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ABSTRACT
Federated Learning (FL) enhances decentralized machine learning
by safeguarding data privacy, reducing communication costs, and
improving model performance with diverse data sources. However,
FL faces vulnerabilities such as untargeted poisoning attacks and
targeted backdoor attacks, posing challenges to model integrity
and security. Preventing backdoors proves especially challenging
due to their stealthy nature. Existing mitigation techniques have
shown efficacy but often overlook realistic adversaries and diverse
data distributions.

This work introduces the concept of strong adaptive adversaries,
capable of adapting to multiple objectives simultaneously. Exten-
sive empirical testing reveals existing defenses’ vulnerability in this
adversary model. We present Metric-Cascades (MESAS), a novel
defense method tailored to more realistic scenarios and adver-
sary models. MESAS employs multiple detection metrics simul-
taneously to combat poisoned model updates, posing a complex
multi-objective problem for adaptive attackers. In a comprehensive
evaluation across nine backdoors and three datasets, MESAS out-
performs existing defenses in distinguishing backdoors from data
distribution-related distortions within and across clients. MESAS of-
fers robust defense against strong adaptive adversaries in real-world
data settings, with a modest average overhead of just 24.37 seconds.

CCS CONCEPTS
• Security and privacy→Distributed systems security; •Com-
puting methodologies→ Distributed artificial intelligence.
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1 INTRODUCTION
Federated Learning (FL) enables the collaborative training of a Deep
Neural Network (DNN) among multiple clients [55]. Each client
trains a DNN locally on its own data, incorporating the knowl-
edge from the data into the model parameters. Only the changes
in the trained model parameters are then transmitted to a central
server for aggregation. This approach allows clients to participate
in the federation while adhering to privacy regulations [11, 25, 97],
as the raw data are not shared with third parties. Compared to
centralized learning approaches, FL is also more computationally
effective as it shifts training efforts to the clients, leading to fewer
resource requirements on the server. As a result, FL is already be-
ing applied in multiple application domains [107]. For instance,
in image recognition [48], hospitals are training models collabora-
tively [19, 33, 64, 77, 82, 83, 86], and in Natural Language Processing
(NLP) domain it is used for text prediction [34, 56, 75], sentiment
analysis [6], and personalization [15]. Moreover, FL can be applied
for human mobility prediction [27], visual object detection [50],
and human activity recognition [88]. We refer for more examples
to [43].

In federations, a subset of clients can be controlled by an adver-
sary who submits poisoned updates to the server. These attacks
can be untargeted [26, 44, 103, 106], with the goal to reduce the
prediction performance of the model. Alternatively, targeted poi-
soning attacks, also called backdoor attacks [4, 5, 7, 10, 16, 17, 31, 32,
45, 62, 66, 70, 78, 90, 96, 100, 105], aim to maintain an unobtrusive
performance on regular input but force the model to output a selec-
tive prediction when provided input containing a specific trigger.
Hence, backdoors pose a greater risk, as such attacks are harder to
detect, and the unexpected misbehaviour can harm model users in
real-world applications, such as self-driving cars [46, 63, 110].

Defenses against poisoning attacks follow one of the three strate-
gies: (i) Influence Reduction (IR) solutions try to reduce the impact
of the individual models before or after aggregation to weaken
potential poisoning behavior [3, 5, 61, 92], (ii) Robust Aggrega-
tion (RA) methods enhance robustness of aggregation algorithms
against backdoors [55, 109], and (iii) Detection and Filtering (DF)
approaches detect the poisoned models and filter them out before
the aggregation step [9, 29, 60, 65, 76, 84, 113].

Generally, IR and RA approaches inevitably reduce the perfor-
mance of the benign functionality, while DF methods can suffer
high False-Positive-Rates (FPRs) and False-Negative-Rates (FNRs).
This downside of the DF methods is mainly based on two root
causes: First, defense-aware adversaries may adapt the poisoned
model to be inconspicuous, thus circumventing the defense. Second,
in real-world scenarios, the clients may possess very different data
within the local datasets, which makes it difficult to distinguish if a
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model with uncommon metrics is derived from a poisoned dataset
or just a dataset with uncommon data distributions.
Identifying Problems. In this paper, we focus on DF methods, as
they have the benefit of maintaining benign model performance.
We analyze related work and observe that, even though most so-
lutions were evaluated against adaptive attackers, the meaning
of the "adaptive attacker" is defined differently across different
papers, which makes it difficult to assess their true detection ca-
pabilities and compare them to each other. We also notice that
none of the previous works considered an adaptive attacker with
multi-objective adaption capabilities, i.e., attackers that could try to
adapt to several metrics at once, while nothing prevents real-world
adversaries from following this strategy. Hence, the resilience of all
existing defenses against such strong adaptive attackers remains
unclear. Furthermore, we also identify that all existing positioning
defenses, from all three categories, were evaluated under certain
assumptions made with regard to underlying data distributions. In
particular, while many consider non-identically and independently
distributed (non-IID) data distributions within clients, no single
defense method was evaluated in a scenario with non-identically
and independently distributed data across clients so far.
Contributions. To address the aforementioned problems, this pa-
per makes the following contributions:

• We introduce the notion of a strong adaptive adversary, who
is capable of adapting to FL defenses by balancing multi-
ple adaptation objectives and applying manual invasions on
the model parameters. Leveraging this sophisticated adapta-
tion strategy, we attack and evaluate nine existing defenses,
showing that all these methods can be circumvented, hence
creating a gap between the state-of-the-art defense methods
and realistic scenarios.

• We are the first to point out the fact that previous defenses
were never evaluated in settings where datasets have differ-
ent distributions within and across the clients. We term such
a scenario as inter-client non-IID and demonstrate through in-
tensive evaluation of nine solutions that they are not resilient
in such a setting, which implies their limited real-world ap-
plicability.

• We propose Metric-Cascades (MESAS), a new server-side de-
fense of DF-type for FL, that resilient against our strong
adaptive adversary. MESAS detects backdoors in local mod-
els based on a cascade of six well-chosen metrics and can
identify and filter out both, targeted and untargeted poison-
ing attacks. Further, MESAS is the first defense, that effec-
tively filters backdoors in arbitrary data distribution scenar-
ios, including inter-client non-IID settings, by conducting
statistical tests on multiple metrics and, as such, being able
to distinguish backdoors from unusual data distributions.

• We conduct a systematic large-scale study to analyze the
factors that influence MESAS and demonstrate its indepen-
dence from application-specific factors like datasets, model
architectures, IID scenarios, adaption strategies, and nine
sophisticated poisoning methods. Furthermore, we compare
the performance of MESAS in terms of detection capabilities
and runtime overhead to nine existing defenses. MESAS out-
performs all evaluated methods regarding robustness against

adaptive strategies and in terms of backdoor removal perfor-
mance under realistic inter-client non-IID scenarios. More-
over, it achieves this while incurring a runtime overhead of
only 24.37 seconds on average.

Overall, our work depicts two major weaknesses of existing FL
defenses that are problematic in real-world applications, namely
adaptive adversaries and realistic inter-client non-IID data scenar-
ios. The proposed DF defense, MESAS, effectively prunes different
sophisticated poisonings simultaneously, withstands strong adap-
tive adversaries, and is robust in arbitrary data scenarios including
inter-client non-IID.1

2 BACKGROUND
In this section, we first provide FL fundamentals in Sect. 2.1, fol-
lowed by background information about poisoning attacks and
classical adaptive adversarial models in Sect. 2.2.

2.1 Federated Learning
In a FL [39, 55, 108] framework, multiple clients 𝐶𝑘 ∈ {𝐶1 , . . .𝐶N}
collaborate under the orchestration of a central server to improve
a Deep Neural Network (DNN). The collaborative process involves
each client 𝐶𝑘 training a local DNN model on a local dataset and
subsequently transmitting the result to the server for aggregation.
Thus, the data never leave the client side, improving the privacy of
training data compared to centralized learning. Additionally, the
computational effort is distributed, so that fewer resources need to
be allocated on the server, reducing the costs for infrastructure.

FL is an iterative process, where the central server selects a sub-
set 𝑛 of the N available clients 𝐶𝑖 ∈ {𝐶1 , . . .𝐶𝑛} for each training
round 𝑟 and distributes an (initially untrained) global model 𝐺𝑟 .
Each client initializes its local model 𝐿𝑟

𝑖
=𝐺𝑟 and trains a new local

model 𝐿𝑟+1
𝑖

with the local dataset D𝑖 , based on a predefined algo-
rithm with hyper-parameters, such as learning rate (LR), etc. After
training, the clients submit the model updates U𝑟

𝑖
= 𝐿𝑟+1

𝑖
- 𝐺𝑟 to

the server, which aggregates them into a new global model 𝐺𝑟+1.
There are multiple aggregation methods [9, 24, 60, 109] available for
this step, with Federated Averaging (FedAVG) [55] being the most
commonly used. FedAVG calculates the weighted average of all
the updates using the global learning rate 𝛿 as formalized in [40].2
After aggregation, the new round 𝑟 + 1 is initialized by S.

2.2 Poisoning Attacks in Federated Learning
In the following, we distinguish between untargeted and targeted
poisoning attacks [94, 104] and discuss the two methods that are
applied to launch those attacks, namely data and model poisoning.
Untargeted poisoning aims to reduce the model prediction per-
formance of the global model 𝐺𝑟+1 on a benign test dataset that
contains samples with correctly labeled predictions, which we refer
to as model accuracy (MA) (cf. [40]). To name an example, the ad-
versary can assign an incorrect label for each sample in the dataset,
thus misdirecting the model during training.

1We provide an extended paper version containing more results in [40].
2Originally, FedAVG assigns weights to updates according to the respective sizes of the
local datasets. However, in situations where the presence of adversaries is a possibility,
an equal weighting scheme is employed to thwart any attempts by adversarial clients
to amplify their influence by reporting increased dataset sizes.
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Targeted attacks, also called backdoor attacks, strive to force a
DNN to produce attacker-chosen mispredictions when fed with in-
puts that contain attacker-chosen features, so called triggers, while
maintaining a high MA on regular data. As an example for a trigger,
a red pixel or any other unique pattern can be embedded inside an
image [5, 32, 51]. In more detail, an adversary, who controls one
or more clients within a federation, tries to submit poisoned local
models to the server, so that the aggregated model 𝐺𝑟+1 outputs a
predefined target prediction when provided with an input sample
containing the trigger, with target and trigger being chosen by the
adversary. An effective attack has high prediction performance,
called backdoor accuracy (BA), on triggered input tested with a
dataset that contains only triggered samples (cf. [40]). We attest a
successful attack for a BA bigger than 60% in the global model.
Data poisoning [91] describes the process of converting a be-
nign into a poisoned dataset by assigning malicious labels and, for
backdoors, adding triggers. A model trained on that dataset then in-
cludes the malicious behavior. Thereby, the poison data rate (PDR)
defines the fraction between benign and poisoned samples and can
control the balance between attack effectiveness and stealthiness.
Model poisoning allows arbitrary manipulation of the whole train-
ing process, e.g., changing hyper-parameters and loss functions.
Additionally, the model can be modified manually before, during, or
after training. Mostly, this method is applied to improve the BA or
to adapt to defenses, but can also be used to implement untargeted
attacks without data poisoning. To adapt to a defense while main-
taining high MA and BA, an additional objective (𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛)
can be added to the loss function for the MA and BA (𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴),
which is also called constraining [5, 23]. As shown in Eq. 1, the
objectives are weighted by 𝛼 , allowing the adversary to prioritize
between performance (MA/BA) and adaption intensity and conse-
quently stealthiness.

𝐿𝑜𝑠𝑠 = 𝛼 · 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 + (1 − 𝛼) · 𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛 (1)

A classical adaptive adversary creates a loss function for the de-
ployed defense and applies Eq. 1 to bypass the defensive measure3.
Additionally, the updates of a poisoned local model can be scaled
regarding the Euclidean distance to strengthen the influence on the
aggregated model, hence increasing the BA. Training with a poi-
soned dataset combined with scaling is called train-and-scale and
adaption combined with scaling is called constrain-and-scale [5].

The goal of a defense against poisoning attacks is to create a
situation, where 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 and 𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛 cannot be perfectly
optimized simultaneously so that the adversary is faced with a
trade-off between an effective attack and adapting to the defense,
which is called adversarial dilemma [28, 76].

3 PROBLEMS AND DEFINITIONS
In this section, we define our threat model including the concept of
a strong adaptive adversary in Sect. 3.1. The concluding Sect. 3.2 is
devoted to the problem of arbitrary data distributions.

3The adversary can adapt to any objective and most likely aligns to the metrics of
defenses, but is not restricted to those.

3.1 Threat Model
We analyze a classical FL system as depicted in Sect. 2.1. The aggre-
gation server applies FedAVG with a fixed global LR of 𝛿 = 1. We
consider an adversary, who captures multiple clients 𝐶𝑖 which are
then denoted as 𝐴 𝑗 ∈ {𝐶1 , . . .𝐶𝑛} and can conduct any data and
model poisoning attacks (cf. Sect. 2.2). The adversary is aware of
the code running on the aggregation server, including the details of
defense mechanisms, which provides the necessary knowledge for
adaption attempts. Analogous to related works [3, 9, 60, 65, 76, 84],
we consider 𝑛/2 + 1 benign clients (majority assumption) in each
training round 𝑟 . Since it is uncertain if adversaries participate in a
round 𝑟 , the server weights all model updates equally with 1/𝑛. In
contrast to previous works, we do not make any assumption about
the data distributions [114] within or across clients’ dataset.
Problem of an adaptive adversary. DF defenses against poison-
ing attacks in FL are based on custom metrics. An adversary can try
to circumvent the defense by adapting the value of the respective
metric used for detection derived from the locally crafted poisoned
model to a benign value during training4. As a state-of-the-art tech-
nique for this challenge, Eq. 1 is used to consider multiple objectives
and simultaneously allowing the adversary to weight between bet-
ter prediction performance (MA and BA) and higher adaption level
via 𝛼 . This adaption method from Eq. 1 works well in two cases:
1) For only one adaption loss, since 𝛼 can then balance the im-
portance of main task and adaption properly and 2) for multiple
adaption losses, where the different adaption losses summed to one
value. The latter scenario works only well if all losses are at the
same scale, as different components of adaption losses cannot be in-
dividually tuned. For example, if 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 = 10 and 𝐿𝑜𝑠𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑜𝑛
consists of two losses 𝐿𝑜𝑠𝑠1 = 1 and 𝐿𝑜𝑠𝑠2 = 0.0001, the second
adaption loss will have only a negligible effect on the model’s pa-
rameters since the value is already close to zero and the learning
algorithm will try to minimize the other losses instead. Therefore,
the underlying metric will not be adapted properly.
Definition of a strong adaptive adversary. We propose a strong
adaptive adversary, who is able to adapt to multiple metrics simulta-
neously, independent of the value scales. Therefore, the adversary
first scales all losses to the maximum loss value once (cf. 𝜆 values
in Eq. 2). This has the effect, that all adaption objectives and the
main task are considered equally. Afterward, the adversary can still
weigh the adaption level via 𝛼 .

𝐿𝑜𝑠𝑠 = 𝛼 · 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 + (1 − 𝛼) · (𝜆1 · 𝐿𝑜𝑠𝑠1 + 𝜆2 · 𝐿𝑜𝑠𝑠2 + · · · ) (2)

Further, the adversary can simultaneously exclude specific parame-
ters from training or replace parameters in the final model, e.g., with
parameters of a previously benign trained model on the client’s
unpoisoned dataset, which we call fixation. The attacker can choose
among multiple poisoning attacks, hence can use any existing
method to embed a targeted poisoning attack in the local model.
Additionally, advanced scaling methods and other classical model
poisoning approaches can be applied.5

Regarding an adversarial-captured client, it is essential to rec-
ognize that the entire client device falls under adversarial control,

4To acquire a benign value, the adversary can train a benign model first.
5We provide results for attacks conducted by a strong adaptive adversary against FL
defenses in Sect. 5.2 and discuss other adaption strategies that we evaluated in Sect. 6.1.
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𝒟1 𝒟2 𝒟3

Classical
non-IID

Inter-client
non-IID

Different strategy

IID

Same strategySame distribution

Different distribution

Figure 1: Comparison of various data distributions: IID, clas-
sical (intra-client) non-IID, and inter-client non-IID strategy
for three client datasetsD1,D2, andD3 with 10 label classes.

granting the adversary full access to employ any adaptation strat-
egy. Additionally, the adversary can leverage any supplementary
hardware resources, thereby eliminating the assumption of limited
computational power on the adversary’s device.

3.2 Inter-Client Non-IID
Below, we discuss the problem of varying data distributions in FL
and define inter-client non-IID as a new challenge thereafter.
Problem. DF defenses in general inspect the clients’ local model
updates to detect abnormal situations based on the assumption,
that the majority of clients are benign (cf. Sect. 3.1). Thereby, they
leverage the fact that trained models’ parameters reflect the char-
acteristics of the underlying data as well as their distributions. It
is easier to establish that models are similar if all clients possess
similar data, e.g., there is the same amount of samples from each
class in a classification task. This situation is called identically and
independently distributed (IID) and is visualized in the first row
of Fig. 1. In poisoning attacks, the underlying data need to change
to introduce, e.g., backdoor behaviour, which inevitably manifests
in changes in some parameters.

The second row of Fig. 1 visualizes the classical non-IID sce-
nario, which is typically considered in the evaluation of backdoor
defenses. Here, the data inside the client’s local dataset (intra-client)
are diverse, yet data distributions are similar across clients. Upon
analysis of benign local models in this situation, they all will show
a similar distance to the previous global model due to the similar-
ity of distributions across clients. Existing DF defenses leverage
this fact and can filter poisoned models, which are trained on a
deviant data distribution due to data poisoning. However, defenses
are not optimized for scenarios with different data distributions
across clients, which we term inter-client non-IID. Such scenarios,
as visualized in the third row of Fig. 1, are the most challenging to
detect but also represent the most realistic real-world situation.
Definition of Inter-client non-IID. In Inter-client non-IID setting,
the data within the clients’ local dataset can follow arbitrary dis-
tributions inside and across the datasets without any assumptions
made regarding sample frequencies or the availability of samples
for a specific class. Thus, this definition also includes cases with
disjoint data, as illustrated in row three of Fig. 1, where labels of
classes 3 and 6 are not available within dataset D3.6

6We evaluate FL defenses in inter-client non-IID scenarios in Sect. 5.3.
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Figure 2: Overview of MESAS.

4 MESAS
In this section, we present our new defense against poisoning
attacks, Metric-Cascades (MESAS). We first provide a high-level
overview in Sect. 4.1, followed by explanations of the underlying
intuitions in Sect. 4.2 and providing lower-level details in Sect. 4.3.

4.1 Overview
MESAS is a DF-based defense method which is applied on the
central aggregation server before the aggregation step. To pre-
vent strong adaptive adversaries from circumventing the defense,
MESAS filters poisoned models in a cascade of six well-chosen met-
rics7, that affect each other and cannot be optimized simultaneously,
thus tightening the adversarial dilemma for the attacker. Further,
MESAS analyses the sixmetrics with numerous statistical tests, thus
allowing the defense to be effective also in inter-client non-IID sce-
narios and independent of the application scenario. Those statistical
tests are also superior to hard thresholds in identifying scenarios
without any attack and hence allow MESAS to not negatively af-
fect the convergence of the federation. Moreover, the statistical
tests utilized exhibit a higher level of effectiveness compared to
threshold-based methods in accurately detecting scenarios with-
out attacks. As a consequence, the integration of these tests into
MESAS ensures that the convergence of the federation remains
unaffected, thus preserving its overall performance and stability
even if the defense is applied in every round.

In a nutshell, MESAS consists of four major steps that can be
retraced in Fig. 2: 1) After the local updates have been transmitted
to the server, MESAS extracts six carefully chosen metrics from
the local models and the global model. Thereafter, those metrics
are analyzed individually in an iterative process. The metrics are
extracted for the whole model, but also from each layer individ-
ually, to detect poisonings distributed over the whole model, but
also locally embedded ones8. 2) Each metric passes through a sig-
nificance analysis consisting of statistical tests, that spot evidence
of a poisoning attack within the metric values. 3) If indication is
provided, the respective values are clustered into two clusters and
the models belonging to the values within the smaller cluster are
marked as malicious. 4) After each metric is analyzed, the marked
models are excluded in a pruning step and the analysis starts over
on the remaining models until no statistical test reports significant
7To the best of our knowledge 4-out-of-6 utilized metrics, namely COUNT, VAR, MIN,
and MAX are novel and have never been considered in existing defenses.
8Naïve implemented backdoors are only embedded within the last few DNN layers.
However, more sophisticated backdoors can reside within different locations, e.g.,
layers, inside the model parameters.
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Figure 3: Simplified visualization of FL models with two pa-
rameters. The left graphic shows that benign and malicious
models differ in one or multiple dimensions. On the right,
we depict that benign and malicious models can have the
same COS metric due to the same angel to the global model.

evidence for an attack. Finally, the normal FL procedure continues
with the remaining local models getting aggregated to the new
global model.

4.2 Metrics Intuition
DNNs are complex multi-dimensional non-linear functions. An ex-
ample of DNN with around eleven million trainable parameters is
ResNet-18 [37]. For a better explanation of our metrics, however,
we will use a simplified function, which is linear and only has two
parameters (or dimensions): 𝑓 (𝑥) = 𝑝1 · 𝑥 + 𝑝2. With this, we can
visualize model parameters 𝑝1 and 𝑝2 in a 2D plot (cf. Fig. 3), which
won’t be possible for a more realistic multi-dimensional function.

As visualized in the left graphic of Fig. 3, an adversary conducting
a poisoning attack in FL needs to significantly change at least some
model parameters of one or many poisoned local models in order
to affect the behavior of the new global model. Otherwise, the
respective parameter, and, thus, the new global model will align
with the benign behaviour of the majority of clients (cf. Sect. 3.1)
after aggregation. Hence, benign trained local models that learn
similar behavior will be similarly distributed around the new global
model after aggregation, since FedAVG decides for the average of
all contributions. A malicious model, depicted in red color in Fig. 3,
must be located in a significantly different location than the benign
models depicted in green to influence the averaging of FedAVG.

MESAS is based on a set of six well-chosen metrics, that are
extracted from local models. Technically, extraction of the metrics
is a straightforward task that only needs to be conducted once for
each local model within each FL round 𝑟 . The metrics can identify
malicious models or updates based on different characteristics, like
magnitude, direction, orientation, functionality level, and outliers,
which we will explain in detail in following.
Magnitude and Direction. The two metrics to detect deviations
in magnitude and direction of benign and malicious models, which
have also been used by other works [9, 29, 60, 65, 76, 109], are
Euclidean distance (EUCL) and Cosine distance (COS) measured
between the locally trained models 𝐿𝑟+1

𝑖
and the original global

model of the round 𝐺𝑟 . These metrics are depicted in Fig. 4.
Orientation. Two models with the same COS might significantly
differ from each other, as depicted in the right graphic of Fig. 3,
as COS alone is insufficient to reflect the direction. Therefore, the
orientation of the Cosine from 𝐺𝑟 can further differentiate two
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Figure 4: Visualization of locally trained models 𝐿𝑟+1
𝑖

deviat-
ing from the global model 𝐺𝑟 in COS and EUCL. The figure
also depicts how the angle 𝛽 changes after scaling the update,
thus provoking a change in the COS metric of MESAS.

models. To incorporate this difference into a value, we propose
COUNT, a novel metric that counts how many parameter values
are increased from the respective parameter of the global model𝐺𝑟

during training. This metric provides a measurement to detect sub-
stantially different models, that exhibit inconspicuous similarities
in COS. Moreover, the COUNT formula (cf. [40]) incorporates the
sign function, which prevents straightforward adaption by adver-
saries. Specifically, attempts by adversaries to introduce an extra
objective mirroring the COUNT formula into the loss function are
rendered ineffective. The reason being that learning algorithms
cannot effectively propagate changes to the underlying model pa-
rameters through a sign function, given its constant zero gradient.
As a result, the utilization of this metric enhances the robustness
of the system against adaptive adversaries.
Functionality Level. Due to the many parameters of a DNN, there
can exist models with poisoned behavior, that have metrics COS,
EUCL, and COUNT similar to benign models. Such a situation can
occur, e.g., if the parameters of a model posses significantly different
variance, as visualized in Fig. 59. We leverage this variance as metric
(VAR) in MESAS and interpret it as functionality level, since a
different VAR is a clear indication of divergent model behaviour.
Outliers. As with any other variances, VAR is not affected by a few
extreme outliers. Therefore, to catch those, we additionally inves-
tigate two more novel metrics: MAX and MIN, which extract the
maximum/minimum parameter distance between all the parameters
of local models 𝐿𝑟+1

𝑖
and a global model 𝐺𝑟 .10 VAR combined with

MAX and MIN provide a reliable metric for the functionality level
and allow testing for poisoned models. Similarly to the COUNTmet-
ric, the outlier metrics significantly enhance the system’s resilience
against adaptive adversaries. Specifically, the formulas for MIN and
MAX (cf. [40]) can be incorporated as supplementary objectives
in the loss function. However, it is noteworthy that the resulting
changes are confined to the parameter responsible for reflecting the
particular metric value. Consequently, other components within
the model may undergo escalation in the metric while the actual
outlier gets adjusted. This strategic attribute compels adversaries to
employ additional measures, such as applying clipping mechanisms

9As highlighted in Fig. 5, the VAR can be increased, but of course also a significant
decrease is possible.
10We take the minimum distance bigger than zero for MIN by leveraging a nonzero
function (𝑛𝑧). Thus, MIN analyzes real model changes and ignores parameters that
have not been changed.
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Figure 5: Simplified visualization of FL models with multi-
ple parameters highlighting the functionality level based
on the parameter value variance. The left shows a benign
situation and the middle a poisoned model can have a bigger
(or smaller) level. The figure on the right depicts, that the
variance is not affected by maxima (and minima).

after model training is finished, to adjust remaining outliers in MIN
and MAX to mount stealthy attacks.
Interrelations between metrics. The selection of the aforemen-
tioned metrics was based on their inherent interrelations. For an
adaptive adversary attempting to adjust to the EUCL metric, suc-
cess can be achieved through scaling or introducing additional
objectives in the loss function. Both these approaches are likely
to influence the COS metric. However, if the adversary adapts to
the COS metric, they might exploit a stealthy situation as depicted
in the right graph of Fig. 3. Nevertheless, such a scenario would
have an instant impact on the COUNT metric. Furthermore, mali-
cious behavior could be introduced by manipulating the variance of
the model parameters, while remaining inconspicuous in terms of
EUCL, COS, and COUNT metrics. However, the VAR metric would
be capable of detecting such a situation. Further, a seemingly benign
VAR constructed by employing extreme outliers, as visualized in the
right graph of Fig. 5, would immediately generate abnormal values
in MIN or MAX metrics. Due to the specific properties of certain
metrics, namely COUNT, MAX, and MIN, which are non-trivial
to adapt with additional objective functions11, MESAS effectively
counteracts adaptive attacks.

4.3 Pruning Loop
The filtering process consists of three steps: statistical tests, cluster-
ing, and pruning (2-4 in Fig. 2). In every filtering round, each metric
traverses the procedure independently. After each round, the mod-
els filtered based on any metric are excluded from the next round.
This iterative pruning loop continues until the statistical tests do
not report any significance for the presence of a poisoning attack
anymore. Due to the iterative nature of this filtering procedure and
the individual analysis of each metric, different types of poisoning
attacks can be filtered within one run of MESAS.
Statistical Tests.When provided with a set of metric values, which
always contain one value per local model, the statistical tests first
extract the median value, which is considered as benign due to the
majority assumption (cf. Sect. 3.1). Afterwards, multiple statistical
tests are conducted to check if all metric values are distributed
equally around the median value, as one would expect from be-
nign models. Therefore, MESAS checks if the metric values with
bigger values than the median and the metric values with smaller

11We discuss this in the respective metric sections above.
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Figure 6: Depiction of a statistical test setup with significant
p-value in ST-T indicating a varying mean between 𝑙1 and 𝑙2.

values as the median follow the same distribution. For that pur-
pose, the bigger and smaller metric values are converted to two
lists 𝑙1 and 𝑙2 containing the absolute distance from the value to
the median, as shown in Fig. 6. Then, the two lists pass through
the tests. At first, a T-Test [52] (ST-T) is conducted to check for
equal means. Since two distributions can have the same mean but
different variances, a Levene’s test [47] (ST-V) is appended. Finally,
a Kolmogorow-Smirnow-Test [53] (ST-D) for equal distributions
is leveraged. Following the same reasoning we provided for the
metrics VAR and MAX, the aforementioned tests are not signifi-
cantly influenced by outliers. Therefore, we additionally analyze
the original metric values regarding the 3𝜎 rule [72] (ST-3𝜎). Values
outside the 3𝜎 interval are marked as significant outliers.

In Fig. 6, the metric values of benign and malicious models are
listed. The mean of all metric values (dark blue) is used to separate
the values into two lists 𝑙1 and 𝑙2. Those lists represent the benign
and malicious models, respectively, and are graphically observable
by the lines between the metric values and the median. Note, that
the median of the benign values (light blue) and the median of the
malicious values (purple) have a significantly different distance to
the median, which results in a highly significant result in ST-T. ST-T,
ST-V, and ST-D deliver a p-value12, which is also called significance
level and is used to determine if a poisoned model is found.
Clustering and Pruning. After a significant statistical test (step
2 in Fig. 2), MESAS leverages Agglomerative Clustering [67] with
two fixed clusters based on the Euclidean distance to cluster the
significant metric values (step 3 in Fig. 2). Afterwards, the local
models behind the metric values within the bigger cluster are con-
sidered as benign based on the majority assumption and the other
models are marked as malicious and excluded by the pruning step
of MESAS (step 4 in Fig. 2).
Overall, MESAS is robust against sophisticated poisoning attacks
through an in-depth analysis of model weights using six interdepen-
dent metrics. As a result, if a strong adaptive adversary attempts to
circumvent one metric, the artifacts of the poisoning attack will in-
evitably manifest through one of the other metrics. Further, MESAS
adapts to the application domain including complicated non-IID
data scenarios by leveraging statistical tests, instead of relying
on hard thresholds. We provide the formulas of the metrics and
additional information about MESAS in [40].

12A p-value indicates how likely it is that the underlying data could have occurred
under a null hypothesis. In our case, the null hypothesis is, that the two lists contain
samples from equal distributions, thus having equal mean and variance.
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5 EVALUATION
In this section, we conduct a rigorous analysis of MESAS and ex-
plore the impact of various parameters and application-specific
factors like datasets, model architectures, underlying data distribu-
tions, poisoning methods, and attack adaptive strategies, as well as
performance overheads.

5.1 Experimental Setup and Scenarios
Hardware and Software. We execute the FL system consisting of
a configurable amount of clients on one server and implement the
code in PyTorch [71, 93], a well-knownmachine learning library for
Python [98].13 The individual client and server code is executed se-
quentially on the server running with an AMD EPYC 7413 24-Core
Processor (64-bit) with 96 processing units and 128GB main mem-
ory. An NVIDIA A16 GPU with 4 virtual GPUs each having 16GB
GDDR6 memory is accessible via CUDA [68] from PyTorch.
Datasets and Models. We chose similar settings to FL defenses
in related works and focus mainly on image classification with
CIFAR-10 [41], GTSRB [89], andMNIST [21].We use ResNet-18 [37],
SqueezeNet [38], and a CNN model architectures. Additionally, we
investigate into the text domain by training a DistilBERT [80] trans-
former model on SST-2 [87] sentiment analysis dataset.
Default Scenario.We train the CIFAR-10 [41] image classification
task (ten classes) on a ResNet-18 [37] model with LR 0.01 (SGD
optimizer, momentum 0.9, decay 0.005), a batch size of 64, and ten
local training epochs. The federation is a realistic setup, which
consists of N = 20 clients, which are all selected each round 𝑟 (𝑛 =

20). The data are IID distributed and each client has 2560 samples,
256 randomly chosen from each class. The adversary captures nine
clients leading to a poison model rate (PMR) of 0.45, which is the
maximum rate for this amount of clients. He sets the poison data
rate (PDR) to 0.1, 𝛼 to 0.3, utilizes the adaption strategies from
Sect. 3.1 and implements a pixel trigger backdoor [32], which adds
pixel pattern, a sticker, or similar as a trigger to the sample [5, 32, 51].
The global model 𝐺𝑟 is already trained 50 benign rounds and was
originally initialized with pre-trained weights from PyTorch, with
the first and last layers being untrained since both needed to be
changed according to our dataset.14

Defenses.We compare the following nine approaches, withMESAS
regarding effectiveness and runtime, hence examine DF, RA, and
IR methods: Naïve clustering via HDBSCAN [54], FoolsGold [29],
Krum [9], M-Krum [9], Flame [65], T-Mean [109], T-Median [109],
Clipping&Noising [57], Clipping [57], and Auror [84]. We either
adapted open-source implementations or reimplemented the meth-
ods if no code was available.
First, we consider our default scenario, and later we will expand
the analysis to adaptive adversaries, nine poisoning attacks, and
non-IID data scenarios. Due to space limitations, we report the most
interesting results and numbers that highlight our outcomes in the
following sections and list detailed experimental results in [40].

13In our setting, we create 20 clients, of which nine are captured by an adversary.
Nine malicious clients are the maximum the attacker can control in our setup while
remaining within our attacker model (cf. Sect. 3.1).
14The pre-trained models from PyTorch are trained on ImageNet [20], thus have other
input dimensions and 1000 instead of ten classes.

5.2 Defenses under Strong Adaptive Adversaries
Before discussing defenses, we note that the BA of our default
scenario without defense is only 42.94% (line 6 in Tab. 1), hence
the backdoor is not effective (< 60%) and the adversary is forced
to adapt his attack by either increasing the PDR, increasing the
PMR15, or by fixation, constraining and scaling. The increased BA
of 61.96% for an increased PDR to 0.3 can be seen in scenario (1)
in Tab. 1. We explore the effectiveness of these strategies and list
results in [40]. Here, we show that MESAS is more effective than
other defenses even without applying additional adaptions when
comparing them under the default scenario as well as for increased
PDR in scenario (1): As can be seen in line 17 in Tab. 1, MESAS
effectively removes the backdoor by reducing BA to 1.85% and 1.95%,
while most other defenses are less potent. Only FoolsGold [29] is
as effective as MESAS in the default scenario and in scenario (1),
but, as we will elaborate later in this section, FoolsGold could be
easily circumvented through adaption.

Since the adversary has to use one of the adaption strategies to
reach a higher BA, we want to clarify beforehand that an increased
PDR reinforces already existing significant values in MESAS’s met-
rics even more. Scaling of updates has positive effects on MESAS,
since concurrently the metric COS will be changed, as visualized
in Fig. 416. Further, constraining with Eq. 1 or Eq. 2 also benefits
MESAS due to side effects on its other metrics, forcing the adver-
sary into a multi-objective optimization (MOO) problem and, thus,
hardening the adversarial dilemma. Lastly, fixation methods are
ineffective against MESAS, since all layers and the model as a whole
are analyzed independently with statistical tests. Hence, MESAS is
robust against adaptions of a strong adaptive adversary, which, we
show, an attacker can leverage to circumvent other defenses.

5.2.1 Circumvent Defenses. Below, we will focus on the capability
of defenses to reduce the BA in the new global model after aggrega-
tion compared to aggregation without defense (cf. line 6 in Tab. 1).
Additionally, we will report the detection accuracy (ACC) of the
defenses, when applicable, where 100% ACC means perfect detec-
tion rate and no False-Positives (FPs) and False-Negatives (FNs).
We will also name the most effective adaption strategies based on
results provided in [40], which we couldn’t include in the main
section of the paper due to space limitations.
Clustering. To demonstrate that naïve clustering methods could be
bypassed, we use the HDBSCAN [54] algorithm as an example and
cluster based on the cross-wise Cosine distances between model
updates. As can be seen in the default scenario in line 7 of Tab. 1,
the defense is ineffective reaching a BA of 74.62% in the new global
model after aggregation. We additionally report an ACC of only 10%
(FPR of 100% and 81% FNR). Thus, there is no need for an attacker
to follow any adaption strategies. Nevertheless, adaption to naïve
clustering is possible by increasing the PDR allowing us to embed
a BA of 86.86%, as depicted in scenario (1).

15Our default scenario already includes the maximum valid PMR defined in Sect. 3.1.
16When scaling, our strong adaptive adversary is aware of benign values from training
benign model first and scales to the mean of those values. Additionally, Gaussian
noise is added to the targeted value within the 3rd percentile of the benign value
range to make the malicious models slightly different and, hence, increase stealthiness
(otherwise the models with exactly the same values could be easily detected ).
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Table 1: MAs and BAs in different scenarios in percent.

Scenario
Default (1) (2) (3) (4) (5)

Accuracies without defenses MA BA MA BA MA BA MA BA MA BA MA BA

1: Global model𝐺𝑟 62.99 1.90 62.99 1.90 62.99 1.90 62.99 1.90 62.99 1.93 36.51 5.18
2: Average of benign local models 57.58 4.56 57.58 4.56 57.58 4.56 57.58 4.56 47.15 6.82 33.15 10.42
3: Average of poisoned local models 57.84 85.13 54.58 93.15 54.42 93.25 51.23 89.82 43.74 91.32 33.93 82.00
4: FedAVG with benign local models 63.57 1.85 63.57 1.85 63.57 1.85 63.57 1.85 65.92 1.40 32.45 12.71
5: FedAVG with poisoned local models 64.92 83.00 63.68 92.50 62.29 93.71 40.69 93.54 59.12 95.50 29.35 88.96
6: FedAVG with all local models 63.81 42.94 63.85 61.96 63.27 63.54 49.18 83.74 64.02 63.66 38.72 77.37

Global model accuracies after applying defenses MA BA MA BA MA BA MA BA MA BA MA BA

7: Naïve Clustering 65.06 74.62 64.75 86.86 63.73 88.36 47.34 85.58 61.12 87.58 20.85 85.32
8: FoolsGold [29] 63.57 1.85 63.57 1.85 63.27 63.54 63.57 1.85 56.80 47.0 37.00 76.03
9: Krum [9] 59.75 83.53 52.22 95.97 56.18 93.14 52.00 89.90 49.88 5.27 16.88 89.07
10: M-Krum [9] 64.18 83.05 63.90 92.72 62.01 93.83 41.86 95.80 62.39 13.11 18.07 89.55
11: Clip [57] 63.80 42.81 63.85 61.86 63.26 63.52 49.19 83.74 63.92 62.28 37.76 75.60
12: Clip&Noise [57] 50.78 60.66 52.10 77.21 59.32 75.67 41.47 90.37 56.28 71.99 23.70 64.32
13: Flame [65] 60.96 79.17 63.67 88.44 62.21 88.80 44.56 84.53 56.59 50.34 25.10 79.17
14: T-Mean [109] 63.51 44.13 63.54 63.98 62.86 65.35 51.07 85.75 63.15 67.01 39.98 76.36
15: T-Median [109] 51.22 44.60 51.18 57.73 49.61 60.30 39.76 74.76 51.75 68.20 17.04 52.75
16: FLTrust [13] 63.49 23.08 63.76 49.68 63.17 45.54 55.15 74.71 63.56 8.40 26.81 81.61
17: MESAS 63.57 1.85 63.36 1.95 63.36 1.95 63.57 1.85 65.92 1.40 37.52 2.37

(1) Default + PDR 0.3 (2) Default + PDR 0.3 + Last Layer Fixation to benign models
(3) Default + Adapt to EUCL of benign models (4) Default + PDR 0.3 + 1-class intra-client non-IID with 𝑞 = 0.5 + Scaling
(5) Default + inter-client non-IID based on our Random-Non-IID strategy

FoolsGold. The second defense, FoolsGold [29], is also based on
cross-wise Cosine distances between model updates. However, it
analyzes only outputs of the last layer, which is more effective than
naïve clustering and is capable of removing all poisoned models
in the default scenario and for scenario, (1) reaching BAs of 1.85%,
as depicted in line 8 of cf. Tab. 1. Nevertheless, the defense can
be circumvented using adaption. The best results we obtained by
parameter fixation on the last layer in combination with PDR in-
crease, depicted as scenario (2) in Tab. 1, reaching a BA of 63.54%.
In contrast, MESAS still removes the backdoor to 1.95% with only
one FP when a similar adaption strategy is applied.
Krum. Next, we evaluated Krum and M-Krum [9], which leverage
cross-wise Euclidean distances between local models. The trigger
backdoor is not reflected in this metric, which renders the defense
ineffective for our default scenario (83.53% and 83.05%BA for Krum
and M-Krum, resp. in Tab. 1) and for scenario (1) and (2). Since
Krum selects one single local model as the new global model, it can
either choose a malicious or benign local model. In the former case,
the backdoor trivially makes it to the global model. In the latter case,
we can follow the following strategy: We can adapt the malicious
models via constraint method Eq. 1 forcing the Krum scores of
poisonedmodels to be more equal to each other compelling Krum to
decide in their favor. By circumventing Krum like this, we achieved
BAs up to 89.90% and reached 95.80% BA for M-Krum as can be
seen in scenario (3) in Tab. 1. In contrast, MESAS accurately filters
the backdoor in similar circumstances, as adaption via constraint
has significant effects on other metrics, like EUCL and MIN.
Flame.We evaluate Flame [65], a more complex DF defense, which
combines clustering with clipping and noising techniques. Since
the underlying metric is the same as for the naïve clustering de-
fense, it is not very effective in removing the backdoor even in the
default scenario achieving 79.17% BA (cf. line 13 in Tab. 1). Similar

to naïve clustering, we could strengthen the BA by increasing the
PDR to 88.44% and by additional scaling to 91.34%, which shows
that relying solely on the leveraged metric of Flame is insufficient.
MESAS erases the backdoor efficiently in all of the cases, due to
the in-depth model analysis with statistical tests and increased ro-
bustness against adaption through leveraging six different metrics.
FLTrust. As a more recent defense, we analyze FLTrust [13], which
is based on a trusted root dataset17 on the server side. FLTrust lever-
ages the Cosine Similarity between the updates of the local models
and a trusted model trained by the server on the trusted root dataset
and the norm of the local updates. Based on these metrics, FLTrust
assigns weights to each local update so that poisoned updates are
assigned with low weights, preferably zero, which would filter out
the update. Therefore, the defense is ineffective, if the backdoor
is not visible within both of these metrics, meaning, that the Co-
sine Similarity is inconspicuous, which can happen if the backdoor
is only embedded in one layer without affecting the model-wise
metric value, or if the backdoor is hidden in other metrics, as VAR,
MAX, orMIN only. In most of our experiments, FLTrust successfully
weakened backdoors beneath critical BAs. However, the assigned
weights to all (also benign) local updates were found to be rela-
tively small (mostly between 0.001 and 0.03), thereby inadvertently
reducing their contribution to the global model. Consequently, the
approach’s efficacy comes at the cost of slowing down the training
speed. Additionally, FLTrust’s effectiveness depends on the cho-
sen metric’s ability to accurately reflect the backdoor. However, a
backdoor is not necessarily embedded in those metrics, as can be
seen in experiments, e.g., in scenario (3) yielding a BA of 74.71%.
For adaption, we first trained a benign model and then proceeded
to adapt the local update of the malicious model based on the up-
date of this benign model. Since we observed that in the resulting
17Similar to the authors, we used a trusted root dataset of 100 IID samples and excluded
them from the datasets used for training of the clients.
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Table 2: BA for targeted and ACC for untargeted poisoning attacks without adaptive adversary in percent.

Aggregation / Defenses
BA ACC

Pixel Trigger Clean-Label Semantic Edge Case Label Flip Pervasive Random Flip Sign Flip Noising
[32] [96] [5] [100] [8, 12] [16] [40] [40] [40]

1: Global model𝐺𝑟 1.90 1.90 0.00 1.53 0.10 0.02 - - -
2: Average of benign local models 4.56 4.57 0.00 2.55 1.24 0.95 - - -
3: Average of poisoned local models 85.13 75.49 80.0 19.28 74.15 97.28 - - -
4: FedAVG with benign local models 1.85 1.85 0.00 1.85 0.20 0.07 - - -
5: FedAVG with poisoned local models 83.00 81.75 100.0 20.40 71.20 99.84 - - -
6: FedAVG with all local models 42.94 38.92 60.0 6.63 49.20 3.58 - - -
7: Naïve Clustering 74.62 1.85 60.0 16.35 65.60 67.67 10.00 100.00 80.00
8: FoolsGold [29] 1.85 1.85 0.00 2.55 0.20 0.10 55.00 100.00 0.00
9: Krum [9] 83.53 75.65 80.00 20.91 1.30 0.42 50.00 50.00 50.00
10: M-Krum [9] 83.05 82.38 100.0 18.87 0.40 3.50 75.00 75.00 75.00
11: Clip [57] 42.81 38.91 60.0 6.63 48.40 3.17 - - -
12: Clip&Noise [57] 60.66 40.73 0.00 12.75 30.80 10.08 - - -
13: Flame [65] 79.17 77.12 60.0 18.87 2.40 5.52 100.00 100.00 100.00
14: T-Mean [109] 44.13 41.10 60.0 7.14 48.40 2.53 - - -
15: T-Median [109] 44.60 25.66 0.00 2.55 5.60 0.10 - - -
16: FLTrust [13] 23.08 37.83 0.00 5.10 0.2 0.11 60.00 20.00 35.00
17: MESAS 1.85 3.71 0.00 2.55 0.20 0.05 95.00 100.00 100.00

models, the main reason for suspicious metric values in Cosine
Similarity originated from the parameters of the last model layer,
we restricted this adaptation process to the last layer only to make
the backdoor inconspicuous in the last layer. While this strategy
resulted in low BA, FLTrust assigns higher weights to the malicious
updates than to the benign ones, with seven out of eleven benign
updates being assigned a weight of zero. That means that those
benign models were filtered, essentially slowing down the learn-
ing process, while malicious models were included in aggregation,
even so with smaller weights. In contrast, MESAS consistently and
effectively eliminated the backdoor in all of these cases without
decreasing the impact of benign models.
Differential Privacy. Besides DF methods, we evaluated two IR
approaches: Model update clipping based on the Euclidean distance
and a combination with model parameter noising [57]. Clipping is
ineffective, as our default scenario backdoor is not reflected in the
Euclidean distance of the updates. Thus, the attacker can achieve
60.66% BA for the default scenario (cf. line 12 of Tab. 1). When using
adaption, the BA can be increased slightly to 61.86% by increasing
the PDR as in scenario (1). In contrast, MESAS is effective under
similar circumstances resulting in 1.85% and 1.95% BAs.
Robust Aggregation. We evaluate T-Mean and T-Median [109],
which are RA alternatives to FedAVG. Both result in weak back-
doors with BA of 44.13% and 44.60% in lines 14 and 15 for the
default scenario, but are not robust when facing a strong adaptive
adversary: T-Mean can be bypassed with up to 63.98% BA, while
T-Median shows 57.37% BA, but also experiences around 10% re-
duction in MA in scenario (1). Hence, both approaches are not
comparable to the performance of MESAS, which reduces BA to
1.95% under similar circumstances.
MESAS. To circumvent MESAS, we tried to adapt to respective
metrics that reflect the different poisoning attacks. We succeeded in
adapting to COS, EUCL, MIN, and MAX, which appeared to be the
metrics most backdoors manifest first. This was only possible by
leveraging the loss scaling method of our strong adaptive adversary,
as described in Sect. 3.1, since otherwise, adaption to multiple losses
already resulted in facing an adversarial dilemma. However, as

soon as we adapt to those metrics, this behavior is reflected in the
other metrics, namely VAR and COUNT. For a few experiments, we
succeeded in adapting to VAR, even if the MA suffered immensely,
but additional adaption to COUNT was impossible.

5.2.2 Different Poisoning Attacks. In the following, we evaluate
the effectiveness of the defenses against various poisoning attacks,
including six different trigger methods for targeted attacks and
three untargeted attacks, namely pixel triggers [32], clean-label
backdoor [96], semantic backdoor [5], edge case backdoor [100],
label flip backdoor [8, 12], and pervasive backdoor [16] as well as
random label flipping, sign flipping, and model noising, which are
all explained in detail in [40]. We report the BAs that the poisoning
attacks achieve against the nine defenses in Tab. 2 and the MAs
in [40].18

Pixel Trigger Backdoor. This backdoor is discussed in Sect. 5.2.1,
where we showed that we can circumvent existing defenses by
adaption and strengthening the trigger. Only MESAS could reliably
remove the backdoor.
Clean-LabelAttack.This attack is not suited perfectly for FL, since
it is hard to embed a high BA with low PDR into the new global
model. In our default scenario, we reached only 11.85% BA after
aggregation, which is why we report the result for PDR 0.5, which
leads to a BA 38.92% without defense (line 6 in Tab. 2). Nevertheless,
it is possible to achieve a high BA of up to 82.38% for M-Krum
(line 10), while naïve clustering, FoolsGold, and MESAS erase the
backdoor. Among them, MESAS is the only one that cannot be
adapted and erases the backdoor, which manifests in COS and
EUCL, resulting in a FNR of 81%.19

18The results reported in tables do not consider adaption (which is evaluated in
Sect. 5.2.1), as the system’s adaptability is directly tied to the specific defense em-
ployed. Instead, the tables focus on determining whether MESAS can successfully
detect various triggers. Thereby, we ensure that our findings remain independent from
the pixel-trigger method of the default scenario.
19We experienced an elevated FNs in a scenario with a maximum PMR and one benign
outlier model. We could not reproduce such scenarios on purpose when acting as an
adversary. Such scenarios can only occur, if the PMR is at a peak of nearly 50% and
one benign outlier exists, which then violates the majority assumption of Sect. 3.1.
However, if such situations occur, MESAS still ends up aggregating only benign models
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Semantic Backdoor.Without defense, this backdoor is effective
with 60% BA. However, it is detectable within the last layers by
FoolsGold [29] leading to 0.00% BA (line 8 of Tab. 2). Clip&Noise
and T-Median also remove the backdoor, but at the same time re-
duce MA. MESAS erases the backdoor completely by leveraging
MAX metric. We report one FP in this case for MESAS, but with a
good result in a BA of 0.0%. Other effective defenses can be circum-
vented through adaption (FoolsGold) or reduce the MA (T-Mean
and Clip&Noise).
Edge Case Backdoor. It appears to be hard to embed an effec-
tive backdoor with this method even within the local models for
CIFAR-10 [41] on ResNet-18 [37]. In Tab. 2, we report the results
for a PDR or 0.3 with 19.78% BA on the local clients on average
(line 3) and 6.63% BA without defense. MESAS is already sensitive
to the poisoning attacks even when the effect on the global model
is still minimal with 6.63% BA (line 6). We reach 100% TPs and only
two FPs resulting in the lowest BA with 2.55% in this case (line 17).
Label Flip Backdoor. This attack manifests in extreme deviations
within the last layer of a DNN. Hence, many defenses can easily
detect the backdoor, as can be retraced on the low BAs in Tab. 2.
Having two FPs, MESAS is the only defense reducing the BA to
0.20% while being robust against fixation and adaption attempts,
which can be used to circumvent other defenses like FoolsGold.
Pervasive. Blend [16] can be implemented with a PDR of 0.1 to
achieve 99.84% BA locally on average (line 3 in Tab. 2), but it is
inefficient in FL– we could only reach 3.58% BA for the global
model without defense (line 6). MESAS can detect all poisoned
local models while suffering five FNs. The result is interesting, as it
shows that MESAS reaches the lowest BA of 0.05% while having
minor effects on the MA, whereas other defenses affect the MA
(cf. [40]) or can be circumvented by adaption.
Untargeted Attacks. For the untargeted attacks, we do not report
the BAs, but the ACC of the defense mechanisms in Tab. 2 and
the resulting MAs in [40]. Random label flipping is the first untar-
geted attack that we implemented. The MA is reduced to 57.03%
without any defense and only M-Krum and FLTrust can score a
higher MA of 64.15% and 63.16%, respectively, compared to 62.88%
of MESAS. However, M-Krum suffers a FNR of 45%, compared to
0.09% of MESAS and FLTrust comes with an ACC of 60%20, while
MESAS achieves 95%. Flame stands out with 100% ACC, but can
be circumvented by adaption. Second, we evaluated sign flipping,
which is clearly detectable by defenses leveraging clustering meth-
ods including MESAS, but can lead to a naïve model with 10% MA
for other approaches. Finally, we report the results for the model
noising attack, where MESAS also has an ACC of 100%, whereas
other methods, like FLTrust achieve only 35% ACC.
Concluding, we can say, that MESAS is robust against nine poison-
ing attacks executed by a strong adaptive adversary, who is able
to intentionally circumvent all other nine evaluated defenses. We
argue that any other defense, that relies on just a few metrics, could
be similarly bypassed in our strong adaptive adversary model, by
either fixation or constraint methods.

as long as the poisonings are significant in at least one metric in one layer. Hence is
also robust against coincidental benign outliers.
20We compute the ACC of FLTrust [13] by analyzing the weights assigned to the
models. A model assigned with a weight of zero is considered as a filtered model.

5.3 Defenses under Non-IID
Here, we evaluate the nine defenses under classical intra-client
non-IID before we discuss inter-client non-IID.
Intra-client non-IID. We analyzed various intra-client non-IID
settings, namely 1-class, 2-class, and Distribution non-IID. For the
1-class and 2-class non-IID scenarios, the samples of a client’s
dataset focus on one or two so-called main labels. The remain-
ing labels contain an equivalent amount of samples, while a factor
𝑞 ∈ [0, 1] defines the fraction between samples within the main
label class and the remaining classes21. Distribution non-IID as-
signs label frequencies for each dataset based on a distribution, e.g.,
Dirichlet [58] or normal distribution. We elaborate on non-IID sim-
ulation techniques in more detail in [40]. As representative results,
we present intra-client non-IID based on 1-class with 𝑞 = 0.5.

We notice that in non-IID settings it is harder for the adversary to
embed a backdoor due to the nature of FedAVG. To reach a reason-
able BA of above 60%, the adversary must use adaption strategies.
We find that increase of PDR to 0.3 combined with scaling reaches
reasonable performance with 63.66% BA (scenario (4) in Tab. 1).
Krum and M-Krum [9] erase the backdoor, but simultaneously re-
duce the MA. However, after an adaption, we can circumvent those
defenses reaching BAs of up to 90.44%, while still erasing the back-
door with MESAS. FoolsGold is effective, but can be circumvented
by adaption, while FLTrust also decreases the BA to 8,40%, but
assigns weights for update aggregation between 0.0 and 0.025 to
all model updates, effectively removing the influence of most of
the update. MESAS is the only defense erasing the backdoor in
this setting and reaching 1.40% BA with two FPs. Hence, MESAS
outperforms other defenses in intra-client non-IID settings.
Inter-client non-IID. To simulate even more realistic datasets, we
designed the Random-Non-IID strategy (cf. [40]). Thereby, we ran-
domly decide which label is contained in a client’s dataset and also
randomly assign the label frequencies. This results in inter-client
non-IID datasets even with disjoint data. Other works do not nor-
mally consider such scenarios in evaluations and we hope, that this
strategy will be adopted in future research.

We report the results for a Random-Non-IID setting22 after 50
benign rounds of FL training with 20 clients in the federation in
scenario (5) in Tab. 1. It is very easy for an adversary to embed a
backdoor in such scenarios, thus reaching a BA of 77.37% without
defense, as can be seen in line 6. Among all defenses, MESAS is the
only one capable of erasing the backdoor by decreasing the BA to
2.37%, while others provide BAs between 52.75% and 89.55%.

We repeated this experiment in FL round one23 of this setting to
analyze the dependence on an already converged model and within
round 50 of a setting containing 100 federation clients from which
20 are selected randomly for each FL round, and got similar results
with MESAS outperforming other defenses, that are not capable of
removing backdoors in inter-client non-IID scenarios. (cf. [40]).

5.4 Influence of Parameters on MESAS
To evaluate the influence of various parameters on MESAS’s perfor-
mance, we first investigated training hyper-parameters and showed
21For 𝑞 = 1, all samples are from the main label. 𝑞 = 0 is equal to the IID scenario.
22The sample frequencies for each client of the scenario are listed in [40].
23Early round backdoors are not persistent (cf. [5]), but we still analyzed the situation.
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the independence from random seed, LR, PMR, and the selection
of 𝛼 . We found no unexpected results that are much different from
our default scenario. We report on these experiments in [40].
Poison Data Rate. Our experiments show, that the backdoor ef-
ficiency depends on the type and composition of the trigger, but
also the PDR is important. We evaluated 𝑝𝑑𝑟 = [0.1, 0.2, ..., 0.9] and
selected the smallest value 𝑝𝑑𝑟 = 0.1 that allows an adversary to
introduce an effective backdoor in our default scenario. This natu-
rally makes the resulting local models most stealthy by scoring a
high MA. During some experiments, we increased this value up to
0.3 to reach a high BA. For bigger PDRs, MESAS was also able to
eliminate the backdoor with ACC 100%. This highlights the adver-
sarial dilemma, since higher PDRs could increase the BA, but are
not stealthy, urging the adversary to adapt to defenses, which has
side effects on the metrics of MESAS, forcing the adversary in an
even more complex MOO problem. Concluding, we can claim, that
MESAS is independent of the PDR selected by the adversary.
Initial Global Model. We conducted experiments with differ-
ent pre-trained models. We used random initialized models and
pre-trained models from PyTorch [71, 93] where we changed the
first and last layer according to our dataset. We then trained the
models in benign settings with 20 clients in the federation, all par-
ticipating in each round as well as with 100 clients in the federation
whereof 20 contributed each round. MESAS performed well in all of
the cases and can be used independently of the FL round. However,
the detection performance in later rounds is naturallymore accurate,
since even benign clients can strive towards a different minimum on
a relatively naïve model. Nevertheless, even in inter-client non-IID
settings, MESAS erases backdoors in early rounds reliably (cf. [40]).
Principally, MESAS is designed to be applied in every FL round
and does not impose a negative impact on the convergence of the
federation when no attack is present. The rationale behind this lies
in MESAS’s ability to effectively distinguish between attack-free
and attack scenarios by virtue of its robust statistical tests.
FLRound.To emphasize the effectiveness ofMESAS, we conducted
experiments where models were trained 100 rounds starting from
a randomly initialized model until the model converged and apply
defenses after every training round. We visualize the performance
of various defense mechanisms and scenarios with no defense and
no attack in [40]. Notably, the results demonstrate that MESAS
surpasses other defense approaches by reaching BA and MA lev-
els comparable to the attack-free scenario. This underscores the
robustness of MESAS in mitigating the impact of backdoor attacks.
Dataset.We exchanged the dataset to MNIST [21] and GTSRB [89]
and could assert, that the results and thus the defenses’ performance
including MESAS does not vary across datasets. MNIST as a more
basic dataset, simplifies the detection of backdoors for all defenses
even if a stealthy backdoor itself is hard to implement without
defense, whereas GTSRB is more complex due to more label classes.
We report the results for one of our MNIST experiments with one
FP and one GTSRB experiment with 100% ACC in [40].
Model Architecture.We conducted experiments to analyze the
model architecture independence. We used a CNN with two con-
volutional layers concatenated with pooling layers and ReLu func-
tions [1] followed by three fully connected layers and trained on

Table 3: Defense runtimes in seconds.

Defense Runtime Defense Runtime

FedAVG 0.12 Flame [65] 7.92
Naïve Clustering 7.57 T-Mean [109] 7.12
FoolsGold [29] 0.14 T-Median [109] 0.26

Krum [9] 6.02 Auror [84] 12 hours
M-Krum [9] 5.92 FLTrust [13] 25.12
Clip [57] 2.37 MESAS 24.37

Clip&Noise [57] 2.52

MNIST [21]. Further, we tested SqueezeNet [38] with CIFAR-10 [41]
and can report 100% TNs with just one FN in both cases (cf. [40]).
Hence, MESAS is independent of the architecture of the model.
Application Domain. We conducted experiments within the text
domain training a sentiment analysis task using the SST-2 [87]
dataset on a DistilBERT [80] transformer model. We implemented
a backdoor, that labels sentences starting with the term “Hey!” as
negative. We can report 100% ACC in this experiment, showing
the applicability of MESAS in different application domains and for
model architectures that do not contain convolutional layers.

5.5 Runtime Evaluation
We evaluate the runtime of the defenses to verify the real-world
applicability of MESAS. Tab. 3 lists average runtimes of ten runs
for our default scenario and shows that MESAS introduces an ac-
ceptable overhead of 24.37 seconds. FoolsGold [29] comes along
with outstanding performance since only one model layer is ana-
lyzed, but due to the same reason, it can be easily circumvented
(cf. Sect. 5.2). Further, T-Median [109] replaces FedAVG with a sim-
ple algorithm, which results in a similar runtime, but reduces the
MA. Auror [84] instead, has an unacceptable runtime of 12 hours
to calculate the indicative features due to massive clustering, which
is why we excluded this approach from evaluations in Sect. 5.
FLTrust [13] is dependent on the size of the trusted dataset, as
a trusted model is trained on the server. Defenses leveraging client
feedback [3, 113] cannot compete with server-side-only defenses,
due to additional communication overhead.

6 DISCUSSION
We discuss alternative adaptionmethods that were tested in Sect. 6.1
followed by limitations and future work suggestions in Sect. 6.2.

6.1 Adversarial Adaption Methodologies
Besides the final method of our strong adaptive adversary (cf.
Sect. 3.1) that we used to evaluate FL defenses in Sect. 5.2, multiple
alternatives have been tested during this work.

First, we just added all of the losses (𝜆’s from Eq. 2 equals one),
which is similar to classic adaption (cf. Sect. 2.2). As explained in
Sect. 5.2, losses with a drastically smaller scale than others have
barely influence in the optimization, thus the related metric is not
adapted. Second, we scaled all losses to 𝐿𝑜𝑠𝑠𝑀𝐴/𝐵𝐴 , which would
be reasonable, if the MA is the major concern of 𝐴. However, most
defenses including MESAS do not check the MA lacking a test
dataset in realistic scenarios, which makes scaling to the maximum
the better choice. Third, we tested, how often the 𝜆’s should be
recalculated. Only one initial computation delivers the best results.
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This seems reasonable, since then already optimized metrics have
a minimal loss value and thus barely influence the optimization.

Additionally, motivated byMulti-ObjectiveOptimization (MOO),
we searched a pareto optimal [14] solution with Sener et al. [81].
However, the method produced broken models regarding the accu-
racies. We believe the reason is, that Sener et al. consider a system
comparable to Multi-Task Learning (MTL) where both, shared and
task-specific parameters exist within a model. However, our MOO
problem optimizes only shared parameters (the whole model).

Since our final adaptionmethod is superior to classic adaption [5]
from Eq. 1, we claim, that MESAS is robust against adaptive adver-
saries caused by the introduced adversarial dilemma by forcing the
adversary into a MOO problem with seven losses of different scales.

6.2 Limitations and Future Work
MESAS’s major limitation is the significance niveau for the statisti-
cal tests influencing good TPRs and TNRs. Throughout experiments,
the values appeared to just depend on data scenarios. Hence, it can
be required in so far unseen tasks to adapt the values. An automatic
method for setting the values can be discovered in future work.

As any other poisoning defense for FL, MESAS can be tested
against other aggregation mechanisms besides FedAVG and can be
combined with IR methods, similar as in FLAME [65] and Deep-
Sight [76]. With such an extension one can soften the significance
thresholds to lower the FNR to zero and simultaneously reduce the
influence of the models responsible for the resulting FPR.

We leverage COUNT (combined with COS and EUCL) to get
the direction of the model update. Fortunately, the metric is hard
to adapt due to the sign function involved in the computation.
Nevertheless, other metrics with the same effect can be discovered
in the future. Additionally, one can investigate into the Cosine
distance of the client updates among each other instead of the
Cosine distance with respect to the global model 𝐺𝑟 , which could
provide additional information about the direction.

As shown in experiments, the strong adaptive adversary from
Sect. 3.1 cannot circumvent MESAS. However, research can be con-
ducted to find currently unknown methods to better adapt a DNN
to multiple metrics simultaneously, which falls in the area of MOO.
If such an method exists, MESAS can be extended to e.g. investigate
in the correlation coefficient between updates additionally.

7 RELATEDWORK
In this section, we first discuss existing poisoning defenses in
Sect. 7.1, before we address privacy issues in Sect. 7.2.

7.1 Defenses against Poisoning Attacks
Auror [84] is a K-Means [2] clustering approach based on indicative
differences between individualmodel parameters. It decides for each
parameter if it is indicative for clustering the model updates into a
benign and a malicious group and analyzes the resulting clusters.
Due to multiple clustering steps (increasing with bigger model
architectures), the defense suffers a high runtime overhead. Further,
Auror has problems finding multiple backdoors simultaneously
and shows poor performance in non-IID settings. MESAS utilizes a
lightweight feature extractor and prunes different poisonings in an
iterative process independent of the data distributions.

FoolsGold [29] weights each local model’s contribution, by an-
alyzing the cross-wise Cosine distances between model updates
of the last DNN layer, thus being prone to adaptive adversaries
that fixate this layer. Further, the approach assumes only non-IID
settings and poisoned local models that point in the same directions
(so-called sybills) and it leverages updates from previous rounds
for optimal performance. Instead, MESAS prevents adaption by
relying on a metric cascade and analyzing layers individually and is
effective in IID and non-IID settings independent of the FL round.

Krum [9] is based on the Euclidean distance between local mod-
els. For each local model, it aggregates the distances to its neighbors
and selects the one with the densest surrounding as new global
model. M-Krum [9] selects more models simultaneously. Both can
be circumvented by adaption to the metric and naturally suffer a
high FNR without any adversaries in the system. MESAS does not
harm the federation in total benign scenarios and provides a low
FNR while not being susceptible for adaption attempts.

AFA [60] leverages plain analysis of the Cosine distance between
local models, which is adaptable with an additional loss. MESAS
hardens this possibility by leveraging a cascade of six metrics.

Naïve clustering approaches, e.g. based on HDBSCAN [54], need
to extract a metric like the Cosine distance between models from
the local models to reduce the dimensions. Hence, adaptive ad-
versaries can circumvent the defenses, which is harder in MESAS.
Further, clustering relies on a majority assumption and creates two
groups, thus having a hard threshold and a high FNR in settings
without attacks. MESAS leverages statistical tests with probabilistic
thresholds that adapt to the scenario and investigates metrics that
are hard to adapt due to fine-grained values resulting in lower scale
adaption losses than typical clustering metrics.

BaFFLe [3] first aggregates all local models to a new global model
(thus being an IR approach) and then sets up a client feedback loop,
where the previous and the new global models are sent to valida-
tion clients introducing communication overhead. Those clients
analyze the per-label MA and mark the new model as malicious if
an empirically chosen threshold is violated. If so, the whole round
is discarded. Further, the first 800 rounds are assumed as benign,
so that a valid global model is available as a reference. Since adver-
saries strive to an inconspicuous MA (see Sect. 2.2), this approach
fails for sophisticated adversaries. Further, one single adversary can
force the defense to discard all other benign contributions of the
round. MESAS runs on the server side only, prunes poisoned mod-
els, and is effective even in the first round of FL. Similarly to BaFFLe,
the approach of Zhao et al. [113] leverages a client feedback loop
to analyze the MA of the local models on the client side, thus intro-
ducing an even bigger communication overhead, while keeping the
downsides regarding inconspicuous MAs. Further, this approach is
prone to privacy issues, since inference attacks (cf. Sect. 7.2) can be
conducted on the local models on the client side.

FLAME [65] is a combination of DF and IR. The approach clus-
ters local models by pairwise Cosine distances via HDBSCAN [54]
and filters adversaries based on the majority assumption before
differential privacy methods [22] are leveraged. Precisely, weight
clipping (regarding the median Euclidean distance of the updates)
is applied to the remaining local models, and noise is added to the
aggregated model. Besides the desired decrease in BA, this step
naturally decreases the MA, too. When adapting to the Cosine and
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Euclidean distance simultaneously, the approach performs similarly
to a plain noising mechanism [92], which can also be applied to any
other DF. MESAS leverages six metrics to harden the adversarial
dilemma during adaption attempts and does not solely rely on clus-
tering, but on statistical tests allowing a more fine-grained analysis
of the local models. Further, any IR approach can be combined with
the defense easily, but MESAS does not decrease the MA naturally.

Similar to the concept of Krum [9], Yin et al. [109] uses the
coordinate-wise median or mean of the local models to construct
the new global model based on the majority assumption. These ap-
proaches called Trimmed-Mean and Trimmed-Median respectively
are RA mechanisms, but reduce the MA compared to FedAVG. Es-
pecially, the parameters and thus the functionality of benign model
models lying not centrally within all updates not be considered.
Bagdasaryan et al. [5] and Sun et al. [92] already proposed update
clipping and nosing techniques, but Naseri et al. [61] showed, that
differential privacy methods not only naturally harm the MA [5],
but also can boost the BA when applied to benign FL clients. All of
the IR approaches and most RA methods suffer a drop in MA, espe-
cially in a setting without attack. MESAS instead, filters poisoned
models, and thus does not influence benign scenarios naturally.
Further, IR and RA methods can be easily combined with MESAS
to get an even more bulletproof global model.

DeepSight [76] is a more complex strategy, which combines
filtering with differential privacy and is based on two metrics. First,
the Cosine distance between models, which can be adapted by an
additional loss (cf. Sect. 5.2). Second, two more values are extracted
from the output layer, which can be circumvented by fixation, as
shown for FoolsGold [29] in Sect. 5.2.1. Therefore, DeepSight is not
robust against strong adaptive adversaries and relies on clipping
and noising techniques, that reduce the MA and can also be applied
to any DF approach. MESAS instead forces the adversary into a
hard optimization problem and does not rely on specific layers.

FLTrust [13] assigns weights to updates during aggregation, es-
sentially filtering out updates with a weight of 0. To determine
the weights, it assumes a benign dataset on the server side for a
trusted reference model and relies on Cosine Similarity between
the updates from the client side and the trusted update as well
as the norm of the local updates. However, FLTrust’s reliance on
those two metrics makes it susceptible to adaptability by adaptive
adversaries. Since FLTrust examines the metric across the entire
update, it may also fail to detect attacks that manifest only at the
layer-wise level. In contrast, MESAS operates independently with-
out a trusted dataset, conducting layer-wise analysis and utilizing
multiple interconnected metrics, enhancing MESAS’s robustness
against a broader range of adversarial attacks.

FLDetector [111] is a historical update-based defense. It main-
tains records of global and client updates, predicting client updates
using mathematical approximations. These predictions are com-
pared to actual updates. After a warmup phase, outliers are detected
using clustering methods by evaluating the normed Euclidean dis-
tance between predicted and actual models. However, FLDetector is
storage and runtime intensive, depending on historical update time
windows. In contrast, MESAS doesn’t rely on historical updates and
doesn’t need a warmup phase. This characteristic makes MESAS
more versatile and advantageous over FLDetector.

BayBFed [42] constructs a statistical model of update parameter
distributions for each client update, which adapts with each FL
round. Using clustering, a single value per update is computed,
which are then used to construct a filtering threshold based on the
values’ mean that allows model filtering. However, BayBFed wasn’t
tested in an all-benign scenario, potentially causing a high FPR due
to benign model filtering. In contrast, MESAS avoids the introduc-
tion of a hard value threshold. Instead, it leverages statistical tests,
ensuring a low FPR even in scenarios without any attacks.

7.2 Privacy Preserving Federated Learning
FL in its original form [55] improved the privacy of collaborated
DNN training compared to a data-centralized, since raw sensitive
data do not leave the client side anymore. Nevertheless, membership
inference [36, 49, 73, 85, 85], label inference [112], property infer-
ence [30], model extraction [49], and data reconstruction [79, 102]
attacks as well as others [101] can be conducted on both, mainly
the local models but also on the global model. Therefore, especially
the devices with access to the local models, namely the aggregation
server, still needs to be trusted (cf. Sect. 3.1).

PPFL [59] ported the FL process into a Trusted Execution Envi-
ronment (TEE). The approach assumes the availability of a TEE on
the client side and introduces computational overhead, since execu-
tion speed in e.g. SGX [18] enclaves is reduced, mainly due to page
swaps based on limited memory. Additionally, such approaches
based on secure code execution [69, 74, 95, 99, 115] either on CPU
only or on CPU and GPU hinder model poisoning attacks on the
client side, but do not prevent data poisoning.

On the server side, Hashemi et al. [35] implemented Krum [9]
in a TEE. Such a secure aggregation method solves privacy issues
allowing the threat model to exclude the aggregation server S as
trusted party. Implementing MESAS within a TEE is just a technical
barrier. Though, additional privacy results in increased runtime.

Overall we conclude, that MESAS is complementary to privacy-
preserving FL techniques.

8 CONCLUSION
Federated Learning (FL) faces significant challenges, notably ad-
versarial adaptation and complex data scenarios. To underscore
the urgency of addressing these issues, we conducted a rigorous
evaluation against a sstrong adaptive adversary, capable of various
poisoning techniques and operating without assumptions about
client dataset sample frequencies (inter-client non-IID). Our findings
reveal that existing defenses, when confronted with adaptive adver-
saries and realistic data distributions, can be bypassed, highlighting
the need for a more robust solution.

In response, we propose Metric-Cascades (MESAS), a server-
side defense mechanism for FL. MESAS utilizes multiple metrics
extracted from locally trained models, ensuring resilience against
strong adaptive adversaries. It employs statistical tests without
fixed value thresholds, thus enabling versatile application. MESAS
iteratively identifies and removes poisoned models within a single
FL round. Notably, we are the first to assess defenses under inter-
client non-IID data conditions, demonstrating MESAS’s superior
performance in real-world scenarios while incurring a minimal
average computational overhead of 24.37 seconds.
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