
ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training

Torsten Krauß
University of Würzburg

Jasper Stang
University of Würzburg

Alexandra Dmitrienko
University of Würzburg

Abstract
Due to costly efforts during data acquisition and model train-
ing, Deep Neural Networks (DNNs) belong to the intellectual
property of the model creator. Hence, unauthorized use, theft,
or modification may lead to legal repercussions. Existing
DNN watermarking methods for ownership proof are often
non-intuitive, embed human-invisible marks, require trust in
algorithmic assessment that lacks human-understandable at-
tributes, and rely on rigid thresholds, making it susceptible to
failure in cases of partial watermark erasure.

This paper introduces ClearMark, the first DNN water-
marking method designed for intuitive human assessment.
ClearMark embeds visible watermarks, enabling human
decision-making without rigid value thresholds while allow-
ing technology-assisted evaluations. ClearMark defines a
transposed model architecture allowing to use of the model in
a backward fashion to interwove the watermark with the main
task within all model parameters. Compared to existing wa-
termarking methods, ClearMark produces visual watermarks
that are easy for humans to understand without requiring com-
plex verification algorithms or strict thresholds. The water-
mark is embedded within all model parameters and entangled
with the main task, exhibiting superior robustness. It shows
an 8,544-bit watermark capacity comparable to the strongest
existing work. Crucially, ClearMark’s effectiveness is model
and dataset-agnostic, and resilient against adversarial model
manipulations, as demonstrated in a comprehensive study
performed with four datasets and seven architectures.

1 Introduction

In the realm of rapidly advancing technologies, machine
learning stands out for many advantages, primarily revolving
around automation, informed decision-making, and insightful
recommendations drawn from historical data. This transfor-
mative technology finds extensive application in diverse real-
world scenarios, ranging from critical tasks such as medical
image classification [5] to facilitating processes like natural

language processing [12], and extends further into domains
like autonomous driving [7] and translation services [51]. At
its core, a machine learning system consists of a model, often
a Deep Neural Network (DNN), and data. Acquiring this data,
especially in large quantities necessary for robust machine
learning, can be both challenging and costly. Furthermore, the
data can be inherently sensitive, such as in the case of medical
images, warranting strict protection under the umbrella of
intellectual property (IP) rights belonging to its owner. Once
data becomes available, significant computational resources
are utilized for model training, which entails substantial effort
and, consequently, costs. The resulting model, infused with
knowledge distilled from underlying training algorithms and
exhaustive data, represents a culmination of innovation and
expertise in the field DNNs and embodies the IP of its creator.

However, in case a model is made available to the public
or sold to third parties, the matter of safeguarding IP rights
becomes a challenge. In the face of potential adversarial enti-
ties, these models are vulnerable to theft, unauthorized resale,
unwarranted modification, or illicit utilization. Such circum-
stances, recognized as copyright infringements, have the po-
tential to escalate into legal proceedings, underscoring the sig-
nificance of robust and comprehensive protective measures.

The state-of-the-art approach to safeguarding the IP of
trained models is model watermarking [3, 35]. Existing DNN
watermarking methods commonly require a key as input to
an algorithm for watermark extraction. This process gener-
ates an output that is subsequently verified against the se-
cret ground truth of the watermark. Watermarking methods
can be categorized based on two main properties: whether
they operate by accessing the model’s internals (white-box)
[15,15,34,55,58,63,65], such as the weights, or by analyzing
only prediction outputs (black-box) [1, 21, 28, 36, 40, 72, 73].
Moreover, a watermark is either 1-bit [28, 40, 55] or multi-
bit [1, 15, 15, 21, 28, 34, 36, 58, 63, 65, 72, 73]. A 1-bit water-
mark merely indicates the presence or absence of a watermark,
whereas a multi-bit watermark incorporates details like the
name of the copyright holder.

Problem Statement. However, the watermarking techniques

1

ar
X

iv
:2

31
0.

16
45

3v
1 

 [
cs

.L
G

] 
 2

5 
O

ct
 2

02
3



proposed so far can be considered non-intuitive, as they em-
bed human-invisible watermarks. Consequently, for water-
mark verification, the evaluator must place trust in the algo-
rithm, which typically extracts data from the DNN that lack
human-understandable attributes. This data is then distilled
into a single value, and then compared to a rigid threshold,
where values above it confirm watermark’s existence and val-
ues below it deem the watermark invalid. In cases of partial
watermark erasure algorithmic assessment might fall short,
while humans with a clear understanding of its prior presence
might be able to easily verify a copyright infringement. In
the context of an image, for instance, it is imaginable that a
watermark, depicted as a stamp, could be erased, for instance,
up to 70%; nevertheless, even with this level of reduction, it
may still remain conspicuously apparent that the watermark
was once embedded into the image.

This paper addresses these challenges and introduces
ClearMark, the first multi-bit, white-box DNN watermark-
ing method that follows an intuitive approach. ClearMark
embeds a visible watermark that can be assessed through hu-
man inspection, empowering humans to make decisions based
on common sense and reasoning while retaining the option
for technology-assisted evaluations. In addition, the method
is generic and can be applied to various datasets and model
architectures, and is robust against a wide range of watermark
erasure techniques, including manipulation attempts by adap-
tive attackers who know the details of the protection method
and even of underlying keys.
Contributions. In particular, this paper makes the following
contributions:

• We propose ClearMark, the first DNN watermarking
mechanism that yields human-visible and understand-
able outputs, bypassing the need for rigid value thresh-
olds and enabling more coherent and defensible juris-
diction, especially in cases where portions of the water-
mark remain obviously discernible. As a consequence,
ClearMark provides more security for the model cre-
ators’ intellectual property.

• We have pioneered the utilization of transposed model
training inspired by deconvolutions [18,20,26,49,69,71]
as a novel approach for integrating a visible and human-
comprehensible watermark into a DNN. In this method,
we define a transposed model architecture specifically
tailored to the existing model’s structure, which shares
weights with the original model. This design enables the
training of the model in a reverse fashion, focusing on
embedding the watermark, while the effects on conven-
tional forward training for the model’s primary task are
negligible.

• We entangle the watermark and the main task within
all model layers to create a robust watermark that can
withstand adversarial model manipulations, such as fine-

tuning on third-party datasets, pruning of model pa-
rameters, or adaptive adversaries attempting to remove
or overwrite the watermark. Inspired by Siamese Net-
works [30], we achieve this by sharing weights between
the model’s primary task and the watermark and by en-
forcing that the watermark does not cause abnormal
model parameters. Any malicious modification neces-
sitates sacrifices in the model’s main task performance,
rendering the model less useful.

• We conduct a systematic large-scale study to analyze
factors influencing ClearMark, demonstrating its inde-
pendence from application-specific factors by leverag-
ing different datasets (MNIST [16], CIFAR-10 [32], GT-
SRB [52], and CIFAR-100 [32]) and model architec-
tures (CNNs, ResNet-18, ResNet-34 [25], ViT [17], and
VGG11 [47]) during evaluation. Additionally, we test the
watermark’s robustness under various fine-tuning and
pruning scenarios and showcase a substantial watermark
capacity of 8,544 bits that can be embedded with a low
error rate of 4.45%, which is comparable to the strongest
existing work in terms of capacity with 8,400 bits [34].

In summary, this work introduces a highly intuitive and
easy-to-understand white-box multi-bit DNN watermarking
method, offering a robust defense against various attack sce-
narios. The embedded watermark is human-understandable,
addressing the limitations of existing solutions, which of-
ten lack intuitive design and human-friendliness in the final
decision-making process, a task that can be seamlessly under-
taken by a human evaluator when employing ClearMark.

2 Background

This section provides background information that is neces-
sary to understand our approach.
Watermarking Watermarking [14, 19, 24, 29, 39, 44, 61] is
a technique to embed a digital mark or identifier into digital
media, e.g., images or audio, without significantly altering
the content’s appearance or functionality, with the purpose
of embedding a discernible sign of ownership, authenticity,
or other relevant information. Those signs can then be used
for various scenarios, e.g., copyright protection, authenticity
verification, ownership attribution, digital rights management,
tamper detection, or metadata embedding. Watermarks come
in various forms, with visible and concealed watermarks be-
ing notable categories. 1-bit watermarks make explicit own-
ership claims through their mere presence, while multi-bit
watermarks convey additional information. The choice of wa-
termarking method depends on the specific use case and the
desired level of security. Extracting the watermark, which is
a secret value, relies on knowing the extraction method and
is often accompanied by a specific secret key.

In DNNs the watermark is embedded typically within the
model’s parameters [3, 35]. This can transpire either directly,

2



Watermark Test Phase Watermark Decision Phase

DNN
Secret

Key Extraction
Algorithm

Extracted
Data

Secret
Lock

Verification
Algorithm Threshold

human
understandable

human-performed 
intuitive decision

Figure 1: This Figure depicts a high-level overview of water-
marking, including the test and decision phase. The green text
indicates the focus of this paper.

necessitating white-box access to the parameters for extrac-
tion and verification, or indirectly through a learning process
that configures the parameters to produce outputs containing
the watermark when subjected to specific inputs. In such a
case, black-box access is necessary for watermark verifica-
tion. Both methods are achieved by introducing an additional
regularization term to the loss function during model training.
This regularization term orchestrates parameter adjustments
in alignment with the intended watermarking objectives.

For watermark extraction and verification, as visualized in
Fig. 1, the DNN and the watermark’s secret key are fed into
an extraction algorithm which yields some data. Those data
are then verified against the watermarks ground truth secret
by an algorithm that relies on a rigid threshold.

Transposed Model Functionality The transposed functional-
ity of a machine-learning model is the reverse of the original
model’s task. We leverage the concept of transposed models
to embed a watermark into the model. For instance, consider
a model that classifies image inputs into a feature vector in-
dicating detected objects within the image. The transposed
functionality would involve inputting such a feature vector
into the model to generate an image that embodies the char-
acteristics encoded within that feature vector. This concept
extends to the more granular level of model layers within the
model architecture, where transposed layers reverse the func-
tionality of their corresponding original layers. A transposed
model consists of multiple transposed layers in the reverse
order of the original model’s architecture. Below, we discuss
common model layers and existing or straightforward meth-
ods for transposing their functionality. However, certain layers
may not be capable of precisely recovering the original in-
put, especially when input data have undergone compression,
resulting in information loss.

Linear Layer. A linear layer performs a calculation such as
y = x ·wT + b, where w and b denote weights and bias ma-
trices, and x and y represent input and output, respectively.
Here, T denotes the transposed operation such that the matrix
is flipped over its diagonal, e.g., Ai j becomes A ji. Linear lay-
ers can be accurately reversed by computing x = (y−b) ·w,
effectively retrieving the original input from the output.

Batch Normalization. Batch normalization layers [27] are
used to keep the data flowing through a model in a spe-
cific range. Such layers perform a computation akin to
y = x−E(x)√

Var(x)+ε
· γ+β, where E(x) and Var(x) are the feature-

wise mean and variance of the input data, ε is a small constant,
and γ and β are learnable parameters. As mean and variance
are dependent on x, the operation cannot be reversed straight-
forwardly when only provided with y. To address this, one
can set default values for E(x) = 0 and Var(x) = 1, resulting
in x = (y−β)·ε

γ
, which provides a good approximation.

Pooling Layer. Pooling layers [70] reduce the dimensionality
of data by selecting representative values among multiple
data points based on specific rules, such as computing the
average or selecting the maximum value. As this process
fundamentally involves downsampling, the transposed func-
tionality is centered around upsampling. Consequently, the
exact transposition of such downsampling computations can
only be approximated, as new data points must be inferred.
One common approach to upsample data is through interpola-
tion, with several interpolation methods available, such as the
nearest-neighbor algorithm [45] or the bilinear algorithm [46].
Convolutional Layer. A convolution [33] transforms the input
to extract relevant features. This transformation applies a filter
or kernel to the input to produce output data points. Multiple
input data points are convolved with the filter to generate a
single output data point. Hence, similar to downsampling, the
computation cannot be exactly reversed. However, a method
proposed in [71] offers a reasonably effective approximation1.
Dropout Layer. Dropout layers [50] are designed to distribute
knowledge across various parameters. They implement a reg-
ularization technique that simulates training numerous neural
networks with varied architectures concurrently. During train-
ing, random layer outputs are ignored, altering the layer’s
appearance and connectivity. Each training update reflects a
distinct "view" of the layer. They exert influence during train-
ing, have no learnable parameters, and remain inconsequential
during inference. Therefore, dropout layers are utilized iden-
tically to the forward pass during transposed training.
Activation Functions. Activation functions, e.g., ReLU [2],
introduce non-linearity in a model and play a significant role
in the model’s ability to generalize learned knowledge. Some
activation functions introduce lossiness, like ReLU, which
maps all negative input values to zero while the positive input
values remain the same. Naturally, such operations are irre-
versible, and thus, activation functions can not be transposed.
Transformer Blocks. Transformer models, like Vision Tran-
former [17], deviate from convolution-based models and are
constructed by so-called transformer blocks, which consist
of an encoder and an attention module, both featuring lin-
ear layers, dropout layers, and activation functions. Vision
Transformer divides the image into patches and embeddings

1The method of [71] is also used in PyTorch as transposed convolution
modules and can be seen as the gradient of the respective convolution.

3



are generated for each patch. The transposed functionality of
these linear layers, dropout layers and activation functions
was already elaborated in the previous paragraphs, indicating
that transposing a Vision Transformer is straightforward.

In summary, the transposition of model functionalities can
be applied to a variety of common ML architectures. While
some layers allow for a straightforward reversal, others neces-
sitate approximation methods due to inherent complexities
and information loss.

Image Similarity Human discernment of whether two images
share identical content is typically straightforward. Never-
theless, conventional machine-based methods for quantifying
errors, such as the computation of Mean Squared Error (MSE)
across all pixels in an image, can yield substantial error val-
ues, particularly when the images possess matching structural
elements but differ in aspects like color. Human visual percep-
tion excels at extracting structural information from images,
and in this context, Wang et al. [66] introduced the Structural
Similarity Index (SSIM). Within this paper, we employ SSIM
as part of a loss function to embed a watermark into a DNN,
as well as for post-extraction verification of the watermark’s
presence and integrity. The SSIM has a value range of [−1,1],
where 1 indicates perfect similarity, 0 indicates no similarity,
and -1 indicates perfect anti-correlation.

SSIM addresses the limitations of other metrics by provid-
ing a quantifiable measure of image dissimilarity considering
luminance, contrast, and structure, aligning more closely with
human perception. As exemplified in Tab. 1, MSE calculations
often highlight substantial disparities from the original im-
age, whereas SSIM reliably identifies high levels of structural
similarity of the content. As visualized in the fifth column of
Tab. 1, even SSIM values of, e.g., 0.18, are sufficient, such
that a human can claim similarity between two images.

3 Problem Setting

Considered Scenario. We consider a classical watermarking
scenario: The model owner trains a Deep Neural Network
(DNN) by utilizing a proprietary dataset and costly resources
making it critical to protect the resulting model, which is the
intellectual property of the owner. Thereby, a maximally ef-
fective watermark should be embedded that allows ownership
claim. The produced model is then legally or illegally dis-
tributed, e.g., sold or stolen, and placed into production. If the
owner suspects a copyright infringement of their model, an in-
spection of the suspected model can be conducted. Precisely,
it should be possible to extract and verify the watermark, even
if benign or adversarial modifications have been performed on
the copy of the original model. In the following, we first define
the objectives (Sect. 3.1) and the threat model (Sect. 3.2).

Image

SSIM 1 -1 0 -0.02 0.18 0.75
MSE 0 64,322 31,642 32,856 19,764 5,909

Table 1: Visualization of a reference image in the first column,
that is compared with the images from the first to sixth column
showing the SSIM and MSE values.

3.1 Watermark Objectives
Inspired by related works [6, 9, 10, 15, 21, 36, 67, 68], we de-
fine several objectives, that should be fulfilled by an effective
watermark: 1) Understandability: The evaluation of the water-
mark should be easily possible by human inspection. We add
this objective to the commonly used ones, as the final decision
in common DNN watermarking methods typically relies on a
rigid threshold that may not detect leftovers after watermark
erasure attempts, but those could be obvious to detect for hu-
man observers. Further, decisions that can be made by humans
are more intuitive and easily comprehensible than empirically
determined thresholds. 2) Fidelity: Watermark embedding
should preserve the model performance on the primary task.
3) Reliability: It must be reliably possible to extract the water-
mark from previously watermarked models2. 4) Robustness:
The embedded watermark must withstand model modifica-
tions, which we describe in Sect. 3.2. 5) Integrity: The water-
mark method should uniquely identify the watermark’s secret
value respective to the watermark’s key and should not extract
a valid watermark from unwatermarked models. 6) Capacity:
The amount of information embedded into the watermark
should be maximized to strengthen ownership claims. 7) Effi-
ciency: Embedding the watermark should introduce negligible
computational overhead. 8) Security: The watermark should
not introduce obvious footprints allowing for easy detection
and removal. 9) Generalizability: The approach should be
independent of the dataset or model architecture.

3.2 Threat Model
Our threat model specifies DNN model modification scenarios
the attacker can undertake with the goal of removing the
watermark from the trained and watermarked model.
Fine-Tuning. In fine-tuning [48, 54], the adversary continues
training with a dataset akin to the original training dataset in
the hope of removing watermarks that are added on top of the
main task. Here we assume, that the adversary is aware of the
training procedure including hyperparameters, and hence can
adopt the settings for model modifications. Specifically, the
learning rate is either kept at parity with the original training
or, alternatively, can be decreased from the original value. In
most benign fine-tuning scenarios, such a reduction of the
learning rate is a typical approach to preserve the already

2Note that watermarks from models that have been significantly manipu-
lated to the extent that the original main task is severely compromised do not
require detection, as the model no longer retains the creator’s IP rights.

4



trained meaningful features and only provoke small changes
caused by the new dataset. Alternatively, the adversary can
fine-tune the model on a different dataset, which may necessi-
tate the substitution of the last model layer with an untrained
counterpart due to a different number of label classes.
Pruning. Pruning [23] is normally used to reduce the DNN
size to facilitate deployment in smaller setups like embed-
ded devices. As the adversary can arbitrarily modify model
weights, parameters can be pruned in the hope of removing
the watermark while keeping a reasonable main task perfor-
mance. This entails the elimination of a specific proportion of
parameters, called pruning level, characterized by the lowest
absolute values within the model, as those parameters are
deemed to have the most marginal influence on the model’s
overall performance. Such pruning methods can be combined
with fine-tuning, which is called fine-pruning [37, 57].
Adaptive Adversary. An informed adversary, possessing
knowledge of the watermarking methodology, may attempt
to manipulate the existing watermark [29, 58] leveraging the
same embedding technique. Thereby, the adversary can invent
a new watermark that can either contain meaningful or ran-
dom data and embed the watermark in the hope of removing
or replacing the original one. Removing the watermark would
prevent ownership claims by the model creator. A eplacement
would transfer the possibility of claiming model ownership to
the adversary. Usually, the watermark is kept secret and the
adversary is not aware of the watermark’s data.

4 Approach

In this section, we present our general concept in Sect. 4.1,
followed by details about the generation of transposed models
in Sect. 4.2, the composition of the watermark in Sect. 4.3,
and details on the training procedure in Sect. 4.4.

4.1 Overview
We propose ClearMark, a white-box and multi-bit3 DNN wa-
termarking method, that embeds a watermark secret matching
to a specific watermark key within the complete set of model
parameters. The watermark key has the form of a regular out-
put vector of the DNN and the watermark secret is represented
by an input-like sample of the DNN, that can contain arbitrary
information, e.g., random text superimposed on an image,
without necessitating visual or context-wise similarity to ac-
tual dataset samples. After legal or illegal model distribution
of the trained and watermarked model, ClearMark’s verifica-
tion process can use the key to extract the embedded secret
from the DNN and, thus, claim ownership and potentially
copyright infringement. Below, we describe ClearMark’s prin-
ciple and outline the successive steps of ClearMark during
the model life-cycle.

3We embed data within the watermark instead of solely relying on the
presence/absence of the watermark.

Shared Weights

Forward 
Loss

A B
C D

Transposed 
Loss

Normal NN

Transposed NN

Predictions

Labels

Samples

Forward Training →

 Transposed Training

0.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.12-0.65 0.13 8.55 … -1.52 5.86

0.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.120.15 0.13 0.55 … 0.0. 0.120 0 1 … 0 0

4.25 -3.58 10.0 … 7.21 -9.89
A B
C D

Figure 2: Visualization of main task forward training and
watermark (key & lock) embedding in transposed training.

Principle of ClearMark. In the process of embedding a wa-
termark into the model, ClearMark employs transposed model
training, as visualized in Fig. 2. Therefore, we construct a
transposed model architecture that is constructed using the
method presented in Sect. 4.2 and establish weight sharing
(similar to Siamese Networks [30]) between the standard
model and transposed model by assigning the parameters of
each layer to the respective transposed layer. Consequently,
these shared weights can be subject to regular training for the
main task via conventional (forward) training with respect
to the forward loss, e.g., cross-entropy, as illustrated in the
upper portion of Fig. 2. Simultaneously, we perform the trans-
posed training with the predefined watermark key and secret
visualized as key and lock in Fig. 2, representing the training
data. The key, a prediction-like vector, is fed into the trans-
posed model, generating an output akin to the input data of
the regular DNN, e.g., an image, as visualized in the lower
part of Fig. 2. During transposed training, the shared model
weights are optimized with respect to a transposed loss, that is
calculated by comparing the output of the transposed model
with the watermark’s secret. By applying both, forward and
backward training, ClearMark is capable of entangling the
main task and the watermark within all model layers of the
DNN.

ClearMark Life Cycle. During a model’s life-cycle,
ClearMark follows the four steps visualized in Fig. 3. The
untrained model is initialized with random parameters, that
neither performs well on the main task for forward model in-
ference nor on the watermark for transposed inference. 1) In
the watermark hardening phase, we initialize the parameters
of the model by transposed training on the watermark until a
self-defined sufficient enough watermark quality is reached,
which essentially means, that the model is overfitted on the
watermark4. Thereby, the watermark builds the basis for the
main task in the consecutive forward training within the model

4We suggest an SSIM value above 0.95 as the watermark quality threshold,
as such values can be achieved fast in transposed-only training since the
watermark consists of a limited small amount of key-value pairs. In our
experiments, we combine the SSIM threshold with a maximum of 10,000
learning epochs.

5



Legal / Illegal Model Distribution

Constraint
Training

2

Watermark
Testing

4

3rd Party

Manipulation
3

Watermark
Hardening

1

0.15 0.55 … 0.120.15 0.55 … 0.121.15 8.55 … 3.12

0.15 0.55 … 0.120.15 0.55 … 0.121.15 8.55 … 3.12

A B
C D

A B
C D

Main
Task

Water
mark

Copyright Infringement?

Figure 3: Overview of ClearMark’s life cycle steps.

parameters. 2) During the constraint training phase, normal
forward model training is equipped such that the already em-
bedded watermark from step 1 persists. Thereby, we alternate
between optimizing the two tasks, which is described in detail
in Sect. 4.4. The training can mainly focus on optimizing the
main task, as the effect of the watermark task during optimiza-
tion is minimal, due to the foregone watermark hardening
step. The parameters are prepared during step 1 such that
the watermarking task yields a negligible loss compared to
the main task and essentially functions as a constraint during
normal model training. 3) After model distribution, the model
is manipulated by a third party, e.g., fine-tuned5. As long as
the main task performance is preserved, the watermark should
remain embedded. 4) Finally, a transposed inference on the
watermark key is conducted to extract the watermark data,
which is verified against the ground truth watermark secret
by human-only inspection or machines. Since the main task
relies on the fortified parameters established in step 1, creat-
ing an inherent interconnection between the tasks, substantial
modifications made to the watermark in step 3 directly influ-
ence the main task. This direct impact enhances the overall
robustness of the watermark.
To enable ClearMark, we must define several components:
First, in Sect. 4.2, we define rules for the creation of a trans-
posed model from a given model architecture. Second, we
specify how the key and the secret of the watermark are com-
posed in Sect. 4.3. Third, in Sect. 4.4, we determine how to
train while maintaining the watermark.

4.2 Transposed Model Generation
To ensure fulfillment of the generalizability requirement from
Sect. 3.1, we establish guidelines for the generation of trans-

5Step 3 can differ depending on the scenario or the attack. We describe var-
ious scenarios in Sect. 3.2 and evaluate ClearMark against them in Sect. 5.2
and Sect. 5.4.

posed models. Thereby, we define how model layers and
connections are translated to the transposed version6. Linear
layers and batch normalization layers [27] are straightforward
mathematical operations and easy to transpose, as discussed
in Sect. 2. For pooling layers [70], we leverage interpolation
based on the nearest-neighbor algorithm [45]. Convolutional
layers [33] are transposed with deconvolutions7 as in [71].
Dropout layers [50] and activation functions, e.g., ReLU [2],
are used likewise to their untransposed functionality.

Skip Connections. Skip connections fork the data processing
within the model architecture and merge the data from both
branches at a later stage, alleviating the vanishing gradient
problem and improving the accuracy of DNNs. Skip con-
nections effectively perform an operation akin to a+b = c
during the merging process within the forward path. Hence,
they are difficult or impossible to reverse as only the output
c is provided during transposed training, rendering a and b
indistinct. To transpose the skip connection, we freeze one
part of the connection, such as b, during transposed training.
Thus, by the inverse of the mathematical operation between a
and b the skip connection can be transposed utilizing c and the
frozen b. This effectively adds b to the watermark’s key. To
get a reasonable estimation of a realistic value for b, we start
training an unwatermarked model for a few initial epochs.

Additional Dropout Layers. To ensure the robustness re-
quirement from Sect. 3.1, ClearMark strives for a robust entan-
glement between the watermark and the main task. Therefore,
the watermark needs to be embedded within all model layers
during the watermark hardening step. To facilitate the entan-
glement between the watermark and the main task, spreading
the watermark across multiple parameters must be enforced.
Such a behavior can be achieved within model architectures
by utilizing dropout layers [50]. For model architectures that
lack inherent dropout layers, we artificially add such layers
into the transposed architecture. Specifically, dropout layers
are incorporated after each convolutional and linear layer,
with the exception of the final layer responsible for producing
the ultimate output of the transposed model. The dropout rate
is an insensitive parameter, that must be set to some reason-
able value, which can be quickly identified by analyzing the
first few update steps during watermark hardening. Higher
dropout rates extend the duration of the hardening process but
do not compromise ClearMark’s functionality.

4.3 Watermark Composition
Watermark Key. The key’s structure must align with the
dimensions of a regular output vector of the (forward) model.
Generally, there are no constraints on the values within this

6Please note that the transposed model can be generated solely from the
weights of the original model and does not require any additional parameters.

7We adapt the settings, e.g., kernel size and stride, from the convolution
with potential adjustments to padding to ensure the output of the deconvolu-
tion matches the original input.

6



vector, allowing for arbitrary and extreme values, that are usu-
ally not encountered in forward prediction vectors. However,
we need to enforce an overlap of the model’s forward output
value range and the watermark key’s value range. Otherwise,
e.g., if the key only consists of positive values, the model will
most likely group the outputs of the main tasks to different
value ranges, e.g., negative values. Such a separation prevents
tight entanglement of the two tasks and encourages the model
to handle the tasks in a multi-task instead of a constraint-task
manner. As a result of separated value ranges, the watermark
can be removed from the model with minimal effects on the
main task, contrary to scenarios where the value ranges over-
lap. To address this, we generate random key vectors with
values between a predefined range from -10 to 10, as visu-
alized in Fig. 2, given that most random initialized models
predominantly generate values around zero.

Watermark Secret. The watermark’s secret, adaptable to reg-
ular input sample dimensions like images, can be 1-bit using
a random image or multi-bit with additional content like text.
Similar to the watermark key values, the values of the water-
mark secret should fall within the range of typical input data.
This ensures an intertwined relationship between the water-
mark and the main task parameters, ultimately enhancing the
robustness of the watermark. When employing a loss function
solely based on structural similarity between images, there
might be challenges in producing outputs within the desired
range. To address output range challenges, we employ a dual-
loss strategy in transposed training. SSIM ensures structural
similarity with the watermark secret, while MSE maintains
exact secret values in the output.

Multi-Key. Employing not just one, but multiple unique key-
secret pairs within a single watermark significantly increases
the capacity of the multi-bit watermark addressing the ca-
pacity requirement from Sect. 3.1. This approach allows for
the embedding of a greater volume of information. Further-
more, it enhances the robustness of the watermark as multiple
keys influence a larger portion of the model’s parameters,
complicating erasure attempts by third parties. These distinct
key-secret pairs are inputted into the transposed model as a
unified batch. This method compels the model to grasp the
underlying structure of the secrets and integrate the water-
mark throughout all layers. Additionally, this approach offers
the advantage of preventing the parameters in the transposed
model from memorizing specific key-secret pairs. Instead,
the model generalizes the functionality underlying the sam-
ples, reinforcing learned capabilities across various layers.
To optimize this approach, it is advisable to ensure that the
different key-secret pairs share a consistent structure, such as
all containing textual information within images. This unifor-
mity enhances the model’s ability to learn and embed diverse
information effectively.

4.4 Constraint Training
Watermarking the model in the proposed way (cf. Fig. 2) es-
sentially corresponds to simultaneously learning two separate
tasks within one model, resulting in a multi-objective opti-
mization problem consisting of the model’s general function-
ality as task one and the watermark in the transposed model as
the second task. After overfitting the transposed model to the
watermark in the watermark hardening phase (step 1 of Fig. 3),
the watermarking task can be considered as a constraint to the
main task in step 2 in Fig. 3. This entails, that we optimize
the main task while keeping the watermark functionality. To
execute this optimization, we leverage sequential optimiza-
tion, essentially alternating between optimizing the model
parameters for the main task and the watermark. Alternatives
to this optimization approach are discussed in Sect. 6.0.2.

5 Evaluation

Hardware & Experimental Setup. Experiments are imple-
mented in PyTorch, a prominent Python-based machine learn-
ing library [43, 56, 60], on a server featuring an AMD EPYC
7413 24-Core Processor (64-bit) with 96 processing units
and 128GB main memory. An NVIDIA A16 GPU with 4
virtual GPUs, each equipped with 16GB GDDR6 memory, is
accessible via CUDA [42].
Datasets & Model Architectures. We use common datasets
mainly focusing on image classification with MNIST [16],
CIFAR-10 [32], GTSRB [52], and CIFAR-100 [32] trained on
models of different types and sizes, namely CNNs (with and
without batch normalization), ResNet-18, ResNet-34 [25],
ViT [17], and VGG11 [47].8

Default Scenario. Throughout our experiments, we systemat-
ically vary model architecture, dataset, and hyperparameters
to illustrate the versatility of our approach. Unless otherwise
specified, our default scenario uses MNIST [16] trained on a
CNN consisting of two convolution layers both followed by a
ReLU and a 2D max pooling layer and followed by three fully
connected layers of decreasing output sizes (512, 256, 10).
For training purposes, we employ separate Adam optimizers
with a learning rate of 0.0001, both for the primary task and
transposed training. We trained the model for five epochs.

5.1 General Functionality
Watermark Definition. A watermark for ClearMark consists
of one or multiple watermark keys and secrets, which are
kept confidential. In our experiments, the keys are vectors
consisting of ten randomly chosen values between -10 and
109. The chosen secrets are images containing four letters like
“ABCD”, as visualized in Fig. 4a and App. Fig. 12.

8We use PyTorch model instances for predefined model architectures.
9The precise random key vector for the experiments with one key is

provided in App. 8.1.

7



Table 2: In these experiments MNIST [16] was trained on a CNN with a learning rate of 0.001 for five epochs.

Number
of keys

Untrained Watermark Training
Extracted

Watermark
Figure

Watermark
Considered

Valid

4 epochs fine-tuning with
Model Hardening 1/10 of training learning rate

Accuracy SSIM Steps Accuracy SSIM Constraint Accuracy SSIM Accuracy SSIM

(1) - 10.22% 0.00 - - - x 89.88% -0.06 Fig. 4c x - -
(2) 1 10.22% 0.00 7,000 8.57% 0.95 - - - Fig. 4d ✓ - -
(3) 1 10.22% 0.00 7,000 8.57% 0.95 ✓ 88.37% 0.95 Fig. 4e ✓ 92.73% 0.95
(4) 10 10.22% 0.00 10,000 8.92% 0.93 ✓ 87.69% 0.91 Fig. 4f ✓ 89.73% 0.93
(5) 11 10.22% 0.00 10,000 8.88% 0.92 ✓ 89.10% 0.91 Fig. 4g ✓ 89.86% 0.93

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Visualization of (a) the watermark secret and (b-g)
extracted watermarks for the experiments listed in Tab. 2.

Baseline - No Watermark. First, we trained a model without
a watermark, which serves as a baseline for model perfor-
mance. As can be seen in (1) in Tab. 2, we reached a model
accuracy of 89.88%. When trying to extract a watermark be-
fore and after training, we get images as in Fig. 4b and Fig. 4c,
respectively. The images clearly show no relation or similarity
to Fig. 4a, indicating the absence of the watermark essentially
fulfilling the integrity requirement from Sect. 3.1. Addition-
ally, the two pictures yield an SSIM of 0.00 and -0.06 when
being compared to Fig. 4a, confirming that watermarked and
unwatermarked models are clearly distinguishable. However,
human perception instead of a low SSIM should be the main
criterion for the decision, as even for small SSIMs close to
zero human observers can still recognize similarities between
images (cf. Tab. 1 in Sect. 2).

Watermark Hardening. Next, in step 1 of ClearMark
(cf. Fig. 3) we perform transposed training as described in
Sect. 4.1 to embedded a watermark consisting of one key-
secret pair into an untrained model. As transposed loss, we
combine SSIM and MSE between the transposed model out-
put and the watermarks ground truth secret. We name each
adjustment of the transposed model parameters by the opti-
mizer as a hardening step. As presented in (2) in Tab. 2 we
reached an SSIM of 0.95 after 7,000 hardening steps. The
resulting image after watermark extraction depicted in Fig. 4d
clearly shows the content of the ground truth secret Fig. 4a
and an existing watermark can be attested. As expected, the
accuracy on the main task remained naïve with 10.22% and
8.57% accuracy before and after training, respectively.

Constraint Training. In ClearMark’s second step, we train
the model’s main task while keeping the watermark embed-
ded as described in Sect. 4.4. As reported in (3) in Tab. 2, the
watermark remains embedded, while the main task accuracy
of 88.37% is achieved, fulfilling the reliability requirement
from Sect. 3.1. Hence, we observe a negligible accuracy drop
compared to the unwatermarked model ((2) in Tab. 2) satis-
fying the fidelity requirement from Sect. 3.1. To emphasize

this important fact, we visualize the main task loss for unwa-
termarked and watermarked training in App. Fig. 15 showing
minimal differences. These results could be reproduced inde-
pendently of the optimizer used for the different tasks, which
we elaborate on in App. 8.2.
Multi-Key. Next, we investigate multiple watermark key-
secret pairs, as explained in Sect. 4.3. We employed ten and
eleven keys to show the independence from the number of
classes in the dataset, ten for MNIST [16]. The secrets are
distinct four-character images10, as visualized in App. Fig. 12.
The results for ten and eleven keys are shown in (4) and (5)
in Tab. 2, respectively, and show that ClearMark embeds the
watermark successfully. Thus, we can increase the watermark
capacity without a significant negative impact on the water-
mark’s or the model’s performance11. Notably, we stopped
hardening after 10,000 hardening steps but it would be possi-
ble to continue training until a 0.99 SSIM is reached12. While
it is possible to increase the number of keys and thus the ca-
pacity, which we discuss in Sect. 5.5, we proceed with eleven
keys to showcase the functionality of ClearMark. To show the
independence from the concrete secret images, we also con-
ducted the same experiments with other images, visualized in
Fig. 13 and Fig. 14, yielding similar results.

5.2 Model Manipulations
Next, we evaluate illegal and legal third-party model manipu-
lations, that are applied in step 3 of Fig. 3.
Fine-Tuning. To evaluate ClearMark’s robustness against
fine-tuning, as described in Sect. 3.2, we continued training
on the MNIST train set after executing our default scenario for
another two epochs (half of the original five epochs rounded
down) with the same learning rate, as well as with 1/10 of
the original learning rate (similar to [1, 9, 34, 40, 58, 67]). Af-
ter fine-tuning for two epochs, we continued for another two
epochs with identical settings to showcase ClearMark’s be-
havior under excessive fine-tuning conditions. To evaluate
the watermark robustness against unseen data, we executed
the same fine-tuning process but employed the MNIST [16]

10During visualizations, we stick to the first image containing “ABCD”.
11We observe a slight increase in main-task accuracy for (5) in Tab. 2,

indicating, that the watermarking is tightly enmeshed with the main task and
serves as regularization in this experiment. However, the general observation
is a minimal drop in accuracy due to watermark embedding.

12We report the mean SSIM values for multiple keys. If not specifically
mentioned, the means do not contain extreme outliers.

8



Table 3: Fine-tuning experiments for a CNN trained using
MNIST [16] test set with a learning rate of 0.001 for five
epochs with eleven watermark keys.

Fine-Tuning
Scenario

2 Epochs 4 Epochs Wateermark
ACC SSIM ACC SSIM Figure Valid

(1) 88.64% 0.90 87.42% 0.88 Fig. 5a ✓
(2) 88.56% 0.92 89.86% 0.93 Fig. 5b ✓
(3) 96.31% 0.92 97.02% 0.92 Fig. 5c ✓

(1) Same as training learning rate (0.001) & same data
(2) 1/10 of training learning rate (0.0001) & same data
(2) 1/10 of training learning rate (0.0001) & unseen data

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Visualization of extracted watermarks for the fine-
tuning experiments listed in Tab. 3 in (a-c). Figures (d-f)
visualize pruning with 60%, 80%, and 90% respectively, while
(g) shows fine-pruning with 40%.

test set. As Tab. 3 shows, ClearMark shows strong robust-
ness against fine-tuning as the watermark remained embed-
ded yielding high SSIM values and clear images (Fig. 5a to
Fig. 5c)13. Later, in Sect. 5.3, we also evaluate cross-dataset
fine-tuning. In scenario (2) in Tab. 3 we can observe a slight
increase in SSIM after 4 epochs compared to 2 epochs, which
is counter-intuitive. We believe that caused by the overlap-
ping value ranges of our watermark and the entanglement of
parameters, weight changes for the forward path can have
small positive effects on the watermark’s similarity score.

Pruning. Besides fine-tuning, we investigate model pruning
(cf. Sect. 3.2) similar to [9, 15, 34, 40, 58, 67]. As depicted in
Fig. 6, the watermarking withstands pruning and is coupled
to the main task accuracy, as for low pruning levels, which
maintain the accuracy, the SSIM remains high. For exam-
ple, for 60% pruning with an accuracy drop from 89.1% to
78.56%, the SSIM is still 0.69, yielding Fig. 5d. Even for 80%
pruning, which already suffers in accuracy with 50.1% we
obtain an SSIM of 0.47 resulting in Fig. 5e, which is still suf-
ficient for a human observer to identify the watermark when
being aware of the ground truth secret Fig. 4a. Starting from
90% pruning (cf. Fig. 5f), the watermark cannot be clearly
identified, but the model already decreased to 26.76% accu-
racy essentially being useless. Fig. 5g shows the result with
an SSIM of 0.62 and an accuracy of 89.79% after two fine-
tuning epochs followed by pruning with 40%, typically called
fine-pruning [28, 57]. As the images prior to 90% pruning in
Fig. 5f are clearly distinguishable from Fig. 4c while Fig. 5f
suffers low accuracy, we can conclude that ClearMark is ro-
bust against model pruning essentially addressing the security
requirement from Sect. 3.1.

13The accuracies show, that fine-tuning with 1/10 of the original learning
rate is a better setting if an adversary wants to increase the model accuracy
on a third-party dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning Level

0

50

Ac
cu

ra
cy

0.0

0.5

SS
IM

Figure 6: Model accuracy on the main task and correspond-
ing watermark SSIM for different pruning levels between 0
(unpruned) and 90%.

5.3 Generalizability

Below, we explore different scenarios showing that
ClearMark can fulfill the generalizability requirement from
Sect. 3.1. Essentially we demonstrate the independence from
datasets and model architectures. During these experiments,
we use fine-tuning with 1/10 of the original learning rate as the
default model modification approach.

Dataset. First, we changed the dataset to CIFAR-10 [32],
essentially changing the input layer to match the three color
channels of the CIFAR-10 input samples. Then, we conducted
the same experiment for GTSRB [52], which has 43 label
classes. The results reported in (1) and (2) in Tab. 4 show,
that the watermark was successfully embedded and survived
fine-tuning yielding Fig. 7a and Fig. 7b. As the images clearly
show the expected letters, we observe the dataset indepen-
dence of ClearMark.

Small Model Architectures. Next, to show that ClearMark
is also applicable to very simple model architectures, we
trained MNIST [16] on a CNN with only three fully connected
layers each of size 1024 and report the result in (3) in Tab. 4.
Further, to show ClearMark’s independence of added batch
normalization layers when embedding the watermark, we
enhanced our default setting by adding such a layer after each
convolutional layer and report the results in (4) in Tab. 4.
The extracted images Fig. 7c and Fig. 7d, as well as the high
SSIM values above 0.85 after raining and fine-tuning reported
in Tab. 4 confirm ClearMark’s good performance for small
models. However, even if the images yield clear watermark
evidence, the presence of batch normalization layers seems to
diminish the robustness of the watermark resulting in a lower
SSIM of 0.85 after fine-tuning. This effect might be caused
by the circumstance, that for batch normalization layers, the
mean and variance of the input data are unknown during
transposed training and fixated to E(x) = 0 and Var(x) = 1,
essentially causing information loss.

Medium-Size Model Architectures. To address bigger
model architectures, we evaluate CIFAR-10 [32] and GT-
SRB [52] on a ResNet-18 [25] model trained for ten epochs14,
whereas both datasets yielded similar results reported in (5)

14As ResNet-18 [25] contains skip connections, we first trained the model
for three epochs, to get valid values for fixating the skip connections, as
discussed in Sect. 4.2.

9



Table 4: Experiments showing the independence of ClearMark from datasets and model architectures. Tests were conducted with
eleven watermark keys and fine-tuning was performed for the same number of epochs as training epochs.

Untrained Watermark Constraint Fine-Tuning with Extracted
Watermark

Figure

Watermark
Considered

Valid
Model Hardening Training 1/10 of training learning rate (LR)

Accuracy SSIM Steps Accuracy SSIM Accuracy SSIM Accuracy SSIM

(1) 10.01% 0.00 10,000 10.07% 0.92 44.16% 0.93 45.87% 0.93 Fig. 7a ✓
(2) 1.45% 0.00 10,000 0.71% 0.92 38.96% 0.91 42.70% 0.93 Fig. 7b ✓
(3) 10.59% 0.00 200 10.63% 0.99 85.27% 0.99 87.86% 0.96 Fig. 7c ✓
(4) 14.38% 0.00 1,000 2.81% 0.99 93.47% 0.99 94.19% 0.85 Fig. 7d ✓
(5) 5.74% 0.00 4,000 10.00% 0.96 62.87% 0.96 68.74% 0.91 Fig. 7e ✓
(6) 1.57% 0.00 4,000 0.47% 0.96 72.51% 0.96 81.03% 0.93 Fig. 7f ✓
(7) 5.74% 0.00 4,000 10.00% 0.96 62.87% 0.96 68.74% 0.55 Fig. 7g ✓
(8) 0.64% 0.00 4,000 1.06% 0.96 28.36% 0.97 64.88% 0.51 Fig. 7h ✓
(9) 1.00% 0.00 1,000 0.91% 0.99 47.27% 0.98 50.86% 0.79 Fig. 7i ✓
(10) 12.02% 0.00 1,000 11.04% 0.98 55.56% 0.97 57.90% 0.60 Fig. 7j ✓
(1) Default scenario & CIFAR-10 [32]dataset (2) Default scenario & GTSRB [52]dataset
(3) Default scenario & CNN with only FC layers, LR 0.0001, 3 epochs (4) Default scenario & CNN with batch normalization layers
(5) CIFAR-10 [32] on ResNet-18 [25], LR 0.001, 10 epochs (6) GTSRB [52] on ResNet-18 [25], LR 0.001, ten epochs
(7) CIFAR-10 [32] on ResNet-34 [25], LR 0.001, 10 epochs (8) CIFAR-100 [32] on ResNet-18 [25], fine-tune on CIFAR-10 [32], LR 0.001, 10 epochs
(9) CIFAR-100 [32] on VGG11 [47], LR 0.001, 200 epochs (10) CIFAR-100 [32] on ViT [17], LR 0.001, 5 fine-tuning epochs

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Visualization of extracted watermarks for the exper-
iments listed in Tab. 4.

and (6) in Tab. 4. As retractable in Fig. 7e and Fig. 7f, the
watermark is still clearly visible after ten epochs.

Further, we evaluate CIFAR-10 [32] on ResNet-34 [25]
and use the same setup as in the ResNet-18 experiment. The
results in (7) in Tab. 4 yield a bigger drop in SSIM to 0.55 after
fine-tuning, probably introduced by the size of the model and
the amount of transposed convolution layers, which introduce
uncertainty due to their upsampling nature. Nevertheless, the
resulting image Fig. 7g leaves no doubt that the watermark is
still strongly embedded.

Inspired by [1, 58], we also evaluate cross-model fine-
tuning scenarios. We used our medium-size model setups and
trained CIFAR-100 [32] on ResNet-18 [25] but fine-tuned
the model on CIFAR-10 [32], which necessitates changing
the last layer due to ten instead of 100 output classes. As the
watermark is embedded based on CIFAR-100, the last layer
needs to be replaced with the original layer during watermark
extraction, thus rendering this layer as part of the key. We
report positive results with 0.51 SSIM in (8) in Tab. 4. The
watermark extraction yielded Fig. 7h, which clearly contains
the watermark. This experiment demonstrates that the water-
mark is embedded within all network parameters and not only
resides within the last layer, contributing to the robustness
requirement from Sect. 3.1.

Large Model Architectures. To address even larger model
architectures, we trained CIFAR-100 [32] on VGG11 [47] for
200 epochs and 100 epochs of fine-tuning. As the results in
(9) in Tab. 4 show, ClearMark could successfully embed a

Figure 8: Extracted watermark images after five, seven, and
eleven adversarial hardening steps during watermark removal.
The corresponding main task accuracies to the lines are
82.89%, 78.60%, and 74.30% originating from 89.10% with
SSIMs of 0.13, 0.11, and 0.01.

robust watermark even in a large model architecture.
To evaluate ClearMark on transformer blocks, we trained

CIFAR-10 [32] on a Vision Transformer [17]. The extracted
watermark after fine-tuning is visualized in Fig. 7j. It has a
colorful background, but the watermark text is clearly visible,
indicating that ClearMark can also handle such architectures.

Summarized, we showed, that ClearMark is independent of
the model architecture and, combined with the dataset inde-
pendence, applicable in arbitrary application scenarios.

5.4 Adaptive Adversary
Watermark Erasure. An adversary with knowledge of
ClearMark’s functionality could try to erase an embedded
watermark as defined in Sect. 3.2. Thereby, a random wa-
termark key in the predefined value range could be used in
combination with a secret image consisting of random noise.
An even stronger adversary with the knowledge of embed-
ded watermark keys (which exceeds usual assumptions as in
Sect. 3.2 could also use such an image. As both scenarios
yield the same effects, we depict the results for a stronger
adversary (using an already embedded watermark key) in the
main body of the paper and append the random key experi-
ment results in App. 8.2.

10



Figure 9: Watermarks after watermark overwriting with
eleven keys. The lines correspond to the first four hardening
steps with accuracy drops from 89.10% to 83.89%, 70.38%,
56.39%, and 46.52%, and SSIMs of 0.52, 0.17, 0.05, 0.01.

We use the same mechanism as in step 1 in Fig. 3 to embed
the adversarial key-secret pair, with the intention of erasing
the existing secret for the respective watermark key and po-
tentially for other existing keys that are part of the watermark.
Our experiment revealed, that the erasure of the watermark
involves a significant loss in main task accuracy as both tasks
are entangled within the model parameters by design. Dur-
ing watermark erasure attempts, the adversary sacrifices usu-
ally more than 10% accuracy in our setup compared to the
initial 89.10%, whereas some other existing works consider
3.5% accuracy drop as acceptable in related works [40]. In
Fig. 8, we show seven out of eleven watermark images15 af-
ter five, seven, and eleven adversarial hardening steps with
respective remaining accuracy values of 82.89%, 78.60%,
and 74.30%. Even the third row with an accuracy drop of
14.8% shows clear evidence, as one should keep in mind, that
an unwatermarked model yields an image similar to Fig. 4c.
In the first and second rows of Fig. 8, the watermark exis-
tence can still be attested by a human observer even though
the SSIMs are low with 0.13, 0.11, and 0.01. This shows
that the definition of rigid thresholds is challenging as in the
case of SSIMs such low values could also stem from content-
wise unrelated images. Therefore, a threshold needs to be set
higher to avoid false positives. Hence, ClearMark improves
the decision-making in such situations, essentially increasing
the security for the model owner while fulfilling the under-
standability requirement from Sect. 3.1. We got similar results
when using a completely black image as a key and when using
an image that an unwatermarked model yields for the adver-
sarial key after a transposed inference, which is reported in
App. 8.2.

Further, we can report, that we observed the same effect
when increasing the number of keys embedded by the ad-
versary from one to eleven. We experimented with eleven
already embedded or eleven random keys combined with se-
cret images containing random noise, only black pixels, and

15We show only seven images due to space limitations in the paper.

Figure 10: Extracted watermarks after a watermark erasure
attack on ResNet-18 [25] trained on CIFAR-10 [32]. The
lines show watermarks after eleven (line one) and 22 (line
two) hardening steps corresponding to 10.12% and 18.62%
accuracy drop and SSIMs of 0.38 and 0.24.

yielded images from an unwatermarked model like Fig. 4c.16

For example, for the latter, we measured accuracy drops from
89.10% to 83.89%, 70.38%, 56.39%, and 46.52% after one
to four hardening steps resulting in the four lines of Fig. 9,
where the watermark is still completely identifiable in the
second line, and partially even in the third line. To achieve a
removal degree as showcased in the fourth line, the adversary
would need to sacrifice 42.58% in main task accuracy.

To validate that our findings are not intrinsic to our spe-
cific application scenario, we also conducted the experiment
with an already embedded watermark key and an inferred
image from an unwatermarked model similar to Fig. 4c for
CIFAR-10 [32] trained on ResNet-18 [25]. Thereby, we could
observe the same effect of steadily decreasing main task ac-
curacy with increasing watermark elutriation. We report the
watermarks after eleven and 22 hardening steps with accuracy
drops of 10.12% and 18.62% percent in Fig. 10, showing that
the watermark is still partially embedded while the adversary
sacrificed a significant amount of main task accuracy.

Watermark Overwriting. Besides removing the watermark,
an adversary could also try to overwrite the watermark with a
second watermark. When embedding one new watermark im-
age, in our case an airplane icon as visible in the first image in
the first line of Fig. 11 with a random key, the adversary pro-
voked an accuracy drop from 89.10% to 79.25% and 78.25%
after six and seven hardening steps. While evidence for the
original watermark is still visible after six steps, it starts to be
vague after seven steps, as can be seen in the first and second
lines in Fig. 11, respectively.

Summarized, we can conclude, that ClearMark is ro-
bust against adaptive adversaries with the knowledge of
ClearMark’s functionality, that try to remove or overwrite
the watermark or embed an additional watermark, even if the
adversary is equipped with knowledge about the keys. If the
adversary erases the watermark, he sacrifices a minimum of
10% of accuracy, whereas usually around 3.5% accuracy drop
is considered as acceptable [40].

16Due to space limitations in the paper we only report one scenario, as all
scenarios yield similar results.

11



Figure 11: An adversarial watermark secret (first image) and
extracted watermarks after six (line one) and seven (line two)
hardening steps corresponding to 79.25% and 78.25% remain-
ing main task accuracy originating from 89.10% and SSIMs
of 0.24 and 0.23.

5.5 Capacity
To evaluate the capacity and generalizability to arbitrary wa-
termark locks, we generated random bit strings and converted
them into images using dot code [59]. The image is initially
divided into square patches that correspond to the number of
bits in the string. Based on the bit value, the patch is colored
black for zero or white for one. An example of this is shown
in App. Fig. 20. Multiple watermarks were injected into the
model, with the same capacity and randomly generated keys.
Likewise, the extracted watermark was again divided into
patches to extract the bit sequence. Values less than 0.53 in
each channel were set to 0, while others were set to 1. To
determine the bit of the patch, black and white pixels were
counted and the majority was used as a decoding result. To
evaluate the outcome, the Binary Error Rate (BER) was uti-
lized, which is the number of incorrect bits divided by the
total number of bits. We first generated images with 36-bit ca-
pacity and injected those into the CNN model. The evaluation
has shown that the BER is consistently low at roughly 3.43%
and 2.96% after fine-tuning. For larger bit lengths of 100 bits
per image we injected the MiT license text 17 (8,544 bits) into
a ResNet-18 [25] model. We compared the results for applied
(7,4) Hamming code [22] error correction (14,952 bits) and
without. ClearMark achieves average BERs after training of
as little as approximately 5.92% and 3.62% with and with-
out error correction, respectively. After fine-tuning the BER
increased to 6.46% without error correction and 4.45% with
error correction. ClearMark is capable of injecting large pay-
loads such as licenses or images and, as the limit of keys is
not yet exhausted, even larger files could be injected.

5.6 Runtime
Regarding the runtime of ClearMark, we measured the indi-
vidual steps, namely hardening, constraint training, and wa-
termark testing for our default scenario with eleven random
keys. We report averages over ten experimental runs. Harden-
ing with 10,000 steps took 53.48 seconds and is a one-time
effort. The evaluation only takes 0.02 seconds. The train-
ing time increased from 67.62 to 94.39 seconds for the five
epochs, introducing a one-time overhead of 39.58%, which is

17MiT License available at https://opensource.org/license/mit/.

expected, as an additional loss needs to be computed and a
second parameter optimization step is executed during train-
ing. Therefore, we consider the efficiency requirement from
Sect. 3.1 as fulfilled.
Summarized, we can show that ClearMark is a robust water-
marking mechanism that withstands adversarial attempts to
remove the watermark and barely influences the main task
performance of the DNN while providing high watermark ro-
bustness. Most importantly, no non-intuitive algorithm based
on a riding threshold needs to be applied to evaluate the wa-
termark.

6 Discussion

In this section, we discuss potential approaches for automated
ownership claim validation (Sect. 6.0.1), as well as elaborate
on constraint optimization methods that could be alternatively
employed (Sect. 6.0.2).

6.0.1 Ownership Claim Automation

Ideally, a human evaluator should determine the ownership
claim and the presence of a watermark by comparing it to the
ground truth. However, in situations where a large volume of
images needs validation, automation becomes essential. One
potential automated approach involves employing similarity
metrics to assess whether a watermark matches the ground
truth watermark. However, relying solely on the Structural
Similarity Index (SSIM) metric may not be optimal. The
evaluation demonstrates that the watermark remains visually
detectable even at low SSIM values.

A more effective method could involve automating the
decision-making process through machine learning (ML).
This could be achieved by training an ML model to serve
as a feature extractor, responsible for generating embeddings
from both the watermark image and the ground truth water-
mark. By comparing these embeddings using a decision layer
within the network, the system can make a final determination
about the presence of a copyright infringement. This auto-
mated approach could ensure accurate and efficient validation,
especially when dealing with a large number of images.

6.0.2 Other Constraint Optimization Methods

As an alternative to the sequential optimization described in
Sect. 4.4, one could leverage a weighted sum method, which
adds up the two losses while assigning corresponding weights,
essentially introducing an additional hyperparameter. Usually,
such weights indicate the importance of the tasks. However,
this method necessitates extensive hyperparameter tuning if
the loss values are at different scales. The loss values then
need to be weighted such that both loss terms receive equal
importance, since otherwise the smaller one is deemed already
sufficiently optimized.

12

https://opensource.org/license/mit/


Constraint optimization methods, e.g., Augmented La-
grangian optimization [31] or the Alternating Direction
Method of Multipliers [4] are highly effective in enforcing
hard constraints. However, it is important to note that our
approach, ClearMark, does not impose strict thresholds for
valid SSIM values. Introducing these methods would neces-
sitate adding thresholds and hyperparameters to ClearMark,
which would then need optimization. It’s worth emphasizing
that a rigid SSIM threshold isn’t essential in our context; we
aim for high SSIM values around 0.9, but the similarity be-
tween an extracted watermark and the secret can already be
claimed for very low SSIMs. Implementing such constraint
optimization methods would shift the focus toward optimiz-
ing the watermarking task to meet the defined threshold. This
could potentially detract attention from the primary task and
lead to suboptimal performance in both tasks. Moreover, after
the constraint is met, there’s a risk of diminishing the im-
portance of the watermarking task, potentially hindering the
achievement of superior quality.

However, in real-world applications where a hard thresh-
old is desired, one might consider adapting the approach pre-
sented in [31], as it is a method capable of reliably enforcing
inequality constraints.

7 Related Work

Our approach, ClearMark, stands out as the pioneer in the
field of model watermarking by incorporating transposed
model training, making it unique and unparalleled in com-
parison to existing methodologies. This novel technique sets
it apart from related research, rendering direct comparisons
challenging. The distinctive advantage of our method lies in
its departure from conventional approaches that rely on fixed
thresholds for decision-making during watermark verifica-
tion. Instead, ClearMark produces a discernible image with
interpretable content. This output can be easily scrutinized by
human evaluators, enabling intuitive decision-making when
compared to the authentic ground truth image.

In the following sections, we present an overview of con-
temporary techniques in model watermarking and fingerprint-
ing. Despite employing diverse methods, these existing ap-
proaches share common objectives with ours. Typically, wa-
termarking methods seek to embed a distinctive signature
into the model, ensuring its uniqueness to the model owner.
On the other hand, fingerprinting methods are geared toward
copyright protection, embedding a unique signature into the
model that is specific to the authorized user. Additionally, we
overview the related works that, while not strictly falling un-
der watermarking or fingerprinting categories share relevance
due to their underlying methodologies or the goals they aim
to accomplish.

Watermarking. Uchida et al. [58] proposed a white-box,
multi-bit watermarking approach, which embeds the water-

mark into weights of convolutional layers by introducing an
additional loss term, referred to as parameter regularization.
However, the method relies on a rigid threshold for watermark
verification and is not robust against watermark overwriting
attacks. ST-DM et al. [34] improves this approach in such
scenarios by using modulation techniques. The capacity of
the watermark was thereby shown for up to 8,400 bits but
naturally is limited by the model architecture.

Frontier Stitching [40] is a 1-bit, black-box methodol-
ogy rooted in adversarial examples. This technique modifies
the decision boundaries between classes for specific input
samples positioned at the interface of two classes, serving
as essential keys. However, identifying such samples is con-
tingent upon the specific application context and proves to
be a challenging task, making this approach less universally
applicable and user-friendly. For verification, a hard threshold
of prediction matches is used.

Adi et al. [1] propose a multi-bit, black-box method, which
embeds backdoors into the DNN that serve as a water-
mark. Within the paper, eight backdoors acting as water-
marks were implanted, whereas randomly generated input
samples were used to produce specific output classes. Simi-
larly, Zhang et al. [72] and Zhang et al. [73] follow the same
approach varying the backdoor types, whereas Li et al. [36]
produces an imperceptible backdoor trigger with a second
generative model. A method that also leverages backdoor-like
behavior is Guo et al. [21], where a black-box watermarking
technique is proposed specially crafted for embedded devices.
The method trains the DNN to behave significantly differently
on a portion of training samples, that are modified using a
specific perturbation. Naturally, these approaches embed ad-
ditional behavior besides the model’s main task, providing
the potential for side effects during normal inference. Further,
the decision-making relies on a threshold for the number of
occurred backdoor-based mispredictions. Contrary to these
works, WILD [38] is an approach that removes backdoor-
based watermarks.

Tartaglione et al. [55] propose a white-box, 1-bit water-
mark that fixates model parameters as watermarks and applies
a modified loss function for increased robustness. As the ap-
proach fixates parameters, the watermark capacity is limited
by the number of parameters in the model and hence depends
on the model architecture.

DeepJudge [10] is a testing framework that can be used
for copyright protection as a non-invasive alternative to wa-
termarking techniques. The method compares how similar a
DNN and a second suspected DNN under test behave based
on six metrics and hard thresholds. The metrics are derived
via inference of carefully chosen samples that are able to
characterize the models.

Wang et al. [63] presents a white-box approach for incor-
porating a multi-bit watermark into weights by leveraging a
second secret independent model for watermark embedding
and verification. Similarly, RIGA [65] is an algorithm that

13



embeds a multi-bit, white-box watermark using adversarial
training with two additional models. Thereby, the first model
is responsible for embedding the watermark, while the sec-
ond enhances the stealthiness. However, the verification of
both approaches is based on the black-box functionality of
additional models. Hence, the decision-making is not com-
prehensible, as the model’s functionality does not follow an
understandable algorithmic pattern, but delivers outputs utiliz-
ing optimized parameters tuned with regard to training data.

EWE [28] is a method based on a special loss function,
which enforces the entanglement of the watermark and the
main task (similar to ClearMark), such that removing the
watermark negatively affects the main task. However, the
watermark is embedded in the forward path, thus leaving the
possibility of unexpected side-effects during inference.

DeepSigns [15] proposes a white-box, multi-bit approach
that embeds a watermark within the probability density func-
tion of activations in multiple DNN layers by fine-tuning the
model parameters. When verifying the watermark, an algo-
rithm uses the extracted activations to compute the watermark
which is then evaluated against the ground truth utilizing bit er-
ror rate combined with a rigid threshold. Further, a black-box
approach is suggested, that verifies model ownership by a hard
threshold applied to the number of matches when comparing
the prediction outputs of specific secret input-prediction pairs.

Fingerprinting. A consecutive work to DeepSigns [15] lever-
aging the same principle and inheriting the same shortcom-
ings is DeepMarks [9], but embeds information in the model
weights instead of the activations and is designed as a fin-
gerprinting approach. Based on this fingerprinting technique,
DeepAttest [8] offers hardware-level IP protection and us-
age control for DNNs. With the help of a Trusted Execution
Environment, the fingerprint is validated to ensure that only
validated DNNs are allowed to run on specific devices, a
method that is also leveraged in DeepMark [67].

IPGuard [6] is a method that searches for adversarial ex-
amples that are close to the decision boundary of a DNN,
leveraging that a model is characterized by its decision bound-
ary. The method does not tamper with the training process
at all, but can run after training even on legacy models and,
hence, does not affect the model performance at all. How-
ever, humans who do not understand the decision boundaries
of DNNs might have problems understanding the approach.
Further, the ownership verification is based on a hard thresh-
old, which is difficult to determine. The decision boundary is
also leveraged by MetaFinger [68], a black-box fingerprinting
method that identifies samples by meta-training that are close
to the decision boundary, which can later be used to identify
a specific model.

Orthogonal Works. Further, there are some works, that are
close but also orthogonal to ClearMark. TamperNN [41] is a
method designed to recognize if a model was tampered, e.g.,
fine-tuned, by analyzing inputs, that tend to change the predic-

tion class easily. Chen et al. [11] suggest a method to infer the
origin of a student model in the domain of transfer learning by
embedding a fingerprint in the teacher model that is passed on
to the derived student model. Venugopal et al. [62] propose a
method to watermark the model output instead of the model
itself by selecting a specific result out of the selection of pos-
sible results in a machine translation task. DAWN [53] is a
technique used to prevent model extraction attacks by chang-
ing the prediction on the model inference API for a small set
of samples to embed a watermark into models trained on these
predictions. BOP [13] modifies the Adam optimizer to prevent
so-called heavily spiked weights during watermark embed-
ding and, hence, increase covertness while simultaneously
increasing the robustness. Wang et al. [64] demonstrated that
statistical analysis of model weights can detect a watermark.
Once identified, the watermark can be overwritten using the
original embedding technique, effectively removing it.

Deconvolutions [20,71] are the inspiration and basis for our
work and are used to approximately reverse convolutional op-
erations that are often leveraged in machine learning models.
Such deconvolutions are used in scenarios that require up-
sampling of feature maps, such as generative models [18, 69]
and encoder-decoder architectures [26,49], which generate im-
ages from an embedding. However, the deconvolutions mostly
possess their own trainable weights independent of the con-
volutions. Weight sharing is used in Siamese Networks [30],
which provides the motivation to share the weights between
convolutions and deconvolutions and, thus, for transposed
training.

8 Conclusion

Machine learning models can be considered as intellectual
property of the model creator that needs to be protected from
unauthorized use by third parties. DNN watermarking tech-
niques offer a solution to this problem by embedding a se-
cret watermark into the model parameters. Obviously, these
watermarks must be robust against erasure attempts, while
simultaneously a minimal effect on the model’s main task is
expected.

Existing watermarking approaches rely on rigid thresholds
in the final decision-making process after the watermarking
data is extracted from the model during watermark verifica-
tion. Thereby, such a threshold can fail to detect remaining
fractions of embedded watermarks that were attacked with
an erasure attempt, even if a human observer would clearly
identify the remaining watermark.

To address this problem we proposed ClearMark, the first
human-understandable and intuitive DNN watermarking ap-
proach that allows human decision-making directly on the
extracted watermark data without relying on a threshold. We
show that ClearMark’s effect on the model’s performance is
negligible and that ClearMark is independent from specific
application scenarios. Further, ClearMark withstands adver-

14



sarial model manipulations and offers a capacity of 8,544 bits
with a low error rate of 4.45%.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning Your Weakness
into a Strength: Watermarking Deep Neural Networks
by Backdooring. USENIX Security, 2018.

[2] Abien Fred Agarap. Deep Learning using Rectified
Linear Units (ReLU). arXiv preprint arXiv:1803.08375,
2018.

[3] Franziska Boenisch. A Systematic Review on Model
Watermarking for Neural Networks. Frontiers in Big
Data, 2021.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al. Distributed Optimization
and Statistical Learning via the Alternating Direction
Method of Multipliers. Foundations and Trends® in
Machine learning, 2011.

[5] Lei Cai, Jingyang Gao, and Di Zhao. A review of the
application of deep learning in medical image classifica-
tion and segmentation. Annals of translational medicine,
2020.

[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IP-
Guard: Protecting Intellectual Property of Deep Neural
Networks via Fingerprinting the Classification Bound-
ary. ASIACCS, 2021.

[7] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong
Xiao. DeepDriving: Learning Affordance for Direct
Perception in Autonomous Driving. ICCV, 2015.

[8] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen
Zhao, and Farinaz Koushanfar. DeepAttest: An End-to-
End Attestation Framework for Deep Neural Networks.
ISCA, 2019.

[9] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen
Zhao, and Farinaz Koushanfar. DeepMarks: A Secure
Fingerprinting Framework for Digital Rights Manage-
ment of Deep Learning Models. ICMR, 2019.

[10] Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and Dawn
Song. Copy, Right? A Testing Framework for Copyright
Protection of Deep Learning Models. SP, 2022.

[11] Yufei Chen, Chao Shen, Cong Wang, and Yang Zhang.
Teacher Model Fingerprinting Attacks Against Transfer
Learning. USENIX Security, 2022.

[12] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural
language processing (almost) from scratch. JMLR, 2011.

15



[13] Betty Cortiñas-Lorenzo and Fernando Pérez-González.
Adam and the Ants: On the Influence of the Optimiza-
tion Algorithm on the Detectability of DNN Watermarks.
Entropy, 2020.

[14] Ingemar J Cox, Joe Kilian, F Thomson Leighton, and
Talal Shamoon. Secure Spread Spectrum Watermarking
for Multimedia. IEEE TIP, 1997.

[15] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushan-
far. DeepSigns: An End-to-End Watermarking Frame-
work for Ownership Protection of Deep Neural Net-
works. ASPLOS, 2019.

[16] Li Deng. The MNIST Database of Handwritten Digit
Images for Machine Learning Research. IEEE Signal
Processing Magazine, 2012.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition. arXiv preprint
arXiv:2010.11929, 2021.

[18] Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim
Tatarchenko, and Thomas Brox. Learning to Generate
Chairs, Tables and Cars with Convolutional Networks.
IEEE TPAMI, 2017.

[19] Borko Furht and Darko Kirovski. Multimedia Security
Handbook. CRC press, 2004.

[20] Hongyang Gao, Hao Yuan, Zhengyang Wang, and Shui-
wang Ji. Pixel Transposed Convolutional Networks.
IEEE TPAMI, 2020.

[21] Jia Guo and Miodrag Potkonjak. Watermarking Deep
Neural Networks for Embedded Systems. ICCAD, 2018.

[22] R. W. Hamming. Error detecting and error correcting
codes. The Bell System Technical Journal, 1950.

[23] Song Han, Jeff Pool, John Tran, and William Dally.
Learning both Weights and Connections for Efficient
Neural Networks. NeurIPS, 2015.

[24] Frank Hartung and Martin Kutter. Multimedia Water-
marking Techniques. Proceedings of the IEEE, 1999.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
CVPR, 2016.

[26] Dongseok Im, Donghyeon Han, Sungpill Choi,
Sanghoon Kang, and Hoi-Jun Yoo. DT-CNN: Dilated
and Transposed Convolution Neural Network Accel-
erator for Real-time Image Segmentation on Mobile
Device. ISCAS, 2019.

[27] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. ICML, 2015.

[28] Hengrui Jia, Christopher A. Choquette-Choo, Varun
Chandrasekaran, and Nicolas Papernot. Entangled
Watermarks as a Defense against Model Extraction.
USENIX Security, 2021.

[29] Stefan Katzenbeisser and Fabien Petitcolas. Information
Hiding. Artech house, 2016.

[30] Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. Siamese Neural Networks for One-shot Image
Recognition. In ICML, 2015.

[31] Torsten Krauß, Jan König, Alexandra Dmitrienko, and
Christian Kanzow. Automatic Adversarial Adaption
for Stealthy Poisoning Attacks in Federated Learning.
NDSS, 2024.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Mul-
tiple Layers of Features from Tiny Images. Citeseer,
2009.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 1998.

[34] Yue Li, Benedetta Tondi, and Mauro Barni. Spread-
Transform Dither Modulation Watermarking of Deep
Neural Network. JISA, 2021.

[35] Yue Li, Hongxia Wang, and Mauro Barni. A survey of
Deep Neural Network watermarking techniques. Neuro-
computing, 2021.

[36] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to Prove Your Model Belongs to You: A
Blind-Watermark Based Framework to Protect Intellec-
tual Property of DNN. ACSAC, 2019.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-Pruning: Defending Against Backdooring Attacks
on Deep Neural Networks. RAID, 2018.

[38] Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. Re-
moving Backdoor-Based Watermarks in Neural Net-
works with Limited Data. ICPR, 2021.

[39] Chun-Shien Lu. Multimedia Security: Steganography
and Digital Watermarking Techniques for Protection of
Intellectual Property. Igi Global, 2004.

[40] Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. Ad-
versarial frontier stitching for remote neural network
watermarking. Neural Computing and Applications,
2019.

16



[41] Erwan Le Merrer and Gilles Tredan. TamperNN: Ef-
ficient Tampering Detection of Deployed Neural Nets.
ISSRE, 2019.

[42] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek.
Cuda, release: 10.2.89, 2020.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
Torch: An Imperative Style, High-Performance Deep
Learning Library. NeurIPS, 2019.

[44] Gang Qu and Miodrag Potkonjak. Intellectual Prop-
erty Protection in VLSI Designs: Theory and Practice.
Springer Science & Business Media, 2007.

[45] Olivier Rukundo and Hanqiang Cao. Nearest Neighbor
Value Interpolation. IJACSA, 2012.

[46] Olivier Rukundo and Bodhaswar T Maharaj. Optimiza-
tion of Image Interpolation based on Nearest Neighbour
Algorithm. VISAPP, 2014.

[47] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. ICLR, 2015.

[48] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. ICLR, 2015.

[49] Indah Agustien Siradjuddin, Wrida Adi Wardana, and
Mochammad Kautsar Sophan. Feature Extraction using
Self-Supervised Convolutional Autoencoder for Content
based Image Retrieval. ICICoS, 2019.

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 2014.

[51] Felix Stahlberg. Neural machine translation: A review
and survey. Journal of Artificial Intelligence Research,
2020.

[52] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man
vs. computer: Benchmarking machine learning algo-
rithms for traffic sign recognition. Neural Networks,
2012.

[53] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and
N. Asokan. DAWN: Dynamic Adversarial Watermark-
ing of Neural Networks. MM, 2021.

[54] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu,
R Todd Hurst, Christopher B Kendall, Michael B Got-
way, and Jianming Liang. Convolutional Neural Net-
works for Medical Image Analysis: Full Training or Fine
Tuning? IEEE TMI, 2016.

[55] Enzo Tartaglione, Marco Grangetto, Davide Cavagnino,
and Marco Botta. Delving in the loss landscape to
embed robust watermarks into neural networks. ICPR,
2021.

[56] The Linux Foundation. Pytorch, 2022. https://
pytorch.org.

[57] Frederick Tung, Srikanth Muralidharan, and Greg Mori.
Fine-Pruning: Joint Fine-Tuning and Compression of
a Convolutional Network with Bayesian Optimization.
arXiv preprint arXiv:1707.09102, 2017.

[58] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Embedding Watermarks into Deep
Neural Networks. ICMR, 2017.

[59] W. van Gils. Two-dimensional dot codes for product
identification. IEEE Transactions on Information The-
ory, 1987.

[60] Guido Van Rossum and Fred L Drake Jr. Python refer-
ence manual. Centrum voor Wiskunde en Informatica
Amsterdam, 1995.

[61] Ron G Van Schyndel, Andrew Z Tirkel, and Charles F
Osborne. A Digital Watermark. IEEE ICIP, 1994.

[62] Ashish Venugopal, Jakob Uszkoreit, David Talbot,
Franz J. Och, and Juri Ganitkevitch. Watermarking the
Outputs of Structured Prediction with an Application in
Statistical Machine Translation. EMNLP, 2011.

[63] Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and
Yuwei Yao. Watermarking in Deep Neural Networks
via Error Back-propagation. Electronic Imaging, 2020.

[64] Tianhao Wang and Florian Kerschbaum. Attacks on
Digital Watermarks for Deep Neural Networks. ICASSP,
2019.

[65] Tianhao Wang and Florian Kerschbaum. RIGA: Covert
and Robust White-Box Watermarking of Deep Neural
Networks. WWW, 2021.

[66] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE TIP, 2004.

[67] Chenqi Xie, Ping Yi, Baowen Zhang, and Futai Zou.
DeepMark: Embedding Watermarks into Deep Neural
Network Using Pruning. ICTAI, 2021.

[68] Kang Yang, Run Wang, and Lina Wang. MetaFinger:
Fingerprinting the Deep Neural Networks with Meta-
training. IJCAI, 2022.

[69] Yang Yang, Ke Mu, and Robert H. Deng. Lightweight
Privacy-Preserving GAN Framework for Model Train-
ing and Image Synthesis. IEEE TIFS, 2022.

17

https://pytorch.org
https://pytorch.org


[70] Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali
Arshad, Saman Riaz, Abdulrahman Alruban, Ashit Ku-
mar Dutta, and Sultan Almotairi. A comparison of pool-
ing methods for convolutional neural networks. Applied
Sciences, 2022.

[71] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor,
and Rob Fergus. Deconvolutional networks. CVPR,
2010.

[72] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph. Stoecklin, Heqing Huang, and Ian Molloy. Pro-
tecting Intellectual Property of Deep Neural Networks
with Watermarking. ASIACCS, 2018.

[73] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weim-
ing Zhang, Wenbo Zhou, Hao Cui, and Nenghai Yu.
Model Watermarking for Image Processing Networks.
AAAI, 2020.

18



Figure 14: Visualization of eleven watermark secrets (images)
used as an alternative to the default images in the main part
of this paper. The images are inspired by the CIFAR-10 [32]
classes.

1 2 3 4 5
Epoch

0.2

0.4

0.6

0.8

Lo
ss

Unwatermarked
Watermarked

Figure 15: Main task loss during training of an (a) unwater-
marked and a (b) watermarked model.

Figure 12: Visualization of the default eleven watermark se-
crets (images) used within the main part of this paper.

Figure 13: Visualization of eleven watermark secrets (images)
used as an alternative to the default images in the main part of
this paper. The images use one letter instead of four on each
image.

Appendix

In this section, we present additional experiment details, such
as randomly generated key vectors and watermark images in
Sections Sect. 8.1. Moreover, the impact of using different
optimizers and further watermark removal experiments are
discussed in Sect. 8.2.

8.1 Additional Experimental Details

Random Key Vectors. The key vectors are randomly chosen
between -10 and 10. Thereby it is not imperative, that -10
and 10 need to be part of the vector. For example, the key
vector from the single watermark experiments reported within
this paper consists of the following values: -0.0748, 5.3644,
-8.2304, -7.3593, -3.8515, 2.6815, -0.1981, 7.9288, -0.8874,
2.6461.
Watermark Secrets. During our experiments, we use eleven
distinct secrets. The secrets are images with black text on a
white background, as visualized in Fig. 12. Additionally, we
conducted an experiment with different watermark images,
which yielded the same experimental outcomes. Thereby, we
used only one letter on each image (cf. Fig. 13) as well as the
icons of the ten CIFAR-10 [32] label classes and added an
extra icon as visualized in Fig. 14.
Fidelity. To highlight the fidelity of ClearMark we provide
an additional plot of the main task loss during training of an
unwatermarked and a watermarked model yielding minimal
differences in Fig. 15.
Capacity. We showcase one of the images which are em-
bedded into a model in Sect. 5.5. The image shown in an
additional figure in Fig. 20 represents a bit sequence.

8.2 Additional Experiments

Different Optimizer. To show the independence of
ClearMark from the optimizer, we conducted an experiment
using SGD with a learning rate of 0.01. We terminated the
watermark hardening after 20,000 update steps at an SSIM of
0.89 SSIM. We could achieve a main-task accuracy of 83.22%
after training while the SSIM remained high at 0.83. This re-
sult visualized in Fig. 16 shows, that ClearMark functions for
different optimizers with Adam outperforming SGD in both
main-task and watermark embedding, which is an expected
result.

0 10000 20000
Update Steps

1

2

Lo
ss

Adam
SGD

(a)

1 2 3 4 5
Epoch

0.5

1.0

1.5

Lo
ss

Adam
SGD

(b)

Figure 16: (a) SSIM loss applied in transposed training for
Adam and SGD and (b) main task loss during watermark
maintaining training for Adam and SGD.

19



Figure 19: Extracted watermarks for an adaptive attack with
a random key and an inferred image from an unwatermarked
model as secret. The four lines show the extracted watermarks
after the first four update steps. The adversary reduces the
main task accuracy from 89.10% to 88.61%, 85.31%, 81.00%,
and 74.81% yielding SSIMs of 0.60, 0.26, 0.11, and 0.04.

Figure 20: The first watermark for CNN model trained on the
MNIST dataset. The dot code capacity of the image is 36 bits.
The black border lines on the right and bottom are are due to
the dimensions not being divisible by 6 without remains.

(a) (b) (c) (d) (e)

Figure 17: Extracted watermarks of (a) CIFAR-10 [32] on
ResNet-18 [25] after ten fine-tuning epochs with SSIM of
0.55

Figure 18: Extracted watermarks for an adaptive adversary
that tries to erase an existing watermark key with an image
that is extracted from an unwatermarked model. The four lines
represent the extracted watermark after three to six adversar-
ial update steps with respective remaining accuracy values
of 85.96%, 83.07%, 79.67%, and 76.32% originating from
89.10% and SSIMs of 0.16, 0.08, 0.04, and 0.02.

Adaptive Adversary. An adversary could try to erase an em-
bedded watermark. Thereby, an existing and already embed-
ded key could be used in combination with the image that an
unwatermarked model yields for that key for a transposed in-
ference. We got similar results when using a completely black
image to remove the watermark. As presented in Sect. 5.4 an
adversary adapts ClearMark’s training procedure and tries to
erase the watermark. However, the entangled parameters force
the adversary to sacrifice main task accuracy. After removing
the watermark completely, the adversary sacrificed approxi-
mately 10% accuracy in our setup compared to the original
89.10%. In Fig. 18, we show seven out of eleven watermark
images after three to six adversarial update steps with respec-
tive remaining accuracy values of 85.96%, 83.07%, 79.67%,
and 76.32%. For the first and second lines, the watermark can
clearly be identified. In the third row, the watermark can be
assumed, but it is already hard to discern, while in the fourth
line, the watermark is mostly removed. Thereby, one should
keep in mind, that an unwatermarked model yields an image
similar to Fig. 4c.

When using a random key and an inferred image from an
unwatermarked model as a lock, we get similar results. Within
the first four update steps, the adversary reduces the main
task accuracy from 89.10% to 88.61%, 85.31%, 81.00%, and
74.81%, essentially sacrificing more than 10%. The yielded
watermarks can be seen in the four rows of Fig. 19, showing
that the watermark is still clearly visible in the third row. Even
in row four, one can see the watermark slightly. The results
for a random key combined with a black image or a random
image show the same effect as reported in this experiment.

20


	Introduction
	Background
	Problem Setting
	Watermark Objectives
	Threat Model

	Approach
	Overview
	Transposed Model Generation
	Watermark Composition
	Constraint Training

	Evaluation
	General Functionality
	Model Manipulations
	Generalizability
	Adaptive Adversary
	Capacity
	Runtime

	Discussion
	Ownership Claim Automation
	Other Constraint Optimization Methods


	Related Work
	Conclusion
	Additional Experimental Details
	Additional Experiments


