XIFER: A Software Diversity Tool
Against Code-Reuse Attacks

Lucas Davi', Alexandra Dmitrienko’, Stefan Nirnberger’, Ahmad-Reza Sadeghi'”’

"Technische Universitat Darmstadt, Germany

ABSTRACT

The enormous growth of mobile devices and their app mar-
kets has raised many security and privacy concerns. Run-
time attacks seem to be a major threat, in particular, code-
reuse attacks that do not require any external code injection
(e.g., return-to-libc or return-oriented programming).

We present, for the first time, a code transformation tool
that completely mitigates code-reuse attacks by applying
software diversity to the binary at runtime. Our tool XIFER
(1) randomly diversifies the code of an application over the
entire memory for each invocation, (2) requires no source
code or any static analysis, (3) can be applied to both Intel
x86 and ARM Linux executables, and (4) induces a negligi-
ble runtime overhead of only 1% in average.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Software Diversity, Runtime Attacks, ARM, x86

1. INTRODUCTION

Smartphones and tablet computers have become extremely
popular with steadily growing sales figures. Probably the
most important success factor for their popularity is the
availability of a vast number of applications, ranging from
games over messaging apps to office applications.

The high number of available mobile apps largely increases
the attack surface on mobile devices: developers of apps are
not necessarily security experts, and hence, apps may suffer
from various vulnerabilities that can be exploited to com-
promise the device and access sensitive information (e.g.,
contacts, SMS, location). This can be observed by the re-
cent discovery of severe vulnerabilities in mobile applications
allowing diverse runtime attacks [6, 7, 9].

In conventional runtime attacks, the adversary injects his
own malicious code into the program’s memory space. How-
ever, data execution prevention (DEP) is an effective coun-
termeasure against these types of attacks. On the other
hand, code-reuse attacks do not require code injection; in-
stead they only exploit existing code pieces residing in the
program’s memory space. For instance, return-into-libc at-
tacks use critical functions of the standard Unix C library.

Copyright is held by the author/owner(s).
83’12, August 26, 2012, Istanbul, Turkey.
ACM 978-1-4503-1528-9/12/08.

*Fraunhofer SIT, Darmstadt, Germany

More sophisticated and general code-reuse attacks such as
return-oriented programming (ROP) [11] chain together small
code sequences from different parts of the application code
(and its included libraries) to generate arbitrary (malicious)
program behavior.

Software Diversity. Cohen presented the idea of soft-
ware diversity (or program evolution) to protect computer
systems and their running software programs against soft-
ware exploits [1]. The basic observation is that an adversary
typically generates an attack vector and aims to simultane-
ously compromise as many systems as possible using the
same attack vector (i.e., one attack payload). To mitigate
this ultimate attack, Cohen proposes to diversify a software
program into multiple and different instances while each in-
stance still covers the entire semantics of the root software
program. The goal is to force the adversary to tailor a spe-
cific attack vector/payload for each software instance, and in
this way make the attack tremendously expensive and thus
reduce its impact.

Further, Cohen argues [1] that diversification of the binary
code is non-trivial and hence advocates complier-based di-
versification that requires access to the source code. Franz [4]
has recently explored the feasibility of a compiler-based ap-
proach, and suggests that app store providers integrate a
multicompiler (diversifier) in the code production process.
However, a compiler-based approach has several shortcom-
ings: First, app store providers have no access to the app
source code. This requires the multicompiler to be deployed
on the developer site, who has to deliver thousands of app
copies to the app store. Second, the proposed scheme re-
quires software update processes to correctly patch app in-
stances, a task that can be highly involved. Finally, the
obvious drawback is that the app instance installed on the
customer’s device remains unchanged until an update is pro-
vided, which increases the chance of an adversary compro-
mising this particular instance.

In contrast, the code transformation approach typically
aims at rewriting machine instructions. A very recent pro-
posal targeting Intel x86 has been made by Pappas et al. [10].
Although the proposed solution can be applied to stripped
binaries, it is static (i.e., it would break the signature of
mobile apps) and cannot prevent conventional return-into-
libc attacks, because all functions remain at their original
position. Further, it requires the distribution of thousands
of instances since diversity is not applied at runtime. At
the same time, Hiser et al. [5] presented instruction location
randomization (ILR), a virtual machine based approach that
randomizes the location of each instruction, and guides the



execution according to a so-called fall-through map. How-
ever, ILR requires static analysis, and induces a higher per-
formance overhead than [10] or our solution presented in this
paper.

Lastly, the well-known memory randomization (ASLR)
can be considered as a special case of software diversity [3].
It aims at providing protection against runtime attacks by
diversifying the application’s memory layout. In particu-
lar, ASLR randomizes the base addresses of loaded process
sections. However, current ASLR realizations are vulnera-
ble to guessing [12] and disclosure attacks [13], because only
the base address of an application is randomized.

Contribution. We present a runtime software diversifier
for mobile devices (for ARM and x86) that tackles the short-
comings of existing mitigation solutions against code-reuse
attacks. Our tool, called XIFER, diversifies a program at
each run without requiring source code. It transforms the
control-flow graph of a program and allows injection and
splitting of nodes. In particular, it randomizes small code
units, the basic blocks (BBLs) in the application’s memory
space, while their size and entropy is derived from a se-
curity parameter. It thereby splits contiguous functions in
individual pieces and randomly distributes them in mem-
ory, which allows for rendering code-reuse attacks such as
return-into-libc and ROP [11] infeasible. This introduces
a highly randomized memory layout, and tremendously in-
creases the randomization entropy compared to proposals
that only reorder functions [8]. Our solution operates en-
tirely at runtime rather than compile- or static analysis time
and performs software diversity for each application run.

2. RUNTIME SOFTWARE DIVERSITY

To limit code-reuse attacks against user applications, we
apply the concept of software diversity, and in particular
propose runtime software diversity as an efficient and practi-
cal mitigation approach. Our diversification is dynamically
performed at load-time, thereby leaving digital signatures
attached to code intact.

G: Original Control-Flow Graph (CFG)

!

Runtime Software Diversifier XIFER

Program
Memory

G*“ Diversified Control-Flow Graph (CFG)
Figure 1: High-Level Idea of XIFER

Basically, a mobile app is represented by its corresponding
control-flow graph (CFG) which covers all valid execution
paths. Each node of the CFG denotes a basic block (BBL),
which consists of a sequence of machine instructions with a
single entry and exit (e.g., branch instructions). Due to the
linear program memory layout, the GFG will be represented

flattened in memory when the program is loaded (see Fig-
ure 1). After the program has been loaded into the memory,
and its signature has been verified, we transform (includ-
ing random code permutation) the layout of the control-flow
graph (CFG) G to G'. The transformed GFG G’ is isomorph
to G, and hence, covers the entire control flows and seman-
tics of the original CFG G.

As core diversification techniques we leverage BBL permu-
tation [2], BBL splitting [1], and injection of new instruc-
tions [1], while the novelty of our approach resides in the
fact that we entirely perform the diversification at runtime
in memory:

e Permutation: We permute BBLs in memory to move
them from their original memory position. For in-
stance, in Figure 1, BBL E is moved from the end
to the middle of the memory space. Moreover, we dis-
tribute BBLs belonging to a single function across the
entire memory space which yields a highly diversified
memory layout.

e Splitting: In addition, we further increase the en-
tropy, by splitting BBLs in multiple BBLs and dis-
tributing them (with the same permutation approach
as mentioned above) across the memory space. The
number of those artificial splittings can be dialed us-
ing a security parameter. For instance, BBL A has
been split in two BBLs A; and As.

e Injection: Finally, we inject new instructions within
a BBL (e.g., BBL B is transformed to BBL B’), and
insert new (dummy) BBLs into the application. To
preserve the program’s semantics, the new code will
perform only nop operations.

Note that G’ only represents one possible control-flow
graph, and the number of possible graph transformations is
extremely high. Hence, our approach overcomes the short-
comings of all existing ASLR-based mechanisms: only for
the BBL permutation we already achieve an entropy of n!,
while n denotes the number of BBLs within an applica-
tion. This means that for a sample 40kb binary with around
250 BBLs, we achieve an entropy of 250! which is already
higher than the ultimate ASLR solution that would provide
an entropy of 2°2 on a 32-bit system. Moreover, besides code
transformation, we randomize the location of each data sec-
tion to achieve a fully-randomized memory layout.

Even if the adversary knows that the application suffers
from a vulnerability, he cannot launch a ROP or return-
into-libc attack, since the location and structure of all BBLs
have been randomized. In addition, our approach is se-
cure against disclosure attacks where the address of a known
function is leaked to the adversary which would normally en-
able him to revert the entire (affected) code segment. This is
due to the fact that all offsets between functions and BBLs
have been randomly changed. Even if the permutation and
the memory layout of one specific instance is known, the
adversary cannot assume that the target device is using this
instance, since our diversification is applied for each appli-
cation run.

2.1 Design of XIFER

The design of XIFER is depicted in Figure 2. The work-
flow is as follows: after the app has been loaded by the OS
linker into the memory, we first disassemble the application



Mobile App

ya - Runtime Software Diversifier XIFER - N\
S D

(3]
Disassembler
(2]

BBL

Runtime Rewriter

Identifier

e

Permutation

CFG G’

£

Figure 2: Design of XIFER

on-the-fly (step 1). Next, we identify all BBLs that belong
to the application and derive the basic control-flow graph
(CFG) of the application (step 2). The next steps (steps 3
to 5) involve the diversification of the application which is
performed within our runtime rewriter. More precisely, we
inject new BBLs and nop instructions into the application,
split BBLs to multiple BBLs, and finally permute the BBLs
in memory based on the output of a Pseudo Random Num-
ber Generator (PRNG). Since we move and inject BBLs in
memory, our rewriter needs to adjust all relative memory
offsets and branch targets.

2.2 Implementation

The core component of XIFER is the binary rewriter which
we implemented for the Android/Linux version for Intel x86
and ARM. The code is entirely written in C++ and consists
of 4130 lines of code.

In summary, the main steps involved in the rewriting pro-
cess of XIFER are (1) loading the executable, (2) disas-
sembling the bytecode on-the-fly, (3) building a reference
graph of the executable, (4) applying code transformation,
and (5) finally writing the executable back to memory (fiz-
ation) so that it can start executing. To accurately rewrite
the app, XIFER only requires relocation information which
is also required to enable conventional ASLR protection.

A particular challenge with regard to BBL permutation
is how to handle conditional branches such as the (ARM)
beq 0x8000 (branch on equal) instruction. For this instruc-
tion the control-flow might either branch to address 0x8000
or implicitly continue at the succeeding instruction. Hence,
moving BBLs in memory would break the program’s seman-
tics if the program implicitly continues after the conditional
branch. To tackle this challenge, we insert unconditional
branch instructions at the end of all BBLs that originally
end with a conditional branch. This removes all implicit
control-flow changes allowing us to randomly split and per-
mute BBLs in memory afterwards.

2.3 Evaluation

We implemented our rewriter and our runtime software
diversifier for the popular Linux ELF executable format.
To measure the performance overhead we performed mi-
crobenchmarks based on a SHA-1 and a BubbleSort algo-
rithm running on a Nexus S device (Android 4). Our results

show that XIFER efficiently performs runtime software di-
versity with an average runtime overhead of only 1%. Fur-
ther, it only induces a load-time overhead of 1s for for dis-
assembling and rewriting a 5MB large executable.

3. CONCLUSION

Our runtime diversifier called XIFER accurately mitigates
code-reuse attacks by diversifying the structure of an ap-
plication at runtime. At the heart of our tool is our bi-
nary rewriter which disassembles application binaries, per-
forms code transformations and assembles new application
instances with new memory layouts for each application run,
while still covering the entire semantics of the initial pro-
gram. Currently, we are performing a large-scale evalua-
tion and are extending XIFFER to support Android native
libraries.

4. REFERENCES

[1] F. B. Cohen. Operating system protection through
program evolution. Computer & Security,
12(6):565-584, 1993.

[2] R. L. Davidson and N. Myhrvold. Method and system
for generating and auditing a signature for a computer
program, 1996. Patent US5559884.

[3] S. Forrest, A. Somayaji, and D. Ackley. Building
diverse computer systems. In Workshop on Hot Topics
in Operating Systems, 1997.

[4] M. Franz. E unibus pluram: massive-scale software
diversity as a defense mechanism. In NSPW, 2010.

[5] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and
J. W. Davidson. ILR: where’d my gadgets go?

[6] V. Iozzo and R. Weinmann. Pwn20wn contest.
http://dvlabs.tippingpoint.com/blog/2010/02/
15/pwn2own-2010, 2010.

[7] M. Keith. Android 2.0-2.1 Reverse Shell Exploit, 2010.
http://www.exploit-db.com/exploits/15423/.

[8] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software. In
ACSAC, 2006.

[9] C. Miller and D. Blazakis. Pwn20wn contest. http:
//www.ditii.com/2011/03/10/pwn2own-iphone-4
-running-ios-4-2-1-successfully-hacked/, 2011.

[10] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
IEEE Symposium on Security and Privacy, 2012.

[11] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In ACM Conference on Computer and
Communications Security (CCS), 2007.

[12] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and
D. Boneh. On the effectiveness of address-space
randomization. In ACM Conference on Computer and
Communications Security (CCS), 2004.

[13] A. Sotirov and M. Dowd. Bypassing browser memory
protections in Windows Vista.
http://wuw.phreedom.org/research/
bypassing-browser-memory-protections/, 2008.



