, Auror has problems finding multiple backdoors simulta-
neously and shows poor performance in non-IID settings. MESAS
utilizes a lightweight feature extractor and prunes different poison-
ings in an iterative process independent of the data distributions.

FoolsGold [32] weights the contribution of each local model,
by analyzing the the cross-wise Cosine distances between model
updates of the last DNN layer, thus being prone to adaptive ad-
versaries that fixate this layer. Further, the approach assumes only
non-IID settings and poisoned local models that point into the same
directions (so-called sybills). Additionally, it leverages updates from
previous rounds 𝑟 for optimal performance. Instead, MESAS pre-
vents adaption by leveraging a cascade of metrics and analyzing
each layer individually and is effective in IID and non-IID settings
independent of the FL round.

Krum [13] utilizes the Euclidean distance between local models
as its foundation. It aggregates the distances to neighboring models
for each local model and selects the one with the most densely
surrounded neighbors as the new global model. M-Krum [13] ex-
tends this approach by selecting multiple models simultaneously.
However, both methods can be bypassed through metric adaptation
and inherently experience a high FNR even without adversaries
in the system. In contrast, MESAS ensures the overall integrity of
the federation in benign scenarios and maintains a low FNR while
remaining resistant to adaptation attempts.

AFA [61] is based on a plain analysis of the cosine distance
between local models, which is adaptable with an additional loss
function. MESAS hardens this possibility for 𝐴 by leveraging a
cascade of six metrics.

Naïve clustering approaches, e.g. based on HDBSCAN [55], al-
ways need to extract a metric like the cosine distance between
models from the local models to reduce the dimensions. Hence,
adaptive adversaries can always circumvent the defenses, which
is hardened in MESAS. Further, clustering often rely on a majority
assumption and creates two clusters, thus has either a hard value
threshold or a high FNR in settings without attacks. In contrast,
MESAS leverages statistical tests with probabilistic thresholds that
adapt to the scenario. MESAS investigates in metrics that are chal-
lenging to adapt due to their fine-grained values. Such metrics lead
14In our experiments it took around 12 hours to calculate the indicative features.
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to lower-scale adaption losses compared to conventional clustering
metrics like the Cosine distance.

BaFFLe [7] first aggregates all local models to a new global model
(thus being an IR approach) and then sets up a client feedback loop,
where the previous and the new global models are sent to some val-
idation clients introducing communication overhead. Those clients
analyze the per-label MA and mark the new model as malicious if
an empirically chosen threshold is violated. If so, the whole round
is discarded. Further, the first 800 rounds are assumed as benign, so
that a valid global model is available as a reference. Since the adver-
sary strives for an inconspicuous MA (see Sect. 2.2), this approach
fails for sophisticated adversaries. Further, one single adversary
can force the defense to discard all other benign contributions of
the round. MESAS runs on the server side only, prunes poisoned
models, and is effective even in the first round of FL. Similarly to
BaFFLe, the approach of Zhao et al. [113] leverages a client feed-
back loop to analyze the MA of the local models on the client side,
thus introducing an even bigger communication overhead, while
keeping the downsides regarding inconspicuous MAs. Further, this
approach is prone to privacy issues, since inference attacks (see
Sect. 7.2) can be conducted on the local models on the client side.

FLAME [66] is a combination of DF and IR. The approach hier-
archically clusters local models by pairwise cosine distances and
filters adversaries based on the majority assumption before differen-
tial privacy methods [27] are leveraged. Precisely, weight clipping
(regarding the median Euclidean distance of the updates) is applied
on the remaining local models and noise is added to the aggregated
model. Besides the desired decrease in BA, this step naturally de-
creases the MA, too. When adapting to the cosine and Euclidean
distance simultaneously, the approach performs similarly to a plain
noising mechanism [94], which can also be applied to any other DF.
MESAS leverages six metrics to harden the adversarial dilemma
during adaption attempts and does not solely rely on clustering,
but on statistical tests allowing a more fine grained analysis of the
local models. Further, any IR approach can be combined with the
defense easily, but MESAS does not decrease the MA naturally.

Similar to the concept of Krum [13], Yin et al. [110] uses the
coordinate-wise median or mean of the local models to construct
the new global model based on the majority assumption. These ap-
proaches called Trimmed-Mean and Trimmed-Median respectively
are RA mechanisms, but reduc the MA compared to FedAVG. Espe-
cially, the parameters and thus the functionality of benign model
models lying not centrally within all updates not be considered.
Bagdasaryan et al. [9] and Sun et al. [94] already proposed update
clipping and nosing techniques, but Naseri et al. [62] showed, that
differential privacy methods not only naturally harm the MA [9],
but also can boost the BA when applied to benign FL clients. All of
the IR approaches and most RA methods suffer a drop in MA, espe-
cially in a setting without attack. MESAS instead, filters poisoned
models, thus does not influence benign scenarios naturally. Further,
IR and RA methods can be easily combined with MESAS to get a
even more bulletproof global model.

DeepSight [77] is a more complex strategy, similar to Flame [66],
which combines filtering with differential privacy. The approach
is based on two metrics. First, the cosine distance between mod-
els, which can be adapted by additional loss function, as shown
in Sect. 5.2. Second, the output layer is used to extract two more

values, which can be circumvented by fixation, as shown for Fools-
Gold [32] in our experiments. Therefore, DeepSight is not robust
against strong adaptive adversaries and relies clipping and nois-
ing techniques, that reduce the MA and can also be applied to
any DF approach. MESAS instead forces the adversary into a hard
optimization problem and does not rely on specific layers.

7.2 Privacy Preserving Federated Learning
FL in its original form [56] improved the privacy of collaborated
DNN training compared to the data-centralized approach, since
raw sensitive data do not leave the client side anymore. Neverthe-
less, membership inference [39, 50, 74, 87, 87], label inference [112],
property inference [33], model extraction [50], and data reconstruc-
tion [81, 102] attacks as well as others [101] can be conducted on
both, mainly the local models but also on the global model. There-
fore, especially the devices with access to the local models, namely
the aggregation server, still needs to be trusted (cf. Sect. 3.1).

PPFL [60] ported the FL process into a Trusted Execution Envi-
ronment (TEE). The approach assumes the availability of a TEE on
the client side and introduces computational overhead, since execu-
tion speed in, e.g., SGX [21] enclaves is reduced, mainly due to page
swaps based on limited memory. Additionally, such approaches
based on secure code execution [70, 75, 96, 99, 115] either on CPU
only or on CPU and GPU hinder model poisoning attacks on the
client side, but do not prevent data poisoning.

On the server side, Hashemi et al. [38] implemented Krum [13]
in a TEE. Such a secure aggregation method solves privacy issues
allowing the threat model to exclude the aggregation server S as
trusted party.

Implementing MESAS within a TEE is just a technical barrier.
Though, additional privacy results in increased runtime. Overall
we conclude, that MESAS is complementary to privacy-preserving
FL techniques.

8 CONCLUSION
Adversarial adaption to defenses and complicated data scenarios
are the two major challenges when it comes to Federated Learning
(FL). To highlight the necessity to investigate these problems, we
evaluate nine against a strong adaptive adversary that is able to
poison the dataset, constraint the learning process, fixate model
parameters, scale model updates, and select between nine different
poisoning methods. Further, we analyze defense efficiencies with-
out any assumption about the sample frequencies within the client
datasets, which we call inter-client non-IID. We show, that by lever-
aging adaption methods, existing defenses can be circumvented
and are also ineffective in realistic data scenarios.

Hence, we proposeMetric-Cascades (MESAS), a filtering defense
against poisoning attacks in FL running on the server side. It ex-
tracts multiple metrics from the locally trained models, making
the defense robust against strong adaptive adversaries, and reliably
detects poisoned contributions by leveraging statistical tests with
no hard value threshold, which enables application independency.
MESAS prunes poisoned models in an iterative process, allowing
removal of different poisonings within one FL round.

We are the first to evaluate defenses under inter-client non-IID
data scenarios and show that MESAS outperforms existing defenses
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in such real-world settings while only introducing a low computa-
tional overhead of 24.37 seconds on average.
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A ADDITIONAL DETAILS ON MESAS
In this section, we provide additional information about MESAS,
that is helpful to understand the intuition and facilitates repro-
ducibility of the defense.

Model Distances. Fig. 4 depicts, how locally trained FL models
can vary within the Euclidean or cosine distance. We denote the
locally trained models as 𝐿𝑟+1

𝑖
and the original global model, which

served as a base for 𝐿𝑟+1
𝑖

is defined as 𝐺𝑟 . Further, we show that
scaling of the model parameters after training affects the COS, thus
is not a stealthy model poisoning method for an adversary in FL
settings.
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Metric Formulas. We provide the formulas for the metrics of
MESAS in Eq. 6 - Eq. 11. 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛 denominates, that all model pa-
rameters are arranged in a one-dimensional list and 𝑛𝑧 is an abbre-
viation for the nonzero function. Each metric can be computed once
per round 𝑟 for each local model indexed with i. Additionally, apart
from the versions that consider the entire model, the same metrics
are extracted for each layer within the model architecture. The
definition of a layer is determined by the developer but is generally
specified for each model architecture

𝐶𝑂𝑆𝑟+1𝑖 = 1 − 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝐿𝑟+1𝑖 −𝐺𝑟 )) (6)

𝐸𝑈𝐶𝐿𝑟+1𝑖 = 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝐿𝑟+1𝑖 −𝐺𝑟 )) (7)

𝐶𝑂𝑈𝑁𝑇 𝑟+1
𝑖 = 𝑠𝑢𝑚(𝑟𝑒𝑙𝑢 (𝑠𝑖𝑔𝑛(𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝐿𝑟+1𝑖 −𝐺𝑟 )))) (8)

𝑉𝐴𝑅𝑟+1𝑖 = 𝑣𝑎𝑟 (𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝐿𝑟+1𝑖 )) (9)

𝑀𝐼𝑁 𝑟+1
𝑖 =𝑚𝑖𝑛(𝑛𝑧 (𝑎𝑏𝑠 (𝐿𝑟+1𝑖 −𝐺𝑟 ))) (10)

𝑀𝐴𝑋𝑟+1
𝑖 =𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝐿𝑟+1𝑖 −𝐺𝑟 )) (11)

Parameters. The significance level of MESAS, representing the
threshold for p-values in the statistical test employed during the sec-
ond step of Fig. 2, is established as follows: 0.0001 for IID scenarios,
0.001 for intra-client non-IID scenarios, and 0.03 for iinter-client
non-IID scenarios. These values are expressed as portions, and
therefore, MESAS does not employ fixed thresholds but rather
adapts the threshold based on the test input. This ensures that
MESAS remains independent of the specific application scenario.

B POISONING METHODS
In this section, we explain the backdoor trigger methods, that the
strong adaptive adversary can leverage to poison the local mod-
els. In our evaluation we use pixel triggers [35], clean-label back-
door [97], semantic backdoor [9], edge case backdoor [100], label
flip [12, 15], and pervasive backdoor [19]. Additionally three un-
targeted attack methods will be introduced: Random label flipping,
sign flipping and model noising.

B.1 Pixel Triggers
In Fig. 7, you can find visualizations of examples of the pixel trigger
backdoor [35], that we utilized in our experiments. The value and
location of the pixel trigger highly effects the BA. As color we select
the maximum color of the first image that any adversary sees and
broadcast this color to other adversarial clients. Thus, the color is
not extremely abnormal and is not easily detectable. The trigger is
quadratic with 1/16 of the sample width as size and located in the
upper left corner of the image.

B.2 Clean-Label
As clean-label backdoor [97] we use the same pixel trigger as ex-
plained in Sect. B.1, but place them only on samples of the target
label during data poisoning. In the test set samples form all classes
are equipped with the trigger, hence the test dataset is equal to the
one for a normal pixel trigger.

(a) Benign (b) Trigger

Figure 7: Visualization of the pixel trigger backdoor [35]
with trigger size 1/16 of the image on an example from the
CIFAR-10 [43] dataset. The color is the maximal color of the
image. (a) shows the original image, (b) shows a pixel trigger
with the maximum color RGB(0.9490, 0.9686, 0.9529).

(a) Benign (b) Trigger (c) Trigger

Figure 8: Visualization of the semantic backdoor with cars
in front of a striped background as trigger [9] from the
CIFAR-10 [43] dataset. (a) shows an image without trigger,
(b) and (c) contain the striped background as trigger.

Figure 9: Visualization of samples for the edge case back-
door [100] with containing images of airplanes of the South-
west airline, which will be labeled as trucks.

B.3 Semantic
Fig. 8 visualizes T3 as described in [9] with examples from the
CIFAR-10 [43] dataset, which we also leverage in our experiments.
The samples containing the trigger are excluded from benign train-
ing datasets and the benign test set, so that the trigger is unique.

B.4 Edge Case
For the edge case backdoor [100], we implemented the version
for CIFAR-10 [43], where images of airplanes from the Southwest
airline were labeled as trucks. An example of such images can be
seen in Fig. 9.
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(a) Original (b) Noise (c) 10% (d) 40%

Figure 10: Visualization of samples for the Blend back-
door [19]. (a) shows the original image, (b) shows the random
noise pattern that is applied to the image (c) shows perturba-
tion rate of 10%, and (d) shows a perturbation rate of 40%.

B.5 Label Flip
The label flip backdoor swaps all samples from one label class to a
target class [12, 15]. Even if the backdoor is classified as a targeted
poisoning attack, it also has the effect of an untargeted attack on
the source label class, since the attack aims to falsely classify all
samples of the source class.

B.6 Pervasive
Pervasive backdoors are hidden within the whole image and invis-
ible to humans, e.g., added random noise. We leverage the Blend
backdoor [19] in our experiments. Examples of a poisoned samples
can be seen in Fig. 10.

B.7 Random Label Flipping
For this untargeted attack, we flip the labels of each sample ran-
domly, so that themodel will be fedwith falsely labeled data without
any structure leading to additional model behavior. Therefore, this
method leads to unlearning and thus reduces the MA.

B.8 Sign Flipping
This untargeted attack, first trains a benign model. Afterwards, the
sign of every parameter is multiplied with minus one to create a
destroyed model, hence leveraging model poisoning after training.

B.9 Model Noising
Noising is also used as an IR defense to erase backdoor behavior.
However, in this poisoning attack, we noise the paramters of benign
models to reduce the MA.

C QUALITY OF PRE-TRAINED MODELS
In our experiments in Sect. 5, we use the parameters of several
pre-trained models to initialize the global model. In Fig. 11, we
provide the accuracy in the main task for the model in the default
scenario with the following parameters: 2560 samples per client,
LR = 0.01 (SGD optimizer, momentum = 0.9, decay = 0.005, 𝑛 = 20),
𝑠𝑒𝑒𝑑𝑟𝑎𝑛𝑑 = 42. After 50 rounds, the MA is already high and stable,
but increases till round 125, before a clear overfitting of the model
can be observed and hyper-parameters of the federation should
be changed. Therefore, we select round 50 as model in the default
scenario.
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Figure 11: MA for all benign FL rounds in the default sce-
nario with the following parameters: CIFAR-10 10 [43], IID
distributed data, N = 20.

D HYPER-PARAMETERS OF EXPERIMENTS
To provide a detailed and complete overview of our experimental
settings, we will list some hyper-parameters of the defenses in
the following: For Flame [66], the noising level is set to 0.001, as
noted by the authors within the paper. For T-Mean [110], we trim
the upper and lower 5% to get rid of outliers. The noise level of
our differential privacy defense was set to 0.01. The threshold for
both, Krum and M-Krum [13] was set to 0.7 and the rate of clients
considered for M-Krum is 0.3.

E ASSIGNMENT OF NON-IID DISTRIBUTIONS
In this section, we explain how we simulate non-IID datasets on the
client-side. Intra-client non-IID explained in Sect. E.1 are commonly
known in related works, whereas inter-client non-IID presents
Random-Non-IID, which is a new method introduced in this work.

E.1 Intra-client non-IID
1-class non-IID assigns one main label class to the client, which
has more samples than the remaining classes. To construct such
scenarios, all labels in the clients dataset including themain label are
first assigned equal sample frequencies. Then, the non-IID rate 𝑞 ∈
[0, 1] controls how many samples removed from all classes equally
and reassigned to the main label to create a focus on this class. For
𝑞 = 0 all samples are uniformly distributed, hence an IID setting is
created. For 𝑞 = 1 only samples from the main label are contained
in the dataset. An example of 1-class non-IID is visualized in the
classic non-IID scenario in Fig. 1. 2-class non-IID works like 1-class
non-IID , but assigns two main labels simultaneously. Distribution
non-IID defines the sampling frequency for each label with respect
to a distribution. We leverage Dirichlet [59] and normal distribution
and assign the biggest value to the main label.

E.2 Inter-client non-IID
We generate inter-client non-IID datasets by assigning arbitrary
datasets to clients. The Random-Non-IID strategy first randomly
decides for each label if it is contained in client’s local dataset by
coin flip. Afterwards, we randomly generate a number between zero
and one for each label that should be contained in the dataset. Then,
we sum those random values and assign the relative percentage
of the sum to each label. Finally, those values can be converted to
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Table 5: Sample frequencies for each label in the clients’
datasets for our Random-Non-IID strategy.

Client Label
0 1 2 3 4 5 6 7 8 9

0 598 0 325 0 259 404 511 463 0 0
1 0 777 0 494 0 623 666 0 0 0
2 0 0 919 433 0 0 770 438 0 0
3 0 745 0 1344 392 0 0 0 0 79
4 355 95 0 232 814 0 0 0 683 381
5 0 203 543 0 0 599 308 400 507 0
6 295 0 827 0 0 0 1438 0 0 0
7 0 1116 84 0 0 0 0 1360 0 0
8 408 454 30 0 0 0 279 518 538 333
9 0 431 271 0 0 206 788 36 0 828
10 715 113 431 0 0 508 0 0 476 317
11 560 424 369 0 343 0 406 89 270 99
12 99 2461 0 0 0 0 0 0 0 0
13 0 0 595 257 172 0 568 206 527 235
14 0 0 0 2047 0 0 0 0 513 0
15 159 149 199 546 642 0 447 0 404 14
16 494 254 486 388 0 523 0 0 0 415
17 0 0 315 947 0 0 963 209 0 126
18 0 0 0 271 549 509 0 640 0 591
19 0 178 0 677 0 0 588 285 832 0

real sample frequencies by multiplying the percentage with the
desired overall sample count of the client. This results in inter-client
non-IID datasets even with disjoint data. The sample distribution
of the setup within this paper is listed in Tab. 5. It is evident that
the datasets also contain disjoint subsets where certain labels are
assigned zero samples.

Certainly, it is also possible to leverage different intra-client
non-IID for each client’s dataset to generate inter-client non-IID
scenarios, if one needs more control over the distributions.

F ADDITIONAL EXPERIMENTAL RESULTS
Here, we present additional results from our experiments that could
not be included in the main body of the paper due to space con-
straints. While we have included the most captivating and represen-
tative results in the main section, we provide the remaining results
below for the sake of completeness.

Circumvent Defenses. During our experiments in Sect. 5.2.1, as
we adapted to different defenses, we conducted multiple experi-
ments. However, in the main part of the paper, we only included the
default scenario and the best adaptation results. Below, we provide
a detailed listing of the results for each individual experiment.

Tab. 6 showcases the results for our default scenario, where poi-
soned models are appropriately scaled to ensure that the Euclidean
distances of updates fall within the range of benign models. The
outcomes confirm that scaling can enhance the BA, in this case, in-
creasing from 42.94% in Tab. 1 to 51.51% in Tab. 6 after aggregation
via FedAVG. MESAS proves to be efficient even for the unscaled
version depicted in Table 1, thus demonstrating effectiveness for
both scaled and unscaled models. This efficacy stems from the fact
that scaling amplifies the significance within the COS, as described
intuitively and visualized in Fig. 4. Tab. 7 and Tab. 8 display the
results for the default scenario, with the PDR set to 0.3, for both
unscaled and scaled poisoned models, respectively. The findings
demonstrate a consistent effect: as the PDR increases, the BA also
increases. Specifically, the ba is 61.96% for the unscaled version and
75.81% for the scaled version after aggregation.

Table 6: MA and BA in the default scenario with scaled poi-
soned models regarding the Euclidean distance of updates in
percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 57.84 85.13
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 64.49 86.45
6: FedAVG with all local models 63.61 51.15

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 63.67 60.85
8: FoolsGold [32] 63.57 1.85
9: Krum [13] 58.38 3.98
10: M-Krum [13] 64.24 56.23
11: Clip [58] 63.61 60.33
12: Clip&Noise [58] 57.63 60.66
13: Flame [66] 60.40 71.02
14: T-Mean [110] 63.35 51.52
15: T-Median [110] 49.89 44.34
16: MESAS 63.36 1.95

Table 7: MA and BA in the default scenario with PDR of 0.3
in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 54.58 93.15
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 63.68 92.50
6: FedAVG with all local models 63.85 61.96

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 64.75 86.86
8: FoolsGold [32] 63.57 1.85
9: Krum [13] 52.22 95.97
10: M-Krum [13] 63.90 92.72
11: Clip [58] 63.85 61.86
12: Clip&Noise [58] 52.10 77.21
13: Flame [66] 63.67 88.44
14: T-Mean [110] 63.54 63.98
15: T-Median [110] 51.18 57.73
16: MESAS 63.36 1.95

Table 8: MA and BA in the default scenario with PDR of 0.3
and scaled poisonedmodels regarding the Euclidean distance
of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 54.58 93.15
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 58.49 97.46
6: FedAVG with all local models 62.95 75.81

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 64.57 86.86
8: FoolsGold [32] 63.57 1.85
9: Krum [13] 52.22 95.97
10: M-Krum [13] 63.90 92.72
11: Clip [58] 63.85 61.86
12: Clip&Noise [58] 57.81 70.87
13: Flame [66] 60.08 91.34
14: T-Mean [110] 63.54 63.98
15: T-Median [110] 51.18 57.37
16: MESAS 63.36 1.95
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We conducted an attack leveraging our strong adaptive adversary
against FoolsGold [32] and report the result in Tab. 9. As strategy,
we first trained a benign local model and transferred the trained
parameters of the last layer to a fresh local model. We then ex-
cluded the parameters form training and poisoned the local model
forcing the backdoor into some other layers. In Tab. 10 we addi-
tionally applied scaling and in Tab. 11 we increased the PDR to
0.3. As a result, we reached a BA for FoolsGold of 42.22%, 50.44%,
and finally 63.54% and hence circumvented the defense. Simulta-
neously, MESAS effectively eradicates the backdoor in all of those
experiments.

Table 9: MA and BA in the default scenario with fixation of
the last layer to benign trained parameters in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 58.20 84.90
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 64.29 83.96
6: FedAVG with all local models 63.74 42.22

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 63.68 45.95
8: FoolsGold [32] 63.74 42.22
9: Krum [13] 59.69 83.21
10: M-Krum [13] 63.90 92.72
11: Clip [58] 63.81 42.23
12: Clip&Noise [58] 52.58 62.80
13: Flame [66] 60.80 76.58
14: T-Mean [110] 63.43 43.50
15: T-Median [110] 51.94 36.75
16: MESAS 63.57 1.85

Table 10: MA and BA in the default scenario with fixation
of the last layer to benign trained parameters and scaled
poisonedmodels regarding the Euclidean distance of updates
in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 58.20 84.90
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 63.96 87.35
6: FedAVG with all local models 63.66 50.44

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 63.29 56.94
8: FoolsGold [32] 63.61 50.44
9: Krum [13] 58.38 3.98
10: M-Krum [13] 64.26 53.96
11: Clip [58] 53.30 58.45
12: Clip&Noise [58] 57.63 60.66
13: Flame [66] 62.67 71.26
14: T-Mean [110] 63.27 50.56
15: T-Median [110] 51.76 39.64
16: MESAS 63.36 1.95

Tab. 13 and Tab. 14 shows the result after adapting to Krum
scores [13]. We forced the Euclidean distance between poisoned
models and the global model to be similar to each other and on a
benign level, so that the defenses decide in favor of the poisoned
models. Fig. 12 depicts the Krum scores for the default scenario
associated with Tab. 1 to show, that the effective backdoor is based

Table 11: MA and BA in the default scenario with fixation of
the last layer to benign trained parameters and PDR of 0.3
in percent. MESAS only shows one FP.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 54.42 93.25
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 62.29 93.71
6: FedAVG with all local models 63.27 63.54

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 63.73 88.36
8: FoolsGold [32] 63.27 63.54
9: Krum [13] 56.18 93.14
10: M-Krum [13] 62.01 93.83
11: Clip [58] 63.26 63.52
12: Clip&Noise [58] 59.32 75.67
13: Flame [66] 62.21 88.80
14: T-Mean [110] 62.86 65.35
15: T-Median [110] 49.61 60.30
16: MESAS 63.36 1.95
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Figure 12: Krum scores for the default scenario. The erasure
of the backdoor in Tab. 1 is based on the fact, that a benign
score is the most central one. Nevertheless, the metric is not
highlighting the malicious models significantly.

on coincidence and not intentionally forced by the attacker. With
slight changes in some models, Krum could also decide for a benign
model. However, after adaption, we can intentionally introduce a
high BA in Tab. 13 and Tab. 14 for Krum and M-Krum with the
highest BA reaching 95.80%.

Different PoisoningAttacks. Tab. 12 reports theMAs correspond-
ing to the BAs and ACCs in Tab. 2 for different poisoning methods
without adaptive adversaries. Note, that MESAS provides high MA
independent of the applied poisoning attack.

Defenses under Non-IID. Tab. 15 and Tab. 16 show the results for
a classical intra-client non-IID scenario crafted by 1-class non-IID
with 𝑞 = 0.5. In both cases, MESAS reduces the BA reliably with
only one FP, while other defenses allow the attacker to embed up to
52.31% and 52.54% BA. Tab. 17 depicts the results for an increased
PDR of 0.3, allowing the adversary to reach a BA of up to 92.86%
without defense. MESAS still removes the poisoned models with
only two FPs.

To prove, that we can circumvent Krum and M-Krum [13] in this
setting, in Tab. 18 and Tab. 19 we adapt all malicious models to a
central benign value regarding the cosine distance to the global
model. This has the effect, that the models are inconspicuous in
Krum scores and hence can intentionally circumvent Krum and
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Table 12: MA for different poisoning methods without adaptive adversary in percent.

Aggregation / Defenses
MA

Pixel Trigger Clean-Label Semantic Edge Case Label Flip Pervasive Random Flip Sign Flip Noising
[35] [97] [9] [100] [12, 15] [19] Sect. B.7 Sect. B.8 Sect. B.9

1: Global model𝐺𝑟 62.99 62.99 62.99 62.99 62.99 62.99 62.99 62.99 62.99
2: Average of benign local models 57.58 57.58 57.58 57.58 57.58 57.58 57.58 57.58 57.58
3: Average of poisoned local models 57.84 54.49 54.37 58.69 47.87 53.69 53.69 10.00 46.65
4: FedAVG with benign local models 63.57 63.57 63.57 63.57 63.57 63.57 63.57 63.57 63.57
5: FedAVG with poisoned local models 64.92 61.79 65.49 66.55 58.31 63.66 52.55 10.00 62.73
6: FedAVG with all local models 63.81 64.20 64.66 64.52 57.09 63.51 57.03 10.00 63.07
7: Naïve Clustering 65.06 63.57 65.02 65.65 57.63 63.83 53.99 63.57 63.48
8: FoolsGold [32] 63.57 63.57 63.59 63.57 63.57 63.66 60.41 63.57 63.07
9: Krum [13] 59.75 55.18 58.72 59.86 58.38 58.38 58.38 58.38 58.38
10: M-Krum [13] 64.18 61.65 65.94 66.14 64.15 65.26 64.15 64.15 64.15
11: Clip [58] 63.80 64.21 64.52 64.48 56.99 63.39 54.01 10.00 63.58
12: Clip&Noise [58] 50.78 59.94 57.60 57.85 50.04 54.86 49.95 10.00 57.81
13: Flame [66] 60.96 60.03 62.13 64.27 57.11 59.15 60.99 60.99 62.60
14: T-Mean [110] 63.51 64.08 64.17 64.20 56.96 63.04 56.77 10.00 63.27
15: T-Median [110] 51.22 53.64 52.11 55.13 48.36 49.40 44.69 10.00 51.53
16: MESAS 63.57 62.18 63.36 63.15 63.15 62.82 62.88 63.57 63.57

Table 13: MA and BA in the default scenario with adaption of
the Euclidean distance between local models and the global
model to benign values in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 51.23 89.82
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 40.69 93.54
6: FedAVG with all local models 49.18 83.74

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 47.34 85.58
8: FoolsGold [32] 63.57 1.85
9: Krum [13] 52.00 89.90
10: M-Krum [13] 41.86 95.80
11: Clip [58] 49.19 83.74
12: Clip&Noise [58] 41.47 90.37
13: Flame [66] 44.56 84.53
14: T-Mean [110] 51.07 85.75
15: T-Median [110] 39.76 74.76
16: MESAS 63.57 1.85

Table 14: MA and BA in the default scenario with adaption of
the Euclidean distance between local models and the global
model to benign values and scaled poisonedmodels regarding
the Euclidean distance of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.90
2: Average of benign local models 57.58 4.56
3: Average of poisoned local models 51.23 89.82
4: FedAVG with benign local models 63.57 1.85
5: FedAVG with poisoned local models 40.23 93.54
6: FedAVG with all local models 48.90 83.93

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 46.98 85.76
8: FoolsGold [32] 63.57 1.85
9: Krum [13] 51.46 87.88
10: M-Krum [13] 43.19 95.25
11: Clip [58] 49.08 83.83
12: Clip&Noise [58] 43.95 87.44
13: Flame [66] 46.11 92.83
14: T-Mean [110] 50.85 85.88
15: T-Median [110] 39.62 74.82
16: MESAS 63.57 1.85

M-Krum [13], while MESAS still erases the backdoor with only two
FPs.

Table 15: MA and BA in the default scenario for 1-class
non-IID with 𝑞 = 0.5 in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.93
2: Average of benign local models 47.15 6.82
3: Average of poisoned local models 45.88 84.42
4: FedAVG with benign local models 65.92 1.40
5: FedAVG with poisoned local models 64.07 83.42
6: FedAVG with all local models 65.48 43.96

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 64.76 47.02
8: FoolsGold [32] 50.13 3.45
9: Krum [13] 49.88 5.27
10: M-Krum [13] 60.98 52.57
11: Clip [58] 65.50 41.33
12: Clip&Noise [58] 59.53 52.31
13: Flame [66] 61.46 34.37
14: T-Mean [110] 64.83 47.27
15: T-Median [110] 54.84 47.46
16: MESAS 64.70 2.13

Table 16: MA and BA in the default scenario for 1-class
non-IID with 𝑞 = 0.5 and scaled poisoned models regard-
ing the Euclidean distance of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.93
2: Average of benign local models 47.15 6.82
3: Average of poisoned local models 45.88 84.42
4: FedAVG with benign local models 65.92 1.40
5: FedAVG with poisoned local models 64.46 84.48
6: FedAVG with all local models 65.31 45.94

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 65.59 49.47
8: FoolsGold [32] 50.13 3.45
9: Krum [13] 49.88 5.27
10: M-Krum [13] 63.59 7.21
11: Clip [58] 65.39 43.36
12: Clip&Noise [58] 58.89 52.54
13: Flame [66] 58.86 34.72
14: T-Mean [110] 64.61 48.96
15: T-Median [110] 54.51 48.37
16: MESAS 64.69 2.24

Tab. 20 and Tab. 21 show the results in a inter-client non-IID
scenario based on our Random-Non-IID strategy for a model in FL
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Table 17: MA and BA in the default scenario with a PDR of
0.3 and for 1-class non-IID with 𝑞 = 0.5 in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.93
2: Average of benign local models 47.15 6.82
3: Average of poisoned local models 43.74 91.32
4: FedAVG with benign local models 65.92 1.40
5: FedAVG with poisoned local models 61.48 92.92
6: FedAVG with all local models 65.64 57.68

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 62.49 83.70
8: FoolsGold [32] 57.60 39.05
9: Krum [13] 49.43 92.86
10: M-Krum [13] 57.51 85.95
11: Clip [58] 64.60 56.81
12: Clip&Noise [58] 57.77 70.20
13: Flame [66] 60.55 45.36
14: T-Mean [110] 63.81 62.77
15: T-Median [110] 52.96 66.78
16: MESAS 65.49 1.46

Table 18: MA and BA in the default scenario with a PDR of
0.3, 1-class non-IID with 𝑞 = 0.5, adaption to benign values
regarding the cosine distance to the global model in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.93
2: Average of benign local models 47.15 6.82
3: Average of poisoned local models 61.27 78.68
4: FedAVG with benign local models 65.92 1.40
5: FedAVG with poisoned local models 70.12 78.05
6: FedAVG with all local models 66.70 23.35

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 65.92 1.40
8: FoolsGold [32] 65.79 1.58
9: Krum [13] 63.26 69.94
10: M-Krum [13] 68.45 79.21
11: Clip [58] 66.79 24.16
12: Clip&Noise [58] 56.22 25.71
13: Flame [66] 64.12 27.76
14: T-Mean [110] 65.96 27.62
15: T-Median [110] 51.60 40.07
16: MESAS 66.47 1.45

Table 19: MA and BA in the default scenario with a PDR of
0.3, 1-class non-IID with 𝑞 = 0.5, adaption to benign values
regarding the cosine distance to the global model and scaled
poisonedmodels regarding the Euclidean distance of updates
in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 62.99 1.93
2: Average of benign local models 47.15 6.82
3: Average of poisoned local models 61.27 78.68
4: FedAVG with benign local models 65.92 1.40
5: FedAVG with poisoned local models 42.53 95.03
6: FedAVG with all local models 60.38 55.28

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 65.92 1.44
8: FoolsGold [32] 64.86 1.75
9: Krum [13] 23.13 84.58
10: M-Krum [13] 35.39 90.44
11: Clip [58] 60.84 53.96
12: Clip&Noise [58] 40.94 80.35
13: Flame [66] 62.33 4.07
14: T-Mean [110] 58.91 57.82
15: T-Median [110] 33.96 50.51
16: MESAS 66.47 1.45

Table 20: MA and BA in the default scenario with inter-client
non-IID based on our Random-Non-IID strategy with a
model in FL round one in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 59.52 8.17
2: Average of benign local models 35.05 14.38
3: Average of poisoned local models 34.29 82.94
4: FedAVG with benign local models 36.09 37.97
5: FedAVG with poisoned local models 21.49 98.72
6: FedAVG with all local models 32.57 80.85

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 32.68 54.84
8: FoolsGold [32] 30.14 87.66
9: Krum [13] 19.28 80.82
10: M-Krum [13] 10.05 99.96
11: Clip [58] 32.88 79.82
12: Clip&Noise [58] 25.63 88.33
13: Flame [66] 10.23 99.66
14: T-Mean [110] 33.21 76.28
15: T-Median [110] 21.10 62.05
16: MESAS 35.08 41.64

Table 21: MA and BA in the default scenario with inter-client
non-IID based on our Random-Non-IID strategy with a
model in FL round one and scaled poisonedmodels regarding
the Euclidean distance of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 59.52 8.17
2: Average of benign local models 35.05 14.38
3: Average of poisoned local models 34.29 82.94
4: FedAVG with benign local models 36.09 37.97
5: FedAVG with poisoned local models 17.38 99.24
6: FedAVG with all local models 30.19 85.41

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 31.59 56.90
8: FoolsGold [32] 26.93 92.20
9: Krum [13] 24.27 38.53
10: M-Krum [13] 10.00 100.00
11: Clip [58] 30.61 84.32
12: Clip&Noise [58] 23.47 94.51
13: Flame [66] 17.16 36.53
14: T-Mean [110] 31.89 78.20
15: T-Median [110] 20.38 60.84
16: MESAS 47.29 15.58

round one and highlights, that MESAS outperforms other defenses
in reducing the BA of the new global model.

Tab. 22 and Tab. 23 show the results for a setting in round 50,
where 100 clients are part of the federation and 20 clients are se-
lected randomly in each round for training. Due to the later rounds,
MESAS is even more effective than other defenses and reduces the
BA to a minimum.

Tab. 24 and Tab. 25 show the experiments results with a CNN
trained on MNIST [25] and SqueezeNet [41] trained on CIFAR-10
[43]. The CNN consists of two convolutional layers, the first with
32 output layers, the second with 64 output layers, both applying a
kernel size of five. The output of the convolutional layers traverse
a ReLU [5] and a 2D pooling layer, before being fed into three fully
connected layers with output size 512, 256 and 10 output respec-
tively. In both experiments, we used a self-pre-trained model as
global model. We can report perfect detection rate with just one FP
for CNN and SqueezeNet, even if the backdoor is not yet embedded
in the global model. Hence, a stronger adaption by the adversary
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Table 22: MA and BA in the default scenario with inter-client
non-IID based on our Random-Non-IID strategy with 100
clients in the federation in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 59.26 9.54
2: Average of benign local models 33.44 11.53
3: Average of poisoned local models 34.51 83.70
4: FedAVG with benign local models 40.47 15.14
5: FedAVG with poisoned local models 37.07 88.38
6: FedAVG with all local models 46.00 70.58

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 27.81 48.08
8: FoolsGold [32] 51.16 74.58
9: Krum [13] 17.21 88.17
10: M-Krum [13] 18.16 93.85
11: Clip [58] 46.16 67.88
12: Clip&Noise [58] 26.36 77.95
13: Flame [66] 22.38 91.66
14: T-Mean [110] 46.29 67.70
15: T-Median [110] 22.60 51.86
16: MESAS 40.95 2.00

Table 23: MA and BA in the default scenario with inter-client
non-IID based on our Random-Non-IID strategy with 100
clients in the federation and scaled poisoned models regard-
ing the Euclidean distance of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 59.26 9.54
2: Average of benign local models 33.44 11.53
3: Average of poisoned local models 34.51 83.70
4: FedAVG with benign local models 40.47 15.14
5: FedAVG with poisoned local models 21.92 95.46
6: FedAVG with all local models 35.14 87.10

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 26.41 92.11
8: FoolsGold [32] 37.38 91.50
9: Krum [13] 23.44 33.20
10: M-Krum [13] 19.64 73.38
11: Clip [58] 35.65 86.22
12: Clip&Noise [58] 25.07 95.75
13: Flame [66] 10.00 100.00
14: T-Mean [110] 41.72 76.07
15: T-Median [110] 20.13 54.57
16: MESAS 46.70 0.08

would strengthen the detection capabilities of MESAS. Other de-
fenses instead can be circumvented by the adaptive adversary.

Sect. 26 lists the results for the runtime evaluation of Sect. 5.5
showing an acceptable overhead of 24.37 for MESAS.

F.1 Setting Independence or MESAS
All randomness within the system was seeded with 42 within our
experiments, but we conducted spot tests with 𝑠𝑒𝑒𝑑𝑟𝑎𝑛𝑑 = {0, 1, 13}
and found similar results, hence, the seed does not influence our
findings.

We changed LR of the default scenario to 𝐿𝑅 = {0.1, 0.01, 0.001}
and found, that 0.01 is the best choice for benign and adversarial
training regarding the local and global MA and BA, hence a valid
choice for our experiments. A LR or 0.1 is too big destructing the
adversarial models to naïve classifiers and reducing the MA of
benign clients to 30% on average. For LR 0.001, it depends on the
round 𝑟 , where it is used. In early rounds, 0.01 is the better choice to
speed up the federations training process, but in advanced FL rounds

Table 24: MA and BA in the default scenario with a CNN
trained on MNIST [25] with a PDR of 0.3 in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 76.74 2.05
2: Average of benign local models 84.87 0.57
3: Average of poisoned local models 60.73 39.59
4: FedAVG with benign local models 86.51 0.54
5: FedAVG with poisoned local models 63.04 37.77
6: FedAVG with all local models 85.31 2.35

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 86.51 0.54
8: FoolsGold [32] 85.31 2.35
9: Krum [13] 83.79 0.51
10: M-Krum [13] 86.45 0.59
11: Clip [58] 85.13 2.03
12: Clip&Noise [58] 84.13 2.75
13: Flame [66] 86.50 0.50
14: T-Mean [110] 85.13 2.19
15: T-Median [110] 85.13 2.19
16: MESAS 86.59 0.53

Table 25: MA and BA in the default scenario with a
SqueezeNet [41] trained on CIFAR-10 [43] with a PDR of
0.3 in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 53.06 8.3
2: Average of benign local models 56.04 5.67
3: Average of poisoned local models 52.21 40.03
4: FedAVG with benign local models 61.03 5.82
5: FedAVG with poisoned local models 56.33 38.85
6: FedAVG with all local models 60.20 10.32

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 61.30 5.82
8: FoolsGold [32] 60.21 10.32
9: Krum [13] 55.93 5.44
10: M-Krum [13] 58.75 16.17
11: Clip [58] 60.18 10.27
12: Clip&Noise [58] 55.24 4.73
13: Flame [66] 60.78 5.45
14: T-Mean [110] 60.15 10.04
15: T-Median [110] 59.68 8.40
16: MESAS 60.22 10.80

Table 26: Defense runtimes in seconds and overheads in per-
cent.

Defense / Training Runtime

0: FedAVG 0.12
1: Naïve Clustering 7.57
2: FoolsGold [32] 0.14
3 Krum [13] 6.02
4: M-Krum [13] 5.92
5: Clip [58] 2.37
6: Clip&Noise [58] 2.52
7: Flame [66] 7.92
8: T-Mean [110] 7.12
9: T-Median [110] 0.26
10: Auror [86] 12 hours
11: MESAS 24.37

a lower LR naturally increases the accuracies, as in every machine
learning scenario. Hence, the MA can be increased, but it is also
more difficult for the adversary to adapt some metrics within the
defined epochs. Nevertheless, MESAS achieved the same detection
ACC with both settings, thus detecting the naïve classifiers for LR
0.01, which behave similar to a untargeted poisoning attacks, and
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Table 28: MA and BA in the default scenario with GTSRB [91]
as a dataset and PDR of 0.3 and scaled poisoned models re-
garding the Euclidean distance of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 86.62 0.96
2: Average of benign local models 78.43 0.59
3: Average of poisoned local models 62.42 94.38
4: FedAVG with benign local models 85.77 1.06
5: FedAVG with poisoned local models 83.00 90.81
6: FedAVG with all local models 86.19 8.01

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 85.57 31.65
8: FoolsGold [32] 85.12 0.70
9: Krum [13] 88.57 1.15
10: M-Krum [13] 88.08 0.92
11: Clip [58] 86.21 4.39
12: Clip&Noise [58] 14.98 91.72
13: Flame [66] 84.29 13.42
14: T-Mean [110] 86.30 4.26
15: T-Median [110] 74.22 1.61
16: MESAS 85.12 0.70

the models with better accuracies in the 0.001 LR setting. We set
the LR fixed to 0.01 as a good trade-off between both scenarios.

In all our experiments, we keep the PMR as high as possible
without violating themajority assumption of Sect. 3.1. SinceMESAS
does not remove poisoned models with a single test, but prunes
different poisonings gradually, we automatically test lower PMRs
within range [0.0, 0.5[, demonstrating the independence of MESAS
to PMRs.

Since MESAS does not leverage the plain MA values, we set
𝛼 as low as possible, so that the adversary still achieves a high
BA while simultaneously applying a maximum adaption level. We
tested 𝛼 = [0.1, 0.2, ..., 0.9] and found 𝛼 = 0.3 being the most ben-
eficial choice for 𝐴.15 For higher values, the anomaly to a benign
model increases and any defense leveraging the respective metrics
detects the attack even clearer, whereas for lower values, the model
completely focuses on adapting to metrics and ignores the BA, thus

does not enable the backdoor. Consequently, in parallel to the BA,
the MA is low having the same effect as an untargeted poisoning
attack. In such scenarios an adaption to all metrics of MESAS ap-
pears to be very difficult allowing MESAS to be effective. Thus, we
can claim, that MESAS is independent of 𝛼 .

Tab. 27 and Tab. 28 show results for experiments withMNIST [25]
and GTSRB [91] respectively, showing that MESAS is also effective
with varying datasets. MESAS detects the poisoned models with
one FP for MNIST and 100% ACC for GTSRB even if the backdoor
is not yet strong enough to poison the new global model. Further
strengthening of the BA by the adversary would increase the sig-
nificance within the metrics of MESAS.

Table 27: MA and BA in the default scenario with MNIST [25]
as a dataset and PDR of 0.3 and scaled poisoned models re-
garding the Euclidean distance of updates in percent.

Accuracies without defenses MA BA

1: Global model𝐺𝑟 97.60 0.43
2: Average of benign local models 94.30 0.40
3: Average of poisoned local models 91.73 100.00
4: FedAVG with benign local models 97.22 0.45
5: FedAVG with poisoned local models 97.20 100.00
6: FedAVG with all local models 97.24 2.92

Global model accuracies after applying defenses MA BA

7: Naïve Clustering 97.22 0.45
8: FoolsGold [32] 97.22 0.45
9: Krum [13] 95.31 100.00
10: M-Krum [13] 97.26 46.93
11: Clip [58] 97.26 1.74
12: Clip&Noise [58] 86.73 48.05
13: Flame [66] 97.45 3.03
14: T-Mean [110] 97.35 1.91
15: T-Median [110] 96.69 2.15
16: MESAS 97.18 2.15

15Besides adapting to all MESAS metrics, we conducted experiments starting with
only adapting to COS and then adding the other metrics step-wise to find a valid 𝛼 ,
since adapting to all metrics of MESAS simultaneously is not possible in the end.
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