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ABSTRACT
The increasing penetration of Online Social Networks (OSNs)

prompts the need for effectively accessing and utilizing social net-
working information. In numerous applications, users need to make
trust and/or access control decisions involving other (possibly stran-
ger) users, and one important factor is often the existence of com-
mon social relationships. This motivates the need for secure and
privacy-preserving techniques allowing users to assess whether or
not they have mutual friends.

This paper introduces the Common Friends service, a frame-
work for finding common friends which protects privacy of non-
mutual friends and guarantees authenticity of friendships. First,
we present a generic construction that reduces to secure computa-
tion of set intersection, while ensuring authenticity of announced
friends via bearer capabilities. Then, we propose an efficient in-
stantiation, based on Bloom filters, that only incurs a constant num-
ber of public-key operations and appreciably low communication
overhead. Our software is designed so that developers can eas-
ily integrate Common Friends into their applications, e.g., to en-
force access control based on users’ social proximity in a privacy-
preserving manner. Finally, we showcase our techniques in the con-
text of an existing application for sharing (tethered) Internet access,
whereby users decide to share access depending on the existence of
common friends. A comprehensive experimental evaluation attests
to the practicality of proposed techniques.

Categories and Subject Descriptors
K.4.1 [Computer and Society]: Public policy issues—Privacy;
C.2.0 [Computer-Communication Networks]: General—Secur-
ity and protection
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Privacy enhancing technologies, social networks, access control
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1. INTRODUCTION
Online Social Networks (OSNs) play a key role in today’s com-

puting ecosystem, as social interactions/connections are increas-
ingly used to enhance trust in, and usability of, a growing number
of applications. Popular OSNs, such as Facebook, have become
de-facto providers of online identities and are often used to en-
force verification of personas and information. Numerous applic-
ations leverage technologies like OAuth [24] and OpenID [47] to
authenticate users while relying on third-party services offered by
OSN providers. Others connect to social network profiles and rely
on data harvested from them, e.g., to verify self-reported informa-
tion [45] or detect Sybil nodes [13].

In many realistic scenarios, users need to make access control
decisions involving other (possibly stranger) users, e.g., for shar-
ing rides [2] and cabs [1], to construct distributed computing plat-
forms [42] and online dating services [3], or to base routing de-
cisions for anonymous communications [35, 41]. One important
trust-enhancing factor, potentially guiding such decisions, is the ex-
istence of previously established social relationships. For instance,
an intuitive access control policy may be to only carpool with one’s
friends or friends-of-friends, or to base routing decisions on social
proximity. However, the process of discovering common friends
may harm the privacy of the two parties and that of their friends.
At least one party needs to disclose the identity of his friends and,
depending on the application scenario, this could reveal the iden-
tity of the user, and possibly even information about his lifestyle
and social attitudes.

Motivated by the above issues, this paper presents the design
and the implementation of a framework supporting secure discov-
ery of common friends, which we denote as Common Friends. It
allows two devices to assess whether their owners are friends or
have mutual friends in a given social network, without reciprocally
revealing any information about non-common friends.

We first introduce a generic construction that reduces the prob-
lem to secure computation of set intersection [23] and, at the same
time, ensures authenticity of claimed friends using bearer capabil-
ities [48]. We then propose a very efficient instantiation, based on
Bloom filters [10], that only incurs a constant number of public-
key operations (independent from the size of friend lists). Our pro-
posed framework provides a clear and usable interface for applica-
tion developers, enabling them to support access control decisions
based on users’ social proximity, independently of underlying cryp-
tographic techniques. Finally, we integrate the Common Friends



service into an existing application for sharing Internet connec-
tion [5], whereby users decide whether or not to share based on
the existence of common friends. A comprehensive experimental
evaluation attests to the practicality of proposed techniques.

1.1 Securely Finding Common Friends
As our main building block, we turn to Private Set Intersection

(PSI) [23, 37, 17, 33, 29, 18], a cryptographic primitive allowing
two parties, each inputting its own private set, to interact so that
they only obtain, at most, the set intersection. If one considers the
lists of users’ friends as (unordered) sets, then PSI could be used
to let users only learn the friends they share, by obtaining the set
intersection. Alternatively, if only the number of shared friends
is needed, one could use the Private Set Intersection Cardinality
(PSI-CA) variant [23, 4, 27, 14], which only outputs the magnitude
of the set intersection. Unfortunately, however, with PSI/PSI-CA,
users could include identities of arbitrary friends in their input list
(i.e., claim non-existent friendships). The Authorized PSI (APSI)
variant [17, 15, 11], which extends PSI by ensuring that inputs are
authorized by an appropriate authority, would not work either as it
assumes that only one party’s set is certified and the certification is
performed by a single authority.

The work in [16] addresses the problem of claiming non-existent
friendships by requiring users to provide a proof of prior relation-
ship, via cryptographic credentials. Common friends are (privately)
discovered following a relatively expensive technique resembling
Secret Handshakes [6, 40], where validity of certificates is veri-
fied obliviously to guarantee privacy while enforcing authenticity.
Whereas, our approach is to use bearer capabilities [48] (aka sparse
capabilities or bearer tokens): each user distributes a time-limited,
randomly generated capability to his friends via a secure (i.e., au-
thentic and confidential) channel. Possession of the capability rep-
resents a proof of an existing friendship, thus, users can input it into
a cryptographic protocol, such as PSI, which reciprocally discloses
only their common (authentic) friends. Using this approach, input
sets to the PSI protocol are actually high-entropy objects, generated
from a large space that is impractical to enumerate. Consequently,
we do not need the full security of standard PSI techniques [23,
37, 17, 33] designed to work with potentially “predictable” items,
such as names or identifiers. As we discuss later in Sec. 2.4, the
unpredictability of capabilities allows us to instantiate PSI using a
novel construction based on Bloom filters [10], with appreciably
lower communication overhead and reduced number of modular
exponentiations (constant vs. linear in the number of friends).

1.2 Contributions
In this paper, we present the design and the implementation of

Common Friends, a framework that enables two devices to assess
whether their owners are friends or share common friends in a given
social network. Common Friends combines PSI with bearer capab-
ilities [48] to ensure (1) privacy, i.e., users only learn information
about their common friends, and (2) authenticity, i.e., one cannot
falsely claim non-existent friendships.

In summary, this paper makes several contributions:

• The insight that when input sets include high-entropy items
one can design more efficient PSI schemes than traditional
PSI designed for low-entropy elements and the concrete design
of such a PSI scheme based on Bloom Filters (Sec. 2.4);

• A detailed description of the design and implementation of
a framework encapsulating the secure use of PSI protocols
(independently from the actual implementation/variant) and
bearer capabilities in the Common Friends scenario (Sec. 3).

Our implementations provide a clear interface for developers
to easily integrate Common Friends into their applications
and use social proximity to guide trust and access control
decisions. As a proof-of-concept, we successfully integrate it
with a tethering application for sharing connectivity (Sec. 4).

• A performance evaluation that attests to the practicality of
our solutions (Sec. 5).

2. THE COMMON FRIENDS SERVICE
In this section, we describe the Common Friends service. We

first introduce the desired security properties and then present our
generic system design that reduces to the problem of private set
intersection, followed by an efficient instantiation based on Bloom
filters. Finally, we discuss the security of our proposals.

2.1 Security Goals and Attacker Model
We now define the secure common friend discovery functional-

ity, along with relevant corresponding security goals.

Attacker Model. Before presenting security definitions, we in-
troduce the attacker model. We consider honest-but-curious (aka
semi-honest) adversaries, i.e., participants are assumed to follow
protocol specifications but nonetheless attempt to infer more in-
formation, during or after protocol execution. In particular, we as-
sume that legitimate participants will not disclose, or share, secret
information.

Common Friends. The Common Friends service relies on a two-
party protocol involving “initiator” I and “responder” R, on input
the list of their friends f(IDI) and f(IDR), respectively. (IDI
and IDR denote, respectively, the identity of I and R in a given
social network). Specifically, we rely on three protocol variants
securely realizing three functionality variants, presented in Table 1,
and satisfying privacy and authenticity definitions discussed below.

Protocol R’s output I’s outputVariant
Basic f(IDI) ∩ f(IDR) ⊥

Cardinality-only |f(IDI) ∩ f(IDR)| ⊥
Mutual Output f(IDI) ∩ f(IDR) f(IDI) ∩ f(IDR)

Table 1: Secure Common Friend Discovery Variants.

Initiator’s Privacy. I’s privacy is guaranteed if, on each possible
pair of inputs (f(IDI), f(IDR)), R’s view can be efficiently sim-
ulated on input: f(IDR) and either f(IDR)∩ f(IDI) in the basic
variant, or |f(IDR) ∩ f(IDI)| in the cardinality-only variant.

More precisely, let ViewR(f(IDI), f(IDR)) be a random vari-
able representing the view of the responder R during a protocol in-
teraction with inputs f(IDI), f(IDR). Then, there exists a Prob-
abilistic Polynomial Time (PPT) algorithm R∗such that, in the ba-
sic variant:
{R∗(f(IDR), f(IDR) ∩ f(IDI))}(f(IDR),f(IDI ))

c≡

{ViewR(f(IDR), f(IDI))}(f(IDR),f(IDI ))

or, in the cardinality-only variant:

{R∗(|f(IDR), f(IDR) ∩ f(IDI)|)}(f(IDR),f(IDI ))

c≡

{ViewR(f(IDR), f(IDI))}(f(IDR),f(IDI ))

Responder’s Privacy (Basic and Cardinality-Only Variants). If
the functionality yields no output to the initiator, then responder’s



Description Notation
Entities

Server S
Initiator User I

Responder User R
Generic User (can be either I or R) U

Keys
DH public key of U, I, R, resp. PKU , PKI , PKR

DH private key of U, I, R SKU , SKI , SKR

DH session key between I and R KIR

Data
Certificate of server S CertS

U’s identifier in the social network IDU
Set of U’s friends in the social network f(IDU )

Capability uploaded by user U cU
U’s friends and their capabilities RU ={(IDj , cj ) |

downloaded from S IDj ∈ f(IDU )}
I’s input set to PSI RI ={(cj ||PKI ||PKR) |

(IDj , cj) ∈ RI )}
R’s input sets to PSI RR={(ck||PKI ||PKR) |

(IDk, ck) ∈ RR)}

Table 2: Notation.

privacy is guaranteed if no information is disclosed about its input,
not even the number or the identity of the common friends.

That is, for every PPT adversary I∗ playing initiator’s role, every
initiator input set f(IDI), and any responder inputs (f(IDR)(0),
f(IDR)

(1)) (of equal size), the views of I∗ if responder inputs
f(IDR)

(0) and if responder inputs f(IDR)(1) are computation-
ally indistinguishable.

Responder’s Privacy (Mutual Output Variant). Clearly, when
the functionality yields, as output, the identity of common friends
to both parties, responder’s privacy is defined like initiator’s pri-
vacy, i.e., I’s view should be efficiently simulated with only its in-
puts and outputs. Specifically, let ViewI(f(IDI), f(IDR)) be a
random variable representing the view of the initiator I during a
protocol interaction with inputs f(IDI), f(IDR). Then, there ex-
ists a PPT algorithm I∗such that:

{I∗(f(IDI), f(IDI) ∩ f(IDR))}(f(IDI ),f(IDR))

c≡

{ViewI(f(IDI), f(IDR))}(f(IDI ),f(IDR))

Authenticity (Informal Definition). A user should not be able to
falsely claim to have a common friend with the other party if there
is no such common friend. Obviously, it follows that if the latter
controls access to a resource on the basis of the existence of com-
mon friends, then, the former cannot succeed in getting access to
this resource by claiming non-existent friendships and/or inflating
the number of common friends.

2.2 System Description
Table 2 summarizes the notation used throughout this paper. The

Common Friends service consists of two sub-protocols:

• A capability distribution protocol (Fig. 1) which is executed
periodically by every user in the system, and

• A friend finding protocol (Fig. 2) which is executed between
two users whenever they want to find common friends. (To
ease presentation, we first present the basic protocol variant,
and discuss further variants in Sec. 2.3, 2.4).

Capability distribution. We assume the presence of a server S, in
the form of a social network application, which is used to distrib-
ute capabilities, as depicted in Fig. 1. First, user U and server S

Establish a secure connection	


using CertS (server auth) and pwdU (user auth)	



cU	


Store (IDU, cU)	



RU	



User U! Server S!
Inputs:	


pwdU, CertS	



Input:	


SKS	



RU !
IDj,cj( ) s.t.
IDj " f (IDU )

#
$
%

&%

'
(
%

)%

cU !R {0,1}
160

Figure 1: Common Friends Capability distribution.

establish a secure channel. We use CertS for server authentication
and let the social network authenticate the user based on his pass-
word pwdU . U periodically generates a random capability cU from
a large space (e.g., 160-bits) and uploads it to S via the established
channel. S stores cU , along with the social network user identifier
IDU , and returns the list RU = {(IDj , cj )|IDj ∈ f(IDU )}, i.e.,
the identifiers and corresponding capabilities of each friend of U’s.
This protocol is run periodically in order to keep RU up-to-date.

Observe that RU contains capabilities that uniquely identify U’s
friends. They are distributed over a confidential and authentic chan-
nel, thus ensuring that U cannot claim non-existent friendships.

The capability distribution system is implemented on top of Peer-
Share, a generic scheme for securely distributing data among social
groups, which we developed earlier [43].

Friend Finding. The friend finding protocol involves two users,
I and R, members of the given social network. Let I be the user
that initiates the protocol by contacting user R to find their com-
mon friends. The protocol, illustrated in Fig. 2, starts with I and
R exchanging their (Diffie-Hellman) public keys, i.e., PKI , and
PKR, respectively. The resulting shared Diffie-Hellman (DH) key
KIR will be used for two purposes: (a) to protect the messages
exchanged as part of the Private Set Intersection (PSI) protocol
protocol executed next and (b) to limit access if the PSI protocol
determines that I and R have common friends.

To avoid man-in-the-middle attacks, the DH channel needs be
cryptographically bound to the protocol instance. To this end, rather
than inputing the set RI (respectively RR), I (R) builds the set RI

(RR), by appending DH public keys PKI , PKR to each capability
in RI (RR). This transformation has negligible impact on perform-
ance, as PSI protocols hash each element in the list before further
processing. The resulting sets:

RI = {(cj ||PKI ||PKR) | (IDj , cj) ∈ RI )}, and

RR = {(ck||PKI ||PKR) | (IDk, ck) ∈ RR)}
are used as inputs to the PSI protocol executed next.

Note that the friend finding protocol can trivially be extended
to determine whether two users are direct friends of each other,
provided that each user U adds cU to the list of capabilities given
in input to the PSI protocol.

2.3 PSI vs PSI-CA Instantiations
We now present the PSI instantiations we use to privately inter-

sect users’ capabilities, as stated in the friend finding protocol.
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Figure 2: The friend finding protocol in the Common Friends
service (basic variant). First, I and R run a DH key exchange.
Next, friend capabilities are bound to public keys and input
sets to the PSI protocol are populated. Finally, on completion
of PSI, R learns the common friends (and nothing else).

Available PSI Protocols. A few different instantiations of PSI have
been proposed, with different security models, assumptions, and
complexities. PSI can be constructed using generic Garbled Cir-
cuits [51, 29], Oblivious Polynomial Evaluation [23, 37], or Obli-
vious Pseudo-Random Functions (OPRFs) [26, 32, 17, 33].

According to the performance evaluations in [18], the most effi-
cient protocol is the OPRF-based construction by De Cristofaro and
Tsudik [17]. It is secure, in the presence of honest-but-curious ad-
versaries, under the OneMore-RSA assumption in the Random Or-
acle Model (ROM) [8]. Assuming that m is the size of set held by
one party (the Responder), and n that of the other party (the Initi-
ator), the protocol in [17] incursO(m+n) computational and com-
munication complexities. In particular, the former is dominated by
O(m+n) modular exponentiations (specifically, RSA signatures),
while the latter corresponds to transferring 2n group elements and
m outputs of a cryptographic hash function.

PSI-CA Variants. A possible alternative could be to use a more
restrictive variant that only yields the number of common friends,
and not their identities. To this end, we turn to Private Set Inter-
section Cardinality (PSI-CA) protocols [23, 4, 27, 14]: PSI-CA
allows two parties, each holding a private set, to interact in a cryp-
tographic protocol such that one party learns the magnitude of the
set intersection (and nothing else), while the other obtains nothing.
Clearly, PSI-CA could be used instead of PSI to let users learn only
how many friends they have in common. This corresponds to the
cardinality-only protocol variant presented in Sec. 2.1 On the one
hand, this approach provides strictly more stringent privacy guar-
antees. On the other hand, however, certain application scenarios
may require users to know the specifics of which friends are com-
mon, e.g., to make better informed access control/trust decisions.
In this case, PSI would be the preferred option.

To the best of our knowledge, the most efficient PSI-CA protocol
is presented in [14], with honest-but-curious security in ROM, un-

der the OneMore-DH assumption [8]. Complexities are similar to
the PSI protocol in [17], i.e., linear in the size of sets. Specifically,
computation complexity is dominated by O(m + n) modular ex-
ponentiations (in prime order groups with random exponents taken
from a subgroup), while communication complexity corresponds
to transferring 2m group elements and n outputs of a hash function
(assuming that m is the size of set held by the initiator, and n that
of the responder).

2.4 Improving Efficiency with Bloom Filter
based PSI (BFPSI)

Recall from Sec. 2.2 that capabilities are generated at random
from a large space, thus, they are high-entropy objects and imprac-
tical to enumerate. Consequently, we do not necessarily need to
use traditional PSI protocols (designed to work with low-entropy,
possibly enumerable, items): since input sets only include high-
entropy items, we can rely on more efficient techniques, which
realize the same set-intersection functionality, with same provable
security properties.

Intuition. A straightforward approach for private set intersection
is to let both parties hash each item in their set (using a crypto-
graphic hash function) and send the results to each other. Since
the hash is one-way, parties cannot invert the hash function and
can only learn the set intersection by finding matches between the
received hashes and those computed over their own set items. How-
ever, if set items are low-entropy objects, a malicious party could
test, off-line, for the presence of a given item in counterpart’s set,
regardless of whether or not it belongs to the intersection. As a con-
sequence, PSI protocols need more sophisticated techniques, rely-
ing on public-key cryptography, to prevent parties from succeeding
in such attacks.

On the other hand, if set items are high-entropy objects, e.g.,
generated at random from a large space as in the case of bearer cap-
abilities, then the testing attack would not work since it is imprac-
tical to enumerate sets. Thus, we notice that the use of traditional
PSI is actually an “overkill” and the naive hash-based approach de-
scribed above suffice to realize the private set intersection function-
ality. Besides removing the need for a number of public-key crypto
operations (at least) linear in the size of sets, this approach enables
the use of optimization/compression techniques, like Bloom fil-
ters [10], which we present below. We anticipate that the resulting
Bloom filter based protocol will disclose the identity of common
friends to both parties. Thus, it corresponds to the mutual output
protocol variant, discussed in Sec. 2.1.

Bloom Filters [10]. A Bloom Filter (BF) is a data structure used
to efficiently represent and test sets. Let us consider a set X =
{x1, . . . , xα} of α elements, and an array of β bits initialized to 0.
The notation BF(j) denotes the position j in the BF. The Bloom
Filter uses γ independent cryptographic hash functions h1, . . . , hγ
with range 1, . . . , β, salted with random (periodically refreshed)
nonces so that it cannot be tracked over time. For each element
x ∈ X , BF (hi(x)) is set to 1 for 1 ≤ i ≤ γ. To check whether an
element y is a member of X , we simply test if BF(hi(y)) equals 1
for all 1 ≤ i ≤ γ.

Note that Bloom filters introduce false positives, i.e., an element
might seem present although it was never inserted. The probability
p of false positive can be approximated as:

p = (1− (1− 1/β)γ·α)γ

It follows that the optimal value of γ that minimizes p is:

γ =
β

α
ln 2



Description Notation
Data

Bloom Filter sent by I BFI
Random value chosen by I irand

Random value chosen by R rrand
Challenge set containing HMAC values

csetusing ckey of elements in intersection
Response set containing HMAC values

rsetusing rkey of elements in intersection
RI ∩ RR with possible false positives X ′

Actual RI ∩ RR X
Algorithms

DH Key-Exchange (I) KIR ← DH-Key(SKI , PKR)
DH Key-Exchange (R) KIR ← DH-Key(SKR, PKI)

Message Authentication Code HMAC(key,message)
Key Derivation Function KDF(·, ·)

Keys
HMAC keys used by I and R, resp. ckey, rkey

Table 3: New notation introduced for Bloom Filter based PSI.

Hence, the optimal size of the filter, for a desired false positive
probability p, using the optimal value of γ, can be estimated as:

β =

⌈
− log2 p

ln 2

⌉
× α (1)

where α = max(m,n) in our Common Friends setting, assuming
m is the number of Initiator’s friends and n – that of Responder’s.

Using Bloom Filter based PSI (BFPSI). Fig. 3 illustrates how to
use a Bloom Filter based PSI (BFPSI) to realize the friend finding
protocol. New notation is summarized in Table 3.

As in the generic protocol description, interaction starts with user
I engaging user R, followed by a DH key exchange. I and R use
input sets, RI and RR, respectively, constructed as before. I inserts
every element of RI into a Bloom filter BFI which is then sent to
R. R can now discover the setX ′ of friends potentially shared with
I by testing every element of RR for membership in BFI .

Although the length of the Bloom filter primarily depends on
number of friends I and R have, it is also determined by the false
positive probability value. Observe that p affects not only commu-
nication but also computation overhead since the lower the value of
p is the higher the number of hash operations required to insert one
element into the Bloom filter. Therefore, a practical implementa-
tion cannot afford to choose a value of p that is negligible by the
usual standards for cryptographic algorithms. In our implementa-
tion, we choose p = 10−4. However, we now need to account for
the possibility that the protocol returns more common friends than
there actually exist, due to the small yet non-negligible probability
of false positives. Since the input sets are impractical to enumer-
ate, users cannot maliciously exploit the false positive rate to claim
unwarranted friendships or violate counterpart’s privacy. Nonethe-
less, we need the means for I and R to verify that the output of the
protocol does indeed consist of their mutual friends (and remove
the false positives).

To this end, we introduce a simple challenge-response protocol,
illustrated in Fig. 3, where R asks I to prove knowledge of the cap-
abilities that constitute the set X as follows:
• R first constructs a candidate intersection set X ′ by testing

every element of RR for presence in BFI .
• R then constructs a challenge set cset consisting of HMACs

(key-hashed message authentication codes) computed on every
item in X ′. A freshly generated random key ckey is used as
the key for the HMACs in cset. Note that we need HMACs,
rather than MACs, to ensure the one-wayness of the function.
• R sends cset and ckey, along with a random coin rrand.

ckey, rrand,cset

rset, irand

!rj " RI :BFI . insert(rj )

ckey !R {0,1}
160

BFI

Initiator I! Responder R!
Inputs:	


SKI,PKI,RI	



Inputs:	


SKR,PKR,RR	



SKI, PKI	

 SKR, PKR	



PKR, KIR	

 PKI, KIR	



DH-KeyExchange	



RR !
ck PKI PKR( )

s.t. (IDk,ck )" RR

#
$
%

&%

'
(
%

)%

!X " r # RR  s.t.
BFI .contains(r)

$
%
&

'
(
)

rrand !R {0,1}
160

cset!
HMAC(ckey, x)
s.t. x " X '
#
$
%

&
'
(

irand !R {0,1}
160

rkey!KDF(irand, rrand)

rkey!KDF(irand, rrand)

RI !
cj PKI PKR( )

s.t. (IDj,cj )" RI

#
$
%

&%

'
(
%

)%

rset!

HMAC(rkey, r)

"r # RI  s.t.
HMAC(ckey, r)# cset

$

%
&

'
&

(

)
&

*
&

X!
r, "r # $X  s.t.
HMAC(rkey, r)# rset

%
&
'

(
)
*

Figure 3: Friend Finding using Bloom filter based PSI (BFPSI).

• I can construct HMACs for each element of its own RI using
the received ckey as the key and check whether the resulting
HMAC is present in cset.
• For each of these elements, I computes HMACs with a key
rkey, obtained via a key derivation function using its own
random coin irand and rrand. The resulting response set
rset is sent to R, along with irand.
• R can recompute rkey, construct a HMAC on every element

of X ′ using rkey and check if the resulting HMAC is found
in rset. If it is, then that element is added to X .

Remark: Relying on Bloom filters to realize private intersection
of high-entropy items yields constructions incurring only a con-
stant number of public-key cryptography operations and a reduced
communication overhead – a remarkable performance gain which
we further analyze in Sec. 5.

2.5 Security Considerations
We now analyze the security of our proposed techniques, follow-

ing security requirements outlined in Sec. 2.1.

Authenticity. Our proposed techniques guarantee authenticity of
claimed friendships, via bearer capabilities. These, by definition,
confer the same authorizations on anyone who holds them, One
potential concern is that users could maliciously re-distribute them
to other users. However, we assume that: (1) capabilities are stored
securely, and (2) parties who receive capabilities legitimately (hon-
est but curious) do not share them with others who are not author-
ized to receive them. We argue that such assumptions are reason-
able in the context of the Common Friends service, which is de-
signed to be implemented on mobile devices. These are usually
equipped with software and hardware platform security features
that can ensure application-specific secure storage [38].

Nonetheless, it is trivial to extend our constructions to support
“friendship certificates”, i.e., signatures issued on public keys of



one’s friends. Note that friends can securely exchange public keys
via the server S, in the same way they exchange bearer capabilities.
At the end of the friend finding protocol interaction, once R has
determined the candidate intersection setX ′, it can ask I to confirm
that it possesses a valid friendship certificate from each entity inX ′

Privacy. The proposed techniques reduce the problem of priva-
tely discovering common friends to secure computation of set in-
tersection. Thus, privacy of our proposals stem from the security of
the underlying protocol that Common Friends instantiates, e.g., the
PSI construction in [17], the PSI-CA variant in [14], or the BFPSI
variant we introduce. The security of the latter relies on the fact
that items are taken at a random from a large space, thus, while
we do not claim it achieves security comparable to traditional PSI
protocols, we can demonstrate that the BFPSI construction reveals
nothing besides the intended output.

Initiator’s Privacy (Proof Sketch). We prove that responder R learns
nothing about initiator I’s items outside intended output, regard-
less of the protocol variant. In the basic and cardinality-only vari-
ant, this follows immediately from the security of the underlying
PSI [17] and PSI-CA protocols [14], respectively. Whereas, in the
mutual-output variant (which relies on BFPSI), I’s privacy follows
from the one-way property of the hash functions used to construct
the Bloom filter and the unpredictability of input sets (bearer capab-
ilities). Recall that, in ROM, the hash of an unpredictable function
is a PRF, thus, if R could learn more than the intersection, it would
be violating the PRF properties. That is, let us assume that:

{R∗(f(IDR), f(IDR) ∩ f(IDI))}(f(IDR),f(IDI ))

c

6≡

{ViewR(f(IDR), f(IDI))}(f(IDR),f(IDI ))

Then, there must exist one item c∗ ∈ X ′ s.t. c∗ 6∈ f(IDR) ∩
f(IDI), i.e., BFI .contains(c∗) = 0. Since c∗ is drawn from a

large space (computationally infeasible to enumerate), it must hold
that BF is invertible, thus, the hash function used for constructing
the Bloom filter is not a secure PRF.

Responder’s Privacy (Proof Sketch). Recall that, in the basic and
cardinality-only variants, I has no output from the protocol, and,
R’s privacy immediately stems from the security of the underlying
PSI [17] and PSI-CA protocols [14], respectively, thus, I’s view
should be efficiently simulated with only its inputs and outputs.

R’s privacy in the the mutual-output variant, i.e., protocol in
Fig. 3, is also straightforward. Recall that R sends I cset with the
HMAC of all items in the intersection (which is intended output of
the protocol). Recall that Bloom filters may introduce false pos-
itives, however, if I could learn something about the false positive
found by R, then the HMAC used to construct cset must not be a
secure HMAC. However, this is impossible since, in ROM, HMAC
is known to be pseudo-random [7].

3. FRAMEWORK DESIGN
We now present the design of our Common Friends framework

and discuss how developers can integrate it into their own applica-
tions. We argue that it is crucial to abstract away the details of un-
derlying cryptographic techniques, so that application developers,
who might not be cryptography experts, can easily rely on secure
and privacy-preserving techniques to discover common friends (and
possibly use them to guide trust and/or access control decisions).
Our goal is to do so in such a way that application developers:

(1) can use an intuitive and well-defined API;
(2) only need to specify the kind of functionality they need (e.g.,

finding how many or which common friends);
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Figure 4: Common Friend Service framework. Optional mes-
sage exchanges involving ProcessContainer invocations are used
by PSI protocols that require more than three message flows.

Name Input Output Invoker Description
StartResponder IReq RRes R Triggers PSI
StartInitiator RRes IRes I Triggers PSI; extracts KIR

Process IRes RC R Processes IRes
ProcessContainer M RC R,I PSI variant specific method

getResult - PR R,I Gets final PSI result
and shared key KIR

Table 4: Common Friends service interface.

Notation Description Constituent Data

type Type of Common Friends PSI type, hop length,
service needed number of friends

IReq IRequest supported algorithms, PKI

RRes RResponse accepted type, PKR,
PSI protocol specific payload (RDC)

IRes IResponse PSI protocol specific payload (IDC)

RC Result Container PSI state machine status,
optionally M to send

M Message PSI variant specific content
PR Protocol Result PSI final result, secret key KIR

Table 5: Parameters in the Common Friends service interface.

(3) do not need to refactor their code if a new PSI or PSI-CA
technique (perhaps more efficient or relying on different as-
sumptions) becomes available, but only update the Common
Friends library.

Framework Description. Fig. 4 illustrates how applications can
use the Common Friends service. Tables 4 and 5 summarize the
details of employed methods and containers. To use the Common
Friends service, application instances on a responder device R and
a initiator device I first set up a communication channel between
them. Before starting a PSI instance, I sends a request IReq to R
consisting of (a) I’s Diffie-Hellman Public Key PKI and (b) the
type of protocol I wants to run. Currently, we support two different
types: a protocol that only outputs the cardinality of the intersec-



tion, i.e., PSI-CA, and one protocol that outputs the actual intersec-
tion set i.e., BFPSI (for improved efficiency compared to traditional
PSI).

R’s application instance can choose to accept or reject the pro-
posed protocol type and send a notification to I in either case. On
accept, it starts a protocol run by invoking the StartResponder, with
IReq as an argument. This method performs the first step of the PSI
protocol which returns a response in the form of an RRes message.
R sends RRes to I, which starts its Common Friends service engine.
This returns an IRes message that is transported back to R. R in-
vokes the Process method with IRes as the parameter which returns
a ResultContainer object which contains a status field that can take
one of two values: done or wait, and an optional message M.

The three protocol messages (IReq, RRes, IRes) are mandatory
for all PSI schemes. Some PSI protocols (e.g., PSI-CA in [14])
contain only three flows. They can be acommodated using the
three messages. Others (e.g., BFPSI) may need more message ex-
changes. To accommodate this variation, Common Friends frame-
work allows the possibility of an optional phase that can be repeated
as many times as needed by the PSI protocol being used.

The application instances determine whether to carry out these
optional exchanges by examining ResultContainer returned by the
PSI protocol engine and performing the following operations:
• If it contains a message M then transfer M to peer.
• If its status component is wait, wait for peer to respond. Oth-

erwise (status is done), call getResult to extract PSI result.

While the optional phase is being executed, the application instances
simply act as conduits for their respective PSI protocol engines to
communicate with each other. Depending on the type of PSI, the
result of PSI may be empty for the initiator. As mentioned before,
KIR can be used for subsequent access control.

Plugging in Bloom filter based PSI. To plug the BFPSI protocol
(described in Sec. 2.4) into the Common Friends service, we need
to provide BFPSI-specific implementations of each of the methods
identified in Table 4. Constructing the Bloom filter BFI and test-
ing whether elements of RR are present in BFI are implemented
within the StartInitiator and StartResponder methods, respectively.
The creation of the challenge set (to eliminate false positives) is im-
plemented in the Process method on R and the corresponding cre-
ation of the response set is implemented in the ProcessContainer
method on I. The ProcessContainer method on R processes the re-
sponse set and populates the intersection.

4. IMPLEMENTATION
We now present the implementation of Common Friends on An-

droid, and its integration with an existing tethering application from
our prior work [5].

Framework. We implemented Common Friends (Sec. 3) as a simple
Android service that exposes its interface to third party applications
via Android Interface Definition Language (AIDL) declarations.
Communication between the service and application uses Android
specific AIDL interface. (However, the core service is implemented
in standard Java, thus, could be executed on any device equipped
with a Java Virtual Machine). The application instances on I and R
are responsible for setting up a communication channel to exchange
the protocol messages received from the Common Friends Service.
Protocol messages are containers implemented as Parcelable and
Serializable Android classes, and are opaque to the calling applic-
ations. Application instance on R chooses the protocol variant to
use. Currently our implementation supports PSI-CA and BFPSI,
implemented as plugins in Common Friends framework.

Developers can embed the Common Friends functionality into
their applications by simply adding the Common Friends Service
AIDL interface declaration to their application source tree, together
with the container classes. The framework can also be extended
with additional PSI protocol engines: abstract class AlgorithmEn-
gine provides basic primitives (methods: StartResponder, StartIni-
tiator, Process, and optionally ProcessContainer) for future exten-
sions with new PSI protocols.

PSI-CA. We implemented the PSI-CA protocol proposed in [14],
using the standard Android cryptography provider (Bouncy Castle).
We used Elliptic Curve Diffie-Hellman (ECDH), based on the NIST
P-192 curve [44], to implement both the Diffie-Hellman key agree-
ment (needed for integrating PSI-CA into the Common Friends ser-
vice) and the modular arithmetic operations within the PSI-CA pro-
tocol [14].

Bloom Filter based PSI (BFPSI). To implement the BFPSI pro-
toocol (see Sec. 2.4) we selected a fixed false positive probability of
p = 10−4, and used Bloom filter with length calculated according
to Equation 1. Diffie-Hellman key exchange was as in the case of
PSI-CA. We used HMAC-SHA-1 to instantiate HMAC and SHA-
1 for KDF(·, ·). Bloom filter operations were implemented using
code available from https://github.com/MagnusS/Java-BloomFilter with
SHA-1 as the underlying hash function.

Tethering Application. To demonstrate the applicability of our
techniques to real-world scenarios where access control decisions
are securely made based on the existence of common friends, we
also extended an application for tethering (proposed in our prior
work [5]) by integrating it with our Common Friends service.

The application allows a device to either act as a WiFi tethering
access point, or as a WiFi tethering client. We extend the applic-
ation by allowing a user to choose whether or not to authorize an-
other user to connect to his access point based on whether or not
the two are friends on a given social network or have some common
friends. The device acting as access point is turned into a “hotspot”
using the Android WiFi Manager API, and plays the role of R. It
also opens a Bluetooth socket to listen for incoming tethering re-
quests. Our tethering service is advertised by a specific Universal
Unique Identifier (UUID), which is used in the service discovery.

The device acting as a tethering client plays the role of I, and ini-
tiates Bluetooth service discovery procedure looking for a suitable
WiFi tethering access point. On successful discovery, both applica-
tions establish a Bluetooth connection in RFCOMM mode and run
BFPSI or PSI-CA to learn which or how many friends are common.
Based on gathered information, R decides whether or not to send
the WiFi SSID and password to I over the secure channel (using the
previously established Diffie-Hellman shared key KIR).

Code Availability: Source code of our implementations can be
made available for research use upon request.

5. PERFORMANCE ANALYSIS
This section present an empirical evaluation of the performance

of Common Friends service when using PSI-CA [14] vs. BFPSI
(Sec 2.4). Specifically, we analyze the computational, communica-
tion and energy consumption costs incurred by them.

Computation and Communication Overhead. To measure run-
ning times and bandwidth overhead, we performed experiments
(over 30 trials) on a Samsung Galaxy Nexus smartphone running
Android 4.2 API 17 and a Samsung Galaxy Tablet GT-P3100 run-
ning Android 4.1.2 API 16, connected over Bluetooth.

https://github.com/MagnusS/Java-BloomFilter


Input size

BFPSI PSI-CA
Comm. [s] Comp. [s] Comm. [s] Comp. [s]
avg std avg std avg std avg std

100 0.649 0.061 0.652 0.061 3.053 0.089 2.999 0.24
200 0.646 0.049 1.047 0.062 5.307 0.373 6.401 0.358
300 0.72 0.086 1.33 0.088 7.904 0.212 13.438 0.195
400 0.811 0.066 1.597 0.056 10.099 0.16 20.709 0.799
500 0.816 0.085 1.968 0.099 12.543 0.176 26.535 0.69

Table 6: Average values and standard deviations of computa-
tion and communication time (in seconds) for one BFPSI and
PSI-CA protocol transaction for various input set sizes.

Input size BFPSI PSI-CA
100 2,548 34,833
200 3,424 67,933
300 4,292 100,399
400 5,168 133,222
500 6,036 166,029

Table 7: Total number of bytes exchanged in a protocol run for
increasingly large sets.

We made the assumption that both parties have the same number
of friends and varied this number in the range {100, 200, 300, 400,
500}. The intersection of the sets was always at 10% of the set size.

Processing time. Total average execution time increases linearly
for both protocols as expected, but at different rates (Fig. 7). In par-
ticular, Table 6 shows that, with 5-fold increases in set sizes, com-
putation time for PSI-CA increases by several seconds, whereas,
with BFPSI it increases by less than half a second.

Communication bandwidth. As shown in Table 7, the total num-
ber of bytes exchanged also increases linearly for both protocols.
However, the amount of data exchange is significantly larger for
PSI-CA, by a factor of almost 6 compared to BFPSI.

Power Analysis. It is well-known that energy consumption for
sending/receiving a message increases with the message size [46,
49]. As a result, the use of BFPSI protocol can have a lower im-
pact on battery life, which is crucial for mobile users. To study
this aspect, we performed a power analysis of the Common Friends
service with input sets of 200 items, using two Samsung Nexus
S devices running the CyanogenMod 9.1.0-crespo Android release
and a laptop running a power analysis tool for Android devices
called Little Eye.1 Currently, the tool is optimized for precise power
analysis measurements only on certain device models, but it can be
used for rough estimates on others as well. (In general, power ana-
lysis on mobile devices at the granularity of applications is known
to be a challenging problem [49], however, our estimates suffice to
provide an intuition of power requirements for continuous execu-
tions of the Common Friends service.)

Fig. 5 and Fig. 6 show power diagrams for BFPSI and PSI-
CA protocols respectively, when executed 5 times (x-axis shows
elapsed time and the peaks correspond to the five executions). We
also calculated overall energy consumed by Common Friends dur-
ing each test. Measurements include CPU power and communica-
tion, but exclude power consumed by the device screen. According
to our measurements, BFPSI execution required 0.18 mAh, while
PSI-CA utilized 0.55 mAh, thus indicating that BFPSI protocol
consumes approximately 3 times less energy than PSI-CA.

To confirm that observed differences are not induced by the power
consumption characteristics of the device model we used, we re-
1http://www.littleeye.co/
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Figure 7: Comparison of BFPSI and PSI-CA protocol perform-
ance.

peated the tests on a different device model (Samsung Galaxy S3).
The resulting measurements were 0.12 mAh and 0.38 mAh for
BFPSI and PSI-CA, respectively. Thus, we conclude that ratio of
power consumption between BFPSI and PSI-CA remains the same
across different device models.

Discussion. Instantiating Common Friends with BFPSI clearly of-
fers improved performance compared to using PSI-CA. BFPSI re-
quires fewer computations (constant vs linear number of public-key
operations), lower bandwidth and power consumption. As a result,
the use of BFPSI in Common Friends service is likely to offer a bet-
ter user experience and support more frequent runs. On the other
hand, if one only wants to disclose the number of common friends,
then one needs to tolerate the additional overhead incurred by the
use of PSI-CA.

Finally, observe that traditional PSI and PSI-CA protocols incur
similar complexities (e.g., they both require a number of public-key
operations linear in set sizes). Therefore, we can expect that, when
applied to finding common friends, BFPSI will exhibit performance
gains over traditional PSI protocols very close to those observed
over PSI-CA. This confirms our intuition that, while PSI protocols
are designed to deal with low-entropy input sets, we do not need
their full security in the context of finding common friends, thus
enabling appreciably improved efficiency.

6. RELATED WORK
Motivated by the increasing influence of social networks, a few

techniques have focused on secure operations on users’ social net-
work profiles, such as, matching of common attributes, interests,
and (similar to our work) friends. Li et al. [39] formally analyze
the problem of privacy-preserving personal profile matching and
propose a set of protocols that leverage PSI and/or PSI-CA to se-
curely match attribute sets of different users. Dong et al. [19] rep-
resent a user’s profile as a vector and measure social proximity via
private vector dot product [31], while Zhang et al. [53] extends it to
improve its granularity with finer grained attributes.

Zhang et al. [52] also propose a privacy-preserving verifiable
profile matching scheme which is based on symmetric cryptosys-
tem and thus improves efficiency. It relies on a pre-determined
ordered set of attributes and uses it as a common secret shared by
users. However, the scheme is not applicable to unordered sets of
attributes such as random capabilities (as in our case).

In VENETA [50], Von Arb et al. use PSI for privacy-preserving
matching of common entries in the users’ address books to sup-
port decentralized SMS-messaging via Bluetooth. VENETA does
not address the problem of malicious users claiming non-existent
friendships, but only suggests to limit the size of input sets to 300.
Huang et al. [28] present an Android app that instantiates PSI with

http://www.littleeye.co/


Figure 5: Power Consumption of BFPSI protocol. Figure 6: Power Consumption of PSI-CA protocol.

garbled circuits and lets users privately find common entries in their
address books. Besides being vulnerable to the same potential at-
tack as in VENETA, the work in [28] reports timing values of 150
seconds to match 128 contacts, thus raising concerns about its prac-
ticality, even though Carter et al. [12] recently present a faster pro-
totype implementation based on specialized secure function evalu-
ation protocols.

De Cristofaro et al. [16] present a framework for private dis-
covery of common social contacts. In their scheme, users need
to provide a proof of prior relationship to claim a given friend-
ship (specifically, a cryptographic certificate). Common friends
are privately discovered following a technique resembling Secret
Handshakes [6, 40], where validity of certificates is verified oblivi-
ously to guarantee privacy while enforcing authenticity. However,
this scheme incurs significantly higher computation overhead com-
pared to our solutions relying on bearer capabilities and BFPSI.
Specifically, [16] incurs a number of expensive modular exponen-
tiations linear in the number of friends (and a quadratic number of
modular multiplications) and a communication overhead similar to
traditional PSI techniques.

Our previous work [5] presents a framework for resource shar-
ing (e.g., Internet connectivity) in ad-hoc mobile networks where
users enforce access control based on whether users are friends in
a given social networks or at least have some friends in common.
In [5], we mentioned the possibility of using a social network ap-
plication to exchange capabilities between social network users as
proofs of the friendship relation, and using these capabilities with
available PSI schemes to determine common friends. In contrast,
besides actually constructing and implementing a framework for
secure discovery of common friends, this work shows that tradi-
tional PSI techniques, designed to work with low-entropy set items,
are actually an “overkill.” More efficient solutions, such as the one
based on Bloom filters presented in Sec. 2.4, can be used to sig-
nificantly reduce communication complexity and remove the need
for a linear number of public-key operations. Also, we present the
design of the Common Friends framework, which is intended to en-
able developers to integrate it in their application and use it, e.g.,
to support trust and access control decision based on social prox-
imity. We verify practicality of proposed techniques with an exper-
imental evaluation which shows the significant performance gains
of using BFPSI over traditional PSI protocols designed for low-
entropy items. We also integrate our Common Friends service into
the tethering application sketched in [5], which supports sharing of
tethering connections, and present a full-blown implementation.

Bloom filters have been used in the context of secure protocols
in a number of other scenarios. For instance, privacy-preserving in-
formation matching based on encrypted Bloom filters has been pro-
posed by Bellovin and Cheswick [9] for privacy-preserving data-
base search. Kerschbaum [36] applies them for the protection of
supply chain integrity and mitigate risks of industrial espionage.

Also, Eppstein and Goodrich [20] propose Privacy-enhanced In-
vertible Bloom Filters for secure comparison of compressed DNA
sequences. Clearly, none of these techniques apply Bloom filters
to securely discover common friends and/or for efficient, privacy-
preserving intersection of high-entropy items.

Finally, a few techniques [30, 22, 25, 34, 21] have focused on
improving performance of PSI by introducing assumptions such as
the presence of trusted hardware tokens. Such tokens might need
to be trusted by both parties [30, 22, 25], by only one party [34], or
even untrusted [21]. While efficient, these protocols require hand-
ing over the hardware token, and hence are inapplicable in scen-
arios like finding common friends between stranger devices.

7. CONCLUSION
This paper presented the Common Friends service, a framework

supporting secure discovery of mutual friends, which protects pri-
vacy of non-common friends and guarantees authenticity of friend-
ships. We first presented a generic construction that reduces the
problem of finding friends to private set intersection, while ensur-
ing authenticity of claimed friends via bearer capabilities. Next,
we introduced a very efficient instantiation, based on Bloom fil-
ters, that only incurs a constant number of public-key cryptography
operations. We also integrated Common Friends with an existing
application for sharing Internet connection, whereby users decide
whether or not to share based on the existence of common friends.
A comprehensive experimental evaluation attested to the practical-
ity of proposed techniques.

The protocols described in this paper allow user to detect whether
another user is two hops away in a social graph. As part of future
work, we plan to generalize them to detect friends who are more
than two hops away. We also intend to extend the infrastructure
proposed in this paper to detect other common attributes between
two users, such as shared interests and group membership, and ex-
plore the use of social proximity to support additional access con-
trol decisions (e.g., for cab/ride sharing, routing, impromptu online
dating, or multimedia content dissemination). Finally, whether or
not we can design an efficient Bloom filter based PSI-CA variant
for high-entropy items remains an open question.
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