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Abstract

Bitcoin is a novel peer to peer payment network that was started in 2009 and that has
since flourished, gaining acceptance all over the world. By contributing their ressources
such as network connectivity and computing power, all participants are creating the the
Bitcoin network together. Designed as an open source software system, the participation
rules for this network are not upheld by humans, but implemented in code, and generally
allow anyone to join or leave the network at will.

Since the time of Bitcoin’s inception, software errors had to be fixed and network attacks
that tried to make parts of the network unavailable have been endured. This thesis provides
a solution to the problem of illegal data inclusions within the blockchain, a data structure
that cannot easily be changed and that has to be transmitted to participants of Bitcoin.
The flaw, i.e. the possibility for any user of Bitcoin to potentially include illegal data and
therefore illegalizes the whole blockchain, is not just a software flaw, but can be seen as a
structural one if free participation and uncensorable payments are to be provided.

The proposal to solve the problem is layered in two tiers. The first tier prevents effective
data inclusion for some standard payment functions within Bitcoin. This allows partici-
pants to be certain that these transactions do not contain bad data, allowing them to be
included into Bitcoin blocks. It also solves the problem of illegal data permanently oc-
cupying valuable ressources on Bitcoin nodes, as parts of the provably clean transactions
are generally held in RAM until they have been spent. The prevention mechanism is es-
sentially a system that provides proof that bitcoins were sent to actual Bitcoin addresses,
stopping data inclusion by address fields abusal.

The second tier consists of rule changes for Bitcoin. First of all, all non-standard payment
transactions are removed from Bitcoin, with the exception of the more computationally
flexible and popular P2SH transactions. This limits the avenues for data inclusion in
Bitcoin without destroying its flexibility or its smart contract capabilities. Then, P2SH
transactions are redesigned to allow for a more fine grained deletion of their data, so only
offending parts could be removed without destroying the integrity of the rest. Finally, a
special type of transaction is introduced that allows censorship of just the signature data
of a P2SH transaction. This transaction has to include a payment equal to the Bitcoin
provided by the previous P2SH transaction, however. By adding this requirement, the
system is protected from becoming open to money creation attacks that might inflate the
currency without the agreement of all participants.

With these changes, illegal data inclusion becomes either impossible, or they can be re-
moved without destorying the integrity of the payment system as a whole or for payments
that have already happened.

Implementing all proposed changes would go beyond the scope of a master thesis. Tier
1 of the presented solution has been implemented as a proof-of-concept, though. As a
basis, the most popular Bitcoin node software, Bitcoin Core, has been used. Additionally,
the ideas behind tier 2 are explained in full, and the potential impact on the system is
discussed.
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This thesis also covers previous attempts to allow for data removal in similar systems. Their
discussion is meant to encourage the adoption of the presented proposal, as it should cause
less disruption than some more extreme measurements that might introduce centralization
into a system that was meant to run decentralized.
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Zusammenfassung

Bitcoin ist ein neuartiges, peer to peer Bezahlnetzwerk das im Jahre 2009 offiziell ge-
startet wurde. Seitdem hat es sich stark weiterentwickelt und findet in vielen Ländern
der Welt verwendung. Das Bitcoin-Netzwerk besteht aus vielen freiwilligen Teilnehmern,
die Netzwerk- bzw. Berechnungs-Ressourcen bereitstellen, um es am laufen zu erhalten.
Das System wurde als Open Source Software konzipiert, und die Teilnahmeregeln des
Netzwerkes werden nicht direkt durch Menschen gesteuert, sondern als Programmcode
implementiert, um so jedem praktisch diskriminierungsfrei die Teilnahme zu ermöglichen.

Seit dem Start des Netzwerkes wurden bereits einige Softwarefehler repariert und Netz-
werkangriffe, die das Netzwerk unerreichbar machen wollten, wurden ausgehalten oder
gestoppt. Diese Abschlussarbeit beschäftigt sich mit dem Problem illegaler Datenablage
in der Bitcoin blockchain. Die Blockchain ist eine Datenstruktur, die normalerweise keine
nachträglichen Änderungen erlaubt, und die außerdem an die Teilnehmer des Netzwerkes
verteilt werden muss. Problematisch ist die Möglichkeit, dass ein belieber Bitcoin-Nutzer
potentiell illegale Inhalte in die Blockchain speichert, um so Teile der Blockchain und
somit Bitcoin illegal zu machen. Dies ist nicht nur ein Softwarefehler, sondern kann sogar
als struktureller Fehler von Bitcoin angesehen werden. Schließlich sind die freie Teilnahme
und die Unzensierbarkeit von Bezahlungen Attribute von Bitcoin, die viele Benutzer als
essentiell erachten, aber durch diese Möglichkeit der Illegalisierung wird ggf. das gesamte
System unter Druck gesetzt oder abgeschaltet.

Diese Thesis macht einen zweistufigen Vorschlag, um das Problem zu lösen. Durch die
ersten Stufe wird eine effektive Dateninklusion für einige Standardtransaktionen verhin-
dert. Dadurch wird es Netzwerk-Teilnehmern erlaubt, mit Sicherheit auszuschließen, dass
bestimmte Transaktionen potentiell illegale Daten enthalten. Sie können diese Transaktio-
nen also problemlos verbreiten und in Blöcke schreiben lassen. Außerdem verhindern wir
so, dass die Ressourcen von Bitcoin-Knoten durch diese potentiell illegalen Daten belegt
werden. Bestimmte Teile der Standardtransaktionen müssen nämlich sogar so lange im Ar-
beitsspeicher gehalten werden, bis weitere Transaktionen sie referenzieren. Dies ist aber bei
Transaktionen mit illegalen Daten normalerweise nicht möglich bzw. wird nicht gemacht,
um die Datenlöschung zu verhindern. Der Verhinderungsmechanismus für diesen Angriff
besteht aus einem System, das Beweise erzeugen und weitergeben kann, die einem Bitcoin-
Knoten versichern, dass bestimmte Adressfelder vorraussichtlich gültige Bitcoin-Adressen
sind und keine zusätzlichen Daten enthalten.

Die zweite Stufe behandelt weitere Regeländerungen in Bitcoin. Zuallererst sollten alle
nicht-standard Transaktionen verboten werden. Eine Ausnahme bilden dabei die flexiblen
und populären P2SH-Transaktionen. Dadurch werden die verbleibenden Dateninklusions-
möglichkeiten limitiert, ohne die Flexibilität oder die Smart-Contract-Fähigkeiten von
Bitcoin komplett zu entfernen. Des weiteren soll das Layout von P2SH-Transaktionen
angepasst werden, um eine fein-granulierte Löschung bestimmter Datenfelder dieser Trans-
aktionen zu ermöglichen. Das soll es möglich machen, die problematischen Teile einer
Transaktion zu löschen oder nicht mehr zu verteilen, ohne die Integrität der Blockchain
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oder der übrigen Teile der Transaktion zu verletzen. Schließlich wird noch eine spezielle
Transaktionsart eingeführt, die genau diesen Teil einer Transaktion als löschbar markieren
können soll. Die Einschränkung ist jedoch, dass solch eine Transaktion genausoviele Bitcoin
bereitstellen muss, wie vorher durch den P2SH-Teil bereitgestellt wurde. Dies verhindert
verschiedene Gelderzeugungsangriffe auf Bitcoin, und ermöglicht trotzdem eine Löschung
von illegalen Daten in der Blockchain, wenn diese von einem beliebigen Bitcoin-Nutzer
gewünscht wird.

Durch diese Änderungen können illegale Daten entweder erst gar nicht in die Bitcoin-
Blockchain gelangen, oder die Daten können aus der Blockchain entfernt werden, ohne die
Integrität des Bezahlsystems als Ganzes zu gefährden. Die Zensur betrifft also lediglich
bestimmte Transaktionsdetails, jedoch nicht die Bezahlung selbst.

Die komplette Implementation dieses Vorschlages würde den Umfang einer Masterarbeit
leider sprengen. Stufe 1 wurde jedoch in der bekanntesten Bitcoin-Node-Software, Bit-
coin Core, als Proof-of-Concept implementiert. Stufe 2 hingegen wird ausführlich erklärt.
Außerdem werden Hinweise zu potentiellen Auswirkungen dieser Änderung gegeben.

Des weiteren geht es in dieser Thesis um frühere bzw. andere Methoden, welche Daten
in ähnlichen Systemen löschbar gemacht haben. Die Behandlung dieser Methoden soll
dazu führen, dass die präsentierte Lösung und ihre geringeren Auswirkungen auf das Bit-
coin Ökosystem besser verstanden werden. Andere, extremere Maßnahmen haben unter
Umständen nach schlechte Chancen, in Bitcoin aufgenommen zu werden. Das System
würde durch sie wahrscheinlich stark zentralisieren werden. Dies steht im Widerspruch
zum Grundgedanken von Bitcoin, das eine hohe Dezentralisierung anstrebt, um eine Kon-
trolle des Netzwerkes durch einzelne Personen oder Staaten zu unterbinden.
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1. Introduction

1.1 Motivation

With over two thousand citations of the original Bitcoin paper [Nak08] by the pseudony-
mous author Satoshi Nakamoto, it can be said that the scientific community has accepted
Bitcoin and related crypto currencies as a new and interesting field of research. Bitcoin
is an open source, community driven software project that incorporates techniques pre-
viously seen in other distributed networks, and that heavily rely on cryptography. The
primary innovation is its use of ”Nakamoto consensus”, a consensus mechanism that allows
the network to obtain a single, shared view on the order of transactions. It is sybil resis-
tant without requiring access control or any kind of central authority that could present a
liability if controlled by a powerful actor, and the method of operation that enables these
guarantees allows every participant to guess the likelihood of a full compromise of the
system by nefarious actors.

These qualities have attracted IT professionals and critics of national monetary systems
alike. On top of that, speculation and stories of people becoming millionaires has cause
a huge run-up in popularity in 2017. Prices for single tokens of cryptocurrencies have
also risen way above anything seen prior to 2017, and even ransomware has adopted
Bitcoin instead of other payment possibilities, probably because the worldwide availability
of cryptocurrency has increased to suitable levels. Bitcoin is used as exchange currency,
meaning people send it to people all around the world over the Internet instead of using
other providers that charge a potentially higher fee to deliver and exchange currencies, and
some companies like Amazon, Microsoft or gaming platforms have started to add Bitcoin
as a payment method just like they support credit cards and bank transfers.

1.2 Problem Description

Through this increase in adoption, the security of Bitcoin itself and its dependent tech-
nologies such as the software running Bitcoin exchanges and vendor hardware have become
an interesting target for exploitation. Besides attackers that want to enrich themselves by
stealing bitcoins or causing a denial of service for popular services and demanding ransom,
nowadays the potential for hurting the legality of the system has also become a possibility
for profit making. This became possible through the introduction of financial tools, such
as put options and futures, that basically enable anybody to bet on a falling Bitcoin price.
Through this, an effective DoS or just the fear of a DoS might enrich the attacker, if they
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2 1. Introduction

previously used those tools to bet on a price decline, just like rigging a bet in a sports
tournament by paying one party to lose intentionally.

This reason, among other reasons such as energy consumption and general problems of
creating secure software, but also potential side effects and legality problems hinder a faster
and more widespread adoption of Bitcoin. This thesis deals with the problem of unlawful
or morally objectionable data being inserted into the Bitcoin blockchain by third parties,
effectively hurting the availability and thus security of the whole network. As Bitcoin is a
permission less system, and because the blockchain does protect data from being changed
after the fact, this type of attack to hurt the network appears to be hard to defend against.
The state of the art does not offer a viable course of action should the attack be started
right now, at least if the important qualities of trustlessness and accountlessness of Bitcoin
are to be preserved. Potential solutions using coordinated purges of the blockchain or
consensus mechanisms that control the deletion of Bitcoin history would all be ultimately
abusable by powerful attackers, and affect the integrity of Bitcoin as a means to facilitate
electronic payments. Other theoretical solutions that replace the blockchain with e.g.
account balance commitments may solve the requirement of storing old blocks entirely,
but at the expense of trustlessness of the payment system, as they lack some guarantees of
Bitcoin, namely that the system has always operated according to its rules when checking
the validity of transactions.

1.3 Approach

The core idea to solve this problem is to disallow the inclusion of non-provably unprob-
lematic data for simple payments. If we have a system that can verify proofs that a simple
transaction is free of potentially harmful data, and this system still allows for payments
to be sent and received, further solutions can be built that utilize these transactions to
remove more complicated transactions where data inclusion is still possible. Namely, our
second part of the solution requires payments to remove more featureful blockchain trans-
actions that could contain immoral or illegal data. This allows us to preserve most of the
capabilities of Bitcoin, while only removing the quality of unchangeability in those cases
where it is actually needed to allow for the removal of potentially harmful content. This
change to Bitcoin does not endanger the rest of the system by causing the basic security
assumptions to change, and the only current Bitcoin dependent technologies that will not
be possible after implementation will be services that require arbitrary data to be savable
to the blockchain. This use case obviously cannot be combined with a system that should
somehow allow the removal of data, however. That said, the idea presented here does not
require every Bitcoin participant to remove data that was deemed offensive or illegal, but
leaves the decision to the user.

1.4 Contribution

The contributions of this thesis are an analysis of the problem, including the attempts
to solve it within similar systems and cryptocurrencies. Arguments for their viability
or their suitedness in the case of Bitcoin are provided. Additionally, a proof-of-concept
implementation of the part of the solution that allows nodes to be sure that no arbitrary
(and thus potentially illegal) data has been included within a transaction is meant to
show that there exist no large practicability issues that might prevent the solution from
being implemented. This implementation is based on a recent version of the most popular
Bitcoin node software that was started by the founder of Bitcoin himself, a choice that
was meant to further support the argument of the viability of the proposed changes. As
a proof-of-concept, the implementation does not update some less critical features e.g.

2
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at the network level, since their implementation would require significant development
efforts beyond the bar set for a master thesis. Such an implementation, however, would
be necessary to be provided in case of real-world deployment.

1.5 Outline

After this introduction, this thesis continues with a thorough explanation of relevant parts
of the Bitcoin node software and protocol [2].

Then, general related work covering Bitcoin will be presented [3], moving closer towards
those papers that aim to address similar problems as those discussed in this work.

Following the related work, potential solutions and their shortcomings or inability to stop
illegal data inclusion are discussed [4.1]. They range from data detection to partial or
full deletion or schemes that might be not applicable to Bitcoin because of centralization
issues.

After specifying what part of the problem will be solved and which details might not be
covered by the concrete implementation presented in this thesis (and why that is not a
problem) [4.2], the solution will be thoroughly explained [4.3]. The solution chapter deals
with the proposed additions to the protocol to stop unwanted data from making it onto the
blockchain. A proof system will be described that allows transaction creators to convince
block creators that their transactions are free of any arbitrary data. Furthermore, changes
to the blockchain data structure will be discussed that will retain the possibility of non-
standard transaction usage via the safe deletion of certain parts of a block [4.4]. The
downsides of the approach such as the potential for censorship or incentives for attacks
will also be discussed.

The proof-of-concept implementation will be presented in chapter 5 with an explanation
on how to run the implemented commands to be able to test and expand upon the scheme
[5.2]. Finally, some implementation details about the proof of concept will be shared with
the reader [5.3]. The thesis ends with a conclusion [6], summarizing the proposed solution
and highlighting some potential future work.
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2. Background Information about Bitcoin

Giving insights into current developments surrounding Bitcoin requires the reader to have a
basic understanding of the protocol rules. Furthermore, some details that are not visible to
a casual user of Bitcoin can be very important to understand why some proposed changes
are even possible. For this reason, this document gives a general high-level overview of
the functionality of Bitcoin, while explaining some details (e.g. of transaction validity, or
scripting possibilities) that will be useful when trying to understand the opportunities and
challenges described later on.

2.1 Public Ledger

As its core functionality, Bitcoin provides a publicly accessible ledger, tracking amounts
coming and going to addresses. Unlike a traditional ledger, for example a book used in a
bank to track payments going in and out of accounts, the Bitcoin ledger does not imme-
diately store address balances. Instead, it operates on the principle of always referring to
previous transactions and their amounts, and combining them to create a new transaction
addressed to a different recipient.

To add more detail, transactions are usually made up of two parts: A list of inputs and
their amounts, and a list of outputs plus amounts. The outputs role in a transaction is
clear: They specify how many Bitcoins will be sent to which receiver, and enable the sender
to pay multiple recipients at once with a single transaction. On the other hand, the role of
the inputs is to specify which bitcoins that were received in the past can be redistributed
by the outputs. In order to do that, inputs are basically references to previous outputs
on the blockchain that the sender can prove ownership of, and that have not been used
before to fund a different transaction.

If a previous output used as an input in a new transaction had a higher amount than
all outputs in the current transaction combined, using just this single input is fine and
preferred. If it does not suffice, more inputs have to be added to the transaction, until the
amounts in the inputs match or exceed the amounts in the outputs.

Transactions that try to spend more Bitcoin in their outputs than they have referenced
in their inputs are invalid and will be rejected at every point in the system. Similarly,
inputs that have already been referenced and spent before fully invalidate the transaction,
as does not being able to prove ownership of the previous outputs via Digital Signatures.
As one cannot refer to the same transaction output twice, new transactions always use

5



6 2. Background Information about Bitcoin

the full amount specified for them. In order to not overspend or lose Bitcoin when only
a smaller amount is to be sent to a recipient, two outputs will be created: The first one
will refer to an address of the designated payment recipient and the amount that is to be
paid to them. On the other hand, the second address will be an address owned by the
original sender of the transaction, containing the surplus bitcoin that were referenced in
the inputs and not completely spent through other transaction outputs. As both outputs
have not been referred to yet (as they were newly created under a new transaction ID),
both the recipient and the sender can now refer to their respective output if they want to
use the Bitcoin they received.

Bitcoin cannot be accidentally lost through this mechanism: If we spend more Bitcoin than
we have, the transaction becomes invalid, and can never be referenced. If we spend less
Bitcoin than we put in, the remaining unspent Bitcoin have to be claimed by creators of
new blocks as a transaction fee, a detail of the underlying Bitcoin block creation protocol.

2.2 Digital Signatures and Bitcoin Addresses

If every user could just refer to any transaction output and use its amount in their own
transactions, owning Bitcoin would be impossible, as transactions are not kept secret but
broadcast to the whole system. This is why Bitcoin proves the eligibility of someone trying
to spend an output through cryptographic digital signatures. Cryptographic signatures
require public/private key (so called asymmetric) cryptography to function.

Bitcoin addresses play a key role in this. Instead of being numbers given out by a cen-
tralized mechanism, only used to address recipients of money, Bitcoin addresses are the
starting point for a public/private key signature scheme that allows to verify transaction
output ownership. To create an address, the software creates a 256 bit random number
and derives an ECDSA private key from it. Using this key, a public key can be created.
In early Bitcoin implementations, this public key was used like an address, and users had
to share their public key to receive bitcoins. However, the uncompressed ECDSA public
keys used by Bitcoin are 512 Bit in size, resulting into a long address if encoded in a
human readable format. Even worse, if a flaw in ECDSA was discovered, Bitcoin funds
could potentially be stolen if someone could calculate the private key through the publicly
known ECDSA public key.

To mitigate this, a new Bitcoin address format and ”Pay-To-Public-Key-Hash”-Outputs
were created. The resulting string (for example 1Et8vnKhXjYYcz7uQDVVEyo8f5CytE9S3K)
is a BASE-58 encoded hash of the public key. If this address format is used to send funds,
the public key may remain secret at first.

However, this changes when the coins sent to an address are to be spent in a new trans-
action. In order to confirm ownership, the sender must provide two things: A public key
that, when hashed and encoded in the way described above, matches the address used by
the output. On top of that, a valid signature created through the secret key corresponding
to the public key, and thus, the right bitcoin address, is required. As the signature can
only be validated via the public key, it would not suffice to release the signature only.

The signature plays an important role. The Bitcoin ledger and messages on the p2p net-
work are considered public, so other people can see and potentially copy a valid signature.
If the signature would only need to be valid, everybody could copy and try to spend the
output until a transaction wins the race of being included into the public ledger.

For this reason, the signature does not only need to exist and be valid, but also contain
(and thus sign) a hash of the important parts of the just created transaction, with all its
inputs and output (= receivers). This way, the signature can be copied, but is only valid
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2.3. The Order of Transactions and the Blockchain 7

for exactly the same transaction as the owner intended, making the redirection of funds
impossible.

More information on how the validity of Bitcoin transactions is decided can be found in
the section ”Bitcoin Script”. The described functionality actually only covers one type of
standard transaction, but the implementation allows for more complex validation rules
with a non-turing complete, stack-based language. In 2015, this type of transaction made
up about 89% of all blockchain transactions [tra15].

2.3 The Order of Transactions and the Blockchain

While it is possible to prove ownership of bitcoins by utilizing public/private key cryptog-
raphy, a missing piece of the puzzle is how to decide which transactions happened before
other, similar transactions.

Specifically, if someone knowing the secret to an address were to sign two transactions
spending the same funds, it would be impossible to determine which one of them should
be seen as invalid. Only one can be valid, however, because all others would be spending
the same funds that have already been used up through the first transaction. Time-
stamps cannot be used, as there is no time authority that could be used. One could
easily lie about the date when the transaction was created. On top of that, announcing a
transaction earlier does not create any guarantee that it will arrive earlier than a second
transaction sent later, as the first transaction could be stored and forwarded later. If
the second transaction reached their target (i.e. the Bitcoin nodes) normally, the second
transaction would arrive first. If the same happened only for some nodes, but not for
others, an indisputable decision about which transaction came first could not be reached
easily.

To solve this problem, valid transactions are not automatically treated as having happened
once they reach a node. Instead, they are put into a list of unconfirmed transactions,
waiting to be included into the so called blockchain.

The blockchain consists of a series of block headers that each reference a previous block
header by including its SHA256 hash in their own header. A later change of a previous
block header would break the chain, as the reference to the previous block is this hash,
and if it changes, the reference will point nowhere. If the reference in the following block
were to be changed to match the new hash, the error would propagate, as changing the
block header of the following block will cause its hash to change, too, invalidating the
next blocks reference (and so on). Only a full recreation of all block headers starting with
the changed one would allow someone to recreate a working blockchain with the intended
changes.

So far, we have not described how Bitcoin stops participants from this recreation of the
blockchain from a certain point onward. In the original Bitcoin paper [Nak08], Satoshi
Nakamoto describes a so-called ”Proof-of-Work” mechanism that prevents just this: By
requiring every participant who wants to create a new block to solve a computational
puzzle, an attacker ”would have to redo the proof-of-work of the block and all blocks after
it and then catch up with and surpass the work of the honest nodes.”(p. 3)[Nak08]. Honest
nodes are Bitcoin network participants that follow the protocol, meaning they only try to
create new blocks on top of old ones. Furthermore, they follow the blockchain that was
most difficult to calculate (by verifying the puzzles), and they discard any blocks that solve
the puzzle, but break other rules of the protocol.

The security qualities of this system have been analyzed in various papers. In ”The Bitcoin
Backbone Protocol: Analysis and Applications” [GKL15], Garay et al proved the vulnera-
bility of this system if more than one third of computing power is dishonest. The Bitcoin
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Figure 2.1: Representation of the blockchain.

community deems changes to the system as disputed [Var16], making changes to the pro-
tocol only likely if they do not introduce any additional downsides. As this document tries
to focus on a different rule change proposal for Bitcoin, it will not go into more detail
about proposed changes to the proof-of-work system.

To securely order the transaction with the help of the blockchain, each block contains
the root of a transaction hash tree (also Merkle tree). This basic data structure stores
transaction IDs as leafs, while the nodes are hashes of their children for performance
reasons that we will not expand upon. The order of transactions is defined by the following
system: Transactions in earlier blocks have happened before the following blocks. Within
a single block, the hash tree provides the ordering by defining the left-most leaf node as
the first node, and the right-most leaf node as the last (figure 2.1). It is impossible to
change, add or remove transactions without the block header’s hash changing, so once a
block has been confirmed, the order of transactions is unchangeable without changing the
block. Through the provided order of all committed transactions, it can be decided if a
transaction is to be accepted and committed, or if it is invalid because a similar transaction
spending (some of) the same funds has been committed before.

Should a node create the next block in the blockchain, all uncommitted transactions are
valid candidates to add to the merkle tree. However, all added transactions may not
spend an output that a previous transaction has already referenced before. This is how
the blockchain solves the double spending problem, a problem systems before Bitcoin were
not able to solve adequately if they did not introduce a central trusted authority.

2.4 Bitcoin Script

Bitcoin can do more than allowing the secure spending of amounts from one address to
another. Other possibilities include sending money to a group of people who will have to
agree on how to spend the funds, or to anyone who provides a rule set on how they will
be spendable, keeping these rules hidden until they are to be spend by a special address
format.

The reason for this flexibility is Bitcoin Script, a stack-based, non-touring complete pro-
gramming language that only supports a limited amount of so-called OP codes. When
an output is created that should pay a certain address some Bitcoin, the output does not
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Instructions And Data Provided By Alice In Transaction #1's Pubkey Script

Data Provided By Bob In Transaction #2's Input Signature ScriptData Provided By Bob In Transaction #2's Input Signature Script

CHECKSIGOP_EQUALVERIFYPk HashOP_HASH160OP_DUP

PubKeySig

Figure 2.2: A standard output as depicted in the Bitcoin developer reference [bit18d].
Signature and public key are pushed onto the stack. OP DUP duplicates the
public key, then OP HASH160 replaces it with its hash. OP EQUALVERIFY
then compares the hash to Pk Hash and invalidates the whole transaction
in case they don’t match. Lastly, the previously duplicated public key and
signature are checked by CHECKSIG, which returns true if the signature is
valid for this transaction.

just contain the address and amount, but a short Bitcoin script. This script will have
to return ’true’ when an output is being spent, or else the whole transaction is deemed
invalid, making it impossible to be included in a valid Bitcoin block. As anybody would
be able to spend a Bitcoin output where the script returns ’true’ when ran without any
input, nearly all output scripts only return true when supplied with specific data. The
designated way to provide that data is to add it (and potentially additional Bitcoin script
code) to an input when trying to spend the output. The data is then put at the front
of the script, and then the whole stack of opcodes and data will be ran by an internal
scripting engine, and return either true, or false, depending on the supplied data.

With a standard pay-to-public-key-hash output (= a Bitcoin address with a leading 1), the
Bitcoin script consists of only a few functions ran from left to right. Figure 2.2 explains
this in detail. Any type of script (within certain size restrictions) can be written, including
erroneous ones that never return true.

Covering the scripting language in more detail goes beyond the scope of this document.
The important takeaway is that the system provides some flexibility, including conditional
statements and comparison checks for the supplied data. This flexibility also allows for
inclusion of arbitrary data, which causes a part of the problem that we want to defend
against with the solution that is presented in this document.

2.5 Mining and Initial Coin Generation

Instead of creating an initial transaction that creates all Bitcoin and having the creator
of Bitcoin supply those coins to those who want to be part of the system, Bitcoin opted
to reward nodes that create new blocks with newly created coins. When a new block is
created, the first transaction has to be a so-called coinbase transaction. These transactions
have no input and as such no prior coins that determine the amount, but still send a certain
total amount of Bitcoin to one or more outputs. This amount, which essentially creates
Bitcoin from nothing, started at 50 Bitcoin, and will continually halve every few thousand
blocks until 21 million coins have been created. At the time of writing this, the so called
block reward is 12.5 bitcoins, and the next ”halvening” will probably occur in 2022 when
about 94.000 more blocks have been found, resulting in the 630.000th Bitcoin block having
been created.

9



10 2. Background Information about Bitcoin

Distributing the total supply of all bitcoins between supporters of the blockchain has the
benefit of decreasing the amount of trust one has to put in the creators of the software, as
they do not exert control over the complete monetary supply. On top of that, the creation
of blocks is able to occur decentralized, because people are incentivized to create new
blocks, meaning people already interested in Bitcoin have a further incentive to support
the network by running the software to create new blocks.

Bitcoin mining is essentially the creation of a partial hash collision for SHA256. The found
hash has to also be a hash of a valid Bitcoin block header, and this header is required to
be the header of a valid Bitcoin block.

This means there are essentially two kinds of work that are required to successfully mine
bitcoins: First, a valid block has to be created, potentially including many new transac-
tions, and conforming to all rules set forth by the consensus of the network and imple-
mented in popular node software. Second, a stable supply of energy and proper hardware
for SHA256 hash collision creation has to be sourced and needs to be run, ideally without
any interruption.

Mining pools are a development where people specialized on block creation provide a
highly available service to which to provide hashing power to. According to this hash
power, payouts will be done when a bitcoin block is found. This means a miner can
concentrate on the second part of Bitcoin mining, if they trust the pool operator to mine
valid blocks that pay the person owning the mining equipment a fair share.

The incentive to join a pool is quite high especially for owners of only a small share of
total hashing power. As the difficulty adjustment algorithm of Bitcoin causes the network
to only find about 144 blocks per day, it is clear that it might take a very long time for a
single miner to earn back their power and hardware investment if there are more than a
few thousand miners trying to find blocks. However, a pool where many miners combine
their hashing power will find blocks on a more regular basis, and the block reward can then
be split between all participants according to their contribution to the pool. Counting the
contributions is especially easy to accomplish, as a pool can use supplied shares, meaning
partial hash collisions that aren’t good enough for the Bitcoin network, to calculate how
much hash rate has been supplied.

As pools essentially control the process of block creation, they can present a problem
for Bitcoin. Censorship of single transactions is more likely if only a few pools and no
single miners exist, as it might be possible to force the pools to not include certain (valid)
transactions. Additionally, a pool controlling over 50 percent of the total hash rate could
theoretically earn all future mining rewards and split it between its supporters, as blocks
created by other pools could just be disregarded while their own blockchain would still
present the fastest growing blockchain that is deemed the proper one by all Bitcoin clients.

Pools may also have positive side effects, however. They are experts on Bitcoin consensus
rules, block creation and node software, and can thus advise their supporters on what
Bitcoin updates they should consider. In the event of a problem with block creation, they
also serve as central communication points for Bitcoin developers, such as in the 2013
chain-split event where a downgrade of the Bitcoin software prevented the network to fall
victim to a potentially permanent chain split [Nar15].

For the purpose of the changes discussed in this thesis, pools could serve as proponents
of the idea to keep their operations legal. Unlike hash rate providers, they might be
held responsible for illegal content on the blockchain. A pool is also much harder to
operate anonymously compared to a single mining operation. As popular attack targets
for denial of service, they have much larger bandwidth requirements compared to a miner
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Figure 2.3: Forking as depicted in the Bitcoin developer reference [bit18b].

that essentially only needs to download new blocks, and who can publish a found block
through multiple obscured pathways.

2.6 Chain Splits

A topic that should be covered in light of proposed updates to Bitcoin are network splits.
One such split may occur when the system is updated, and is called a hard fork. It should
not be confused with forks in open source projects where code is copied and worked on by
a different group with a different name, although they might coincide.

A fork on Bitcoin happens when a single node or a group of nodes create new blocks that
are not valid under the old rules. The network then splits into two groups, one that builds
new blocks on top of the block with the different rules, and one that chooses to not do so
and build on top of the most recent block still following the old rules.

Chain splits are different as they can also occur without any change to the Bitcoin code
base. They might be caused by a split in network connectivity, making some nodes unaware
of newer blocks being created elsewhere on the internet. In this event, multiple groups that
do not see all other groups’ nodes would work on their own blockchains. When the network
connectivity has been restored, only the blockchain with the most accumulated proof of
work, e.g. hashing power invested, and thus longest blockchain will be considered valid.
The process of ignoring shorter blockchains that were created by the other groups is called
orphaning. In case of similar hashing power being invested, it may not be clear which
blockchain will win this race. Eventually one blockchain will have found an additional
block before the others, however, and the system will converge onto a single blockchain
view once again.

As this thesis discusses rule changes for Bitcoin, chain splits and forks are a possibility. The
changes discussed in chapter 4 will essentially cause a slightly different kind of fork as rules
will not be changed complete, but only made stricter, as depicted in the above figure[2.3].
In our case, old nodes can continue validating new blocks, but they will be unable to create
new ones as the stricter rules require additional information that un-updated nodes will
not know how to provide. As such, new blocks may automatically violate the new rules,
and have their blocks abandoned if the majority follows the new, stricter rules.

The concrete details of a fork or chain split because of the new rules are not a focus of
this thesis, as they are unlikely to be different from other, previous changes that behaved
similarly. One such change is segregated witness, or SegWit, which we will introduce for
another reason in the upcoming section.

11



12 2. Background Information about Bitcoin

2.7 Segregated Witness

In 2017, a big update for Bitcoin went live. The code change had multiple different
goals [Tow16]. Its most prominent change to Bitcoin was seperating output signatures
into an extra data structure. This segregation of the witness, i.e. the data that proves
that a transaction is valid, gave this update its name. Segregated Witness, or SegWit,
took multiple years to design, implement and activate. We will first discuss all changes and
aims to give an overview and a general understanding of Bitcoin goals and implementation
aims, and then focus on implementation details that are relevant to the proposed solutions
presented in this thesis.

2.7.1 Malleability Fix

Certain parts of Non-SegWit Bitcoin transactions can be changed by third parties, result-
ing in the transaction gaining a different ID. This is only a problem before the transaction
is included inside a block, as the merkle root will then commit the transaction to its cur-
rent form. However, before a transaction is added to a block, the ECDSA signature or the
ScriptSig can be changed. In case of the ECDSA signature, Bitcoin nodes historically ac-
cepted various encodings of the same signature, as the library openssl was more lenient on
encoding rules than the standard itself [Eno11]. Some fields of the utilized DER encoding
can even be changed arbitrarily, causing a different transaction ID for every such change.

Similarly, various opcodes can be added on top of a valid ScriptSig even after a transaction
has been created and signed. As long as the opcodes do not change the validity of the
transaction, such as if they push something to the stack and then remove it, this changed
transaction could be added to a valid block, just as the original one. When the changed
transaction is committed, the ID of the transaction will be different than the expected ID
the sender calculated. This can cause problems when implementing third party software
that relies on Bitcoin transaction IDs.

It is possible because the signature contains and signs a hash of the data that should be
secured. However, the SHA256 hash function requires the complete input string that is to
be hashed before it can run. Hashing a string that is meant to include its own output is not
possible. It would create a circular dependency, where the SHA256 function needs to know
its own output before it has been run. For this reason, Bitcoin’s transaction signatures
do not include the ScriptSig. The downside of this approach is that modification of the
ScriptSig by third parties, such as adding more opcodes, is possible. On the other hand,
the main transaction ID does include the ScriptSig. After all, the ID is used to verify the
integrity of the whole transaction, and not adding the ScriptSig in this case would enable
an attacker to add data to make the verification fail, potentially invalidating the block for
other users.

The fix to malleability presents a small improvement that might prevent sophisticated
data inclusion attempts, which is the reason for its mention here. The malleability fix
was also one of the main reasons for the creation of the SegWit update, as it allows for
payment solutions that do not require every transaction to be saved to the blockchain.
This obviously circumvents the problem for many transactions, as a transaction that will
not end up on the blockchain is not a good target for illegal data inclusion.

2.7.2 Future Expandability

Adding new features to Bitcoin without requiring the whole network to upgrade was possi-
ble even before SegWit. Satoshi Nakamoto added placeholder opcodes (NOPs) to Bitcoin
whose functionality can be changed for newer versions. If an older client sees such an op-
code, evaluation of the NOP will cause nothing to change, essentially allowing the rest of
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the Script to decide about the validity of the transaction. On the other hand, newer clients
could run more elaborate checks when they encounter the reassigned NOP codeword, and
if the check fails, invalidate the whole transaction outright.

As one can see, this update mechanism is inflexible. The rest of the transaction has to
cause the validation to succeed, so the new opcode should not change the stack in a way
that makes it valid, else old nodes will deem blocks containing such a transaction as invalid,
breaking backwards compatibility.

SegWits resolves this downside by handling specially formatted Bitcoin Script in a different
way. If a script conforming to the layout and of a specific length is detected, the software
runs SegWit specific validation rules. These can be completely arbitrary and do not have
to be implemented with Bitcoin Script. Still, Bitcoin Script is also usable for such new
transactions, as it enables the implementation of Smart Contracts by Bitcoin users without
requiring widespread consensus and code changes to the main Bitcoin project.

This new SegWit output format includes a version field. The field will be used by future
Bitcoin updates to denote new transaction types, only to be evaluated by newer software
that knows how to validate them. Compared to that, older software will see a version
that they have no validation routine for, and just deem it valid without further valida-
tion. Compared to ignored opcodes, rules can remain simple and short, as old node rules
do not need to be taken into consideration when designing scripts and their ScriptSig
counterparties.

This new possibility for updates could also allow the discussed proposal in this thesis to
become implemented in a less contentious way. By only enabling the later discussed proof
requirements for newly defined SegWit transactions, old systems would not require any
update. It would not protect any participant from the problems discussed, however, as
Bitcoin would remain just as vulnerable as before if the old transaction types were not
equally updated. Still, these additional capabilities for updates introduced with SegWit
might provide some use. For instance, a SegWit specific update could be seen as a first
step until full agreement by users and miners can be reached. If the system works as
designed on the real network, a later update could then extend the rules to the remaining
transaction types.
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3. Related Work

Bitcoin was presented to the world by the pseudonymous author Satoshi Nakamoto by
uploading a scientifically styled paper to the cypherpunk mailing list metzdowd.com on
the last day of October in 2008. It contains a total of eight references, and those either deal
with previous proposals for an electronic cash system, or scientific papers whose results
might be considered building blocks for the solution Satoshi Nakamoto has devised. In the
following chapters, we will cover some more general references to Bitcoin and electronic
cash, and then focus on papers that have to do with similar problems to the one covered
in this thesis.

3.1 General Research in regard to Bitcoin

3.1.1 Before Bitcoin

In the whitepaper, a text from 2002 by Wei Dal titled bmoney.txt is cited as an inspiration
for the basic idea of requiring the transmission of every transaction to all participants of
the payment network. Wei Dal also saw the need for a consensus based money creation
scheme that is independly verifiable by new participant, but his protocol requires a penalty
system that punishes servers committing to wrong account balances or inflated monetary
supply. To solve this, Bitcoin adapted an idea described by Adam Black in a paper titled
”Hashcash - A Denial of Service Counter-Measure”. In his paper, Black formulates a cost-
function that allows the receiver to verify that a certain amount of hard calculations must
have occurred without needing to do an equal amount of work to verify it. He explores
variants of this idea, and explains the up- and downsides of possible protocol implemen-
tations. Following Blacks research, Bitcoin would be categorized as utilizing a publicly
auditable, trapdoor-free, unbounded probabilistic and interactive cost function that effec-
tively changes the server challenge difficulty by modifying the parameters according to a
Bitcoin specific algorithm. Unlike described in Black’s paper, the (proof of) work is not
done on a predefined identifier such as the name of the service, but the hash of the as of
yet unannounced block of the blockchain.

Other papers cited in the Bitcoin document describe basics for public key cryptosystems
[Mer80] or probability theory [Fel08] as Bitcoin utilizes them, or makes assumptions based
on probability theory to argue for its security in real-world attack scenarios.

Besides these papers, Bitcoin today utilizes many different techniques that have been
released with accompanying papers or that were later analyzed in such.
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3.1.2 After Bitcoin

After Bitcoin was released, researchers did not take note of it immediately. The first
widely cited papers that deal with cryptocurrency or Bitcoin specific attributes appeared
in 2011. Papers on Bitcoin often cover vastly different parts, such as (world) economics,
incentive systems, distributed systems, anonymity, cryptography, computer security and
papers focusing on concrete technical implementations of the Bitcoin system.

One of the earlier and often cited papers by Reid, Fergal and Harrigan [RH11] deals with
the lack of anonymity on the Bitcoin blockchain, allowing an attacker to combine various
payments to at least pseudonymously track future and past payments of the same entity.
Another paper titled ”Analysis of Bitcoin pooled mining reward systems”[Ros11] deals with
technical implementation details concerning Bitcoin mining. Pooled mining is a system
where participants do not solve Bitcoin blocks individually, but combine their efforts to
solve the problem of probabilistic reward distribution. As it is now, the algorithm targets
144 Blocks to be found each day, which means that in the event of tens of thousands
of miners mining Bitcoin, finding a block and thus receiving the mining reward which is
essentially the payment of miners might come too late to pay for electricity and hardware
requirements. This development hasn’t been anticipated by Satoshi Nakamoto at the
time of Bitcoins creation, but imposes new problems of reward distribution and attack
vectors for Bitcoin, which is what the paper by Rosenfeld [Ros11] sheds light on. After
the rise of the Bitcoin price beyond one dollar per bitcoin in 2011, economy researchers
also started to investigate Bitcoin more thoroughly. In ”Bitcoin & Gresham’s Law - the
economic inevitability of Collapse” [GG11], Güring and Grigg apply economic models on
Bitcoin and predict that stolen electricity and botnets may drive out honest participants,
eventually collapsing the Bitcoin system. While these predictions have not become true as
of now, it is widely observed that mining activity in Bitcoin moves to places where cheap
energy can be acquired.

A real influx of important papers started in 2013 and 2014. ”Majority Is Not Enough:
Bitcoin Mining is Vulnerable” [ES14] by Eyal and Sirer is an often-cited paper that deals
with a central security assumption of Bitcoin. Unlike first presumed, an attacker does
not need to control more than fifty percent of the hash rate to be able to create more
Bitcoins than their hash rate should allow. The results call for more decentralized mining
operations than can be observed on the network right now, and explain how keeping miners
below 25 percent of the total hash rate should not allow them to do the described selfish
mining attack.

3.1.3 Bitcoin Improvements by the Scientific Community

Even though Bitcoin utilizes well-known cryptographic methods, this does not mean that
new developments aren’t picked up by Bitcoin. In some cases, novel cryptographic ideas are
even created with Bitcoin in mind. For instance, Gutoski et. al. presented a paper [GS15]
that describes an advanced, deterministic Bitcoin wallet where some private keys may be
leaked without the whole wallet becoming compromised by the attacker. The use case for
deterministic wallets is not completely dissimilar from some other problems that can be
solved with cryptography, but apparently, some cryptographic features are not needed in
many other circumstances, and Bitcoin gave a good-enough incentive for scientists to work
on an improvement.

These examples show that Bitcoin development can be based on scientific research. In
some cases, research and novel solutions are created because of Bitcoin. It can thus be
said that Bitcoin is an interesting real-world occurence that utilizes cryptography. It drives
further research and requires researchers of various specializations to allow for a more exact
understanding of Bitcoin’s operation and future development.
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3.2 Research into Non-Eternality

Besides the more general papers on cryptocurrencies, there has also been research in areas
more closely related to this thesis’ topic. Making computer systems forget information
that they stored as a byproduct, or even previously relied on is not an easy task, but one
that benefits from analyzing the problem thoroughly.

3.2.1 Problem Analyzation

In their paper ”Cryptographic Currencies from a Tech-Policy Perspective: Policy Issues
and Technical Directions” [MLS+15], McReynolds et al. describe various issues surround-
ing the use and implementation of cryptocurrency within current jurisdictions. As its
purpose is that of an overview paper, they not only cover the problems of anonymous
payments, taxes, or theft, but also that of illegal content in the Bitcoin blockchain. They
correctly note that there have been instances of images and non-transaction text is stored
on the blockchain, and that a malicious party could intentionally store illegal files in it.
Unsuspecting miners or users of Bitcoin might then be held accountable for storing and
transmitting those illegal files. They go on that this could cause cryptocurrency to even
become illegal if someone wants to store every part of the blockchain on their own system,
and that different jurisdictions around the world might only cause this to become illegal
in certain countries. In their paper, they discuss the possibility of a future blockchain
software that introduces a central agent that is allowed to change blocks while retaining
their transactional results. While this would be antithetical to some underlying Bitcoin
principles, they leave it ”as an open problem whether it might be possible to achieve these
properties in a new cryptographic currency” [MLS+15].

3.2.2 X-pire!

This thesis is meant to present an update to the Bitcoin protocol that serves as a first
step to make this possible, but without introducing a new central authority. The notion
to remove content from non-centrally controlled systems like the internet is much older
than Bitcoin, though. In their paper ”X-pire!-a digital expiration date for images in social
networks” [BBD+11], Backes et al. explain a system that allows users to make images
unviewable after they have been transmitted to third parties. Similar to the problem of
deleting bad data from the blockchain after it has been discovered, this system is meant
to make data unavailable when it is found to be problematic. In the case of X-Pire!, only
pictures are protected, but in a way that preserves the data format so that standard picture
uploading services can be used. They embed information about the encrypted content into
the image, and through this information, the decoding keys can be obtained from a third
party server. In the case that a picture should not be viewable anymore, the server does
not disclose the key anymore.

3.2.3 Vanish: Increasing Data Privacy with Self-Destructing Data

A similar technique is described in ”Vanish: Increasing Data Privacy with Self-Destructing
Data” by Geambasu et al [GKLL09]. In their case, however, they split up the needed
decryption key into multiple chunks and have those be distributed by a peer to peer DHT
network. An interesting property of the system is the automatic inaccessibility of data
that is no longer needed, at least as long as many peer to peer members behave properly.
While a mixture of these both systems might solve Bitcoin’s problem of illegal data on the
blockchain on first thought, the requirement for one or more third party servers of the first
paper centralizes trust and power. As decentralization is one of the prime attributes of the
Bitcoin network, it would be unlikely to see it implemented as a solution for Bitcoin. Even
if the idea of the second paper were to be properly utilized [WHH+10] to decentralize the
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system a bit more, that peer to peer network would not necessarily be part of the Bitcoin
network, and thus operate with different incentives. Furthermore, the problem for Bitcoin
is the removal of intentionally placed illegal content. While it might be possible to make the
encryption key non-choosable by an attacker, so as to not allow it to be effectively zero and
thus known by everybody, this system functioning as intended is actually a security issue
for Bitcoin. Bitcoin depends on the ability of every user to check transaction and block
history for themselves to be sure that no rules were broken. If even just one transaction
is not verifiable, this can potentially be abused to inflate the monetary supply or to steal
Bitcoin in certain cases. Considering the whole picture and important attributes of a
decentralized and trustless cryptocurrency, these new attack vectors might be considered
unacceptable by many. In turn, this motivates the search for another solution with less
severe drawbacks.

3.2.4 µchain: How to Forget without Hard Forks

One step into a potentially useful direction is ”µchain: How to Forget without Hard
Forks” [PDC17] by Puddu et al. Their solution removes the immutability of the blockchain
by introducing consensus based allowances for a selectable entity or group to create up-
dated transactions that contain different smart contracts or transactions. This could po-
tentially allow for changing contracts or monetary transactions after the fact, which in
turn could allow for monetary inflation of the blockchain tokens (bitcoins) in case follow
up transactions are not somehow invalidated, or the updating of smart contracts that have
vastly different rules. For instance, this might include a smart contract that effectively
steals the funds and transmits them to all members of the entity or group that may create
update. As this is a security risk with a high incentive for the attacker, the paper discusses
some restrictions as to what update transactions may do. One example is the invalidation
of transactions that build upon invalidated outputs. However, its first variation creates
an implicit additional duration after which a transaction can be considered finalized and
after which nobody can remove illicit content again. In the second variation without a
time limit, no transaction can ever be seen as finalized, and content insertion could al-
low to revert and double spend cryptocurrency that previously built upon the invalidated
transaction. It is an open question if other solutions might exist that enabling proper
patching or content removal functionality using µchain without these drawbacks.

3.2.5 Redactable Blockchain

The concept described in the paper ”Redactable Blockchain or Rewriting History in Bitcoin
and Friends” [AMVA17] by Ateniese et al. presents a similar solution, albeit with similar
problems. They utilize special chameleon hash functions that allow certain individuals
to create blocks with the same hashing result, effectively allowing them to exchange full
blocks (with potentially illegal data) for updated versions. If the trap door mechanism
of the chameleon hash function could be outsourced to miners, and if it could be made
impossible to turn this into a way for miners to steal or attack the integrity of the monetary
system, it might provide a solution to the problem of illegal data inclusion. However, it
is unclear how this can be achieved, as the chameleon hash function in the paper by
Ateniese et al. replaces the old block with a new version and effectively calls for nodes’ to
disregard the earlier block. This means the miners cannot know if substantial or disallowed
changes have occurred, and might enable miners or short-lived hashing majority attacks
to effectively invalidate important transactions to enable them to enrich themselves.

3.2.6 Analysis of Illegal Blockchain Content

In ”A Quantitative Analysis of the Impact of Arbitrary Blockchain Content on Bitcoin”[[MHH+18]],
Matzull et al. analyze the problem of arbitrary data inclusion in cryptocurrency blockchains.
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They discuss the various methods used to encode data for blockchain insertion, and make
a quantitative analysis of currently stored content on the blockchain. Their paper includes
an overview of possible ways to insert data and services that might use them, and a Cost
per Byte calculation for each method. The methods are sorted into two categories: Those
utilizing the outputs scripts inside a transaction, and those that use input scripts. While
the former can be thought of as the recipients of a Bitcoin transaction, the later serve as
cryptographic proof that all used bitcoins are owned by the creator of the transaction.

First, Matzull et al. describe output methods, starting with OP RETURN. OP RETURN
is a ”controlled channel to annotate transactions without negative side effects” [MHH+18].
They identify the negative side effects, namely pollution of the spendable transaction
output cache and note their current limitation to 80 Bytes per transaction.

The coinbase transaction that makes up the first transaction of every block is another
vector for data inclusion attacks that was identified in the same paper [MHH+18]. The
authors conclude it as an inefficient way to insert data, as only active miners are able to
use this method, and the amount of data that can be inserted in total is limited.

On the topic of non-standard vs standard transactions, they describe the inefficiency of
using non-standard output scripts because of the difficulty of getting them included by
miners, whereas ”non-standard input scripts are only required to match their respective
output script” [MHH+18], allowing for arbitrary data inclusion ”if their semantics are not
changed, e.g., by using dead conditional branches”. As an example, an attacker could
create a P2SH transaction for an input that contains a very simple branch that allows
the spending of the output in case they own the proper private key, just as in P2PKH
or P2PK. In the effectively dead conditional branch that they never intend to use, they
might add a condition that looks like a pay-to-multisig or a similarly large collection of
data that might be mistaken for public keys. As it doesn’t need to evaluate to true on
the stack, there is no real restriction on what the attacker can put here, minus some size
limits on the total amount of data. If the user then creates a transaction that successfully
spends the output, he can permanently include this data into the blockchain even though
it wasn’t required. It cannot be removed, however, as this would change the hash and thus
the ID of the transaction.

In the realm of standard transactions, Matzull et al. identify four transaction templates,
namely P2PK, P2PKH, P2SH and P2MS. For these methods they describe that ”The
respective public keys (P2PK, P2MS) and script hash values (P2PKH, P2SH) can be
replaced with arbitrary data as Bitcoin peers cannot verify their correctness before they
are referenced by a subsequent input script. While this method can store large amounts
of content, it involves significant costs: In addition to transaction fees, the user must burn
bitcoins as she replaces valid receiver identifiers with arbitrary data (i.e., invalid receiver
identities), making the output unspendable.” [MHH+18].

In P2MS, multiple parties are in control of the bitcoins held in an output, but only in
case they cooperate and sign the same transaction with their respective private key. In
some P2MS schemes, even a simple majority or other such agreement is enough to spend
the output. This is the reason why the author of this thesis disagrees with the stated
requirement of burning bitcoins in the paper: If enough of the pushed public keys remain
valid and in control of the attacker, while the other public keys are actually placeholders
for arbitrary data, the output remains spendable while still containing a good ratio of
arbitrary data. After spending the output, the data will not remain in the mempool,
however, and purging Bitcoin nodes will be able to purge this data after an initial sync.
An attacker might thus prefer the attack described in the paper by Matzull et al., as it
affects ever node and not just non-purging ones.
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The paper goes on to discuss adverse effects of arbitrary blockchain content. Besides out-
right illegal content which might make the mere possession and transmission of blockchain
data illegal, they list copyright violations, malware, privacy violations, and politically
sensitive content as potentially problematic.

The paper goes on to describe detected occurrences of data inclusion on the Bitcoin
blockchain, and the techniques that were used. Their results are based on blockchain
data up until August 31th, 2017. At that time, only 118.53MB, or 1.4 percent of Bit-
coin contained various data. They go on to note that most of the data was found in
OP RETURN outputs, a place where arbitrary data is intended to be put. The described
ways of including arbitrary data only make up 0.02 percent of all data inclusion trans-
actions and were ”virtually irrelevant” at that time. It is reasonable to assume that the
use of alternatives to OP RETURN inclusions will rise as soon as OP RETURN is dis-
continued on the Bitcoin network. On the other hand, discontinuation of OP RETURN
seems irresponsible as long as other, potentially more effective ways for data storage on
the Bitcoin blockchain exist, as these techniques often have other problematic side effects
on the Bitcoin network, whereas OP RETURN was designed in a way that makes its use
bearable.

3.2.7 A Potential Solution for P2PKH Bitcoin Payments

In the paper ”Thwarting Unwanted Blockchain Content Insertion”, Matzutt et al. describe
an interesting approach to stopping content insertion with transaction outputs. Similarly
to already described papers, they motivate it with the potential harmfulness of arbitrary
data insertion into the blockchain. Then, however, they analyze the capability of heuristics
to stop attackers by monitoring transactions in the mempool. As false positives could
cripple the Bitcoin network, they ”propose to further restrict the text detector to reject
only transactions with more than 5 distinct text-holding outputs (100 B of conent). This
way, only short and thus harmless texts can be inserted”. They are right in arguing that
such texts could already be included via an OP RETURN output, but it is unclear to us if
the Bitcoin network should allow OP RETURN statements at all considering the high risk
of arbitrary content insertion. Especially the potential for watermarking or linking multiple
OP RETURN outputs might cause an attacker to split off his illegal data and include it
onto the blockchain, while also making retrieval nearly trivial with straightforward code
that scans the blockchain for those watermarks.

Regardless of these details, their content detectors reduced the problem while also keeping
false positives low. They note that ”. . . the detector’s filtering quality is insufficient for
binary files and we expect a wide range of evasion schemes to emerge” however. They
go on that ”this would imply a poor deployability, as novel evasion schemes result in
frequent mandatory updates for all honest full nodes”. They conclude that ”explicit content
detection constitutes a firstl ine of defense against unwanted blockchain content and works
for text-based content. Mitigating the insertion of unwanted binary files, however, requires
more general approaches.”

The next proposal in the paper covers costs of content insertion. The authors argue for a
mandatory fee increase for every output found within a transaction, meaning fees are no
longer governed by the space the transaction will use in certain parts of the block. This
change from the current model, where miners include transactions based on the associated
risk of their block being orphaned if some other miner finds a smaller block at the same
time, and the fee being paid, is not without downsides. While it describes a (higher)
minimum fee, making it interesting for miners to include such transactions even under the
old assumptions, it doesn’t take into account the ability of a miner to receive the fees of
his own transactions. The need to wait 50 blocks until they can spend those coins (now
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included in the block reward) is a rather minor deterrent and does not increase the cost for
this attack by much. On the other hand, the existence of pooled mining and thus a payout
of the mining reward to all participating miners stops the attack from being essentially
free. The pool might be cooperative, however, and could plan to permanently damage
Bitcoin through the illegal content insertion, in which case they might not be interested
in paying miners in the first place. An attacker could also solo-mine a block with bad
data, circumventing all described protections of a fee increase as long as he can sell the
block reward 50 blocks later and before the illegal data is discovered or before it damages
the worth of Bitcoin. Another completely unrelated problem is the usage of Bitcoin in
less prosperous regions. If a scheme makes data inclusion exceptionally expensive, this
might put special on-chain transactions out of reach in poorer countries, or only enable
rich people to attack Bitcoin.

Their final proposal to solve the problem of data inclusion in Bitcoin P2PKH transaction
outputs seems to be the most promising. They describe a mathematical scheme where
it is computationally infeasible to create arbitrary receiving addresses. Using a commit-
ment, miners can check that a certain hash is not just arbitrary data, and thus reject all
transactions that do not provide a valid commitment. Their solution is adaptable to the
most common forms of payment on the Bitcoin blockchain, namely P2PKH and P2SH. It
does increase transaction size by a non-marginal amount. Outputs that basically consist
of a single hash and thus 20 bytes of data now become 112 bytes in length. As inputs are
usually the culprits for especially large transactions, this is not as bad as it first appear.
They calculated that ”a standard (P2PKH) transaction consisting of one input and two
outputs grows from 225 B to 409 B”. It is not uncommon for transactions to include
multiple inputs, in which case the increase is even less profound.

The performance need to evaluate commitments before block inclusion or when a block
is announced is negligible (0.4ms per commitment on an Intel Q9400, released in 2008).
The creators of the paper used comparably old hardware, and if we consider that the size
of transactions grows in a similar manner to the increase in performance requirements, a
reader might conclude that they even out.

The paper was released during the creation of this thesis. Implementing the solutions
presented would further increase the resilience of the Bitcoin network against off-topic
data inclusion. The solutions this thesis describes can easily be appended, and do not
interfere with the plans of the paper, however.
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This chapter will describe the proposed solution. First, some different, but potentially
reasonable approaches will be presented. At the same time, the reason for their dismissal
will be stated. The chapter continues with an explanation of excluded problems, i.e.
aspects that will be solved through different means or that are not deemed relevant at the
current state of the system. Finally, our solution will be explained in detail.

4.1 Potential Solutions and Downsides

There are many half-solutions to the problem of malicious data inclusion, and some changes
that appear to solve the problem do not actually solve it after further inspection. In this
section, we will discuss some of these solutions, and why they are inadequate.

Simple detection of data inclusion is one example for such a proposal. After all, it seems
like a straight-forward approach to solve the problem. If we can detect all attempts to
include data in the blockchain, mining nodes can be updated to reject and not-mine any
transaction that contains unnecessary extra data. Similarly, newly created blocks that do
not follow these new rules could be orphaned (e.g. ignored). If enough miners and Bitcoin
users supported the update, the update process would be similar to previous updates of
the Bitcoin software. However, it is unlikely that detection of data inclusion will become
good enough to be employed for this task. Detection is unlikely to become perfect, and
an imperfect detection would be easily circumventable by an attacker by just attempting
to trick the public scanning engine in secret. Furthermore, scanning for data would also
need to be very fast, as new Bitcoin blocks need to be verified as fast as possible to allow
a mining node to securely work on top of the new block without risking their own work
(i.e. a new block based upon the previous new block) to be disregarded. If the process
was not fast, but slow, miners would lose revenue as they would be forced to mine on top
of the older block until the check was finished, or risk mining on top of a block that does
include illegal data. The work done on top of the not-most-recent block will probably
not cause the miners to earn mining rewards, however, as the valid, but slow to check
new block will eventually be regarded as the safest one to mine on top of. When this
happens, this blockchain will grow faster than the older chain without the newest block,
and the network will only consider this longer and more difficult blockchain as the current
Bitcoin blockchain. Additionally, steganography and encryption make it very hard for such
schemes to become usable even in the event that they work perfectly in obvious cases. Even
encrypting data with a trivial, guessable password will usually make it undistinguishable
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from random noise, while still allowing users with the right software to easily extract the
data from the Bitcoin blockchain. These and other reasons show that the inclusion of such
a detection mechanism would very likely be a futile attempt at solving the problem.

If we rule out the possibility to prevent illegal data to end up on the blockchain by detecting
data inclusion attempts, maybe a straightforward solution to remove the data once it has
ended up on the blockchain might be feasible. The pruning function of Bitcoin does solve
some of the legality problems of running a Bitcoin node once illegal data is included in
the blockchain: After a certain amount of new blocks have been mined, all old blocks are
removed from the pruning node and will thus not be stored or sent by it again. It does
need to receive all blocks initially to check them, however. This requirement encourages
other nodes to store and transmit the blocks to their peers, as there exists a small risk of
historical blocks becoming unavailable in case too few participants provide them. Similarly,
network participation might be hindered from finishing block validation if blocks aren’t
provided, which would restrict new nodes to join the Bitcoin network until someone can
provide these blocks again. Many Bitcoin proponents would likely deem this change from
the original idea unacceptable, as Bitcoin relies on merchants and users being able to join
the network freely.

It is also not possible to stop every node from storing a block, as that would make the
verification of the blockchain permanently impossible for everybody, destroying one of
Bitcoin’s most important features: It’s trustlessness. Additionally, even purging nodes
store the set of unspent transaction outputs, as they need those for verification of the
incoming blocks. This essentially means that all Bitcoin nodes might be storing illegal
data that was placed within unspent outputs. They are usually not transmitting this
information to other nodes, but even just the requirement of owning or accessing potentially
known illegal data is reason enough to consider this approach as insufficient. Similarly,
just deleting blocks on one’s hard drive or not transmitting them to other peers does not
make the task of running a node without the possibility of legal trouble feasible.

Some more feasible approaches would change key attributes of Bitcoin. One such approach
is the use of special hash functions that allow certain individuals to create replacement
transactions by empowering them to create hash collisions. The hash functions that make
this possible are called chameleon hash functions. If data inclusions are detected within a
block, individuals knowing the secret can change (parts of a) block, removing or changing
the problematic transaction and/or data. The downsides of this approach, however imple-
mented, are obvious: Instead of creating a decentralized, uncensorable payment network
that is controlled by no one in particular, it would put a lot of power into the hands of the
individuals that control the chameleon hash secrets. Worse still, even if it was somehow
possible to utilize zero-knowledge proofs or some other technique to keep the secret from
being known by single individuals, it will probably not be able to stop past participants
of the network to abuse this power in the future when they aren’t profiteering from the
system anymore. Additionally, future key participants of the network, such as miners, are
unlikely to be able to receive the secret if previous owners or participants do not want to
give it up. Implementing a voting system where votes are distributed according to certain
measurable blockchain occurrences doesn’t solve it, either: The only attributes that might
be sensible to use in that case are coin ownership or found blocks (i.e. calculated PoW).
This puts a lot of power into the hands of current miners or companies that have access
to a lot of coins, like exchanges. Allowing those powerful groups to gain the ability to
arbitrarily censor old transactions puts the network at a far greater risk than it is exposed
to today through 51% or similar attacks.

It remains to be seen if some of these solutions will be implemented despite being in-
sufficient or potentially damaging to the system. There might even be incentives for
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implementing such incomplete solutions, as some jurisdictions consider what is technically
possible when deciding about the legality of a product or service. The primary problem
of allowing an attacker to distribute illegal data or to cause damage to the system can
effectively not be prevented with the presented solutions, however.

4.2 Excluded Problems

Solving the problem of illegal data inclusion in a decentralized database is a task that makes
it likely to overlook certain properties of a complex system such as Bitcoin. To analyze the
problem, grouping potential avenues for data inclusion seems sensible. This section deals
with the exclusion of some ways to include illegal data. Ultimately, all excluded problems
should not be considered similarly large roadblocks to a ”clean” blockchain as the problems
this thesis tries to solve. A short draft or explanation of potential solutions to these side
issues should make this clearer to the reader.

4.2.1 Minor Data Inclusion

Bitcoin transactions and blocks offer many user-controlled sections that make the hiding of
data possible. However, more or less strict rules apply to the makeup of transactions and
blocks, so not every part of these data structures is equally open to abuse. Additionally,
illegal scriptures are often of a certain length because they are encoded as image or video
files. Finding short strings or data chunks that might be considered illegal by a certain
country is difficult, and linking to their occurrence in the blockchain can be longer than
redistributing the data itself. The real problem lies in the inclusion of larger files. One of
the milder forms of such an attack might utilize the illegality of copyright infringement, e.g
by including a music file, news article or copyrighted picture into the blockchain. Examples
of more serious cases are revenge pornography which infringes on the human rights of
the depicted persons, or otherwise illegal pornography whose ownership and transmission
carries various risks. Protecting against these cases while excluding theoretical cases where
only a few (illegal) bytes are stored on the blockchain thus seems like a reasonable problem
definition, especially considering that hiding a few bits of information is generally possible
in most user-controlled fields of easily reachable online services.

4.2.2 Fragmented Data Inclusion

Even larger data inclusions might not cause the blockchain to become illegal, as long as the
included file is heavily fragmented because only small data inclusions were possible. The
recombination of all fragments could become hard enough that it is an impossible attempt,
and thus, nobody could access the data. However, one could imagine a scheme where the
attacker releases a software that can scan the blockchain for multiple data inclusions that
starts with a certain short byte sequence. If the byte sequence is found, all data after it is
automatically recombined, making the data accessible to the user. If the scheme is robust
enough, even large fragmentation might not stop it from working.

We excluded this problem for multiple reasons. For one, jurisdictions might only consider
it illegal data transmission or ownership when this search byte sequence or another recom-
bination secret is also known to Bitcoin nodes. As Bitcoin nodes are under no obligation
to store such a byte sequence or secret, they would remain legal to operate as long as they
do not go out of their way to retrieve such content. There are some services that operate
like this to remain legal, namely cloud space providers: While they cannot prevent users
from storing copyright infringing materials, they never store the decryption keys to the
data, or provide them to third parties. As they technically cannot access the infringing
data, they are then not held responsible for their distribution.
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Additionally, the few data fields that will potentially remain viable for such fragmented
data inclusion might be removed in future versions of Bitcoin. An example of such a
field is the value field that denotes how many Bitcoin will be received by an output. By
encoding a few bits of data in the least significant bits of the amount field, a small amount
of arbitrary data can be stored within Bitcoin transactions, and not many additional
bitcoins are needed. However, solutions like confidential transactions [Max18a] might
solve this problem in the future.

For these reasons, we do not aim to stop small data inclusions within various user-controlled
fields from occurring with our current proposal.

4.2.3 Partial Hash Collisions

Similarly, inclusion of data through partial hash collisions remains a problem. An attacker
utilizing this technique to store data essentially needs to recreate hashed data structures
multiple times until some of the bits resemble (part of) the data the attacker wants to
include in the blockchain. As the ability to store data with this approach is quite limited,
and because a fix would likely require a complete change to the utilized hashing functions of
Bitcoin, which would exceed the scope of this thesis, our solution does not yet include a fix
for this additional problem. However, it does not rely on any specific traits of SHA-256 or
RIPEMD160, and does not conflict with a system where other hash functions are utilized
to conquer this remaining problem. Additionally, this approach requires the attacker to
create a more elaborate explanation on how to access the potentially illegal data, similarly
to how large data inclusions require it. It is thus sensible to present a solution for the
remaining, more pressing issues of data inclusion, as this will effectively reduce the toolkit
of an attacker when they wish to permanently store data on the Bitcoin blockchain. On
top of this, the chapter about previous work3 mentions a potential solution to this problem
that was released while this thesis was being written.

4.2.4 Data Inclusions by Bitcoin Miners

Another way to include data quite freely is given to miners within the coinbase transaction,
where they are free to include a few arbitrary bytes in the input. Stopping this is very well
possible by changing the layout of this special, first transaction, but some of the provided
space might be used to signal protocol enhancement adoption or mining pool specific
information, which would need some sort of standardization so arbitrary data inclusion
can be avoided. More convoluted techniques for data inclusion, such as changing the order
of transactions within a block so they recombine to specific data like in the partial hash
collision example are potentially preventable, too, and only present a small opportunity
for file inclusion similar to those described in the fragmented data inclusion section. Ideas
to solve these problems include stricter ordering rules for transactions within a block, or
adding more restrictions to what or how many transactions may be added to a block.
Miners are also financially disincentivized from hurting the Bitcoin network as illegal data
inclusions will potentially hurt the price of their mining reward, which only becomes usable
after a certain time frame. On top of that, causing the system to become illegal might
destroy their investment in their highly specialized Bitcoin mining equipment. For these
reasons, our solution does not yet incorporate a protection against rogue miners that want
to hurt the system. It will make such attempts more expensive, however, as only very few
or small miner controlled fields will remain usable for such an attack.

4.2.5 OP RETURN

Lastly, we also do not present a solution for the only somewhat-tolerated method to add
arbitrary data to transactions. It utilizes the opcode OP RETURN within an output of a
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transaction, marking it as unspendable immediately. This allows miners to stop tracking
this output and thus to remove it from their memory because it will never be used in
a subsequent, valid block. At the current state of the network, including OP RETURN
transactions is considered non-standard and not all mining nodes will include them into
blocks they find. Furthermore, these special transactions can only add 40 bytes of arbi-
trary data, or they will not be relayed on the p2p network overlay of Bitcoin, making them
even more unlikely to be included in the blockchain. The solution to stop this method
of data inclusion is comparably easy: Simply disallow any transaction including a special
OP RETURN output. However, as long as other data inclusion methods are not com-
pletely eradicated, it would be unwise to remove this way to include data because other
methods might then be utilized again, potentially causing resources to be wasted forever,
such as in the case of increased RAM usage when encoding data in the receiving address of
an output. In case the solution of this thesis is implemented, OP RETURN could safely
be prohibited, as the wasteful encoding of data in transaction outputs would no longer be
feasible.

4.2.6 Non-standard Outputs

As a miner, it is currently possible to insert non-standard transactions into the blockchain.
Some miners also seem to allow anybody to send them non-standard transactions for in-
clusion. Eligius is a popular example for such a mining pool [bit18a]. If non-standard
transmissions are included, any kind of Bitcoin script is addable to the Bitcoin blockchain,
expanding Bitcoins capabilities beyond its basic purpose of transferring ownership of po-
tentially valuable tokens.

Retaining Bitcoin Script’s capabilities while removing the possibility of storing illegal data
is a potentially impossible task. For instance, one could imagine a script that requires a
specific byte combination to be presented to allow the spending of the Bitcoins encumbered
by the script. If the aim is to include arbitrary data, this byte combination might consist of
text or image data. Thus, creating a script that calls for illegal data to spend the bitcoins
protected by the script is currently a possibility, and preserving this feature in particular
could be seen as going against our stated goal.

Disabling the creation of non-standard outputs is possible without functionality loss, how-
ever. In 2012, P2SH outputs [And12] were introduced. They allow a user to publish the
actual Bitcoin Script only when an output is meant to be spent, similar to how P2PKH
outputs do this for the public key for a transaction. Some minor limitations regarding the
script size may apply, but they could be changed in the event that non-standard outputs
are completely prohibited in Bitcoin. For this reason, our solution does not preserve the
capability of allowing non-standard outputs to be included in future Bitcoin blocks.

4.3 Preimage Solution

If we still want to protect against illegal data being retained by the blockchain, all insertion
methods for non-technically necessary data have to be removed or made unappealing. The
following sections will describe how this can be done for simple transactions.

4.3.1 Signatures and ECDSA

The paper by Matzutt et al [MHH+18] describes many popular ways to insert arbitrary
data into the bitcoin blockchain. All variants that store the data in standard transac-
tions outputs can be mitigated by requiring proof that the variable parts of the standard
transaction are clean. There are two types of proof that we need to consider.
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The first is proof that a public key is indeed a public key (and not arbitrary data). Inci-
dentally, the proof for this is just a valid signature that can be created with the private key
that is known to the owner. ECDSA public keys are derived from their secret key, which
would be cryptographically hard to find if arbitrary data was to be used as a public key. If
it was not, someone could use the scheme to find the private key for some arbitrary string
that happens to match the public key of another user of ECDSA, gaining their secret key
in the process. Without the secret key, a valid signature for an alleged public key cannot
be created, or ECDSA would be considered broken. Thus, arbitrary data cannot be stored
in place of a valid public key as long as the system is expanded by the requirement for a
valid signature to be provided whenever a payment to a public key address is included in
a block.

4.3.2 Preimages and SHA256

The proof that an address hash as used in P2PKH and P2SH outputs is not arbitrary
data behaves similarly. By providing the input data of a hash function (also known as the
preimage of a hash) and the resulting hash, one can prove that the resulting hash is not
arbitrarily chosen, as it would be cryptographically hard to find a preimage for a given
hash. It can be assumed that his is the case, as Bitcoin would be broken in case it was
possible to construct valid preimages to existing SHA256 hashes by e.g. manipulating some
parts of this preimage. This could allow an attacker to exchange old blocks for completely
different ones, for example, and would break Bitcoin quite drastically as it would cease to
be an eternal and close to impossible to manipulate data structure. We can thus assume
that SHA256 preimages cannot be created merely by knowing a resulting hash, which
means the proposed solution should be secure.

As arbitrary data inclusion in Bitcoin ceases to be a problem when Bitcoin cannot be
used anymore, the proving scheme may assume that an attacker cannot create arbitrary
hash collisions. Knowing the preimage of an address should also not allow attackers to
do anything else in regard to attacking the hash or public key validation itself. If it did,
however, the scheme could be slightly changed to change Bitcoin to require a third hashing
iteration so the initial hash is not known again.

The script or public key for the spending of a P2SH or P2PKH output is always known
by the owner of the address, and thus the preimage is easily creatable for them. Through
a curious design decision, Bitcoin even makes it easy to distribute this preimage, as the
standard Bitcoin hash functions generally hashes at least once with SHA256, and the result
of this first hash function call can be released as the preimage (= proof) that the second
hash (included in transactions) does not consist of arbitrary, attacker-chosen data. This
possibility has been briefly discussed by Bitcoin developers before and is called P2SH2

[Max18b], but no implementation or elaborate explanation about its attributes exists to
the best of the author’s knowledge.

There is also a small caveat. A sufficiently motivated and wealthy attacker is still able to
encode a few bytes of arbitrary and potentially illegal data per output. To do so, they have
to create many different private keys and derive address hashes or public keys from them.
By doing so, they will eventually find hashes or public keys that start with a certain bit
combination. Finding a SHA-256 hash with 32 attacker chosen leading bits can be done
in less than a minute on current GPUs if we only require the hash preimage and not
the public key. A dictionary with such hashes and their preimage could be created and
made available to attackers. Still, it would reduce the efficiency to include data in outputs
drastically. Whereas an attacker can add 256 bits now, this amount would be reduced by
87.5 percent. With more computationally intensive hash functions for Bitcoin addresses
or by elongating the proof and address scheme with additional data as a salt, this attack
vector can be further mitigated.
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Proofs are not required to be stored once many blocks have been created on top of older
transactions, and can thus be discarded. This makes it unlikely that someone will store
illegal data within the proofs, as they won’t gain the benefits of storing data eternally if
it won’t be part of the blockchain.

As an example, proofs for transactions within an old block might be required until 100
blocks have been built on top of it, or else a block will be deemed invalid and discarded.
After 100 blocks, nodes will not request or require proofs for the older block. Then, after
200 blocks, the nodes storing the proofs can safely discard them as a competing blockchain
is unlikely to cause a block reorganization that spans over 100 blocks. 100 blocks is a special
number in Bitcoin as miners can use their block creation reward after these many blocks
are created on top of one of their mined blocks. A reversal or attack that removes over
100 blocks with a competing chain with more blocks would be very dangerous for Bitcoin,
as most miners would then lose a lot of revenue, potentially causing them to stop mining
Bitcoin and reducing overall security.

Abuse of the proof system is unlikely and much less severe than an abuse of Bitcoin for
illegal data storage. An attacker storing data within proofs would only profit from this
for less than 36 hours during normal network operation (e.g. less than 200 blocks), as
that’s the time frame within which his proofs would be stored and transmitted by the
network. The legal system often works much slower than this, so it is unlikely that a
worldwide network could be in agreement over the legality of data that is only stored
fleetingly, anyway. Additionally, an attacker would lose the bitcoins sent to the hashes of
these preimages permanently, as the preimage is data, and not actually a hash of a valid
public key that would allow them to spend the coins again. All this makes the attack
comparatively expensive, and unlikely to have the desired effect.

If this proof system does not prove sufficient for any reason, another option would be an
implementation of the scheme described in the paper by Matzutt et al [MHZ+18] which
was released during the time this thesis and the accompanying code were being written.
They present a special script for outputs that incorporates a more elaborate proof that
no arbitrary data was included, with the downside of an increase in transaction size. The
following parts of the solution do not require anything of the proof system than stopping
an attacker from including data, however, so their solution would fit our purpose, too.

4.4 The Solution for more Convoluted Transactions

The remaining, larger attack vectors all use inputs to store data. P2PKH and P2PK
outputs require valid signatures or valid signatures and the corresponding public keys to
spend them. P2SH outputs, however, are more flexible in what they require to be spent
successfully. This is a problem, as this flexibility allows for data to be included in a much
more straightforward way than hiding it within fields meant for public keys or hashes.

One example for an efficient way to store bad data using P2SH inputs is the following:
Create a P2SH output that consists of a hash for a script that has a branching instruction.
The non-taken branch pushes arbitrary data onto the blockchain, whereas the branch to
be taken does (for example) a standard check for a certain public key plus signature. We
then spend the P2SH output by creating a new transaction which spends the output by
providing this script and the needed public key and signature. As the transaction is valid,
it should be included into a block without problem, even though it has a non-standard
structure. Requiring some sort standard structure after a P2SH has been made would
even be problematic, because the person being paid cannot change the script without
changing the hash of the P2SH. If the original script were not to be accepted because
of rule changes in Bitcoin, he would basically lose the Bitcoin he has received via the
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P2SH output. Considering the rules being followed in development of Bitcoin, this would
probably be an unacceptable change for owners and developers alike.

This remaining way to store data on the blockchain is not as problematic as storing data
in outputs, however. Whereas unspent outputs reside in RAM on every Bitcoin node, and
need to do so for block validation purposes as it prevents double spends, spent outputs
(and their inputs) only reside on the hard drive of most Bitcoin nodes. They can even be
discarded by a portion of the network by pruning, which effectively deletes the unneeded
data once it has been scanned to build up the unspent outputs database in RAM. Such
nodes are obviously also not in danger of transmitting illegal data to other participants.
They might however request the data initially, storing it for a short time.

A change to how Bitcoin P2SH inputs operate and what Bitcoin guarantees for P2SH
could present a solution to the remaining data inclusion problem. First, the effects of a
potential straightforward removal will be explained and discouraged. Then, the option of
how a safe solution can work will be discussed.

4.4.1 Plain Removal Impossibility

If we assume a permanently deleted transaction within a Bitcoin block, Bitcoin participants
could still verify the proof-of-work of the block. What fails, however, is the block validation.
One important possibility to consider is that the transaction whose data cannot be acquired
anymore and that might be referred to by later transactions could have always been invalid.
It is also not possible to know how many Bitcoins later transactions are allowed to spend
when they include an (equally deleted) output from the deleted transaction. Even worse,
the whole block reward the miner got for including the transaction cannot be verified
anymore. If miners had worked together at any point in the past, it would have enabled
them to acquire free bitcoins, and to create more bitcoins than should be possible. Owners
of the bitcoin being spent within the deleted transaction would also immensely benefit from
such a scheme: Without any proof that they ever used their bitcoin, they could use the
same outputs again in a new transaction, effectively causing a double spend and a doubling
of all involved bitcoin at the same time.

4.4.2 Fine Grained Removal

Now that it is clear why removing a complete transaction is not feasible, the downsides
of more fine-grained deletion of transaction data can be explored. Not every section of
a transaction lends itself for data inclusion, and the output portion has already been
hardened by the previously described solution.

The section that remains abusable is the ScriptSig section of every input of a transaction.
This is illustrated by an excerpt of the developer documentation for Bitcoin. The redeem
script hash can be provably clean of illegal data through the scheme described previously.
The (optional) signature cannot contain arbitrary data, either, or it would be invalid,
stopping the inclusion in valid Bitcoin blocks. Thus, only the full redeem script causes
data inclusion to remain feasible. Essentially, allowing removal of this part of an input
would be enough to harden the blockchain against remaining effective ways to include
potentially illegal data. However, this part of the input contains the proof that a P2SH
output has been successfully spent by the owner, so allowing the removal of this proof is
not easily possible. Another smaller problem is that inputs are also hashed and committed
to by signatures, so removing some data of an input would invalidate the signatures of the
transaction. This, again, would render the whole transaction invalid, potentially forgeable
and a proper transfer of ownership of the coins would become impossible, similar to the
case where a whole transaction is deleted.
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Spending A P2SH Output

TX 1 Output

Bob's ComputerSignature Script

Signature Private Key

Full Redeem Script Full Redeem Script

Pubkey Script

Redeem Script HashRedeem Script Hash

Figure 4.1: Whereas the redeem script hash cannot be abused for data inclusion anymore,
the Full Redeem Script might still contain illegal data. P2SH censorship solves
this problem without touching other transaction data. This graphic was taken
from the Bitcoin Developer Reference [bit18c]

Our proposed scheme can solve this, however. Instead of storing the input data directly,
the Bitcoin blockchain could store a hash of the input within the basic transaction data
structure. Then, the hash is used as a reference to the real input stored elsewhere, poten-
tially after the end of a normal Bitcoin block, in a data structure outside of the blockchain
that is designed to allow deletion. This does not create similar problems as deletion or
modification of data within blocks for the following reasons: If the input data is replaced by
a hash, the signatures that sign a transaction can include these hashes instead of the input
data when it is created, retaining the goal of making the transaction data unchangeable
after transaction publishing or block inclusion. The input data cannot be changed as this
would break the hash, but now deletion or just not transmitting the data to other partic-
ipants is possible. Other hashes used in Bitcoin, such as the transaction id or the merkle
root hash will not be broken in this event, as the signature will not sign the deletable
data directly. This change to the data structure is a requirement for the next part of the
solution where we explain how deletion will be done without making any particular group
in the Bitcoin ecosystem too powerful. Figure 4.2 shows and explains the changes that
have to be done to the layout of a transaction with a single P2SH input.

4.4.3 Pay for Removal

The remaining problem is the following: Deleting the inputs removes the possibility of
confirming that a transaction was actually valid by other nodes or more specifically by
nodes that joined the network at a later time. These notes will never see the complete
transaction, so they might assume that the transaction was never valid in the first place,
and the removal function was used to hide this fact. To counter this, our solution proposes
the following: Should a transactions input be available, its data is used to validate the
transaction just as before. The system thus works as before.

In case an input (or more specifically, the ScriptSig part of an input) was deleted or is
simply not transferred by other nodes, however, a later block has to include a special
removal transaction that destroys the same or larger amount of bitcoins to make up for
the removed input. These special transactions that mark data as deletable should only be
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TXID Output Index Number Output Pubkey Script Amount

Signature Script*

Signature Reference Hash

Censorable P2SH Transaction

Old Style Transaction

TXID Output Index Number AmountSignature Script Output Pubkey Script

* Not direct part of the blockchain. Data might be appended to end of block

Transaction with P2SH input without changes

Transaction with P2SH input with changes

Figure 4.2: Changes to the transaction layout for P2SH transactions. Instead of storing
the Signature Script in the transaction itself, only a referencing hash is stored.
The real Signature Script will be kept in a datas tructure besides the block.
Options include the creation of a merkle tree that then commits to all P2SH
reference hashes, and that might be included in the coinbase transaction of
a miner to secure integrity of sent data. A deleted Signature Script is not
a problem as long as a future block references the same hash and provides
sufficient funds. This figure is an edit of a graphic from the Bitcoin Developer
Guide [bit18c]

able to use bitcoins held in P2PK or P2PKH, or other provably clean outputs, as our first
solution stops them from containing bad data. Without this requirement, special removal
transactions might perpetuate the problem of illegal data inclusions on the blockchain,
so we propose to prevent this by adding this requirement. This does not restrict Bitcoin
users from creating censorship transactions in any meaningful way, as moving bitcoin into
an output that may pay for a censorship transaction is always possible with an additional
transaction. A layout draft for this type of transaction can be seen in figure 4.3.

4.4.3.1 Averted Attack Vectors by Requiring Payment

This unintuitive requirement of spending an equal amount of bitcoins to allow the deletion
of an old input is important for two reasons: If it was not required, miners could try the
following attack scheme to enrich themselves: After secretly mining an incorrect block
with a transaction that spends outputs that they do not control, i.e. that they do not
know the required signature for, they create further blocks that ask for the deletion of
those inputs in a later block. Similarly to the first block, this would be done in secret.
After the blocks are created, they are delivered to other miners all at once. If the miners
instigating this attack find all blocks fast enough, this would allow them to spend arbitrary
bitcoins stored in P2SH outputs. As finding valid Bitcoin blocks is essentially based on
luck, even a miner controlling only a small subset of all available Bitcoin hash rate might
be able to pull off this attack if he is lucky enough. This is different from a so called 51
percent attack because the potential reward is much larger than the block reward, with
the limit being the number of bitcoins being stored in P2SH outputs, or the maximum
block size of a Bitcoin block. An attack like this could be hard to detect if the number of
blocks between transaction inclusion and removal transaction is kept low. If it is larger, for
example 100 blocks, then the attack is likely to be detected as many blocks of the normal
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TXID Output Index Number Output Pubkey Script Amount

Signature Script*

Signature Reference Hash

Censorable P2SH Transaction

Censorship transaction

TXID Output Index Number SignatureFull Public Key Signature Reference Hash

Included within a future block after censorable P2SH transaction:

Enables deletion/non-transmittance

Figure 4.3: Instead of an output and an amount, a censorship transaction must only refer-
ence the Signature Reference Hash of a previous transaction. The referenced
input data of this transaction, also called signature, can then be deleted and
does not need to be transmitted to other nodes anymore. In case of a full
blockchain revalidation, these transactions should be scanned for right after
blocks have been checked for a valid proof of work, so the block validation pro-
cess is aware of censorship transactions when it encounters blocks without data.
This figure is an edit of a graphic from the Bitcoin Developer Guide [bit18c].

Bitcoin network would be orphaned in the process. This would cause further problems that
are generally unlikely to occur with Bitcoin as it is now, but if no payment was required,
the potential return on investment of such an attack might still incentivize these types of
attacks that were previously disincentivized by the extreme costs. Another variant of the
attack might try to target Bitcoin miners or internet infrastructure for multiple hours to
pull off this heist without it being similarly apparent. As Bitcoin miners are distributed
all over the world, a broken internet infrastructure would have miners expect their blocks
to become orphaned.

All this is solved by requiring an equal amount of bitcoins to be used to censor. Censoring
faked transactions essentially becomes a zero sum game for the miner, as they would have
to pay the same amount of bitcoin as they would be able to steal with the scheme.

The second reason for requiring a payment is based on the problem of what to do with
the P2SH outputs that were used in the censored transaction.

If we were to consider them spent, the creation and deletion of an actually invalid trans-
action by a miner as described above would allow the miner to destroy the wealth of the
owner of the P2SH output. This, again, enables miners to do something that they were
not capable of before and is probably not in the best interest of the users of Bitcoin.

If we do not consider such outputs as spent anymore but made deletion free/cost less, then
the owner of the P2SH outputs could request the deletion themselves. This might allow
them to double their wealth, because they could then use the outputs of the new, censored
transaction, while the old outputs would become spendable again. Besides users, miner
could also create such transactions, paying themselves huge fees, only to get their money
back by censoring their own transactions.

The only viable solution seems to be to require an equal or higher amount of bitcoin
to censor a transaction. In this case, a miner or user censoring their own transactions
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does not cause them to gain more bitcoins in the process. At the same time, the censored
transaction’s outputs become available again, meaning a single miner cannot cause a person
to lose their funds by starting an attack similar to the one described above.

4.4.3.2 Caveat

A caveat remains, however. If someone else were to pay for the deletion of the input, the
user originally creating the transaction can potentially become more wealthy, just as in
the scenario where deletion is free.

To do so, they would create a transaction containing illegal data within the input of a
P2SH input. The outputs of this transaction would pay himself or pay for something they
are interested in. After calling attention to the illegal data and miners or other users
voluntarily paying for its removal, the outputs that were spent by the illegal data inputs
would become unspent again. The outputs of the censored transaction would remain valid,
too, essentially doubling the money of the attacker. This could incentivize people to add
bad data to the blockchain, in the hope that other parties that need the blockchain to
remain legal pay for the removal of the data.

While bad, it can be argued that this is a more easily solvable problem than the allowance
of illegal data on the blockchain. For one, illegal data might make Bitcoin permanently
illegal in most countries. Compared to that, the monetary damage caused by attackers
creating transactions that essentially pay them some money if he is successful is smaller.
Furthermore, it seems possible to create protection mechanisms against the user enriching
scheme described above: For instance, if the data was actually shown to be illegal, miners
could just opt to not allow spending of the initial UTXOs into any future blocks. If another
miner was to include them anyway, they might be held accountable in their respective
country, requiring them to pay for the subsequent removal similar to how laws call for
damages to be covered by those that caused the damages.

This approach could be strengthened by combining it with a voting mechanism based on
recently created blocks that requires miners to use a portion of their block reward income
for re-censoring a new transaction that is spending outputs that had already been used
in a previously censored transaction. By only allowing block finders to vote, sybil attacks
can be averted. Additionally, as not all miners are completely anonymous, active miners
voting for re-censorship despite there not being any evidence for criminal behavior in the
first or second censored transaction could possibly be held legally responsible for misusing
this miner accountability mechanism. The security of such a mechanism would probably
rely on the honesty of the majority of the miners, which isn’t perfect for a system that
empowers miners to hurt their competitors. In an environment where the majority of
miners have to work inside the laws of various countries, this capability might not be
abused easily, however. It is also worth noting that a solution to the illegal data inclusion
problem might not be necessary in the first place if miners operate outside the confines
of various legal systems, so maybe it is not a problem to assume that major parts of
the network may be fineable by governments in case they abuse their powers to unfairly
hurt their mining competition. Ultimately, a potential for a limited mining revenue loss
might not be as much of a problem as the illegal distribution of prohibited data, so the
downsides should be weighed against the potential for someone to gain money by having
their transactions censored.

4.4.3.3 Precise Censorship

Another important detail about this technique is its potential for more precision when
illegal data is to be censored. If we consider that in most cases, not every part of a file
is equally incriminating, and that the inclusion via P2SH inputs requires the use of many
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inputs which can be individually censored, the overall impact of the mechanism can be
reduced because it won’t be necessary to censor all inputs of an offending transaction.
If not all inputs need to be censored because of input size limitations, the creator of
the transaction has to pay most of the transaction fees themselves, further reducing the
profitability of a scheme that involves including bad data in the blockchain.

Another upside of not censoring the complete data is attesting the previous existence
of incriminating data to other miners and Bitcoin users. For instance, libelous texts or
pornographic images might still be somewhat recognizable even if they are heavily obscured
by deleting their most incriminating parts. This means any Bitcoin user can check partly
censored transactions for their remaining content and make up their own mind if the
transaction creator intended to abuse the system. Incidentally, the mere fact that some
inputs can be interpreted as data should serve as a good indicator that the transaction
creator had non-standard intentions with their transaction. In some cases, it might even
be possible to tell that the deleted portion of the data was likely illegal, allowing miners
to verify this fact for themselves.

Miners who are sure to have been part of the correct Bitcoin network at all times may
also opt to disable outputs used in censored transactions in every case. The non-existence
of orphaned blocks allows them to be sure that the owner of the coins was able to spend
his coins once. Similarly, the miner’s node probably still owns the proof that was marked
for deletion, and it knows that it once validated the proof, so it could not have been an
invalid, miner created fake transaction that has been censored later to appear genuine.
In effect, there are only two cases when a miner should feel compelled to enable outputs
used in censored transaction to be spendable again: In the first case, the miner re-enables
outputs because he assumes that a large premining attack has been taking place during
the time he operated, as this might have been an attempt to make coins unavailable to
their owner by using them in a faked and later censored transaction. The second case
is a new miner that joins the Bitcoin network without knowing any prior history besides
the blockchain. For outputs used within transactions that cannot be trusted to have been
censored legitimately because all proof for illegal data inclusion was removed, these new
miners should ideally not assume that the censorship was legitimate for the same reason
as above. However, if sufficient proof can be made available to new miners, they should
obviously opt to never include such a transaction again, or risk being held responsible for
the monetary loss of later illegal inclusion attempts.

4.4.3.4 Retaining Eternality

The proposed solution does not distinguish between different types of P2SH outputs. This
means that even benign P2SH outputs that could be provably free of bad data can be
censored. This is actually not needed and could be prevented. Further updates to the
proposed scheme could allow proofs similar to the ones discussed for P2PKH and P2PK
transactions. If a P2SH output (or its corresponding future input) could be marked as
requiring such proofs for inclusion, censorship resistance could be reintroduced for just
those P2SH outputs that are provably clean of bad data, as long as the parties involved
also actually provide said proof. Only P2SH outputs that require data that is not provably
clean, such as elaborate scripts designed for a single, special occurrence, or scripts that
require data to be included in the input would then remain censorable. This could re-
enable some yet unknown use cases that actually rely on the censorship resistance of all
transaction data for P2SH transactions, at least as long as those use cases allow for proof
creation.
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4.4.3.5 Miner Acceptance

What remains is a system where it is much more inefficient to add off-topic data to the
blockchain. At the same time, it is impossible to have a benign user lose their funds
even if a miner implemented the above attack, while also stopping miners and users from
enriching themselves by conjuring censorship transactions from third parties. The costs
of this approach are the possibility of minor censorship of only the input data if P2SH
is used, whereas the rest of the transaction stays intact. Additionally, miners might be
held responsible for repeat inclusion of bad data, or if they mine blocks that contain
transactions that spend outputs that were previously part of a censored transaction. This
essentially expands the requirements for miners to non-technical areas, which can be seen as
a downside of the technique. At the same time, however, miners are also part of the victims
in case Bitcoin or its blockchain were to be illegalized because of data inclusions, so it is not
completely unreasonable to require them to be more cautious about transaction inclusion
in these special cases. Furthermore, just not mining previously censored transactions
could be a viable strategy for miners that cannot do these checks, allowing other, more
sophisticated miners to specialize on safe re-inclusion if the owners of the coins provide
proper evidence such as the potentially clean, but removed part of the transaction.

4.4.4 P2SH Idea Implementation Details

Not every idea is appliable in real software. This section deals with the complexity of
changing Bitcoin transactions in a way that allow for the fine-grained removal of the script
signature part of a transaction.

4.4.4.1 Changes to Data Structures

Implementing this scheme requires reconstruction of basic Bitcoin data structures. Trans-
actions, or more specifically their inputs must not be stored directly inside a transaction
anymore, but should only be referenced with a hash. If an input turns out to be problem-
atic, its data can be removed. The transaction itself, on the other hand, will remain intact
and its id will not change.

Similarly, an input also consists of multiple fields, and only one of these fields can be used
to effectively store data. If this part of the input were to be replaced with another layer of
indirection, i.e. a hash that only references the input’s ScriptSig, censoring included data
of a transaction would essentially mean just deleting the ScriptSig that is stored outside
of the input. Other important data such as the id of the referenced previous transaction,
the index of the unspent output, the script length and the sequence number would not
be touched and would thus remain useable and trustable to, for instance, determine what
output has been used to include the censored data.

4.4.4.2 Network Protocol Additions

Another important implementation detail is how the network should be notified about the
event of censoring a single or more inputs. One way to implement it could utilize SegWit
transactions with a higher version number or a length unlike the current standard SegWit
transactions. A straightforward approach would be to push the transaction ID, followed
by a list of input indexes that are to be censored. When validating this transaction,
the existence of the transaction in a prior block would be confirmed. Additionally, the
output would be required to contain an amount of bitcoin equal or greater to what the
input provided previously. While not required, it might be sensible to restrict inputs in
a censorship-transaction from being non-standard. No inputs of a censorship transaction
could then be deleted and thus require the knowledge of the data (and validity) of a later
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censorship transaction that censors the original censorship transactions. This simplifies
the checking of censorship transactions and does not enable an attacker to cause a huge
lookup overhead for Bitcoin node operators as it stops the need for recursive censorship
transaction checking.

4.4.4.3 Performance Impact

Performance wise, the scheme should not cause block verification to become a problem if
attacks occur rarely. First of all, censorship transactions should only have a meaningful
effect on performance in case transaction input data is actually not procurable. In case
of censorship requests for benign inputs, Bitcoin can behave just like before, incurring no
performance penalty beyond that of a other transaction types.

Additional checks are only needed if the input is actually not procurable by any peers
of the network, or in case the operator refrains from requesting it for legal reasons, for
instance if they were provided a list of bad inputs by a government or similar entity.
In this case, verification of the censored transaction requires knowledge about its later
occurring censorship request transaction. Finding later occurring censorship requests will
require additional in-memory data structures to be held current, similar to how unspent
transaction outputs are kept in RAM. After confirming the output of a censorship request
transaction is sufficiently large to pay for the censored input(s), it regards the censored
transaction as sufficiently validated. Block validation continues as before.

It does incur another performance penalty if locating censorship request transactions is
not supported by e.g. annotating block data in some way, such as adding these special
transaction to a specific portion of a block that will be easy to parse directly after the
initial block download or before the first occurrence of a censored transaction. The specific
implementation details of this are not very important, however. If we take into considera-
tion that censorship only complicates the initial validation for new Bitcoin nodes, even a
bad implementation scanning every byte of every block for such transactions should not
cause performance to drop meaningfully for nodes that are already synced to the current
network and receiving blocks as they are created. Similarly, when nodes request only a few
hundred new blocks every few days, such as in case that a node was to be offline or under
maintenance, additional performance costs will be negligible. Parsing the blockchain data
is generally not considered to be a bottleneck compared to the resource consumption of
validating ECDSA signatures.

4.4.4.4 No Impact for Non-Censoring Nodes

Even better, nodes that are continuously mining could essentially completely ignore cen-
sorship request transactions as long as they do not want to censor P2SH transactions. It is
only when a node operator decides to agree to the request of deleting and not transmitting
certain inputs anymore that they need to check that the amount in the special output of
the censorship request transaction is sufficient to pay for the censored inputs. In case they
did not, new nodes joining the network would not receive the censored inputs, and find no
valid censorship transaction that essentially protects the network from being exploited for
financial gain via fake censorship. New nodes would thus not consider the currently longest
PoW Bitcoin blockchain valid despite it having been valid in the past, and a minority of
the hashing power would fork into a separate blockchain. It is thus also in the interest
of every node operator to check the validity of censorship request transactions, but one
could also imagine that only nodes that do censor check the validity of censorship requests,
and if they are insufficient, the transaction is just ignored until a sufficient request comes
along.
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5. Proof of Concept

To demonstrate the concept of proving the non-inclusion of arbitrary data, a proof-system
for hashes and public keys has been implemented to serve as a proof-of-concept. To increase
the credibility of the proof of concept, it is implemented as a change to the most popular
Bitcoin node implementation, namely Bitcoin Core in its recently released version 0.16.
As the original code is written in C++, the code consists of minor changes to existing
files and a few newly created ones. These new files contain the most important additions,
enabling a fast familiarization with the proposed changes. In total, around 800 lines of
code had to be written. Modification of existing code lines was not necessary, but some
existing functions had to be extended with additional lines of code.

5.1 Bitcoin Core

The layout of Bitcoin Core is not easily understood at first. While most files do serve a
specific purpose and seem to have a high cohesion, the general lack of comments in key
parts of the source code requires a considerable time investment to be able to find the
parts that might be relevant to consider when adding new functionality. While developer
documentation does exist, it is mostly aimed at explaining the general idea of Bitcoin, and
how it is meant to operate. Bitcoin Core, however, is the reference implementation, and in
cases where the documentation is unclear or faulty, the behavior of Bitcoin Core would be
generally considered correct. This means that someone unfamiliar with the Bitcoin Core
codebase has no other choice but to investigate the concrete implementation details within
Bitcoin Core if no sufficiently elaborate documentation is found.

Writing this proof of concept within Bitcoin Core was only possible through searching
the code base by hand, trying to find the functions involved in transaction validation,
hash creation, and signature verification. At first, no IDE was used, but the debugging
functionality of Eclipse proved invaluable at later parts of the implementation, as using
the debugger by hand did not provide the same overview of the unknown codebase.

After all important source files had been discovered, implementation of the proof of concept
was mostly straight forward. Debugging before the full functionality had been implemented
was made more difficult by some security functions of Bitcoin Core, namely the validation
rechecking of old blocks on startup. This was solved by the frequent re-generation of the
testing environment, which was made easy by a tool that is presented in the following
section.
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5.2 Proof of Concept Usage

Bitcoin consists of a p2p network of computers running Bitcoin node software. Some
of these nodes create new blocks and solve the proof-of-work target to get their block
appended to the current blockchain, others merely relay transactions and check the validity
of the blockchain and new blocks.

Testing new features and trying out recently implemented functions on the real Bitcoin
network is complicated, as transactions might require a fee to be transmitted, resulting in
monetary costs for testing. For this reason, testing is normally performed using an official
test network, where test bitcoins are somewhat freely handed out. This blockchain is
completely different from the normal one, and distinct markers make sure that there is no
chance for confusion in regard to real and test bitcoins when using the software, addresses
or transactions. However, it can only be used to test new features that have been properly
proposed and included in a recent beta release of the software, as participants of this test
network still need to install new software versions manually. To solve this issue, Bitcoin
Core has a feature called ”regtest”. It basically allows for the creation of a miniature
Bitcoin network by simplifying block creation and allowing a programmer to spin up their
own, tiny Bitcoin test network running on a single computer. On top of this, Sean Lavine
created a preconfigured environment[[Lav18]] that interconnects two Bitcoin Core instances
and allows for a more convenient usage of the regtest functions. As this was ideally suited
our the proof of concept, the project’s Bitcoin core configuration files are used to simplify
the deployment of a usable, localized test network where the implemented code changes
presented within this thesis can tried out. However, someone already familiar with setting
up a testing environment for Bitcoin does not need to use these simplifications, they are
merely an additional convenience.

The following steps will create a test environment that allows for the testing of the proof
of concept code.

5.2.1 Test Environment Setup

At first, Bitcoin Core needs to be checked out and built. These steps assume a linux
environment, and the author recommends running these steps within a Linux VM (e.g.
Ubuntu, Fedora, etc.) in case another operating system is used as it seems to be the most
popular environment for Bitcoin development.

Listing 5.1: Git checkout of Bitcoin Core code

mkd i r proo f o f conc e pt
cd proo f o f conc e pt
g i t c lon e g i t @ g i t l ab2 . in f orma t i k . uni -wue rz burg . de : s 318196/b i t c o in . g i t
cd b i t c o in
. / a utog en . sh
. / con f i gu r e
make

In case of problems or unfulfilled requirements that autogen cannot handle, it is recom-
mended to read the instructions in the ”doc” directory. The proof of concept code does
not introduce any additional requirements to the building environment, meaning that an
environment that can build the official Bitcoin Core software will also be able to build our
modified version.

The make command should have created multiple files in the ”src” directory. Among
them are ”bitcoind”. Check that ”bitcoind”, ”bitcoin-cli” and ”bitcoin-tx” can be found and
executed within this directory.
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As our next step, we will create the test environment using the aforementioned bitcoin
testnet box environment.

Listing 5.2: Setup of Bitcoin Testnet Box

cd . .
g i t c lon e https : // g i thu b . com/ f r e e w i l /b i t c o in - t e stn e t - box
cd b i t c o in - t e stn e t - box
make s t a r t # s t a r t s b oth b i t c oin d i n s t anc e s
. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 gene r a t e 101 # c r ea t e s e nough ⤦
Ç b l o c ks to hav e sp endab l e t e s t b i t c o ins

This setup is sufficient to run all tests presented in this thesis. There are two additional
commands that might be useful in case the code is rebuilt for debugging purposes or to
test further changes:

Listing 5.3: Bitcoin Testnet Box commands

make stop # s t o p s th e e nvironm e nt to s t a r t i t aga in wi th f r e s h l y b⤦
Ç u i l t b in a r i e s

make c l ean # de l e t e s th e b l o c k cha in . I t th en ne ed s to b e g ene r a t ed a⤦
Ç ga in or not e nough t e s t b i t c o ins w i l l b e ava i l ab l e

This concludes the setup part. What follows is a short explanation of the added command-
line-interface commands, and their purpose. After their introduction, a thorough test-case
with in-detail explanations of all important aspects is presented.

5.2.2 Commands

Bitcoin Core has multiple RPC commands that can also be triggered via a command-
line-interface. The implementation of the proof of concept for the proof system basically
consists of some hooks inside functions that are called when transactions are verified. The
RPC commands were created to make new proofs and to import them, and to generally
activate the new rules. This approach was chosen because a complete overhaul of the
transaction system, i.e. creating and including the proof into transactions, would have
required multiple patches to various parts of the system. While doable, the time restrictions
on this thesis did not allow it, as implementation errors would most likely have been very
hard to track down. Additionally, limiting the proof of concept to transaction validation
functions allows people interested in this proof to gain a much quicker overview over the
central code changes, without confusing them with mere user-interface changes.

createoutputpkproof <address> Creates a string that can later be imported into a Bit-
coin client to serve as proof that a given public key is indeed a public key and not
arbitrary data. Internally, the wallet portion of the node searches for the private key
of the address, signs the hash of the public key with it, and outputs this signature
encoded as base58. This implementation serves as an example how the proof could
be created by a user to give it on alongside their address, so other people can include
it in a transaction.

createoutputpkhproof <transaction id> <output index> Creates a string that can be
imported to serve as proof that a given public key hash does not contain arbitrary
data. This command features an address lookup, meaning the actual transaction
output for which the proof is needed can be supplied, and the corresponding address
is found automatically. The preimage of the address hash is then created by finding
the corresponding public key and hashing it. This implementation shows how the
proof creation process for change- and self-controlled addresses can be automated
internally, making it completely transparent to the user.
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addknownpreimage <preimage> <address> This command imports the preimage for
a certain address hash. The preimage is taken, hashed again, and stored within the
client so that future transactions that use the same address can be accepted. It
is important to note that this command is meant for testing the proof of concept.
In a real implementation, the preimage should be supplied with a otherwise valid
transaction to mitigate potential denial of service attacks.

addknownpreimagepk <signature> <publickey> Imports the proof of no arbitrary data
inclusion for a public key. The pubilc key is hashed, then the validity of the signa-
ture is checked by using the public key and comparing if the signature signed the
same hash. This is a function to test the proof of concept, the same caveats as with
addknownpreimage apply.

enableproofrequired Enables the requirement that new blocks will only be accepted if
every output is provably free of arbitrary data.

disableproofrequired Disables the block validation rules this proof of concept change to
Bitcoin Core introduced.

5.2.3 P2PKH Example

The first example covers P2PKH transactions, i.e. transactions that contain just a hash
of a public key. We first need to create a new transaction, then create the proof for that
transaction’s outputs, import them, and generate a new block that will then be accepted.

Creation of a new standard transaction can be done with two simple commands. If you
haven’t done so already, create enough blocks to have some bitcoins we can spend.

Listing 5.4: Create enough blocks to have spendable bitcoins

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 gene r a t e 101

Once enough blocks have been generated, we use sendfrom to create a new transaction.

Listing 5.5: Create a standard transaction with two P2PKH outputs

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 s end f rom ”” ⤦
Ç mpSEu9gQiQj7rws96v8cHDf u28Bj8BmGEk 1

r e s u l t : 256d452843c0 f 9960640003ea8984c2e f 00ba0a19a553c0 f 28c21 f bb5 f 06⤦
Ç ba3b #t x i d

By supplying the transaction id and output index, createoutputpkhproof can create the
required proof

Listing 5.6: Create proofs for the transaction

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 c r ea t e outputpkhproo f a47b99e91⤦
Ç a866b6a7a f f 61959cb8a5ac1b15026c f d496b580d f 0c7a12e e2273d 0

r e s u l t : {
”proo f ha sh : ” : ”B8GxQqPnD6heAMjhkH5oexy1 j Z F j n i t i 7HwQ5woLGx29 ”

}

Another proof is required for the change output address.

Listing 5.7: Create proofs for the transaction (2)
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. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 c r ea t e outputpkhproo f a47b99e91⤦
Ç a866b6a7a f f 61959cb8a5ac1b15026c f d496b580d f 0c7a12e e2273d 1

r e s u l t : {
”proo f ha sh : ” : ”Huc6VAbbmPm8786 j aFf Z1emwEncrtXAVkFq4g3CVSbh7 ”

}

Both proofs can then be imported in the second and first node

Listing 5.8: Import proofs

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 addknownpreimage ⤦
Ç B8GxQqPnD6heAMjhkH5oexy1 j Z F j n i t i 7HwQ5woLGx29

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 addknownpreimage ⤦
Ç Huc6VAbbmPm8786 j aFf Z1emwEncrtXAVkFq4g3CVSbh7

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=2 addknownpreimage ⤦
Ç B8GxQqPnD6heAMjhkH5oexy1 j Z F j n i t i 7HwQ5woLGx29

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=2 addknownpreimage ⤦
Ç Huc6VAbbmPm8786 j aFf Z1emwEncrtXAVkFq4g3CVSbh7

{
”Noti c e ” : ”Suc c e s s f u l l y added p2pkh proo f ”

}

To test the new consensus rule, it has to be activated.

Listing 5.9: Create a new block

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 enab l e proo f r e qu i r ed 1

Creating a block will automatically include all transactions we created. If we did not add
the proof, this block would be rejected. As we did, however, the block will be accepted
without further problems.

Listing 5.10: Create a new block

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 gene r a t e 1

5.2.4 Example of a Rejected Block

We create a standard transaction sending bitcoin to the same address again.

Listing 5.11: Create a standard transaction with two P2PKH outputs

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 s end f rom ”” ⤦
Ç mpSEu9gQiQj7rws96v8cHDf u28Bj8BmGEk 1

r e s u l t : f a187e21546c0e0de8c e528d466d f 04e8e5a7a7b9c05 f 64402c4d3271010⤦
Ç ac73 #t x i d

We create another block. It will be rejected because the change address proof is not known.

Listing 5.12: Create a new block

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 gene r a t e 1

r e s u l t : e r r o r code : - 1
e r r o r me s s age :
Crea t eNewBlock : Te stBlo ckVa l i d i t y f a i l ed : no known addr e s s ⤦
Ç pr eimage , Transac t i on che ck f a i l ed ( tx hash f a187e21546c0e0de8c⤦
Ç e528d466d f 04e8e5a7a7b9c05 f 64402c4d3271010ac73 ) ( code 16 )

The block is then discarded, just as the transaction would be discarded by other nodes.
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5.2.5 P2PK Example

For our second example, we will manually create a P2PK transaction, create the proof,
and send it to another node for block inclusion. The manual creation is necessary because
the Bitcoin software does not support the creation of P2PK transactions via other ways.

To begin, we list all unspent outputs and fill environment variables with one of the resulting
outputs.

Listing 5.13: List unspent outputs

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 l i s t u n s p e nt

UTXO TXID=e7d12b93e03975 f 6734d f f e c79c9973 f ea7d3a7bbb33da16d9c88de20 ⤦
Ç 89ca2ed # e nt e r one o f th e l i s t ed o u t p u t s

UTXO VOUT=0 # e nt e r th e in de x o f an unsp e nt output
NEW ADDRESS= # e nt e r a va l i d b i t c oin add r e s s

Using the following code, we create a standard P2PKH transaction that we can later adapt
to our needs.

Listing 5.14: Create a standard transaction using the UTXO

b i t c o in - c l i - r e gt e s t c r ea t e r awtransac t i on ’ ’ ’
[

{
” t x i d” : ” ’$UTXO TXID’ ” ,
”vout ” : ’$UTXO VOUT’

}
]
’ ’ ’ ’ ’ ’
{

” ’$NEW ADDRESS’ ” : 10 . 000
} ’ ’ ’

Example :
. . / b i t c o in / s r c/b i t c o in - c l i - - da t ad i r=1 c r ea t e r awtransac t i on ⤦
Ç ’ [{ ” t x i d” : ”23d653d24864a27e576ed4a5c2e9 f 5b43ed4 f 9b4 f c20c33bd7d ⤦
Ç 84d5bd9eaed f a ” , ”vout ” : 0 } ] ’ ⤦
Ç ’{ ”mt7rZGeLH1QBDaeDiULAmTJf qdc5Exh11A” : 10 } ’

Re s u l t : 0200000001 f aedead95b4dd8d73bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577e⤦
Ç a26448d253d6230000000000 f f f f f f f f 0100ca9a3b000000001976a9148a3b4⤦
Ç 74d38009a f d977b f 88be033be9 f 9 f 9c416 f 88ac00000000

Removing the first output (0) reduces the standard transaction to a shell for our P2PK
transaction.

Listing 5.15: Remove output 0

. . / b i t c o in / s r c/b i t c o in - tx - r e gt e s t 0200000001 f aedead95b4dd8d73bc320 f⤦
Ç cb4 f 9d43eb4 f 5e9c2a5d46e577ea26448d253d6230000000000 f f f f f f f f 0100⤦
Ç ca9a3b000000001976a9148a3b474d38009a f d977b f 88be033be9 f 9 f 9c416 f 8⤦
Ç 8ac00000000 de l ou t=0

r e s u l t : 0200000001 f aedead95b4dd8d73bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577e⤦
Ç a26448d253d6230000000000 f f f f f f f f 0000000000

Get private key of address (from listunspent for example), then calculate public key with
it.
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Listing 5.16: Get public key via private key

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 dumpprivk ey ⤦
Ç ”miCYAPgb1Z6zsDSFxsKVLYpaQHbBtwxBgi ”

us e b i t addr e s s a t ⤦
Ç https : //www. b i t addr e s s . org /b i t addr e s s . org - v3 . 3 . 0 -SHA256 - de c17c ⤦
Ç 07685e1870960903d8 f 58090475b25a f 946 f e95a734 f 88408c e f 4aa194⤦
Ç . html? t e stn e t=tru e

r e s u l t compre s s ed : 03⤦
Ç F726941B696484D4DE0DB72F36FF5AA4E67C8BD7AC129CE78C59BE0DF3BBAC0A

Use bitcoin-tx with the cleaned tx and a public key to add a p2pk output to the empty
transaction.

Listing 5.17: Remove output 0

. . / b i t c o in / s r c/b i t c o in - tx - r e gt e s t 0200000001 f aedead95b4dd8d73bc320 f⤦
Ç cb4 f 9d43eb4 f 5e9c2a5d46e577ea26448d253d6230000000000 f f f f f f f f 0000⤦
Ç 000000 ⤦
Ç outpubkey=49 . 9999 : 03F726941B696484D4DE0DB72F36FF5AA4E67C8BD7A ⤦
Ç C129CE78C59BE0DF3BBAC0A

Re s u l t : 0200000001 f aedead95b4dd8d73bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577e⤦
Ç a26448d253d6230000000000 f f f f f f f f 01 f 0ca052a01000000232103 f 726941⤦
Ç b696484d4de0db72 f 36 f f 5aa4e67c8bd7ac129c e78c59be0d f 3bbac0aac0000⤦
Ç 0000

The raw transaction can be checked by using the human-readable json-output function

Listing 5.18: Check the raw transaction by utilizing the JSON export functionality

. . / b i t c o in / s r c/b i t c o in - tx - r e gt e s t - j son 0200000001 f aedead95b4dd8d73⤦
Ç bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577ea26448d253d6230000000000 f f f f f f⤦
Ç f f 01 f 0ca052a01000000232103 f 726941b696484d4de0db72 f 36 f f 5aa4e67c8⤦
Ç bd7ac129c e78c59be0d f 3bbac0aac00000000

Until now, the transaction will not be accepted by other nodes because it lacks the needed
cryptographic signatures. Thus, we create them:

Listing 5.19: Signing the raw transactions

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 s i g n r awtransac t i on ⤦
Ç ”0200000001 f aedead95b4dd8d73bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577ea ⤦
Ç 26448d253d6230000000000 f f f f f f f f 01 f 0ca052a01000000232103 f 726941b⤦
Ç 696484d4de0db72 f 36 f f 5aa4e67c8bd7ac129c e78c59be0d f 3bbac0aac00000⤦
Ç 000 ”

r e s u l t : 0200000001 f aedead95b4dd8d73bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577e⤦
Ç a26448d253d6230000000049483045022100a2ca f 810a461347213b5 f 47970a⤦
Ç 0e6b8a20e1bbba925d7b f c f 3838d5d4a091aa022075 f 41466ab318b82228183⤦
Ç 2764c3b4d44c71e01 f 218e429a f 3512e1e e8ddbcdc01 f f f f f f f f 01 f 0ca052a0⤦
Ç 1000000232103 f 726941b696484d4de0db72 f 36 f f 5aa4e67c8bd7ac129c e78c⤦
Ç 59be0d f 3bbac0aac00000000

Now that the transaction is successfully created, we need the proof that a given public key
is not data.
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Listing 5.20: Creating the proof

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 c r ea t e outputpkproo f ⤦
Ç miCYAPgb1Z6zsDSFxsKVLYpaQHbBtwxBgi

r e s u l t : {
”pub l i ckey ”: ”en3ALEz6LxNAJPo5wuDKEB1iDRVA1 t 8cyYyBSZa7y6yg ” ,
”proo f pk ”: ⤦
Ç ”3sgA3WCrtM9vn6PdtbBe r 4HPiNU9JYf g9vYP8noeneXYc7UYtb8G3yXdo6C ⤦
Ç k1myNuZToDUNBXkdqCkPjsV2Ns6pRs ”

}

The created proof is then imported into both bitcoin core nodes of our regtest-environment.

Listing 5.21: Importing the proof

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=2 addknownpreimagepk 3⤦
Ç sgA3WCrtM9vn6PdtbBe r 4HPiNU9JYf g9vYP8noeneXYc7UYtb8G3yXdo6Ck1my ⤦
Ç NuZToDUNBXkdqCkPjsV2Ns6pRs en3ALEz6LxNAJPo5wuDKEB1iDRVA1 t 8cyYy ⤦
Ç BSZa7y6yg

Re s u l t :{
”Noti c e ”: ”Suc c e s s f u l l y added pub l i c key proo f ”

}

The proof-consensus-rules added to bitcoin core are not activated by default. The following
commands activate them and cause bitcoin core to reject new blocks with missing proofs.

Listing 5.22: Enabling the proof requirement on both Bitcoin nodes

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 enab l e proo f r e qu i r ed 1

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=2 enab l e proo f r e qu i r ed 1

Lastly, we tell our client about the signed transaction. In the process, it is added to the
mempool and sent out to other nodes on the network.

Listing 5.23: Publishing the transactions

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 s endr awtransac t i on 0200000001 f⤦
Ç aedead95b4dd8d73bc320 f cb4 f 9d43eb4 f 5e9c2a5d46e577ea26448d253d623⤦
Ç 0000000049483045022100a2ca f 810a461347213b5 f 47970a0e6b8a20e1bbba⤦
Ç 925d7b f c f 3838d5d4a091aa022075 f 41466ab318b822281832764c3b4d44c71⤦
Ç e01 f 218e429a f 3512e1e e8ddbcdc01 f f f f f f f f 01 f 0ca052a01000000232103 f⤦
Ç 726941b696484d4de0db72 f 36 f f 5aa4e67c8bd7ac129c e78c59be0d f 3bbac0a⤦
Ç ac00000000

r e s u l t : 2e87ea75525 f 057b424e4e2cd926c70b63 f 66a5 f c0ea5b f 9 f dade f a60013⤦
Ç 211a #t x i d

The first node generates a block that includes the published transaction. It automatically
sends this block to the second node. The second node successfully accepts the block.

Listing 5.24: Publishing the transactions

. . / b i t c o in / s r c/b i t c o in - c l i - da t ad i r=1 gene r a t e 1
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5.3 Implementation Details and Source Code Commentary

Creating the proof of concept for the preimage- and public-key-proof solution was a some-
what complicated task. I decided early on to implement the code within the most widely
used reference implementation of Bitcoin, Bitcoin Core. It is a project written in C++,
and has grown to over 330.000 lines of code within nearly 10 years of being actively devel-
oped. Compared to that, our change to Bitcoin Core There were multiple reasons for the
choice to implement the solution within Bitcoin Core itself. It allowed me to look at the
actual code of the consensus mechanism and other parts of the protocol, without having
to trust the validity of a reimplementation. It would also allow me to see potential corner
cases presented in the code, something I might not become aware of if I had reimplemented
the consensus mechanism according to online documentation sources. The decision to im-
plement the proof of concept also allowed me to be sure that there would be no function
interdependencies that I could miss, and that might have made the solution completely
unviable. Code is less forgiving than mental models of how a system is supposed to work,
and should expose some flaws in reasoning.

That said, only half of the solution could be implemented. Actually implementing the
whole solution would require much more code changes, as the transaction layout would
require a redesign. Additionally, the network subsystem would have to be extended and
made aware of the proofs and new censorship transactions. It would also be more sensible
to change a few other parts of Bitcoin before or when implementing this proof of concept
for actual usage. For instance, the problem of data-inclusion by causing partial hash
collisions in transaction ids might be something that should be solved via the introduction
of a different hashing algorithm, as attackers might just opt to abuse this part of the system
when it becomes impossible to include arbitrary data inside addresses or public key pushes.
As the result for the network is nearly the same, it makes more sense to combine these
two big changes, requiring just one bigger change to consensus rules instead of needlessly
creating a lot of work for the community to advertise for both changes independently.

When writing the implementation, my decisions on where to add code focused on easy
understandability by people unfamiliar with the Bitcoin codebase. For this reason, most
actual code resides in two new files that were created to contain the actual proof creation
and validation functions. This allows an outsider to read through the changes, and to use
code usage searches to find out where these functions come into play in the rest of the
code base.

Care was taken to reuse existing functions. This was complicated at first, as documen-
tation of the functions used within Bitcoin Core is often non-existent. Even important
functions such as those for signature validation, or those that allow users to access private
keys, are generally not commented at all. Implementation details are also not supported
by comments, requiring a developer to jump between different functions to figure out when
and where certain high-level concepts are actually implemented. Some functions exist in
different variants and it can be unclear which one is to be preferred in case of a reim-
plementation, or how to convert the data to supply it to the function with the proper
type. At times, the implementation of the proof of concept caused the software to become
unstartable because certain library includes seemed to break the initialization. As my
C++ experience is not substantial, this can also be attributed to unfamiliarity with the
language, however. This short comment on my experience working on the code base of
Bitcoin Core should serve as a heads-up for people who want to attempt a similar project.
Ultimately, one has to become familiar with the commonly used functions, and looking at
already implemented functions doing a similar task can help to reduce the time needed to
implement a wanted function properly.
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What follows is a list of the edited/created files, and the purpose of the changes contained
within them.

txverify.cpp In txverify, the actual transaction checking is implemented. This means a
transactions layout and completeness is checked here. Any check that fails invalidates
the whole transaction and allows the client to reject it completely. The proof of
concept require a small addition in this file to check for preimage existence in case
the feature is activated. If no (previously checked) proof is available, the transaction
will be rejected just as if its other cryptographic proofs or layout aren’t valid.

blockchain.cpp This file contains the implementation for RPC commands related to the
blockchain and to viewing certain transactions or saving certain information to disk.
It was chosen as the next best fit for the RPC proof functions that can be called
from the command line. RPC commands are added to an array at the end of the
file, linking to functions with a specific layout. Requests and replies are encoded in
JSON, and there are error handlers in place to catch user errors when calling the
functions. Code creating the JSON and error handling are done here, whereas the
real code implementing the function that is requested of the user is implemented in
preimage.cpp.

preimage.h This is the header file for most of our code. It includes all necessary libraries
and declares public and private functions found within preimage.cpp. Among the
libraries that our solution needs are the hashing functions to (re)create the addresses,
public and private key functions, base58 encoding functions to export data in the
commonly used Bitcoin base58 format, and multiple wallet-libraries for the lookup
of keys within the users Bitcoin wallet, as those are needed to create the proofs.

preimage.cpp The main file of the proof of concept. Covers the activation and deac-
tivation of the proof requirement, proof creation, proof import, and saving and
loading the proofs automatically. The most important functions within here are
CreateP2PKProof and CreateP2PKHProof, as they show how the actual creation
of a proof is done. The storage functions at the end of the file merely recreate the
strings already used for the RPC command output and write them to a file, loading
them again when the proof checking is enabled after startup. Other than includ-
ing some needed libraries, preimage.cpp is implemented without the need for hooks
into other portions of the code. Creating the proof does not require anything but
the private key of a Bitcoin output, which causes lower coupling and a high cohesion
within preimage.cpp. Proof storage and enabling/disabling functions are merely con-
venience functions for the proof of concept and would probably be removed in a real
implementation as disabling the proof requirement would not be necessary anymore.

After this high-level look at these important source files, we will take a closer look at
specific functions, explaining how they work.

5.3.1 txverify.cpp

To keep the code properly sorted, the original txverify.cpp was only expanded by the two
function calls shown below. They check if the preimage/proof solution is activated, and
if it is, they check if all outputs within a transaction have a corresponding preimage or
signature.

As an additional side note, the check here should be expanded in a real implementation.
A skip for this check should prevent older blocks to be checked for the existence of proofs,
so proofs can be forgotten after a while. A good block height to do this would be after
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a minimum of 100 blocks, as this is when newly mined coins become spendable. This
protects the proof system from a smaller reorg, meaning a chain split that is occurring
while the Bitcoin Core software is running and that ends in another blockchain becoming
the longest and thus valid one. Short reorgs do not pose a problem as the proofs will not
have been deleted yet. On the other hand, reorgs that go back further than 100 blocks cause
fundamental problems for Bitcoin, so the theoretical failure to provide evidence beyond
100 blocks would not add much to the more serious problem of the caused financial loss
by miners and payment receivers. That said, a larger threshold for saving the proof could
also be easily implemented.

Listing 5.25: Publishing the transactions

1 b oo l Che ckTransac t i on ( c onst CTransac t i on& tx , CVa l i da t i onSt a t e ⤦
Ç &s t a t e , b oo l fChe c kDupli ca t e Inputs )

2 {
3 . . . // va r i o u s che c ks o f t r ansac t i on va l i d i t y be f or e t h i s
4 // che ck output not c onta i n in g bad da t a by va l i da t ing hash ⤦

Ç pr eimage s /pub l i c key !
5 i f (PREIMAGE. isEn ab l ed ( ) && !PREIMAGE.HasKnownPreimage ( tx ) ) {
6 r e turn s t a t e . DoS( 100 , f a l s e , REJECT INVALID, ”no known addr e s s ⤦

Ç pr eimage ”) ;
7 }
8 }

5.3.2 rpc/blockchain.cpp

This file contains the implementation of some RPC commands in regard to the blockchain,
the Bitcoin Core mempool, and similar functions. To add commands to the RPC interface
of Bitcoin Core, this format has to be followed when adding new commands. It basically
matches the entered string to an internal function of the same file, and also names the
parameters directly following the function when e.g. entering the command on a command-
line-interface.

Listing 5.26: Commands array with newly added proof of concept commands

1 s t a t i c c onst CRPCCommand commands [ ] =
2 { // ca t e gory name ac to r ⤦

Ç ( f unc t i on ) argName s
3

4 // . . . oth e r rp c f unc t i o n s conc e rn ing b l o ckcha in da t a
5

6 // pr eimage s o l u t i o n
7 { ”b l o ckcha in ” , ”addknownpreimage ” , &addknownpreimage , ⤦

Ç {”pr eimage ” , ”addr e s s ”} } ,
8 { ”b l o ckcha in ” , ”addknownpreimagepk ” , &addknownpreimagepk , ⤦

Ç {”s i gn a tur e ” , ”pub l i ckey ”} } ,
9 { ”b l o ckcha in ” , ”c r ea t e outputpkhproo f ” , &c r ea t e outputpkhproo f , ⤦

Ç {” t x i d ” , ”n”} } ,
10 { ”b l o ckcha in ” , ”c r ea t e outputpkproo f ” , &c r ea t e outputpkproo f , ⤦

Ç {”addr e s s ”} } ,
11 { ”b l o ckcha in ” , ”enab l e proo f r e qu i r ed ” , &enab l e proo f r e qu i r ed , ⤦

Ç {”enab l e ”} } ,
12 { ”b l o ckcha in ” , ”d i s ab l e proo f r e qu i r ed ” , &d i s ab l e proo f r e qu i r ed , ⤦

Ç {”d i s ab l e ”} } ,
13 . . .
14 } ;
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It would be bad style to implement the functions in this file directly. For this reason, all
the functions that are called in this file only call functions actually implemented within
the preimage.cpp source file. Instead, answer formatting and returning error codes are
handled here as they are only relevant to the RPC interaction code. As an example, we
will take a closer look at the function that creates a proof for an entered public key that
we know the secret key to:

Listing 5.27: createoutputpkproof RPC implementation

1 UniVa lu e c r ea t e outputpkproo f ( c onst JSONRPCReque s t& r eque s t ) {
2 i f ( r eque s t . pa r ams [ 0 ] . i s N u l l ( ) )
3 throw JSONRPCError(RPC INVALID PARAMETER, ”Miss ing addr e s s ⤦

Ç pa r ame t e r ”) ;
4

5 s t d : : s t r i n g strAddr e s s = r eque s t . pa r ams [ 0 ] . ge t s t r ( ) ;
6 s t d : : ve c tor<unsign ed char> proo f pk ;
7 s t d : : ve c tor<unsign ed char> pub l i ckey ;
8

9 PREIMAGE. Crea t eP2PKProo f ( strAddr e ss , proo f pk , pub l i ckey ) ;
10

11 UniVa lu e r e t (UniVa lu e : : VOBJ) ;
12 r e t . push back (Pa i r ( ”pub l i ckey ” , EncodeBa s e58 (pub l i ckey ) ) ) ;
13 r e t . push back (Pa i r ( ”proo f pk ” , EncodeBa s e58 ( proo f pk ) ) ) ;
14

15 r e turn r e t ;
16 }

After checking that an address is supplied, we call the function within the preimage module
that creates a proof for it. It is then formatted to match the return format for the RPC
subsystem, reincluding the supplied public key for a better user interaction when having
called the function.

As already mentioned, all actual work is done within preimage.cpp. Only parameter
extraction and data conversion have to be handled by blockchain.cpp. The next section
thus covers the actual implementation of the important functions.

5.3.3 preimage.cpp

The file preimage.cpp was created for this thesis and only includes code written for the
proof system. Explaining every function in detail would extend the scope of this master
thesis. However, exposure to some details of actual code implementations should be ben-
efitial in case the proof of concept is studied in more detail. A good function to see how
proofs are implemented is the public key proof creation function.

The comments in the file should give an overview of what every part is meant to do. Some
functions will be discussed in more detail after the full code listing.

Listing 5.28: createoutputpkproof RPC implementation

1

2 b oo l pr eimage : : Crea t eP2PKProo f ( s t d : : s t r i n g strAddr e ss , va l typ e& ⤦
Ç proo f , va l typ e& pub l i ckey ) {

3 // 1 . g e t ha sh
4 CWa l l e t ∗ c onst pwa l l e t = vpwa l l e t s [ 0 ] ;
5 uint 160 hash ;
6 // 2 . f in d th e p r i v a t e k ey to th e pub l i c k ey
7 CTxDe s t i n a t i on de s t = De codeDe s t i n a t i on ( strAddr e s s ) ;
8 c onst CKeyID ∗keyID2 = b oost : : g e t<CKeyID>(&de s t ) ;
9 i f ( ! keyID2 ) {
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10 r e turn f a l s e ;
11 }
12 CKeyID keyID = ∗keyID2 ;
13

14 CKey vchSe c r e t ;
15

16 pwa l l e t ->GetKey ( keyID , vchSe c r e t ) ;
17 CKey key = CBit c oinS e c r e t ( vchSe c r e t ) .GetKey ( ) ;
18

19 // 3 . e x t r ac t th e pub l i c k ey aga in to hav e i t in th e r i g h t f orma t f⤦
Ç or s i g n a tur e t e s t i n g

20 CPubKey pubkey = key .GetPubKey ( ) ;
21

22 // 4 . c r ea t e th e ha sh o f th e pub l i c k ey . This i s th e t e x t th a t w i l l ⤦
Ç b e s i g n ed wi th th e p r i v a t e k ey

23 unsign ed cha r ∗ c sha256new = new unsign ed cha r [ 32 ] ( ) ;
24 CSHA256 ( ) . Writ e (pubkey . be g in ( ) , pubkey . s i z e ( ) ) . Fina l i z e ( c sha256new) ;
25 s t d : : ve c tor<unsign ed char> ve c ( c sha256new, c sha256new+32 ) ;
26 uint 256 pubke y hash = uint 256 ( ve c ) ;
27

28 // 5 . c r ea t e th e s i g n a t ur e and s t o r e i t in v c h s i g n a t ur e . Ab o r t i f a⤦
Ç ny pro b l ems happ en

29 va l typ e vc h s i gn a tur e ;
30 i f ( ! key . SignCompac t (pubke y hash , vc h s i gn a tur e ) ) {
31 r e turn f a l s e ;
32 }
33

34 // 6 . Re c ov erCompac t i s th e s i g n a tur e v e r i f i ca t i o n f unc t i o n f or ⤦
Ç t e x t s i g n ed wi th a p r i v a t e k ey . We t e s t our ne wly c r ea t ed ⤦
Ç s i g n a tu r e he r e to b e sur e i t wa s c r ea t ed su c c e s s f u l l y

35 i f ( ! pubkey .Re coverCompac t (pubke y hash , vc h s i gn a tur e ) ) {
36 r e turn f a l s e ;
37 }
38

39 // 7 . a t t h i s point , th e s i g n a t ur e i s c r ea t ed and v e r i f i ed . a l l ⤦
Ç th a t i s l e f t i s to g i v e i t bac k to th e ca l l e r

40 proo f = vc h s ign a tur e ;
41 va l typ e newpub(pubkey . be g in ( ) , pubkey . end ( ) ) ;
42 pub l i ckey = newpub ;
43

44 // 8 . i f noth ing ha s r e turn ed an e rror u n t i l now , th e f unc t i o n ⤦
Ç r e turns p o s i t i v e l y

45 r e turn tru e ;
46 }

Function parameters CreateP2PKProof needs to know what public key it should create a
proof for. There are multiple ways to design a function that makes this easy for the
end-user. In this case, the address string of a public key was used, because end-users
are generally exposed to them already.

Another way this could have been implemented is by referring to an already created
transaction and creating all necessary proofs for this transaction only. This has also
been done, but for the other type of proof. The function parameter in this case is just
the string the end-user supplied to the RPC command. Additionally, two pointers
are supplied to the function: One to return the public key to the caller, and another
one for the proof, e.g. the created signature.

Line 4 The wallet containing the private keys of a node is prepared.
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Line 7-17 Using the address of the public key, the correct keyId is deducted. This keyId
is then used in line 17 to get the actual secret key by querying the CWallet that was
created previously.

Line 23-26 This part of the code highlights the common usage of the hashing function for
SHA256 within Bitcoin. Many functions encapsulate this functionality, e.g. when
creating IDs for transactions, but we need to access it directly in some instances to
access the preimage, for example.

CreateP2PKProof could be implemented differently and sign a fixed text instead of
the hash of the public key. The hash was chosen because it can be easily recreated on
other nodes and because hashes are often used as targets for signature algorithms,
making implementation issues more unlikely.

Line 30 The actual signature creation happens here. The function ”SignCompact” is sup-
plied with the message (the hash of the public key) and a data structure than can
store the signature. If an error is encountered, the function returns false, aborting
the CreateP2PKProof function by having it return false, too.

Line 35 Finding the function ”RecoverCompact” that does signature verification was not
easy. The Bitcoin Core source code is often lacking in comments, so only careful
reading of the code allowed the author to find this function. We call this function here
to check that the signature that was just created is actually valid. This should always
be the case, but considering that the function here is only meant to be called when
a user interacts with the Bitcoin Core code, the additional resource consumption is
absolutely negligible.

Line 40-45 The proof and pubkey are written to the supplied locations and the function
returns positively.

A similar function is CreateP2PKHProof. This function does not create a public key proof,
but a proof for a public key hash. By calculating the first hash of the public key (line
20-23), the preimage for the address can be determined, as the process of Bitcoin address
creation involves two hash iterations of the public key. Hashing once does thus provide
the preimage for the address that is later included in the Bitcoin output.

Listing 5.29: CreateP2PKProof implementation

1 // Crea t e s proo f f or a pub l i c k ey ha sh a s us ed in a P2PKH t r ansac t i o n
2 b oo l pr eimage : : Crea t eP2PKHProo f ( va l typ e vch pkh , u int 256& ⤦

Ç pr eimage proo f ) {
3 // 1 . g e t ha sh
4 uint 160 hash = uint 160 ( vc h pkh ) ;
5

6 // 2 . f in d c orr e spond ing k ey in wa l l e t
7 CWa l l e t ∗ c onst pwa l l e t = vpwa l l e t s [ 0 ] ;
8

9 CKeyID keyID = CKeyID (hash ) ;
10

11 CKey vchSe c r e t ;
12

13 i f ( ! pwa l l e t ->GetKey ( keyID , vchSe c r e t ) ) {
14 r e turn f a l s e ; // Priv a t e k ey f or add r e s s strA dd r e ss i s not known
15 }
16 CPubKey pubkey = CBit c oinS e c r e t ( vchSe c r e t ) .GetKey ( ) .GetPubKey ( ) ;
17

18
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19 // 3 . ha sh pub l i c k ey onc e wi th SHA256 ( ! ) to g e t proo f
20 unsign ed cha r ∗ c sha256new = new unsign ed cha r [ 32 ] ( ) ;
21 CSHA256 ( ) . Writ e (pubkey . be g in ( ) , ⤦

Ç pubkey . s i z e ( ) ) . Fina l i z e ( c sha256new) ; // f in a l l y c ont a i n s ⤦
Ç th e c orr e c t ha sh \o/

22 s t d : : ve c tor<unsign ed char> ve c ( c sha256new, c sha256new+32 ) ;
23 uint 256 pubke y hash = uint 256 ( ve c ) ;
24

25 pr eimage proo f = pubke y hash ;
26

27 r e turn tru e ;
28 }

The last major code example shows how we detect P2PK and P2PKH outputs and check
for the existence of a proper proof. The caller supplies an output within a transaction, and
we iterate through all operations of the script of this output. When the code encounters
a push command for 20 (= hash/address, line 19) or 33 bytes (= public key, line 25), the
corresponding check is called to see if a proof is available.

Listing 5.30: Checking outputs for preimages/proofs

1 // Che c ks i f a t r ansac t i o n output ’ s proo f s a r e ava i l ab l e . This f⤦
Ç unc t i o n s h o u l d b e ca l l ed f or s t anda r d t r ansac t i o n s on ly . This f⤦
Ç unc t i o n mimic s th e code o f Eva lS c r i p t in i n t e rpr e t e r . c pp .

2 b oo l pr eimage : : HasKnownPreimage ( c onst CTxOut& output ) {
3

4 CSc r i p t s c r i p t = output . s c r iptPubKey ;
5 CSc r i p t : : c o n s t i t e r a to r pc = s c r i p t . be g in ( ) ;
6 CSc r i p t : : c o n s t i t e r a to r pend = s c r i p t . end ( ) ;
7 CSc r i p t : : c o n s t i t e r a to r pbe g in codehash = s c r i p t . be g in ( ) ;
8 opcode typ e opcode ;
9 va l typ e vchPushVa lu e ;

10 s t d : : ve c tor<va l typ e> a l t s t ack ;
11

12 try
13 {
14 whi l e (pc < pend)
15 {
16 // f i l l i n g op code
17 s c r i p t .GetOp(pc , opcode , vchPushVa lu e ) ;
18 // op code 20 => push o f th e b y t e s o f a r i p emd160 - hash , th e ⤦

Ç ha sh typ e us ed in p2pkh
19 i f ( opcode == 20 ) {
20 i f ( IsHashWithKnownPreimage ( vchPushVa lu e ) == f a l s e ) {
21 r e turn f a l s e ;
22 }
23 }
24 // op code 33 => push o f a ( compre ss ed ) pub l i c k ey
25 e l s e i f ( opcode == 33 ) {
26 i f ( IsPub l i cKeyWithProo f ( vchPushVa lu e ) == f a l s e ) {
27 r e turn f a l s e ;
28 }
29 }
30 }
31 }
32 ca t ch ( . . . )
33 { // e rror -> r e turn f a l s e to b e sur e ;
34 r e turn f a l s e ;
35 }
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36 r e turn tru e ; // no e rror enc ount e r ed . Che c ks we r e pa s s ed , ⤦
Ç pr eimag e s / proo f s a r e ava i l ab l e f or th e output .

37 }

Other functions behave similarly. Functions within Bitcoin Core seem to require frequent
conversion of data when new unexpected functions are to be implemented. This lack of
easily usable conversion functions is not surprising considering that most of Bitcoin Core
is security critical code where faulty changes could have catastrophic results. In case this
proof of concept was reimplemented, it might be reasonable to expand commonly used
objects with such conversion functions.

5.3.4 preimage.h

As is typical for header files, function definitions and includes can be found here. One
important section is right at the beginning of the file, however:

Listing 5.31: createoutputpkproof RPC implementation

1 #i f nde f BITCOIN PREIMAGE H
2 #de f in e BITCOIN PREIMAGE H

Without this declaration, the preimage code would be compiled multiple times by the
Bitcoin code base, breaking the compilation run in the process. If future implementations
of the preimage functionality were to split into more than one new code file, this should be
taken into account, as tracking down the error that is created by missing these two lines
can be exhausting.

This concludes the implementation details of the Bitcoin Core proof of concept code.
Besides this explanation of code details, the comments that were added to the code should
serve as a guide when trying to understand the exact implementation decisions whe writing
this modification.
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6. Conclusion

This chapter summarizes the thesis. It recaps the approaches taken to further protect
Bitcoin from off-topic data inclusion, and describes future work that will be relevant.

6.1 Summary

The thesis covers a specific problem within the sphere of cryptocurrencies, and especially
Bitcoin. Designed as a barrier less network for online payments, without the need for
any particular rule, abuse and misuse potential is potentially higher than for centralized
payment systems. It is further designed with low barriers for entry, allowing everybody
to participate without a need to ask for permission from anyone in particular. However,
most of its rules only cover parts essential for the technical and secure functioning of the
system, and the project’s aim to be censorship resistant allows for some attack vectors
that are difficult to protect against, as they do not violate any of the current rules that
are enforced by the software itself.

The problem that was presented is the possibility to include arbitrary and thus potentially
illegal or immoral data by hiding it within monetary transactions. The problem is amplifi-
cated by the open design of Bitcoin which allows users to essentially make up their own
rules for how the recipient has to prove ownership of his newly received bitcoins. Even
standard transactions pose a risk of being usable for covert data inclusion, however. As
these techniques have been used on the main Bitcoin network for benign files, it is apparent
that the risk for potential abuse is not just theoretical. For this reason, this thesis looked
into prior work on how to include hard-to-remove data within permission less computer
networks, and potential ways to make them infeasible.

It also takes a close look at the concrete implementation of Bitcoin in an attempt to validate
the usefulness of the approaches that are meant to harden the network. This is done as
some more straight-forward attempts also discussed in this thesis seem to only focus on
solving the problem in a more general case that does not focus on the unique propertiy
of permissionlessness of blockchains like Bitcoin. While it can certainly be challenging
to implement deletion capabilities in more convoluted data structures, the problem is
generally exaggerated by not having a benevolent single control instance such as a company.
Introducing such a control instance to solve the data inclusion problem seems antithetic to
the foundations of Bitcoin, which has been devised and improved with the goal of further
decentralization and resilience against being controllable by one or few actors.
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For this reason, this thesis tried to present approaches that keep the old system as intact
as possible, and essentially allows every participant to check for themselves if the new
rules that would be imposed upon Bitcoin have been carried out successfully. The first
solution covers the inclusion of data within commonly used transaction types, making it
harder to hide data within the receiving-address-portion of a transaction. The second
solution then covers Bitcoins more advanced feature-set made possible via Bitcoin Script.
By making a small part of non-standard transactions censorable if they do not provide
non-data-inclusion proof for every data push, a compromise between eternal data storage
and the integrity of the whole system is achieved. This compromise keeps Bitcoin’s most
important characteristics such as inflation resistance intact, and abuse of the system does
cause no monetary harm to the person whose transaction has been partly censored.

The first solution has been coded as an addon to the most popular Bitcoin node software,
bitcoin core, and Chapter describes how the proof of concept implementation can be
used to test the concept that prevents data inclusions into addresses or the public key
portion of a transaction. This was done to show that parts of the complete solution can
be implemented without a complete reorganization of the project, and that the approach
is not hindered by implementation details of Bitcoin that might escape a cursory glance
on how the protocols involved operate. It might also serve as a guidance for proper
implementation on the main Bitcoin project, although it is more likely that it would be
immediately added to the responsible code parts, instead of being bundled within an extra
file to make it easier to understand for the purpose of understanding this thesis. In any
case, as Bitcoin lacks a central ruler, an agreed-upon activation mechanism and worldwide
consensus on implementing the change would be required. It is outside the scope of this
thesis on how this would be achieved, but more recent developments show how it could be
done from a technical perspective. It could even be phased in like other updates, allowing
Bitcoin miners to decide for themselves if they want to risk creating a block containing
illegal data.

The thesis concludes with some details surrounding the code that was written to create
the solution.

6.2 Future Work

Bitcoin and other cryptocurrencies are an exciting new field of study. While writing this
thesis, multiple new developments have come to the attention of the technical community
surrounding Bitcoin. While details are often scarce and proposed solutions lack an imple-
mentation example at first, a general trend towards even more feature rich cryptographic
functions could be observed.

Improvements such as Schnorr functions, which would serve as a replacement for the
currently used ECDSA cryptography routines, have attributes that might make them ex-
tremely useful for further reduction of data inclusion vulnerabilities. As an example, the
aggregation of signatures that is possible with Schnorr reduces the size of transactions,
while retaining the non-interactivity of the process of signing transactions. While infor-
mation is hard to come by, this could allow for a scheme where well-known entities provide
a service that adds their signature to any Bitcoin transaction that wishes it, essentially
making the meaningful portion of a transaction non-attacker controlled any more.

Similarly, a technique known as Merklized Abstract Syntax Trees (MAST) would allow
for the hiding of payment requirements (i.e. smart contract data) until it is acted upon,
which would make it impossible to include bad data within conditional branches of smart
contracts that are never used, as those would not be published to the blockchain in any
case. As a further restriction it might be possible to remove certain opcodes from Bitcoin
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Script that allow script portions to be disregarded, especially since there might be a way
to reimplement those with MAST-enabled conditional statements. This would not reduce
the power of Bitcoin Script, while further hardening Bitcoin against data inclusion.

This thesis also mentioned some less effective schemes for data inclusion that might become
used if all remaining effective options for data inclusion are removed. Protecting against
those seems to require even further improvements to the basics of Bitcoin, such as a
replacement for the utilized hashing functions, or a complete overhaul of how transactions
work. One such proposal for an overhaul has been released anonymously under the name
of MimbleWimble. It uses zero knowledge proofs to hide transaction amounts from people
not involved with a transaction, which stops attackers from including data by encoding it
into the least significant bits of the amount field of Bitcoin transaction outputs. Attackers
now are very unlikely to utilize it as other schemes offer significantly more space for a
vastly reduced transaction fee, but more research will be needed to fix this issue once all
other possibilities have been eradicated, as sending an amount of a monetary transaction
unit surely can’t be removed from Bitcoin without destroying its primary main feature.

When defining the problem space of this thesis, some methods of data inclusion were
deemed outside of the scope of this work. To stop them from working, a scheme with
a hash function that makes partial hash collissions even more computationally intensive
might prove useful. It is unclear, however, how this might affect block validation, and it is
further unclear how this might affect block propagation and other metrics on the Bitcoin
peer to peer network. For this reason, further research and benchmarking of such changes
to a test network might prove very useful.

Looking at the broader picture, the topic of data insertion into uncensorable data structures
does also present novel problems for the legal system, and it remains to be seen if a
compromise can be found that might even allow illegal information to exist within such a
system, as long as it is only used for the intended, legal use of the technology. Similarly
to how internet providers cannot be held accountable for crimes committed through their
internet access, running a node and not accessing certain portions of a blockchain but to
confirm their validity could be seen as legal, as it lacks the intent of committing a crime in
most cases. Still, it is not impossible that some part of the solution will involve techniques
that e.g. make it easier to prove that there was no attempt at obtaining or spreading
illegal data. The cryptocurrency Ethereum, for example, is working on a scheme that
is called sharding. With sharding, block verification is spread between multiple parties.
One could imagine implementing a sharding algorithm so that a single node operator only
ever obtains and shares a small part of an illegal data file, making them not guilty of
possession or spreading of the data because the part is deemed too insignificant to be of
concern. It would also enable law enforcement to differentiate between honest miners, and
people using the blockchain to aquire the illegal data. Whether such a compromise is good
enough, and if sharding is an option for Bitcoin or destroys one of its important properties,
remains to be seen, however.
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