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Abstract. Despite extensive research over the last two decades, control-
flow (or runtime) attacks on software are still prevalent. Recently, smart-
phones, of which millions are in use today, have become an attractive
target for adversaries. However, existing solutions are either ad-hoc or
limited in their effectiveness.
In this paper, we present a general countermeasure against control-flow
attacks on smartphone platforms. Our approach makes use of control-
flow integrity (CFI), and tackles unique challenges of the ARM architec-
ture and smartphone platforms (e.g., application encryption and signing,
closed-source OS). Our framework and implementation is efficient, since
it requires no access to source code, performs CFI enforcement on-the-
fly during runtime, and is compatible to memory randomization (e.g.,
ASLR) and code signing/encryption. We chose Apple iPhone for our ref-
erence implementation, because it has become an attractive target for
control-flow attacks due to its wide spread deployment of native code.
Our performance evaluation on a real iOS device demonstrates that our
implementation does not induce any notable overhead when applied to
popular iOS applications.
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1 Introduction

Although control-flow attacks on software are known for about two decades,
they are still one of the major threats we need to deal with today. Such attacks
compromise the control-flow of a vulnerable application during runtime based
on diverse techniques (e.g., stack smashing or heap overflows). Many current
systems offer a large attack surface, because they still deploy large amounts
of native code implemented in unsafe languages such as C/C++. The target of
attacks range from desktop PCs to embedded systems. In particular, modern
smartphones like Apple’s iPhone and Google’s Android have recently become an
appealing attack target (e.g., [12, 13]).

A general approach to mitigate control-flow attacks is the enforcement of
control-flow integrity (CFI) [1]. This technique asserts the basic safety property
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that the control-flow of a program follows only legitimate paths determined in
advance. If an adversary hijacks the control-flow, CFI enforcement can detect
this divergence and prevent the attack. In contrast to many proposed ad-hoc
solutions, CFI does not only consider a specific attack, but instead provides a
general solution against control-flow attacks. Surprisingly, and to the best of our
knowledge, there exist no published CFI approach for smartphone platforms.

In this paper, we present the design of a CFI enforcement framework for
smartphone platforms. Specifically, we focus on the ARM architecture since it is
the standard platform for smartphones. The implementation of CFI on ARM is
often more involved than on desktop PCs due to the following subtle architec-
tural differences that highly influence and often significantly complicate a CFI
solution: (1) the program counter is a general-purpose register, (2) the processor
may switch the instruction set at runtime, (3) there are no dedicated return
instructions, and (4) control-flow instructions may load several registers as a
side-effect.

Although our solution can be deployed to any ARM based smartphone, we
chose iPhone for our reference implementation because of three challenging is-
sues: First, the iPhone platform is a popular target for control-flow attacks due to
its use of the Objective-C programming language. Second, iOS is closed-source:
We can neither change the operating system nor can we access the application
source code. Third, applications are encrypted and signed by default.

To the best of our knowledge, we provide the first CFI enforcement frame-
work for smartphone platforms. Our solution tackles unique challenges of smart-
phones, does not require access to source code, and can be transparently enabled
for individual applications. Moreover, we launched popular iOS applications as
well as computationally intensive algorithms (such as quicksort) under the pro-
tection of our CFI framework, and can show that our implementation efficiently
handles them. To this end, we first implemented a system to recover the control-
flow graph (CFG) of a given iOS application in binary format. Based on this
information, we perform control-flow validation routines that are used during
runtime to check if instructions that change the control flow are valid. Our pro-
totype is based on library injection and in-memory patching of code which is
completely compatible to memory randomization and code signing/encryption.

2 Background

In this section, we present a brief overview of the relevant parts of the ARM pro-
cessor architecture and the Apple iOS operating system that are closely related
to our work.

2.1 ARM Architecture

ARM features a 32 bit processor and 16 general-purpose registers r0 to r15, where
r13 is used as stack pointer (sp) and r15 as program counter (pc). Furthermore,
ARM maintains the so-called current program status register (cpsr) to reflect
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the current state of the system. In contrast to Intel x86, machine instructions
are allowed to directly operate on the program counter pc (%eip on x86). For
instance, it is possible to load pc with a new value from the stack.

In general, ARM follows the Reduced Instruction Set Computer (RISC) de-
sign philosophy, e.g., it features dedicated load and store instructions, enforces
aligned memory access, and offers instructions with a fixed length of 32 bits.
However, since the introduction of the ARM7TDMI microprocessor, ARM pro-
vides a second instruction set called THUMB which usually has 16 bits long
instructions, and hence, is suitable for embedded systems with limited memory
space.

The ARM architecture procedure call standard (AAPCS) document specifies
the ARM calling convention for function calls [5]. In general, a function can be
called via a BL (Branch with Link) or BLX (Branch with Link and eXchange)
instruction, where both instructions require a pc-relative offset as branch target
(for direct calls). The major difference between BL and BLX is that BLX addi-
tionally allows indirect calls (i.e., the branch target is stored in a register), and
the exchange (often referred to as interworking) from ARM to THUMB code and
vice versa. Both instructions have in common that they store the return address
(which is simply the instruction succeeding the BLX/BL) in the link register lr
(r14). In order to allow nested function calls, the value of lr is usually pushed on
the stack when the called function is entered.

Function returns are simply accomplished by loading the return address to
pc. Since ARM does not feature a dedicated return instruction, any instruction
able to load values from the stack or moving lr to pc can be used as return
instruction. In particular, ARM compilers often use load multiple instructions as
returns, meaning that the return does not only enforce the return to the caller,
but also loads several registers within a single instruction. For instance, many
returns are realized by a compiler as POP {R4,R7,PC}. This POP instruction will
load R4 and R7 with new values from the stack, and also pop the return address
to pc. This unique characteristic significantly complicates control-flow analysis
on ARM.

2.2 Apple iOS

Apple iOS is a closed and proprietary operating system that is mainly based
on Mac OS X and designed for mobile Apple devices such as iPhone, iPad,
and iPod Touch. A remarkable security feature of iOS is that only binaries
and libraries signed by Apple are allowed to execute. This reduces the attack
surface for malicious software. Furthermore, Apple only signs applications after
inspecting the application code. However, Apple provides no information how
code inspection is enforced. Moreover, Apple has only access to the application
binary (not to the source code).

Since iOS v2.0, Apple enables the W ⊕X (Writable xor eXecutable) secu-
rity model, which basically marks a memory page either writable or executable.
W ⊕X prevents an adversary from launching a code injection attack, e.g., the
conventional stack buffer overflow attack [4]. However, advanced attacks such
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Fig. 1. Schematic overview of control-flow attacks

as return-oriented programming (ROP) [17] bypass W ⊕X by combining only
existing code pieces of a vulnerable program and dynamic libraries.

To detect stack overflows, iOS deploys the so-called Stack-Smashing Protec-
tor (SSP). Basically, SSP uses canaries, i.e., guard values that are placed between
local variables and control-flow information, to detect stack smashing attacks. A
canary corruption will abort the execution of the program, thus preventing the
execution of a malicious payload. Moreover, SSP features bounds-checking for se-
lected critical functions (like memcpy and strcpy) to ensure that their arguments
will not lead to stack overflows. However, bounds-checking is only performed for
a limited set of functions. Finally, SSP can not provide protection against heap
overflows or any other kind of control-flow attack beyond stack smashing.

A very recent feature of iOS (since iOS v4.3) is address space layout random-
ization (ASLR). Basically, ASLR randomizes the base addresses of libraries and
dynamic areas such as the stack and the heap, thus preventing an adversary from
guessing the location of injected code (or useful library sequences executed in a
ROP attack). However, existing randomization realizations are often vulnerable
to brute-forcing [18] or leak sensitive information about the memory layout [19].

3 Problem Description

Figure 1 depicts a sample control-flow graph (CFG) of an application. Basically,
the CFG represents valid execution paths of a program. It consists of basic blocks
(BBLs), instruction sequences with a single entry and a exit instruction (e.g.,
return, call, or jump), where the exit instruction enables the transition from
one BBL to another BBL. Any attempt of the adversary to subvert the valid
execution path can be represented as a deviation from the CFG, which results
in a so-called control-flow or runtime attack.

In particular, Figure 1 illustrates two typical control-flow attacks at BBL3:
(1) a code injection attack, and (2) a code reuse attack. Both attacks have in
common that the control-flow is not transferred to BBL 5, but instead to a
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piece of code not originally covered by the CFG. A conventional control-flow
attack is based on the injection of malicious code into the program’s memory
space [4]. However, modern operating systems (such as iOS) enforce the W ⊕
X (Writable xor Executable) security model that prevents an adversary from
executing injected code. On the other hand, code-reuse attacks such as return-
oriented programming [6, 10, 15, 17] bypass W ⊕ X by redirecting execution to
code already residing in the program’s memory space.

Recent news underline that control-flow attacks are a severe problem on
smartphones. In particular, control-flow attacks can be utilized to steal the user’s
SMS database [12], to open a remote reverse shell [13], or to launch a jailbreak [8].
Unfortunately, there exist no general countermeasure to defeat such attacks on
smartphones.

4 Design of our CFI Framework

In this section we introduce the high-level idea of our CFI framework for smart-
phone platforms. Our general architecture is shown in Figure 2. Although the
depicted design applies in general to all CFI solutions, our design requires a num-
ber of changes, mainly due to (1) the architectural differences between ARM and
Intel x86, (2) the missing binary rewriter and automatic graph generation for
ARM, and (3) the specifics of smartphone operating systems.
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iOS Binary 

Control-Flow Graph 
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Fig. 2. Control-flow integrity for iOS applications

From a high-level point of view, our system is separated in two different
phases: static analysis and runtime enforcement. The static tools perform the
initial analysis of the compiled iOS binary file: we first decrypt and disassemble
the binary and then extract the control-flow graph (CFG) and all meta informa-
tion necessary for rewriting a particular iOS binary in the enforcement phase.
We monitor the application at runtime by applying our CFIKit shared library
that rewrites the binary at load-time and enforces control-flow restrictions while
the application executes.
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4.1 Control-Flow Graph Generation

Since no binary instrumentation framework for ARM exists we developed own
techniques to accurately generate the CFG. First, we disassemble the application
binary (step 1). In our case, this is impeded by the fact that iOS executables
are encrypted. We thus obtain the unencrypted code of a binary through process
dumping [9]. The decrypted and disassembled iOS binary is afterwards persis-
tently stored (step 2). Subsequently, we generate the CFG and the rewriting
information for the runtime components (step 3 and 4). The latter contains
information on where and how the rewriting engine should dispatch the applica-
tion’s code to its validation routines. To generate the CFG we developed static
tools that calculate the targets of indirect jumps and calls.

4.2 Load-Time Module: Binary Rewriting

The binary rewriting engine is responsible for binding additional code to the
binary that checks if the application follows a valid execution path of the CFG.
Typically, one replaces all branch instructions in the binary with a number of
new instructions that enforce the control-flow checks [1]. However, replacing one
instruction with multiple instructions requires memory adjustments, because all
instructions behind the new instructions are moved downwards.

Due to the limited possibilities to change iOS binaries (code signing) and
the missing full binary rewriter, we opted for the following approach: Based on
the extracted rewriting information we replace all relevant branches with a sin-
gle instruction, the so-called trampoline instruction. The trampoline instruction
redirects execution to our CFIKit library.

4.3 Runtime Module: CFI Enforcement

The key insight of CFI is the realization of control-flow validation routines. These
routines have to validate the target of every branch to prevent the application
from targeting a BBL beyond the scope of the CFG and the current execution
path. Obviously, each branch target requires a different type of validation. While
the target address of an indirect jump or call can be validated against a list of
valid targets, the validation of function returns require special handling because
return addresses are dynamic and cannot be predicted ahead of time. To address
this issue, CFIKit reuses the concept of shadow stacks that hold valid of copies
of return addresses [7], while the return addresses are pushed onto the shadow
stacks when a function call occurs.

A very challenging issue on iOS are method calls to an Objective-C object.
These are resolved to a call to the generic message handling function called
objc_msgSend. The name of the actual method (called selector) to be called is
given as a parameter. While the traditional CFI approach omits the handling
of direct function calls, our CFIKit has to consider direct calls to Objective-
C objects. Otherwise, an adversary might mount an attack by modifying the
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method parameters of objc_msgSend, thus diverting the control-flow to an in-
valid method. We built upon PiOS [9] and use it to generate call graph informa-
tion for objc_msgSend calls.

5 Implementation

Our prototype implementation targets iOS 4.3.2. We developed the static anal-
ysis tools with the IDC scripting language featured by the well-known disassem-
bler IDA Pro 6.0. Moreover, we used Xcode 4 to develop the CFIKit library.
Our prototype implementation currently protects the application’s main code,
but no dynamic libraries that are loaded into the process. Hence, an adversary
may launch a control-flow attack by exploiting a shared library. We leave support
for shared libraries open to future work. However, it is straightforward to extend
CFIKit accordingly, there are no new conceptional obstacles to overcome. We
now describe how we generate the CFG and the patchfile of an iOS binary, and
in particular present implementation details of our CFIKit library.

Our IDC scripts extract rewriting information and generate the CFG, and
store both in the application bundle. By bundling this information with the
application, we can protect its integrity, as all application bundle contents are
code-signed. Note that our scripts have to be run only once after compilation and
can be integrated as an additional step in the deployment phase of a typical iOS
application. To force the loading of CFIKit into every application started though
the touchscreen, we set the environment variable DYLD_INSERT_LIBRARIES for
the SpringBoard process. This ensures that the loader always loads CFIKit be-
fore any other dependency of the actual program binary. Note that our solution
only requires a jailbreak for performing the two aforementioned tasks. Hence,
our solution can be easily integrated into Apple’s software development cycle.

Once CFIKit has been initialized, it rewrites the application binary on-the-
fly. It mainly replaces branch instructions with trampoline instructions. The
trampoline instruction is a ARM branch (B) instruction and targets a small
piece of optimized assembler code, namely the trampoline itself, that is used
as a bridge between the application to be protected and our CFIKit library.
Specifically, we allocate dedicated trampolines for each relevant branch in the
program, where each trampoline (1) saves the current execution state (e.g., stor-
ing relevant registers), (2) invokes the appropriate CFIKit validation routine,
and (3) resets the execution state and issues the original branch (which is copied
at the end of each trampoline). Because of step (3), we guarantee that all regis-
ters are loaded correctly, even if the branch loads several registers as a side-effect.
Moreover, depending on the replaced branch instruction, we allocate a THUMB
or ARM trampoline to ensure the correct interworking between the two instruc-
tion sets. Another reason for using dedicated trampolines is the following: when
using a single trampoline we would need to find out from where the trampoline
has been called to issue the original branch and to correctly load the involved
registers (for the case the branch loads registers as a side-effect) after a successful
CFI validation. Obviously, one could use the BLX instruction (see Section 2.1)
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as trampoline instruction, and calculate the origin by simply reading the lr reg-
ister. However, note that this approach will destroy the value of lr which may
be needed if a return is realized over a BX lr instruction. Moreover, one has to
record the specific registers to be loaded for each return instruction.

Note that we in particular faced the following challenge: most parts of the pro-
gram code are compiled in 16 Bit THUMB mode. Nevertheless, direct branches
require 32 Bits in THUMB mode. Hence, a 16 Bit indirect branch has to be
replaced with a 32 Bit trampoline instruction. To solve this issue, we replace
32 Bits in the program text (thereby overwriting 2 Thumb instructions). To
preserve the program’s semantics, we execute the instruction that precedes the
branch at the beginning of our trampolines.

However, this approach only works if the mentioned instruction does not
indirectly reference the program counter or is also a branch. In such scenarios,
we use an entirely different approach: upon initialization, we register an iOS
exception handler for illegal instructions. The trampoline instruction is then
simply an arbitrary illegal instruction that will trigger this exception handler.
Since this technique induces additional performance overhead we only use it for
exceptional cases.

Evaluation. We applied CFIKit to a quicksort program that frequently asks for
a control-flow check. Even in this worst-case scenario CFIKit performs quite
well and needs only 81ms to run a quicksort for n = 10, 000 (see Table 1).
Moreover, we successfully applied CFIKit to the iOS Facebook application code
(2.3MB containing more than 33,647 function calls and 5,988 returns) and did
not notice any performance penalties while executing the application. Further,
our rewriting engine only required 0.5s to rewrite the entire application.

n Without CFIKit With CFIKit

100 0.047 ms 0.432 ms
1000 0.473 ms 6.186 ms
10000 6.725 ms 81.163 ms

Table 1. Measurement results for quicksort

To check the effectiveness of our CFIKit , we constructed a sample vulner-
able application and exploit payload based on the attack presented by Iozzo
and Miller [11] (developed for iOS v2.2.1). Specifically, we extended the exploit
to bypass the latest security features on iOS such as ASLR. Our demo attack
exploits the fgets() function and applies principles of return-oriented program-
ming to subvert the control-flow of a vulnerable application and to force a device
to beep and vibrate. When protecting the vulnerable application with CFIKit ,
the attack fails and we successfully prevent an exploitation attempt.
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6 Related Work

Control-flow attacks are a prevalent attack vector since about two decades and a
lot of research has been performed to either exploit such vulnerabilities or to find
ways to protect against them. In the following, we focus on defense strategies
to prevent control-flow attacks and discuss how previous works relates to the
approach presented in this paper.

The basic principle of monitoring the control-flow of an application in order
to enforce a specific security policy has been introduced by Kiriansky et al. in
their seminal work on program shepherding [14]. This technique allows arbitrary
restrictions to be placed on control transfers and code origins, and the authors
showed how such an approach can be used to confine a given application. A
more fine-grained analysis was presented by Abadi et al., who proposed Control
Flow Integrity enforcement [1]. We use CFI as the basic technique and show
that this principle can be applied on the ARM processor architecture to protect
smartphones against control-flow attacks. Several architectural differences and
peculiarities of mobile operating systems complicate our approach and we had
to overcome several obstacles.

XFI [2] is an extension to CFI that adds further integrity constraints for
example on memory and the stack at the cost of a higher performance over-
head. The current prototype of CFIKit does not implement these additional
constraints, but our framework could be extended in the future to also support
such constraints. Again, the adoption to the ARM processor architecture is a
challenge.

In contrast to the original CFI paper and our CFIKit, Write Integrity Testing
(WIT) [3] also detects non-control-data attacks. This is achieved by interproce-
dural points-to analysis which outputs the CFG and computes the set of objects
that can be written by each instruction in the program. Based on the result of
the points-to analysis, WIT assigns a color to each object and each write in-
struction. WIT enforces write-integrity by only allowing the write operation if
the originating instruction and the target object have the same color. As a sec-
ond line of defense, it also enforces CFI to check if an indirect call targets a valid
execution path in the CFG. However, WIT does not prevent return-oriented at-
tacks, because it does not check function returns. Moreover, it requires access
to source code. In contrast, CFIKit can protect an application against advanced
attacks and our tool works directly on the binary level.

HyperSafe [21] protects x86 hypervisors by enforcing hypervisor code in-
tegrity and CFI. Similar to CFIKit, it instruments indirect branch instructions
to validate if their branch target follows a valid execution path in the CFG.
However, HyperSafe only validates if the return address is within a set of possi-
ble return addresses which has been calculated offline. In contrast to HyperSafe,
CFIKit enforces fine-grained return address checks, and does not require source
code. Moreover, the dynamic nature of smartphone applications, prevents us
from calculating return addresses offline.

Native Client (NaCl) [22, 16] provides a sandbox for untrusted native code
in web browsers. In particular, NaCl enforces software fault isolation (SFI [20])
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and lightweight CFI (i.e., the target of an indirect branch is aligned). However,
this still allows an adversary to subvert the control-flow (as long as the target
address is aligned). Moreover, NaCl does not support THUMB code (which is
the standard instruction set on smartphones) and requires access to source code
as well.

7 Conclusion

In this paper, we introduced a general countermeasure against control-flow at-
tacks on smartphone platforms. In particular, we presented a complete control-
flow integrity (CFI) framework for the closed-source Apple iOS. Our solution re-
quires no access to source code, rewrites binaries on-the-fly, and performs control-
flow checks at runtime. Our evaluation demonstrates that we can successfully
mitigate advanced attacks utilizing return-oriented programming. Moreover, our
performance measurements demonstrate that our framework is efficient: it per-
forms well in worst-case scenarios (e.g., computationally intensive algorithms
such as quicksort) and does not induce any notable performance overhead when
applied to popular iOS applications (such as Facebook). In our future work
we aim to enforce security policies on top of CFI, e.g., attestation, a concept
known from the Trusted Computing area, that allows remote verifiers to attest
platforms. In particular, we are interested in runtime attestation, a mechanism
that states if applications have been compromised by a control-flow (or runtime)
attack.
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