Marwin Otto Ziifle

Proactive Critical Event Prediction

based on Monitoring Data
with Focus on Technical Systems

Dissertation, Julius-Maximilians-Universitdt Wiirzburg

Fakultéit fiir Mathematik und Informatik, 2021
Gutachter: Prof. Dr. Samuel Kounev, Julius-Maximilians-Universitat Wiirzburg
Prof. Dr. Bernhard Sick, Universitit Kassel

Datum der miindlichen Priifung: 7. Februar 2022

This document is licensed under the
= Creative Commons Attribution-ShareAlike 4.0 DE License (CC BY-SA 4.0 DE):

http://creativecommons.org/licenses/by-sa/4.0/deed.de

iii

http://creativecommons.org/licenses/by-sa/4.0/deed.de

Abstract

The importance of proactive and timely prediction of critical events is steadily
increasing, whether in the manufacturing industry or in private life. In the
past, machines in the manufacturing industry were often maintained based on
a regular schedule or threshold violations, which is no longer competitive as it
causes unnecessary costs and downtime. In contrast, the predictions of critical
events in everyday life are often much more concealed and hardly noticeable
to the private individual, unless the critical event occurs. For instance, our
electricity provider has to ensure that we, as end users, are always supplied
with sufficient electricity, or our favorite streaming service has to guarantee that
we can watch our favorite series without interruptions. For this purpose, they
have to constantly analyze what the current situation is, how it will develop
in the near future, and how they have to react in order to cope with future
conditions without causing power outages or video stallings.

In order to analyze the performance of a system, monitoring mechanisms
are often integrated to observe characteristics that describe the workload and
the state of the system and its environment. Reactive systems typically employ
thresholds, utility functions, or models to determine the current state of the
system. However, such reactive systems cannot proactively estimate future
events, but only as they occur. In the case of critical events, reactive determi-
nation of the current system state is futile, whereas a proactive system could
have predicted this event in advance and enabled timely countermeasures. To
achieve proactivity, the system requires estimates of future system states. Given
the gap between design time and runtime, it is typically not possible to use
expert knowledge to a priori model all situations a system might encounter at
runtime. Therefore, prediction methods must be integrated into the system.
Depending on the available monitoring data and the complexity of the predic-
tion task, either time series forecasting in combination with thresholding or
more sophisticated machine and deep learning models have to be trained.

Although numerous forecasting methods have been proposed in the litera-
ture, these methods have their advantages and disadvantages depending on
the characteristics of the time series under consideration. Therefore, expert
knowledge is required to decide which forecasting method to choose. However,
since the time series observed at runtime cannot be known at design time,

such expert knowledge cannot be implemented in the system. In addition to
selecting an appropriate forecasting method, several time series preprocessing
steps are required to achieve satisfactory forecasting accuracy. In the liter-
ature, this preprocessing is often done manually, which is not practical for
autonomous computing systems, such as Self-Aware Computing Systems. Sev-
eral approaches have also been presented in the literature for predicting critical
events based on multivariate monitoring data using machine and deep learn-
ing. However, these approaches are typically highly domain-specific, such as
financial failures, bearing failures, or product failures. Therefore, they require
in-depth expert knowledge. For this reason, these approaches cannot be fully
automated and are not transferable to other use cases. Thus, the literature lacks
generalizable end-to-end workflows for modeling, detecting, and predicting
failures that require only little expert knowledge.

To overcome these shortcomings, this thesis presents a system model for
meta-self-aware prediction of critical events based on the LRA-M loop of Self-
Aware Computing Systems. Building upon this system model, this thesis
provides six further contributions to critical event prediction. While the first
two contributions address critical event prediction based on univariate data via
time series forecasting, the three subsequent contributions address critical event
prediction for multivariate monitoring data using machine and deep learning
algorithms. Finally, the last contribution addresses the update procedure of
the system model. Specifically, the seven main contributions of this thesis can
be summarized as follows:

e First, we present a system model for meta self-aware prediction of critical
events. To handle both univariate and multivariate monitoring data,
it offers univariate time series forecasting for use cases where a single
observed variable is representative of the state of the system, and machine
learning algorithms combined with various preprocessing techniques for
use cases where a large number of variables are observed to characterize
the system’s state. However, the two different modeling alternatives
are not disjoint, as univariate time series forecasts can also be included
to estimate future monitoring data as additional input to the machine
learning models. Finally, a feedback loop is incorporated to monitor the
achieved prediction quality and trigger model updates.

e We propose a novel hybrid time series forecasting method for univariate,
seasonal time series, called Telescope. To this end, Telescope automatically
preprocesses the time series, performs a kind of divide-and-conquer
technique to split the time series into multiple components, and derives

Vi

additional categorical information. It then forecasts the components
and categorical information separately using a specific state-of-the-art
method for each component. Finally, Telescope recombines the individual
predictions. As Telescope performs both preprocessing and forecasting
automatically, it represents a complete end-to-end approach to univariate
seasonal time series forecasting.

Experimental results show that Telescope achieves enhanced forecast
accuracy, more reliable forecasts, and a substantial speedup. Furthermore,
we apply Telescope to the scenario of predicting critical events for virtual
machine auto-scaling. Here, results show that Telescope considerably
reduces the average response time and significantly reduces the number
of service level objective violations.

For the automatic selection of a suitable forecasting method, we introduce
two frameworks for recommending forecasting methods. The first frame-
work extracts various time series characteristics to learn the relationship
between them and forecast accuracy. In contrast, the other framework
divides the historical observations into internal training and validation
parts to estimate the most appropriate forecasting method. Moreover,
this framework also includes time series preprocessing steps.

Comparisons between the proposed forecasting method recommendation
frameworks and the individual state-of-the-art forecasting methods and
the state-of-the-art forecasting method recommendation approach show
that the proposed frameworks considerably improve the forecast accuracy.

With regard to multivariate monitoring data, we first present an end-to-
end workflow to detect critical events in technical systems in the form
of anomalous machine states. The end-to-end design includes raw data
processing, phase segmentation, data resampling, feature extraction, and
machine tool anomaly detection. In addition, the workflow does not rely
on profound domain knowledge or specific monitoring variables, but
merely assumes standard machine monitoring data.

We evaluate the end-to-end workflow using data from a real CNC ma-
chine. The results indicate that conventional frequency analysis does not
detect the critical machine conditions well, while our workflow detects
the critical events very well with an F1-score of almost 91%.

To predict critical events rather than merely detecting them, we compare
different modeling alternatives for critical event prediction in the use
case of time-to-failure prediction of hard disk drives. Given that failure

vii

viii

records are typically significantly less frequent than instances represent-
ing the normal state, we employ different oversampling strategies. Next,
we compare the prediction quality of binary class modeling with down-
scaled multi-class modeling. Furthermore, we integrate univariate time
series forecasting into the feature generation process to estimate future
monitoring data. Finally, we model the time-to-failure using not only
classification models but also regression models.

The results suggest that multi-class modeling provides the overall best
prediction quality with respect to practical requirements. In addition, we
prove that forecasting the features of the prediction model significantly
improves the critical event prediction quality.

We propose an end-to-end workflow for predicting critical events of indus-
trial machines. Again, this approach does not rely on expert knowledge
except for the definition of monitoring data, and therefore represents
a generalizable workflow for predicting critical events of industrial ma-
chines. The workflow includes feature extraction, feature handling, target
class mapping, and model learning with integrated hyperparameter tun-
ing via a grid-search technique. Drawing on the result of the previous
contribution, the workflow models the time-to-failure prediction in terms
of multiple classes, where we compare different labeling strategies for
multi-class classification.

The evaluation using real-world production data of an industrial press
demonstrates that the workflow is capable of predicting six different
time-to-failure windows with a macro F1-score of 90%. When scaling the
time-to-failure classes down to a binary prediction of critical events, the
F1-score increases to above 98%.

Finally, we present four update triggers to assess when critical event
prediction models should be re-trained during on-line application. Such
re-training is required, for instance, due to concept drift. The update
triggers introduced in this thesis take into account the elapsed time since
the last update, the prediction quality achieved on the current test data,
and the prediction quality achieved on the preceding test data.

We compare the different update strategies with each other and with the
static baseline model. The results demonstrate the necessity of model
updates during on-line application and suggest that the update triggers
that consider both the prediction quality of the current and preceding test
data achieve the best trade-off between prediction quality and number of
updates required.

We are convinced that the contributions of this thesis constitute significant
impulses for the academic research community as well as for practitioners. First
of all, to the best of our knowledge, we are the first to propose a fully automated,
end-to-end, hybrid, component-based forecasting method for seasonal time
series that also includes time series preprocessing. Due to the combination of
reliably high forecast accuracy and reliably low time-to-result, it offers many
new opportunities in applications requiring accurate forecasts within a fixed
time period in order to take timely countermeasures. In addition, the promis-
ing results of the forecasting method recommendation systems provide new
opportunities to enhance forecasting performance for all types of time series,
not just seasonal ones. Furthermore, we are the first to expose the deficiencies
of the prior state-of-the-art forecasting method recommendation system.

Concerning the contributions to critical event prediction based on multi-
variate monitoring data, we have already collaborated closely with industrial
partners, which supports the practical relevance of the contributions of this
thesis. The automated end-to-end design of the proposed workflows that do
not demand profound domain or expert knowledge represents a milestone in
bridging the gap between academic theory and industrial application. Finally,
the workflow for predicting critical events in industrial machines is currently
being operationalized in a real production system, underscoring the practical
impact of this thesis.

ix

Zusammenfassung

Die Bedeutung einer proaktiven und rechtzeitigen Vorhersage von kritischen
Ereignissen nimmt immer weiter zu, sei es in der Fertigungsindustrie oder im
Privatleben. In der Vergangenheit wurden Maschinen in der Fertigungsindus-
trie oft auf der Grundlage eines regelméfiigen Zeitplans oder aufgrund von
Grenzwertverletzungen gewartet, was heutzutage nicht mehr wettbewerbs-
tahig ist, da es unnotige Kosten und Ausfallzeiten verursacht. Im Gegensatz
dazu sind die Vorhersagen von kritischen Ereignissen im Alltag oft wesentlich
versteckter und fiir die Privatperson kaum spiirbar, es sei denn das kritische
Ereignis tritt ein. So muss zum Beispiel unser Stromanbieter dafiir sorgen, dass
wir als Endverbraucher immer ausreichend mit Strom versorgt werden, oder
unser Streaming-Dienst muss garantieren, dass wir unsere Lieblingsserie jeder-
zeit ohne Unterbrechungen anschauen konnen. Hierzu miissen diese standig
analysieren wie der aktuelle Zustand ist, wie er sich in naher Zukunft entwi-
ckeln wird und wie sie reagieren miissen, um die zukiinftigen Bedingungen
zu bewiltigen, ohne dass es zu Stromausféllen oder Videoabbriichen kommt.

Zur Analyse der Leistung eines Systems werden haufig Uberwachungsme-
chanismen integriert, um Merkmale zu beobachten, die die Arbeitslast und
den Zustand des Systems und seiner Umgebung abbilden. Reaktive Systeme
verwenden typischerweise Schwellenwerte, Nutzenfunktionen oder Model-
le, um den aktuellen Zustand des Systems zu bestimmen. Allerdings kénnen
solche reaktiven Systeme zukiinftige Ereignisse nicht proaktiv abschéitzen,
sondern lediglich sobald diese eintreten. Bei kritischen Ereignissen ist die reak-
tive Bestimmung des aktuellen Systemzustands jedoch zwecklos, wahrend ein
proaktives System dieses Ereignis im Voraus hétte vorhersagen und rechtzeitig
Gegenmafsnahmen einleiten kénnen. Um Proaktivitit zu erreichen, benotigt
das System Abschitzungen tiber zukiinftige Systemzustdnde. Angesichts der
Kluft zwischen Entwurfszeit und Laufzeit ist es typischerweise nicht mdglich
Expertenwissen zu verwenden, um alle Situationen zu modellieren, auf die ein
System zur Laufzeit stoffen konnte. Daher miissen Vorhersagemethoden in das
System integriert werden. Abhzngig von den verfiigbaren Uberwachungsdaten
und der Komplexitdt der Vorhersageaufgabe miissen entweder Zeitreihenpro-
gnosen in Kombination mit Schwellenwerten oder ausgefeiltere Modelle des
,Machine Learning” und , Deep Learning” trainiert werden.

Xi

Obwohl in der Literatur schon zahlreiche Zeitreihenprognosemethoden vor-
geschlagen wurden, haben alle diese Methoden in Abhdngigkeit der Eigenschaf-
ten der betrachteten Zeitreihen ihre Vor- und Nachteile. Daher ist Experten-
wissen erforderlich, um zu entscheiden, welche Zeitreihenprognosemethode
gewdhlt werden sollte. Da jedoch die zur Laufzeit beobachteten Zeitreihen
zur Entwurfszeit nicht bekannt sein kénnen, ldsst sich ein solches Experten-
wissen nicht im System integrieren. Zusitzlich zur Auswahl einer geeigneten
Zeitreihenprognosemethode sind mehrere Zeitreihenvorverarbeitungsschritte
erforderlich, um eine zufriedenstellende Prognosegenauigkeit zu erreichen.
In der Literatur wird diese Vorverarbeitung oft manuell durchgefiihrt, was
fir autonome Computersysteme, wie z. B. , Self-Aware Computing Systems”,
nicht praktikabel ist. Hinsichtlich der Vorhersage kritischer Ereignisse auf der
Grundlage multivariater Uberwachungsdaten wurden in der Literatur auch
bereits mehrere Ansédtze unter Verwendung von ,,Machine Learning” und
,Deep Learning” vorgestellt. Diese Ansétze sind jedoch typischerweise sehr
doménenspezifisch, wie z. B. fiir finanzielle Zusammenbriiche, Lagerschiaden
oder Produktfehler. Aus diesem Grund erfordern sie umfassendes Experten-
wissen. Durch den spezifischen Zuschnitt auf die jeweilige Doméne kénnen
diese Ansétze nicht vollstindig automatisiert werden und sind nicht auf andere
Anwendungsfille tibertragbar. Somit fehlt es in der Literatur an verallgemeiner-
baren Ende-zu-Ende Prozessen zur Modellierung, Erkennung und Vorhersage
von Ausféllen, die lediglich wenig Expertenwissen erfordern.

Um diese Unzulédnglichkeiten zu iiberwinden, wird in dieser Arbeit ein
Systemmodell zur meta-selbstbewussten Vorhersage kritischer Ereignisse vor-
gestellt, das auf der LRA-M-Schleife von ,Self-Aware Computing Systems”
basiert. Aufbauend auf diesem Systemmodell liefert diese Arbeit sechs weitere
Beitrdge zur Vorhersage kritischer Ereignisse. Wahrend sich die ersten beiden
Beitrdge mit der Vorhersage kritischer Ereignisse auf der Basis univariater
Daten mittels Zeitreihenprognose befassen, adressieren die drei folgenden Bei-
trdge die Vorhersage kritischer Ereignisse fiir multivariate Uberwachungsdaten
unter Verwendung von ,Machine Learning” und , Deep Learning” Algorith-
men. Der letzte Beitrag schliefslich behandelt das Aktualisierungsverfahren
des Systemmodells. Im Einzelnen lassen sich die sieben Hauptbeitrdge dieser
Arbeit wie folgt zusammenfassen:

e Zunichst stellen wir ein Systemmodell fiir die meta-selbstbewusste Vor-
hersage von kritischen Ereignissen vor. Um sowohl univariate als auch
multivariate Uberwachungsdaten verarbeiten zu konnen, bietet es univa-
riate Zeitreihenprognosen fiir Anwendungsfille, in denen eine einzelne
Beobachtungsgrofie reprasentativ fiir den Zustand des Systems ist, sowie

Xii

,Machine Learning” und , Deep Learning” Algorithmen in Kombinati-
on mit verschiedenen Vorverarbeitungstechniken fiir Anwendungsfalle,
in denen eine grofie Anzahl von Variablen beobachtet wird, um den
Zustand des Systems zu charakterisieren. Die beiden unterschiedlichen
Modellierungsalternativen sind jedoch nicht disjunkt, da auch univariate
Zeitreihenprognosen einbezogen werden kénnen, um zukiinftige Uber-
wachungsdaten als zusétzliche Eingabe fiir die ,Machine Learning” und
,Deep Learning” Modelle zu schitzen. Schliefilich ist eine Riickkopp-
lungsschleife eingebaut, die die erreichte Vorhersagequalitét tiberwacht
und gegebenenfalls Modellaktualisierungen auslst.

Wir prasentieren eine neuartige, hybride Zeitreihenvorhersagemethode
fiir univariate, saisonale Zeitreihen, die wir Telescope nennen. Telescope
verarbeitet die Zeitreihe automatisch vor, fiihrt eine Art , Divide-and-
Conquer” Technik durch, welche die Zeitreihe in mehrere Komponenten
unterteilt, und leitet zusdtzliche kategoriale Informationen ab. Anschlie-
Bend prognostiziert es die Komponenten und kategorialen Informationen
getrennt voneinander mit einer spezifischen Methode fiir jede Kompo-
nente. Abschlieflend setzt Telescope die einzelnen Vorhersagen wieder
zusammen. Da Telescope alle Vorverarbeitungsschritte und Vorhersa-
gen automatisch durchfiihrt, stellt es einen vollstindigen Ende-zu-Ende
Ansatz fiir univariate, saisonale Zeitreihenvorhersagen dar.

Experimentelle Ergebnisse zeigen, dass Telescope eine verbesserte Vor-
hersagegenauigkeit, zuverldssigere Vorhersagen und eine erhebliche Be-
schleunigung erreicht. Dariiber hinaus wenden wir Telescope fiir die
Vorhersage kritischer Ereignisse bei der automatischen Skalierung von
virtuellen Maschinen an. Die Ergebnisse belegen, dass Telescope die
durchschnittliche Antwortzeit erheblich reduziert und die Anzahl der
Verletzungen der Service Level Zielvorgaben signifikant verringert.

Fiir die automatische Auswahl einer geeigneten Zeitreihenprognoseme-
thode fithren wir zwei Empfehlungssysteme ein. Das erste System extra-
hiert verschiedene Zeitreihencharakteristika, um die Beziehung zwischen
ihnen und der Prognosegenauigkeit zu erlernen. Im Gegensatz dazu
unterteilt das zweite System die historischen Beobachtungen in interne
Trainings- und Validierungsteile, um die am besten geeignete Zeitreihen-
prognosemethode zu schitzen. Aufierdem beinhaltet letzteres System
auch Zeitreihenvorverarbeitungsschritte.

Vergleiche zwischen den vorgeschlagenen Empfehlungssystemen fiir
Zeitreihenprognosemethoden und den einzelnen Prognosemethoden

Xiii

Xiv

sowie dem Ansatz zur Empfehlung von Zeitreihenprognosemethoden
nach dem Stand der Technik ergeben, dass die vorgeschlagenen Systeme
die Prognosegenauigkeit erheblich verbessern.

Im Hinblick auf multivariate Uberwachungsdaten stellen wir zunéchst
einen Ende-zu-Ende Prozess vor, mit dem kritische Ereignisse in tech-
nischen Systemen in Form von anomalen Maschinenzustanden erkannt
werden konnen. Der Ende-zu-Ende Entwurf umfasst die Rohdatenver-
arbeitung, die Phasensegmentierung, das Datenresampling, die Merk-
malsextraktion und die Maschinenanomalieerkennung. Dartiber hinaus
stiitzt sich der Prozess explizit nicht auf tiefgreifendes Domédnenwissen
oder spezifische Uberwachungsgrofien, sondern setzt lediglich géngige
Maschinentiberwachungsdaten voraus.

Wir evaluieren den Ende-zu-Ende Prozess anhand von Daten einer realen
CNC-Maschine. Die Ergebnisse zeigen, dass die konventionelle Frequenz-
analyse die kritischen Maschinenzustdnde nicht gut erkennt, wéahrend
unser Prozess die kritischen Ereignisse mit einem F1-Wert von fast 91%
sehr gut identifiziert.

Um kritische Ereignisse vorherzusagen, anstatt sie nur reaktiv zu erken-
nen, vergleichen wir verschiedene Modellierungsalternativen fiir die
Vorhersage kritischer Ereignisse im Anwendungsfall der Vorhersage der
Zeit bis zum néchsten Fehler von Festplattenlaufwerken. Da Fehlerda-
tensitze typischerweise wesentlich seltener sind als Instanzen, die den
Normalzustand reprasentieren, setzen wir verschiedene Strategien zum
Erzeugen kiinstlicher Fehlerinstanzen ein. Im nédchsten Schritt verglei-
chen wir die Vorhersagequalitét der bindren Klassenmodellierung mit der
herunterskalierten Mehrklassenmodellierung. Des Weiteren integrieren
wir die univariate Zeitreihenprognose in den Merkmalsgenerierungspro-
zess, um so die zukiinftigen Uberwachungsdaten zu schitzen. Schliefslich
modellieren wir die Zeit bis zum nachsten Fehler nicht nur mithilfe von
Klassifikationsmodellen, sondern auch mit Regressionsmodellen.

Die Ergebnisse legen nahe, dass die Mehrklassenmodellierung die insge-
samt beste Vorhersagequalitét hinsichtlich praktischer Anforderungen
liefert. Aufierdem belegen wir, dass die Prognose der Merkmale des Vor-
hersagemodells mittels univariater Zeitreihenprognose die Qualitdt der
Vorhersage kritischer Ereignisse signifikant verbessert.

Wir stellen einen Ende-zu-Ende Prozess fiir die Vorhersage kritischer
Ereignisse von Industriemaschinen vor. Auch dieser Ansatz verlasst sich

nicht auf Expertenwissen, mit Ausnahme der Definition von Uberwa-
chungsdaten, und stellt daher einen verallgemeinerbaren Prozess fiir die
Vorhersage kritischer Ereignisse von Industriemaschinen dar. Der Prozess
umfasst Merkmalsextraktion, Merkmalsverarbeitung, Zielklassenzuord-
nung und Modelllernen mit integrierter Hyperparameter-Abstimmung
mittels einer Gittersuchtechnik. Ausgehend von den Ergebnissen des
vorherigen Beitrags modelliert der Prozess die Vorhersage der Zeit bis
zum nichsten Fehler in Form mehrerer Klassen, wobei wir verschiedene
Beschriftungsstrategien fiir die Mehrklassenklassifizierung vergleichen.

Die Evaluierung anhand realer Produktionsdaten einer grofien Industrie-
presse demonstriert, dass der Prozess in der Lage ist, sechs verschiedene
Zeitfenster fiir bevorstehende Fehler mit einem Makro F1-Wert von 90%
vorherzusagen. Wenn man die Klassen der Zeit bis zum nédchsten Fehler
auf eine bindre Vorhersage von kritischen Ereignissen herunterskaliert,
steigt der F1-Wert sogar auf tiber 98%.

Schliefilich stellen wir vier Aktualisierungsausldser vor, um zu bestim-
men, wann Modelle zur Vorhersage kritischer Ereignisse wahrend der
Online-Anwendung neu trainiert werden sollten. Ein solches Neutraining
ist bspw. aufgrund von Konzeptdrift erforderlich. Die in dieser Arbeit
vorgestellten Aktualisierungsausldser beriicksichtigen die Zeit, die seit
der letzten Aktualisierung verstrichen ist, die auf den aktuellen Testdaten
erreichte Vorhersagequalitdt und die auf den vorangegangenen Testdaten
erreichte Vorhersagequalitét.

Wir vergleichen die verschiedenen Aktualisierungsstrategien miteinander
und mit dem statischen Ausgangsmodell. Die Ergebnisse veranschauli-
chen die Notwendigkeit von Modellaktualisierungen wihrend der Online-
Anwendung und legen nahe, dass die Aktualisierungsausloser, die so-
wohl die Vorhersagequalitédt der aktuellen als auch der vorangegangenen
Testdaten berticksichtigen, den besten Kompromiss zwischen Vorhersa-
gequalitdt und Anzahl der erforderlichen Aktualisierungen erzielen.

Wir sind der festen Uberzeugung, dass die Beitrdge dieser Arbeit sowohl fiir
die akademische Forschungsgemeinschaft als auch fiir die praktische Anwen-
dung wichtige Impulse darstellen. Zuallererst sind wir unseres Wissens nach
die ersten, die eine vollautomatische, hybride, komponentenbasierte, Ende-
zu-Ende Prognosemethode fiir saisonale Zeitreihen vorschlagen, die auch die
Zeitreihenvorverarbeitung beinhaltet. Durch die Verbindung einer zuverlassig
hohen Vorhersagegenauigkeit mit einer zuverldssig niedrigen Zeit bis zum

XV

Ergebnis eroffnet diese viele neue Moglichkeiten fiir Anwendungen, die ge-
naue Vorhersagen innerhalb eines festen Zeitraums erfordern, um rechtzeitig
Gegenmafinahmen ergreifen zu konnen. Dariiber hinaus bieten die vielverspre-
chenden Ergebnisse der Empfehlungssysteme fiir Zeitreihenprognosemetho-
den neue Ansitze zur Verbesserung der Vorhersageleistung fiir alle Arten von
Zeitreihen, nicht nur fiir saisonale Zeitreihen. Ferner sind wir die ersten, die
die Schwachstellen des bisherigen Stands der Technik bei der Empfehlung von
Zeitreihenprognosemethoden aufgedeckt haben.

Hinsichtlich der Beitrdge zur Vorhersage kritischer Ereignisse mittels mul-
tivariater Uberwachungsdaten haben wir bereits eng mit Industriepartnern
zusammengearbeitet, wodurch die hohe praktische Relevanz der Beitrdge dieser
Arbeit verdeutlicht wird. Der automatisierte Ende-zu-Ende Entwurf der vorge-
schlagenen Prozesse, die kein tiefes Doménen- oder Expertenwissen erfordern,
stellt einen Meilenstein in der Uberbriickung der Kluft zwischen akademischer
Theorie und industrieller Anwendung dar. Diese Tatsache wird insbesondere
dadurch untermauert, dass der Prozess zur Vorhersage kritischer Ereignis-
se in Industriemaschinen derzeit bereits in einem realen Produktionssystem
operationalisiert wird.

XVi

Acknowledgments

This thesis would have been impossible without the help and support of many
people. Foremost, I would like to thank my advisor Prof. Dr. Samuel Kounev. I
first met him during my studies at the University of Wiirzburg, where I attended
all his courses. Especially since my master’s thesis, he has always supported
me with advice and encouragement on my journey in the academic world.

From the the Chair of Software Engineering at the University of Wiirzburg, I
would like to thank all my current and former colleagues, especially Dr. André
Bauer, Lukas Beierlieb, Vanessa Borst, Simon Eismann, Johannes Grohmann, Ste-
fan Herrnleben, Dr. Lukas Ifflinder, Dennis Kaiser, Dr. Jéakim von Kistowski,
Jun.-Prof. Dr. Christian Krupitzer, Robert Leppich, Veronika Lesch, Thomas
Prantl, Norbert Schmitt, and Martin Strédfeer, for the collaboration and support
during the last couple of years. In particular, I want to thank Jun.-Prof. Dr.
Christian Krupitzer for his supervision over several years. His expertise in
scientific writing helped me a lot to improve my work. Furthermore, I would
like to express special thanks to my colleagues from the “Kaffeekranzchen”
group for their moral support, especially during the rough times. I also want
to thank Fritz Kleemann, Susanne Stenglin, and Erika Littmann, who always
helped me out with technical and administrative tasks.

In addition, I would like to thank Florian Erhard and Joachim Agne, who
supported parts of my research as research assistant, supervised student, and
co-authors. In general, I want to thank all my co-authors for many fertile
conversations that led to new ideas, and for their help in getting the hard work
published in scientific conferences and journals. Special thanks go to Valentin
Curtef from the COSMO CONSULT Data Science GmbH for many interesting
discussions and ideas around the topic of time series analysis and forecasting.

I would also like to thank the IHK Wiirzburg-Schweinfurt for the financial
support and the stage for presenting our ideas, which enabled us to get in
touch with industrial partners. To these industrial partners, especially ZF
Friedrichshafen AG and Bosch Rexroth AG, I would also like to express my
gratitude for their collaboration, without which the evaluation of the proposed
approaches would not have been possible.

Finally, I would like to thank the people in my personal life who have sup-
ported me throughout my studies and research. The utmost gratitude goes to

XVii

my wife Dorothée, who has always supported me, believed in me, and had my
back in my personal life so that I could focus on this thesis. Her continuous
support, encouragement, and trust in me have made this thesis possible. Fur-
thermore, I would like to thank my parents-in-law, Dr. Beate Kawaler-Hermann
and Dr. Wilhelm Hermann, and my sister-in-law, Jessica Hermann, with her
boyfriend, Markus Wirth, for their unconditional support during all phases.

Xviii

Contents

L__Introduction| 1
LI Mofivationl 1

1.2 Problem Statement and Shortcomings of Existing Approaches| . 2

1.3 ResearchQuestions| 4
1.4 Contributions of this Thesisl 6
(1.4.1 System Model tor Meta Selt-Aware Prediction of Critical |

[Events| 6
.42 Individual Contributions| 8

(1.5 Use Cases for the Proposed System Model|. 12
[1.5.1 Univariate Time Series Forecasting with Thresholds| . . . 12

[1.5.2 Critical Event Prediction using Multivariate Monitoring |

[Datal 13
(.6 _ThesisOutlinel 14
L Fundamentals 15
[2_Foundations 17
2.1 Selt-Aware Computing Systems] 17

. ision of Self-Aware Computing Systems| 18

|2__2 LRA-M Loop of Self-Aware Computing Systems] 18

22 TimeSeries Analysis| 20

i i isticsl 21

[2.2.2 Seasonality and Cyclicality of Time Series| 24

[2.2.3 Periodograms for Frequency Estimation| 26

[2.2.4 Time Series Decomposition| 29

2.3 Time Series Forecasting|. 31
[2.3.1 Naive Forecasting|. 32

2.32 Exponential Smoothing State Space] 33

[2.3.3 Autoregressive Moving Average| 34

[2.3.4 Autoregressive Integrate Moving Average|. 34

.35 Trigonometric, Box-Cox Transformation, ARMA Errors, |

Trend and Seasonality Modell 35

Xix

Contents

[2.3.6 Neural Network Autoregression| 36

|2.4 Machine Learning Methods| 36

4.1 -Means Clustering| 37

|Z.4.2 Hierarchical § ;!usterina 38
|2.4.3 Support Vector Mac Eine| 38
2.44 Random Foresf

........................ 40

24.5 eXtreme Gradient Boosting| 41

2.5 Deep Learning Models| 42

-Forward Neural Networkl 43

.52 Recurrent Neural Networkl 44

2.6 Evaluation Measures for Forecasting and Classification| 46
261 Forecast Error Measures 46

[2.6.2 Classification Quality Measures| 49

(3 State-of-the-Artl 55
B.1 Hybrid Time Series Forecasting Methods| 55
B.I.1 Weighted Forecasting Method Ensembles| 56

B.1.2 Forecasting Method Recommendation|. 59

B.1.3 Component-based Forecasting] 63

iction] 67

2.1 Critical Event Prediction using Time Series Forecasting| . 68

B.2.2 Critical Event Prediction using Multivariate Learning |

[Models| L 73
[3.2.3 Update Strategies tor Critical Event Prediction Models| . 85

[[I " Improving Time Series Forecasting] 93
|4 Telescope: Remainder Learning for Component-based Forecasting] 95
4.1 Overall Design of Telescope 97
.2 lime Series Preprocessing| 102
4.2.1 Frequency Determination| 102

4.2.2 Anomaly Detection and Removall. 105

23 TrendTestsd 106

XX

|4_L.3 Creation of Categorical Informatiog| 109

4.3.1 Ef|ustering of Sing|e Perioas| 109

4.3.2 Cluster Label Forecasting| 112
4.4 Decomposition and Component Forecasting|. 113
4.4.1 Time Series Decomposition| 113
4.4.2 Season and Trend Forecasting]. 115

Contents

4.5 Remainder Learning and Component Combination| 116
4.6 Summary and Discussion] 119
|5 Evaluation of Telescope) 121
P.1 Evaluation Design|. 121
5.2 Comparing Forecast Accuracy and Time-to-Resulf| 124
b.2.1 Detailed Forecasting Comparison| 124
b.2.2 Average and Variation in Forecast Accuracy]. 129

2.3 chieved Ranks per Forecasting Method| 134

(.3 Application of Telescope for Critical Event Prediction of Virtual |
Machine Scaling| oo 136

b4 Concluding Remarks| 140

|6 Meta-Learning for Time Series Forecasting Method Recommendation| 141
[6.1 Data-based Time Series Forecasting Method Recommendation| . 143
[6.1.1 Basics on Rule Learning for Forecasting Method Recom- |

[mendationl oo 144
[6-1.2 General Approach of X. Wangetal|. 144

[p. 1.3 Binary Classification with Oversampling| 146

[6.1.4 Recommendation-based Ensemble Forecasting] 150

[6.2 History-based Time Series Forecasting Method Recommendation|152
0.2.1 Preprocessing| 0L 153

6.22 Modeling| 156

6.3 Summary and Discussion] 159

|7 Evaluation of Meta-Learning for Forecasting Method Recommendation|161
[7.1 ~Evaluation of the Data-based Forecasting Method Recommen- |

[dationl. 161
[7.1.1 Experimental Setup|. 162

[71.2" Evaluation of the Approach by X. Wangetal]. 163

[71.3 Evaluation of Alternative Approaches| 166

[14 Threatsto Validity] 171

[715 Summary of Evaluation Findings|. 173

[7.2 Evaluation of the History-based Forecasting Method Recom- |
[mendation 173
/.2.1 Time Series Preprocessing Steps| 174

|7.2.2 Eorecasting Accuracy for the FedCSIS 2020 Challenge| . . 175
[72.3 Share of Forecasting Methods Recommended]. 178

[724 Threatsto Validity] 179
[7.25 Summary of Evaluation Findings 180

xxi

Contents

[/.3 Concluding Remarks| 181
[([IT Modeling, Detecting, and Predicting Machine Failures| 183
|8 Automated End-to-End WorkHow for Machine Anomaly Detection| 185

-1 Data Acquisition].o oo 186

B.2 Design of the End-to-End Machine Part Anomaly Detection |
I Workflowl. 189

8.2.1 Phase Detectionl 190
[8.2.2 Machine Learning-based Anomaly Detection Approach| 194

B3 Summary and Discussion| 196
[9 Evaluation of the End-to-End Machine Anomaly Detection Workflow| 199

9.1 Experimental Setup|. 199

0.2 Accuracy of the Phase Detection Component] 200

0.3 Prediction Quality of the Anomaly Detection Component] 202

031 Acoustic Analysis|. 202
[0.3.2 " Comparison of Machine Learning Methods| 204
0.4 Discussionl 210
9.4.1 Summary of Evaluation Findings|. 210
.42 Threatsto Validity] 211
0.5 Concluding Remarks| 213

[10 Comparison of Modeling Alternatives for Time-to-Failure Prediction] 215

|10.1 Introduction to Hard Disk Drive Monitoring 216
|10.2 Binary Classification for HDD Failure Preaictioﬁ| 217

M021 Unmodified 217
[10.2.2 Enhanced Structure Preserving Oversampling) 218
10.2.3 Synthetic Minority Oversampling Technique| 219
[10.3 Classification of Multiple Failure Levels| 219
[10.3.1 Failure LevelLabeling] 219

[[032 ModelLearning|. 221
[10.3.3 Downscaling to the Binary Classification Case| 221

[10.4 Integrating Forecasting into the Feature Generation Step| 222
[10.5 Regression for Time-to-Failure Prediction| 222

[10.6 Summary and Discussion] 223
|11 Evaluation of Time-to-Failure Modeling Alternatives| 225
(11.1 Evaluation Design|. 225

XXii

Contents

[11.2 Binary Failure Prediction|. 227
11.3 Failure Level Classificationl. 229
(11.4 Time-to-Failure Regression|. 232
[11.5 Runtime Comparison|. 234
[11.6 Feature Forecasting for Failure Prediction| 235
[11.7 Summary of Evaluation Findings and Threats to Validity] 240
1.8 Concluding Remarks| 241

|12 Time-to-Failure Prediction Methodology tor Industrial Machines| 243
[12.1 Feature Exfraction from Raw Sensor Datal 245
[12.2 Feature Handling| 247
12.3 Target Class Mapping|. 248
12.4 Model Learning| 0. 250
12.5 Prediction Aggregation|. 252
(2.6 Summary and DISCUSSION] - « « « « « v« v e e e 252

|13 Evaluation of the Time-to-Failure Prediction Methodology] 255
[13.1 Case Study Details| 255
32 MacroResultsl 258
13.3 Resultsby Class| 261
13.4 Details on the Best Predictions|. 263
[13.5 Discussion and Threats to Validity] 264
13.5.1 Summary of Evaluation Findings|. 264

[135.2 Threatsto Validity] 264

[13.6 Concluding Remarks| 266
[14 On-line Update Strategies for Critical Event Prediction Models| 269
14.1 Hard Disk Drive Failure Prediction| 270
I4.1.1 Data Set Generationl 270

14.1.2 Time-to-Failure Prediction Window| 272

[14.1.3 Model Learning|. 272

414 Prediction] vi i 273

[14.2 Update Strategies| 274
[142.1 Prediction Quality Measures| 274

14.2.2 Update Triggers|. 275

14.3 Summary and Discussion| 277

|15 Evaluation of Model Update Strategies| 279
O5IDataSell.ot 279
(15.2 Comparison of Update Strategies| 280

xxiii

Contents

[15.3 Comparison of Machine Learning Algorithms) 286

i onl 287

[15.4.1 Summary of Evaluation Findings|. 288

[15.42 Threatsto Validity] 288

(15.5 Concluding Remarks|, 289
LV Conclusions 291
(16 Conclusion and Outlookl 293
[16.1 Thesis Summary|. 293
................................. 298

1621 FutureWorkl. 298

[16.2.2 Future Application Scenarios| 300

1st of Figures 301
[List of Tables] 303
Bibliography] 305

XXiv

Publication List

Peer Reviewed Journal Articles

[ZML™21]] Marwin Ziifle, Felix Moog, Veronika Lesch, Christian Krupitzer,
Samuel Kounev. A Machine Learning-based Workflow for Automatic Detection
of Anomalies in Machine Tools. In: ISA Transactions. Elsevier, 2021. (in press)

[[BZH"20b]] André Bauer, Marwin Ziifle, Nikolas Herbst, Albin Zehe, Andreas
Hotho, and Samuel Kounev. Time Series Forecasting for Self-Aware Systems.
In: Proceedings of the IEEE, 108(7):1068 — 1093, 2020.

Peer Reviewed International Full Conference Papers

[ZEK21]] Marwin Ziifle, Florian Erhard, and Samuel Kounev. Machine Learn-
ing Model Update Strategies for Hard Disk Drive Failure Prediction. In: Proceed-
ings of the 20th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 1379-1386. IEEE, December 2021.

[ZAG™21]] Marwin Ziifle, Joachim Agne, Johannes Grohmann, Ibrahim Dér-
toluk, and Samuel Kounev. A Predictive Maintenance Methodology: Predicting
the Time-to-Failure of Machines in Industry 4.0. In: Proceedings of the 219th
IEEE IES International Conference on Industrial Informatics (INDIN), pages 1-8.
IEEE, July 2021.

[FML™21]] Nils Finke, Marisa Mohr, Alexander Lontke, Marwin Ziifle, Samuel
Kounev, and Ralf Moller. Recommendations for Data-driven Degradation Es-
timation with Case Studies from Manufacturing and Dry-bulk Shipping. In:
Proceedings of the 15th International Conference on Research Challenges in Information
Science (RCIS), pages 189—204. Springer, May 2021.

[BZET21]] André Bauer, Marwin Ziifle, Simon Eismann, Johannes Grohmann,
Nikolas Herbst, and Samuel Kounev. Libra: A Benchmark for Time Series Fore-
casting Methods. In: Proceedings of the 12th ACM/SPEC International Conference

XXV

Contents

on Performance Engineering (ICPE), pages 189-200. ACM, April 2021.

[ZKE™20] Marwin Ziifle, Christian Krupitzer, Florian Erhard, Johannes Groh-
mann, and Samuel Kounev. To Fail or Not to Fail: Predicting Hard Disk Drive
Failure Time Windows. In: Proceedings of the International Conference on Mea-
surement, Modelling and Evaluation of Computing Systems (MMB), pages 19-36.
Springer, March 2020.

[ZBL*19] Marwin Ziifle, André Bauer, Veronika Lesch, Christian Krupitzer,
Nikolas Herbst, Samuel Kounev, and Valentin Curtef. Autonomic Forecasting
Method Selection: Examination and Ways Ahead. In: Proceedings of the 16th
IEEE International Conference on Autonomic Computing (ICAC), pages 167-176.
IEEE, June 2019.

Peer Reviewed International Short Conference Papers

[ZK20]] Marwin Ziifle and Samuel Kounev. A Framework for Time Series
Preprocessing and History-based Forecasting Method Recommendation. In:
Proceedings of the 2020 Federated Conference on Computer Science and Information
Systems (FedCSIS), pages 141-144. IEEE, September 2020.

[BZH"20a]] André Bauer, Marwin Ziifle, Nikolas Herbst, Samuel Kounev, and
Valentin Curtef. Telescope: An Automatic Feature Extraction and Transfor-
mation Approach for Time Series Forecasting on a Level-Playing Field. In:
Proceedings of the 36th International Conference on Data Engineering (ICDE), pages
1902-1905. IEEE, April 2020.

[BZGT20]] André Bauer, Marwin Ziifle, Johannes Grohmann, Norbert Schmitt,
Nikolas Herbst, and Samuel Kounev. An Automated Forecasting Framework
based on Method Recommendation for Seasonal Time Series. In: Proceedings of
the 11th ACM/SPEC International Conference on Performance Engineering (ICPE),
pages 48-55. ACM, April 2020.

[[ZBH™17|]] Marwin Ziifle, André Bauer, Nikolas Herbst, Valentin Curtef, and
Samuel Kounev. Telescope: A Hybrid Forecast Method for Univariate Time
Series. In: Proceedings of the International Work-Conference on Time Series Analysis
(ITISE). September 2017.

XXVi

Contents

Peer Reviewed Workshop and Tutorial Papers

[HZZ720]] Stefan Herrnleben, Bernd Zeidler, Marwin Ziifle, Christian Krupit-
zer, and Samuel Kounev. A Concept for Crowd-sensed Prediction of Mobile
Network Connectivity. In: GI/ITG Workshop on Machine Learning in the Context
of Communication Networks 2020. February 2020.

[GEB™19] Johannes Grohmann, Simon Eismann, André Bauer, Marwin Ziifle,
Nikolas Herbst, and Samuel Kounev. Utilizing Clustering to Optimize Resource
Demand Estimation Approaches. In: 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS*W), pages 134--139. IEEE,
June 2019.

[BZHK19] André Bauer, Marwin Ziifle, Nikolas Herbst, and Samuel Kounev.
Best Practices for Time Series Forecasting. In: 2019 IEEE 4th International Work-
shops on Foundations and Applications of Self* Systems (FAS*W), pages 255-256.
IEEE, June 2019.

Book Chapters

[Zif20] Marwin Ziifle. Towards a Self-Aware Prediction of Critical States.
In: Organic Computing: Doctoral Dissertation Colloquium 2020. Edited by Sven
Tomforde and Christian Krupitzer. July 2020.

Technical Reports

[KWZ"20] Christian Krupitzer, Tim Wagenhals, Marwin Ziifle, Veronika
Lesch, Dominik Schéfer, Amin Mozaffarin, Janick Edinger, Christian Becker,
and Samuel Kounev. A Survey on Predictive Maintenance for Industry 4.0. Techni-
cal report, University of Wiirzburg and University of Mannheim and Syntax
Systems GmbH and MOZYS Engineering GmbH. arXiv:2002.08224, February
2020.

[KML"20] Christian Krupitzer, Sebastian Miiller, Veronika Lesch, Marwin
Ziifle, Janick Edinger, Alexander Lemken, Dominik Schéfer, Samuel Kounev,
and Christian Becker. A Survey on Human Machine Interaction in Industry 4.0.
Technical report, University of Wiirzburg and University of Mannheim and
ioxp GmbH and Syntax Systems GmbH. arXiv:2002.01025, February 2020.

XXVvii

Chapter 1
Introduction

The introduction of this thesis aims at motivating the addressed research field,
elaborating the shortcomings of existing approaches, and presenting the contri-
butions of this thesis. Therefore, we first describe the particular research field
and highlight its importance in everyday life. Then, we briefly present the state-
of-the-art and identify drawbacks and shortcomings of existing approaches.
Subsequently, we introduce the research questions that form the foundations
of this thesis. Based on these, we also derive our main contributions. Before
presenting the outline of the remaining thesis, we additionally describe several
potential use cases for the introduced system model.

1.1 Motivation

Although hardly noticed, critical event prediction plays an immense role in the
daily lives of most people. When hearing the term critical event prediction,
most people may think of severe natural disasters or the outbreak of a new
virus mutation. However, critical events are all kinds of situations that may
cause malfunctions of the observed system or its environment. This, in turn, leads
directly into the area of failure prediction of technical systems, such as predicting
the time-to-failure of a hard disk drive in a large cloud system [IBM16,Eme16]|
or predictive maintenance applications in the field of Industry 4.0 [Stal8,MH18]].
Such technical systems are often complex and, therefore, monitored with nu-
merous sensors. These multivariate monitoring data describe the current state
of the technical system, so that the entire amount of data must be analyzed in
order to predict impending critical events.

Apart from these technical systems, critical events also occur in our everyday
lives. Here, however, the critical events are often characterized by a single
variable. For instance, our electricity provider must analyze the electricity
demand to adjust to fluctuations in the electricity demand in order to provide
us with enough electricity at all times, for instance to watch television or to use
our computer [Tay03,KYO]]. This leads us directly to other potentially critical

Chapter 1: Introduction

situations, since the web pages we browse must also process our requests. To
this end, the arrival rate of requests must be monitored to decide when to scale
up and add more instances to handle the increased traffic, or when to scale down
as the workload decreases to save money [JYJ13,L]"18]]. Another critical event
can be seen in the domain of supermarkets, namely the amount of products,
such as fresh vegetables and fruits, that must be ordered to meet the customer
demand as closely as possible [[Sma21, REL20]. Ordering too much leads to
the critical event of food going bad while ordering too little leads to the critical
event of poor customer satisfaction. A parallel can be drawn to the planning of
flights and tourist visits, where airlines and other tourist agencies must adjust
their capacity in time to handle the demand [WM18|/Cen20]]. Furthermore,
there are also critical events in the stock market. Here, the customer may
wonder how the price of a stock will develop and whether it is better to sell
now, because the price will crash critically afterwards, or whether it would
be better to hold the stock? A recent example on this topic is the meteoric
rise of GameStop shares [PL21,Med21]]. Here, it was obvious that this high
could not last long, but the critical event of the stock crash was still difficult
to predict. Another highly topical subject for critical event prediction can be
seen in the development of the SARS-CoV-2 incidence value [Fuc20,Rei21]]. In
this context, critical events would be represented by the thresholds set by the
government, which if exceeded or undercut would lead to harsher or more
lenient countermeasures, respectively.

In order to not only reactively resolve such critical events, but also to be able
to initiate countermeasures at an early stage that may even prevent the critical
event, it is essential to predict these critical events at an early point in time.

1.2 Problem Statement and Shortcomings of Existing
Approaches

Predicting critical events is one of the most important tasks in any system to han-
dle changes and plan countermeasures. Therefore, systems often implement
monitoring mechanisms to observe characteristics that describe the workload
and the state of the system and its environment. For this purpose, thresholds,
utility functions, or models are typically employed to infer the current state of
the system [KRV™15]. However, due to digitalization and increased comput-
ing power, these systems can nowadays collect much more information and
store it for future analysis. Thus, more advanced data-driven models can be
deployed to enable the integration of proactive adaptations [KRV 15, Wey17]].
The advantage of such proactive systems over typical systems based on reactive

1.2 Problem Statement and Shortcomings of Existing Approaches

adaptation is that delays in the adaptation process can be eliminated. Moreover,
in the case of critical events, reactive identification of the current system state is
futile, whereas a proactive system could have predicted this event in advance
and allowed timely countermeasures.

To make a reactive system proactive, the system must have estimates of future
states. In most cases, however, a priori modeling of all the situations a system
might encounter at runtime is not possible. Therefore, merely integrating expert
knowledge at design time is not sufficient. That is why prediction methods
have to be integrated into the system. Based on the available data and the
complexity of the prediction task, either time series forecasting combined with
thresholding can be used to achieve proactivity, or more sophisticated machine
and deep learning models need to be trained to provide early predictions while
keeping the required domain knowledge as small as possible.

In the case of representative univariate monitoring data, such as the utiliza-
tion of a server, the electricity demand of a particular area, or the number of
airline passengers, time series forecasting methods can be applied to obtain
estimates of future observations of this univariate data generation process.
However, for critical event prediction, domain knowledge is required to define
thresholds for the univariate data, such as the maximum utilization a server
should not exceed or the maximum number of airline passengers that can be
served per month. If the forecast indicates an exceedance or undercut of the
defined threshold, the critical event is predicted [HZS99,[LWP12|[ZG15].

In contrast, larger and more complex systems cannot be characterized by
univariate data. Instead, numerous properties are monitored for such systems,
resulting in multivariate data. Here, thresholds are no longer applicable, re-
quiring more sophisticated models to be learned. Yet, simply training machine
and deep learning predictors is not always directly possible. First, a meaningful
target must be defined that represents the critical event with respect to the
system under consideration. As monitoring applications are often error-prone,
missing data or anomalous values in the records often occur. However, most
prediction methods cannot handle missing values, so these gaps must be re-
constructed. Furthermore, anomalous values can distort the learning process,
which is the reason these must also be removed. Next, the multivariate mon-
itoring data may not contain useful information in its raw format, requiring
the system to preprocess the raw data to create meaningful features. Moreover,
more features do not necessarily improve the model, but may actually worsen
the model performance by overfitting to irrelevant features. Therefore, only
the most relevant features should be selected to reduce the time required to
learn the model and preprocess the raw data and to avoid distortion of the

Chapter 1: Introduction

model. In addition, a crucial task is the selection of an appropriate prediction
method and the optimization of its hyperparameters. Finally, the system must
update the initial, off-line learned model during runtime to adapt to changes in
the system and the environment. For this purpose, different strategies can be
applied to achieve a trade-off between computation time and model accuracy.
In this thesis, we provide contributions to both approaches to enable proac-
tivity for adaptive systems. First, we present novel approaches on time series
forecasting and evaluate them on a broad set of time series. Although numerous
forecasting methods have been proposed in the literature, these methods have
their advantages and drawbacks depending on the properties of the time series
under consideration [WM97]]. We tackle this problem by combining several
forecasting methods, leveraging their strengths and shortcomings to obtain
more robust results for a wide range of time series. Second, we introduce end-to-
end workflows for modeling, detecting, and predicting failures in the technical
domain. Given that this second category addresses much more complex sys-
tems, we have focused only on technical systems, such as computer systems
and industrial machines. Although there are already several approaches to
predict failures for specific applications, such as financial failures [TK92,XW09],
bearing failures [LWZ"14,[HRBA"18]], or product failures [[EW74,Kul7], these
methods are tailored to the specific application and require significant expert
knowledge. Therefore, these approaches cannot be automated and are not
applicable to other use cases. In contrast, our approaches represent end-to-end
workflows that require no or almost negligible expert knowledge. Although
it is indisputable that one explicit approach cannot cover multiple use cases
simultaneously, the literature lacks a generalizable system model that is inte-
grated into an autonomous computing system architecture and provides several
functionalities to cover this multitude of use cases. Therefore, we introduce
such a generalizable system model for meta self-aware critical event prediction
that offers a broad range of modeling options to handle multiple use cases.

1.3 Research Questions

Drawing from the problem statement and shortcomings presented in Section|[1.2]
we derived two major goals for this thesis. The first goal addresses the design
of novel, hybrid time series forecasting methods to improve forecast accuracy
compared with state-of-the-art forecasting methods. With increased forecast
accuracy, the prediction of critical events in terms of threshold violations is
inevitably enhanced. The second goal, in contrast, focuses on multivariate
monitoring data and the development of more complex, end-to-end critical

1.3 Research Questions

event prediction workflows. The contributions related to Goal A are presented
in Part [lI, whereas Part [IlI| provides the contributions regarding Goal B. In
addition, we break down each goal into several research questions, which are
addressed in the individual chapters of the two parts.

Goal A: Improving the accuracy of automated time series forecasting over state-of-the-
art methods via novel, hybrid forecasting methods.

This goal is formed by the following research questions. The first and third
research question address the design of novel hybrid forecasting methods, while
the second and fourth research questions tackle their evaluation by comparing
the proposed hybrid methods with state-of-the-art forecasting methods.

RQ A.1: How can we use time series decomposition to design a hybrid time
series forecasting method?

RQ A.2: To what extent does the decomposition-based hybrid time series fore-
casting method outperform the state-of-the-art in individual time series
forecasting methods?

RQ A.3: How can we improve the forecast accuracy by employing time series
forecasting method recommendation?

RQ A.4: Compared with the state-of-the-art recommendation approach for
forecasting methods and individual forecasting methods, how do our
recommendation approaches perform?

Goal B: Development of generalizable end-to-end workflows to model, detect, and
predict machine failures, with minimal expert knowledge required.

Similar to Goal A, we also split Goal B into four individual research questions.
However, the research questions might also consist of several short questions.

RQ B.1: How can we infer current degradation states of industrial machines
based only on standard monitoring data without additional domain
knowledge?

RQ B.2: In which way can we realize a proactive component for the prediction
of impending failure events of technical systems?

RQ B.2.1: How can we balance the number of instances for different
failure classes?

Chapter 1: Introduction

RQ B.2.2: How can we model the time-to-failure?

RQ B.2.3: To what extent does time series forecasting improve the time-
to-failure prediction?

RQ B.3: How can we design an end-to-end workflow for predicting critical
events of industrial machines without requiring expert knowledge?

RQ B.4: On the basis of which triggers should machine learning-based critical
event prediction models be updated at runtime as new data arrives?

1.4 Contributions of this Thesis

To present the main contributions of this thesis, we first introduce our meta
self-aware system model for the prediction of critical events and, subsequently,
derive the key contributions with respect to the system model.

1.4.1 System Model for Meta Self-Aware Prediction of Critical Events

In order to integrate proactive analysis for predicting critical events into Self-
Aware Computing Systems [KLBT17] (cf. Section[2.1)), primarily the learning
component must be adapted. Figure(l.1|illustrates our proposed system model
for a meta self-aware analysis for critical event prediction using the typical
LRA-M loop [KLB¥17] (cf. Section[2.1.2)). Depending on the data complexity,
the system model decides whether to apply only time series forecasting and
meta-learning for time series forecasting or to perform additional preprocessing
steps and a more complex model training.

In the case of univariate data that have a specified threshold indicating
critical events, the monitored data are passed to the time series forecasting
component to model the time series and produce forecasts. In addition, a meta
self-aware time series forecasting method recommendation can be trained to
select an appropriate forecasting method with respect to the time series under
consideration. Finally, the resulting time series forecasting model is returned
as a critical event prediction model.

In contrast, for multivariate monitoring data, these time series forecasts can
also be applied to add estimates of future monitoring data to the existing
ones. However, other preprocessing steps, such as transformation techniques
and feature extraction, are also performed on the raw monitoring data. The
composition of forecasts, derived features, and raw monitoring data are then
passed to the model learning component. On the basis of these inputs, a feature
engineering step is performed that can combine existing features, normalize

1.4 Contributions of this Thesis

Goals

\ ' 2

New Critical Event Predictions
Models Monitoring Data Prediction Model
(self, environment, goals,...) H
))
% Act —_— — —_—

e \m;
Empirical Observations
SEL/ A

a
Phenomena Actions
(environment, other systems, humans,...)

LRA-M loop taken from S. Kounev et al. [KLB*17]

I/

~N

r=——-=——==- -[Updating / Re-Learning]— ————————— 1
|

! :
! 1
I

| —’[Meta Self-Awareness] a Y :
: l Model Learning !

1 .

Training : M () (=) . Crlpcgl Event
Monitoring Data | Time Series Forecasting]— > 2 £ : Prediction Model
! 5 = s i
1 3 o = 1
! := = 5 v

> — S — | |—

A > S [O] O
L % s
g - 3
T 2 B)
. = 78
Preprocessing]— & = S
. s
_/ — —)
N J

Figure 1.1: Design of the meta self-aware system model for critical event prediction.

their ranges, or select only the features most relevant to the goal with respect
to a given relevance measure. Regarding the target of the model, a meaningful
choice has to be done, which heavily depends on the context in which the system
model is used. For the prediction of critical events, a reasonable target would
be the time-to-failure. This can be modeled as either a continuous regression
task or a discretized classification task. The targets must then be mapped to
the respective training instances. Finally, the relationship between the features
and the target is learned using machine learning (ML) or deep learning (DL)
methods and the derived critical event prediction model is returned.

Chapter 1: Introduction

In order to improve the prediction of critical events, the system model in-
cludes a feedback loop that monitors the actual result and compares it with the
predicted one. Thus, this component is also responsible for ongoing on-line
learning. Based on a pre-defined trigger, this component initiates re-learning
of the model using the previous data as well as the new data received since the
last model update. This trigger could be, for instance, simple time spans (e.g.,
daily or weekly), deviations between expected behavior and observations (e.g.,
accuracy below 90%, runtime accuracy below 95% of training accuracy), or a
measure to determine significant concept drift (i.e., Hoeffding bound [DHO0]).

Once the critical event prediction model is derived in the learning component
of the LRA-M loop, its application is performed in the reasoning component.
Here, the new monitoring data arrives, which is then forwarded to the critical
event prediction model, including possible preprocessing steps. The critical
event prediction model subsequently provides the previously defined type
of prediction. These results are then passed to a planning module to deter-
mine whether an adaptation is necessary. However, this planning module
is beyond the scope of this thesis. Possible planning approaches can rely on
rules (e.g., [KDM"18]]), models (e.g., [PKWB17]]), goals (e.g., [KMO07])), or
utility functions (e.g., [[VSSB13]]).

Although the results obtained by using this system model are very promising,
the approaches included in the system model are nevertheless subject to certain
assumptions. First, the proposed time series forecasting method, Telescope,
assumes seasonal time series with a length of more than two seasonal patterns.
However, if the time series does not meet this assumption, the meta-learning
approaches to recommend the most suitable forecasting method can still be
applied. Second, the main part of modeling expects a large training data set to
learn the relationship between features and critical events. However, not only
must the data set be large, especially the set of critical events must be sufficient.
Third, if there is a concept drift in the data, the model will be updated using
the update strategies in the feedback loop, but the performance of the model
still decreases until the new pattern is significant enough in the new data.

1.4.2 Individual Contributions

On the basis of the proposed system model, we have derived seven main con-
tributions of this thesis. While the first contribution focuses directly on the
system model, the following six contributions can be assigned to the two goals
introduced in Section namely time series forecasting as well as machine
learning and deep learning for critical event prediction.

1.4 Contributions of this Thesis

Contribution 1: System Model for Critical Event Prediction

Given that most critical event prediction approaches in the literature are
highly tailored to specific problems (e.g., estimating the health of lithium-
ion batteries [MXC™13,/ZXHP18]] or predicting the remaining useful life
of bearings [LWZ714/HRBA"18]]) and lack a proper generalizable model,
we introduce such a system model for critical event prediction based on
the LRA-M loop of Self-Aware Computing Systems. This system model
can handle representative univariate data by applying time series forecast-
ing and meta-learning for time series forecasting as well as multivariate
data. For multivariate data, a more complex model learning process is
followed. However, time series forecasting can also be used in this case
to estimate future developments of sensor readings, allowing anomalous
behaviors to be detected earlier and, thus, improving prediction quality.

Contribution 2: Component-based Forecasting Method

This contribution focuses on the research questions RQ A.1and RQ A.2 of
Goal A. Here, we propose a novel, hybrid time series forecasting method
for seasonal time series based on a kind of divide-and-conquer technique
to enhance the forecast accuracy. That is, the forecasting method uses
time series decomposition, multiple state-of-the-art individual forecasting
methods, and remainder learning via XGBoost. The proposed time series
forecasting method represents a complete end-to-end approach involving
frequency estimation, anomaly removal, feature extraction, composition
type detection, and, eventually, forecasting.

To investigate the performance of the proposed component-based fore-
casting method, we assess the forecast accuracy and the time required to
build the model and perform the forecast of the proposed method as well
as numerous state-of-the-art forecasting methods. To this end, we use a
data set consisting of 53 time series drawn from different areas of interest
for threshold-based critical event prediction. The results show that the
proposed component-based forecasting method achieves a higher aver-
age forecast accuracy and has a lower variation in forecast quality across
the different time series than the other forecasting methods. Compared
with the best competing state-of-the-art methods, our proposed method
also yields a substantial speedup. Finally, we apply the proposed fore-
casting method to the scenario of predicting critical events for automatic
scaling of virtual machines. Here, the results show that our proposed
forecasting method considerably decreases the average response time
and substantially reduces the number of service level objective violations.

Chapter 1: Introduction

Contribution 3: Forecasting Method Recommendation Frameworks

The remaining research questions of Goal A, namely research questions
RQ A.3 and RQ A.4, are addressed by this contribution. Specifically,
we introduce two time series forecasting method recommendation ap-
proaches as well as an approach that combines a weighted forecast ensem-
ble with method recommendation. While one of the recommendation
approaches simply relies on the historical observations of the time series
to be forecast, the other approach utilizes a large data set of time series
and their forecasts to learn a model via machine learning techniques that
estimates the most suitable forecasting method for a new time series only
by computing its time series characteristics (for instance, kurtosis, skew-
ness, and serial correlation). The third approach combining weighted
forecast ensemble and method recommendation assigns weights accord-
ing to these time series characteristics, but includes a dynamic threshold
based on the derived weights to combine the most appropriate forecasting
methods using a weighted ensemble.

We evaluate the first recommendation approach in an online competition
to show its applicability and superiority over individual forecasting meth-
ods. Furthermore, we evaluate the other two approaches by comparing
their forecast accuracy and the achieved ranks of the recommendation
with state-of-the-art individual forecasting methods as well as a well-
known recommendation approach for forecasting methods. Thereby, we
identify the drawbacks of the existing approach and demonstrate that
our approaches significantly enhance the forecast accuracy.

Contribution 4: Critical Event Detection for Machine Tools

10

This contribution addresses Goal B by approaching research question
RQ B.1. We apply an instance of the proposed system model to critical
event detection in a technical system, namely the detection of anomalous
machine states. That is, we introduce a highly generalizable end-to-end
workflow consisting of five steps, namely raw data processing, phase
segmentation, data resampling, feature extraction, and machine tool
anomaly detection. In this approach, only standard machine monitoring
data are assumed and the only domain knowledge required is the number
of work steps the machine must execute.

To evaluate the model, we acquire data from a CNC machine in normal
condition and with an unbalance attached to the spindle to emulate a
critical machine state. The results show that conventional frequency

1.4 Contributions of this Thesis

analysis cannot detect the critical machine conditions well, whereas our
model detects the critical events very well with an F1-score of almost 91%.

Contribution 5: Critical Event Prediction Modeling Alternatives

In order to predict critical events rather than merely detecting them, we
address research question RQ B.2 of Goal B by this contribution. Here,
we compare different modeling alternatives for critical event prediction in
the use case of hard disk drive time-to-failure prediction. First, we apply
different oversampling strategies and evaluate their performance with
respect to the final time-to-failure prediction quality. Furthermore, we
assess the impact of binary class modeling compared with downscaled
multi-class modeling. Finally, we model the time-to-failure not only by
means of classification models, but also with regression models.

Based on the experimental results, we derive the finding that multi-class
modeling is more capable of finding patterns in the data, even after
downscaling the multi-class results to the same two classes as for the
binary modeling. In addition, the regression model also predicts the
critical events very well, however, such real-valued prediction is often
not required and more error-prone than discretized time windows that
indicate the time remaining until the critical event.

Contribution 6: Critical Event Prediction for Industrial Machines

This contribution addresses research question RQ B.3 of Goal B by intro-
ducing an end-to-end workflow for predicting critical events of industrial
machines. Here, critical events are represented by machine failures that
result in downtime. Similar to the fourth contribution, this end-to-end
workflow does not require any expert knowledge other than the definition
of monitoring data and, therefore, represents a generalizable workflow
for critical event prediction of industrial machines. The end-to-end work-
flow consists of four main steps, namely extraction of generally applicable
features from sensor monitoring data, processing of the extracted fea-
tures, mapping of target class labels to training instances, and model
learning with integrated hyperparameter tuning via a grid-search tech-
nique. Based on the results of the fifth contribution, we model the time-
to-failure in terms of multiple classes. Thereby, we compare different
machine learning methods and strategies for multi-class labeling.

We evaluate the model using real-world production data of an industrial
press. The results demonstrate that the model is capable of predicting the
different time-to-failure windows very well, achieving a macro F1-score

11

Chapter 1: Introduction

of 90% for six different time-to-failure classes and an even higher F1-score
of above 98% for the binary prediction of critical events.

Contribution 7: Update Strategies for Critical Event Prediction Models

The final research question RQ B.4 of Goal B is approached by this
contribution. Due to concept drift, critical event prediction models trained
on a static training set need to be updated from time to time to properly
cover the current patterns in the data. To this end, we present four update
triggers to determine when critical event prediction models should be
re-trained during on-line application. While one update trigger merely
takes the elapsed time since the last update into account, the other three
update triggers consider the achieved prediction quality.

We compare the prediction qualities achieved by the update triggers with
each other as well as with the static baseline on a real-world data set of
hard disk drive failures. To this end, we introduce a novel measure of
hard disk drive prediction quality that combines the commonly used
measures of failure detection rate and false alarm rate into a single mea-
sure. The results demonstrate the necessity of model updates during
on-line application and suggest that the update triggers that take into
account the prediction qualities of the current and previous test batches
achieve the best overall trade-off between prediction quality and update
cost in terms of required model re-trainings.

1.5 Use Cases for the Proposed System Model

To demonstrate the importance of the proposed system model for critical event
prediction, we describe numerous use cases in which the meta self-aware system
model has already proven useful or could be beneficial in the future.

1.5.1 Univariate Time Series Forecasting with Thresholds

A natural use case for critical event prediction based on forecasting of univariate
time series in combination with thresholds is the scaling of virtual machines,
also known as auto-scaling in cloud computing. Here, the workload, i.e., the
number of incoming requests, can be monitored over time and used as input
to forecasting methods to estimate the upcoming load to be handled by the
virtual machines. By combining the estimation of the future arrival rate with
queueing theory or simple thresholds, the critical events of overload, resulting
in higher response times, and overprovisioning, resulting in wasted resources,

12

1.5 Use Cases for the Proposed System Model

can be predicted and prevented by starting additional or stopping currently
running virtual machines. Another example is the provision of electricity by
energy suppliers. Here, the electricity demand requested by customers must be
forecast to plan electricity delivery. The same applies to planning other services,
such as sizing the number of flights to match the demand as closely as possible,
or ordering fresh fruits and vegetables as a supermarket manager. Buying or
selling stocks on the stock market can be considered a further use case for critical
event prediction based on univariate time series forecasting. By means of such
forecasting methods, the future development of the stock value can be estimated
to determine the critical point for buying or selling the particular stock. Critical
event prediction based on time series forecasting can also be useful for planning
countermeasures to the SARS-CoV-2 situation. The last one and a half years
have shown that reactive countermeasures have been inadequate due to the
exponential spread of the virus and, therefore, the exponential growth of
the incidence value. However, integrating forecasting into the critical event
determination will allow for early estimation of the exceedance of the thresholds
set by the government in order to take timely countermeasures.

1.5.2 Critical Event Prediction using Multivariate Monitoring Data

A typical use case for our system model is the technology sector, especially
Industry 4.0. The concept of Industry 4.0 already includes continuous online
monitoring, which provides the necessary database for prediction methods.
Furthermore, another goal of Industry 4.0 is to reduce human intervention. This
tits very well with the idea of Self-Aware Computing Systems. However, for
a production plant to run (semi-)autonomously, impending machine failures
must be known in advance so that countermeasures can be initiated. This is
where the critical event prediction component comes into play. We have already
deployed an instance of our system model for automatic detection of tool deteri-
oration for CNC machines, which showed promising results. Furthermore, we
used a version of our system model to predict the time-to-failure of a large-scale
press. Here, we achieved a highly accurate prediction of upcoming machine
downtimes using multiple prediction windows. However, Industry 4.0 is not
the only application scenario in the technology domain. Another relevant area
is cloud computing. According to Backblaze, hard disk drives (the driver of
cloud computing) have a comparatively low annual failure rate of only about
2% [Kle20]. However, for large cloud providers running several thousands
of hard disk drives in parallel, this translates into daily hard disk drive fail-
ures. Nevertheless, these cloud providers need to provide fast and reliable
services to end users. Therefore, cloud providers need to identify failing hard

13

Chapter 1: Introduction

disk drives in advance based on monitoring data. To this end, we have de-
veloped a time-to-failure prediction approach based on components of our
system model that compares different preprocessing steps and time-to-failure
modeling alternatives.

Apart from the field of technology, critical events are also occurring in the
area of biology. Due to the age of digitalization, more and more data are
monitored and stored online in this field as well. One potential use case of
the proposed system model in biology could be the prediction of severe heart
infarctions. In clinics, it is a regular occurrence for patients to suffer a severe
heart attack. If this happens outside the intensive care unit, these patients often
die or suffer permanent damage. Here, even a 30-second to 2-minute lead time
and an alarm that reaches doctors and nurses would help to save many lives.
Another biological application could be prediction of insect mortality, especially
predicting the development of bee colonies in terms of their population size.
As most agricultural and wild plants are pollinated by bees, they are of great
relevance to our crops and biodiversity. Studies have already shown that the
biomass of flying insects in protected areas has decreased by an average of
2.8% per year over the last 27 years [[LHS™17]. We are therefore working with
two bee institutes that have already deployed more than 300 bee colony scales
throughout Germany to monitor weight trends over the years. In the future,
we want to use the proposed system model to predict critical developments at
an early stage on the basis of these data, so that beekeepers can initiate timely
countermeasures to keep their hives healthy.

1.6 Thesis Outline

The remainder of this thesis is organized into four parts. Part[[provides rele-
vant background information for a better understanding of the contributions
presented in this thesis. In addition, this part summarizes the state-of-the-art
in time series forecasting as well as critical event prediction using time series
forecasting and machine learning methods. Subsequently, Part [lI] describes
our contributions on automated hybrid time series forecasting methods and
presents our evaluations on them. Part [llll focuses on our second research
goal, namely modeling, detecting, and predicting critical events with respect to
failures in the technical domain. Finally, Part[[V|briefly summarizes the thesis
and outlines potential future work.

14

Part |

Fundamentals

Chapter 2

Foundations

This chapters aims at providing the most relevant background information on
methods applied in this thesis. However, we only present a brief introduction
into the topics. For more detailed explanations, we refer to reference books
on the respective topics. First, we present the concept of Self-Aware Computing
Systems. For more information on Self-Aware Computing Systems, we refer
to the book by S. Kounev et al. [KLB"17]]. Next, we introduce fundamentals
on time series analysis. For a deeper insight into time series analysis, we
refer to J. Cryer and K.-S. Chan [|[CC08||. Following time series analysis, we
present state-of-the-art statistical forecasting methods. A detailed book on
time series forecasting in general can be found in the work of R. Hyndman
and G. Athanasopoulos [[HA18]]. Hereafter, we briefly present a number of
machine learning methods used in this thesis. For more details on clustering
methods, we refer the reader to the book by L. Rokach and O. Maimon [RMO05]],
while we refer to the book by T. Hastie et al. [HTF09]] for classification and
regression models. Finally, we succinctly present fundamentals on the deep
learning methods employed in this thesis. An extensive reference on deep
learning methods can be found in the book by 1. Goodfellow et al. [GBCB16].

2.1 Self-Aware Computing Systems

Several concepts have been developed in the field of autonomous computing
systems. For instance, well-known concepts include Autonomic Computing
Systems [KCO3]], Self-Aware Computing Systems [[KLB"17]], and Organic Computing
Systems [MSvdMWO04]]. As described in Section the contributions of this
thesis are situated in the concept of Self-Aware Computing Systems. Therefore,
we first briefly introduce the vision of Self-Aware Computing Systems, followed
by their key component, namely the so-called LRA-M loop. The content of this
section is based on the book by S. Kounev et al. [KLB17]].

17

Chapter 2: Foundations

2.1.1 Vision of Self-Aware Computing Systems

In their book [KLB"17, p. 5], S. Kounev et al. defined Self-Aware Computing
Systems as follows:

“Self-Aware Computing Systems are computing systems that:

1. learn models capturing knowledge about themselves and their environ-
ment (such as their structure, design, state, possible actions, and
runtime behavior) on an ongoing basis and

2. reason using the models (e.g., predict, analyze, consider, and plan)
enabling them to act based on their knowledge and reasoning (e.g.,
explore, explain, report, suggest, self-adapt, or impact their environ-
ment)

in accordance with higher-level goals, which may also be subject of
change.”

Hence, the concept of Self-Aware Computing Systems focuses on computer
systems that use monitoring data to learn models about themselves and the
environment. In this way, these systems gather knowledge and utilize it to
reason and act on the basis of that knowledge, while striving to fulfill higher-
level goals throughout their entire operation.

2.1.2 LRA-M Loop of Self-Aware Computing Systems

The key concept of Self-Aware Computing Systems that performs all elements
presented in Sectionis the LRA-M loop with its main components Learning,
Reasoning, Acting, and Monitoring. Figure shows the system, referred to
as self, with its LRA-M loop and interfaces. The interfaces of the self serve to
monitor both itself as well as the environment and obtain higher-level goals as
input. On the basis of the acquired monitoring data (i.e., empirical observa-
tions), the self continuously learns a model (learning component). This learning
is accomplished in two ways. First, an initial model is learned in an off-line
step. Second, the model is continuously re-learned during runtime using the
newly acquired empirical observations. The learned models, the self, and the
goals form the knowledge base. Drawing on this knowledge base and newly
incoming monitoring data, the reasoning component derives a finding that may
trigger an action. The self monitors the achieved results, which in turn has an
impact on the learning and reasoning of the self.

18

2.1 Self-Aware Computing Systems

Goals
w

Models

(self, environment, goals,...

‘ Reason 777777>‘“ ACt fﬁ_ki%

Empirical Observations

l<_v““_______

SELF

Phenomena Actions
(environment, other systems, humans,...)

Figure 2.1: Learning and reasoning loop of Self-Aware Computing Systems taken from
S. Kounev et al. [KLB17]].

In order to integrate automated proactive analysis into Self-Aware Computing
Systems, primarily the learning component needs to be adapted. Figure
in Section [1.4{ shows our vision of a meta self-aware analysis in the typical
LRA-M loop with the goal of predicting critical events. To this end, the learning
component requires a raw data preprocessing component to impute missing
or anomalous values, transform the data into meaningful components and
scales, and derive expressive features from the raw observations. Furthermore,
time series forecasting is an important pillar to estimate future values of the
observations and, thus, to provide additional information to the main model
learning component. The derived features and forecasts are then used to train
a machine or deep learning model for critical event prediction. To this end,
the features and forecasts must be mapped to a suitable target, i.e., either to
binary classes for detecting or predicting failures in general, to multiple classes
for predicting the impending failure within time windows, or to a regression
for obtaining an arbitrary real-valued estimate of the time remaining until the

19

Chapter 2: Foundations

critical event occurs. On top of these steps, a meta-self-aware component is
integrated to target method recommendation. In addition, a feedback loop
is implemented that exploits knowledge about past forecasts and predictions
to improve the model via on-line re-training. With respect to the reasoning
component, the derived critical event prediction model can be employed to
obtain an estimate on the status of the system, which may trigger an action.
For instance, a short time-to-failure of an industrial machine could trigger a
maintenance action. However, planning and scheduling countermeasures is
beyond the scope of this thesis. Possible planning approaches can rely on
rules (e.g., [KDM™18]]), models (e.g., [PKWB17]]), goals (e.g., [KMO07]]), or
utility functions (e.g., [[VSSB13]]).

2.2 Time Series Analysis

The research field of forecasting mainly focuses on univariate, equidistant time
series. Thus, we first define the term univariate, equidistant time series. Such a
univariate, equidistant time series X of length n is an ordered set of n observa-
tions x;, where each observation x; originates from the same time-dependent
data generation process and is mapped to a unique time ¢, with the temporal
difference between successive observations At being a constant value. Formally,
a univariate, equidistant time series X with length n is defined as

X ={xy:t €T}, (2.1)

where T is a discrete set of equidistant points in time with | X| = n. However,
the temporal difference between two successive observation time points of a
time series is not necessarily of equal length. In such a case, the time series is still
univariate, but the equidistant property is lost. Such univariate, non-equidistant
time series are out of the scope of this thesis.

Moreover, a time series can also be of multivariate nature. In a multivariate
time series, unlike univariate time series, several time-dependent variables are
observed. However, all variables of a multivariate time series are sampled at
the same points in time. Furthermore, the observed variables in a multivariate
time series are not only time-dependent, but also exhibit interdependencies. A
typical example of such a multivariate time series are weather measurements
when considering temperature, humidity, precipitation, cloud cover, and prob-
ability of rainfall. In the following, however, we use the term time series to refer
to univariate, equidistant time series unless otherwise specified.

A well-known example of a univariate, equidistant time series is the number
of monthly international airline passengers from 1949 to 1960. This time series

20

2.2 Time Series Analysis

is displayed in Figure 2.2} where the horizontal axis represents the time domain
and the vertical axis the number of monthly international airline passengers
in thousands. As can be seen, this time series exhibits numerous typical time
series properties, such as trend, seasonality, and multiplicative composition.
The following sections provide relevant background information on such time
series characteristics and how these can be extracted from a raw time series.

600
!

500
l

300
l

Airline Passengers (Thousands)
200 400
| |

100
|

T T T T T T
1950 1952 1954 1956 1958 1960

Year

Figure 2.2: The number of monthly international airline passengers in thousands from
1949 to 1960.

2.2.1 Time Series Characteristics

For describing time series in terms of properties, there exist many different
characteristics. Apart from general characteristics, such as sample mean and
sample standard deviation, several more characteristics have been proposed to
be used for time series characterization [WSMHO09, LG10]]. However, to focus
on the essential features for this thesis, we present only those employed in the
contributions. Note that the different characteristics have different value ranges.
Yet, in order to derive rules in an automatic manner, the raw values of the

21

Chapter 2: Foundations

features are typically less important than its degree of dominance. Therefore,
time series characteristics are typically normalized into the range [0, 1], with a
larger value indicating a stronger presence of the particular property.

22

o Trend strength: With respect to time series analysis, trend is the long-term

movement of observations. Unless an external trigger is present, the trend
is usually a monotonic function, i.e., stagnant, increasing, or decreasing.
The strength of a time series is thereby calculated as

Var (X_g 1)

Var (X_S) ’ (2.2)

where Var (X_g _7) denotes the variance of the de-seasonalized and
de-trended time series, while Var (X_g) represents the variance of the
de-seasonalized time series.

Seasonal strength: In contrast to trend, seasonality of time series refers to
regularly recurring oscillations. Typical drivers for such seasonal fluc-
tuations are yearly climate patterns and common human behavior (for
instance daily routines or traditional habits like Christmas). The seasonal
strength is calculated similarly to the trend strength, but the denominator
is changed to the variance of the de-trended time series X_7:

Var (X_s 1)
— ki i VA 2.
Var (X_7) (2:3)
Frequency: The frequency, often also called periodicity, is closely related
to seasonality, as it reflects the length of the seasonal pattern. Determin-
ing the frequency of a time series is a complex task. An approach to
calculating the frequency is presented in Section

Skewness: Whether the distribution of a time series is symmetric or not is
described by the skewness, which exhibits a value range of [—1, 1], where
a value of 0 indicates a strongly symmetric distribution of the time series
and a non-zero value indicates that the distribution of the time series
lacks symmetry. While a negative skewness indicates that the distribution
of the time series is skewed left, a positive skewness indicates that the
distribution of the time series is skewed right. Finally, the skewness S is
the third standardized moment and is therefore calculated as

1 < —.3
S:M;(X,-—X) : (2.4)

2.2 Time Series Analysis

where X denotes the mean of all observations in the time series, X; is the
i-th observation in the time series, o represents the standard deviation of
the time series, and 7 is the length of the time series.

Kurtosis: The kurtosis describes whether a distribution is peaked or flat
with respect to the normal distribution, with a high kurtosis representing
a sharp peak near the mean that declines rapidly into heavy tails. In
contrast, a low kurtosis indicates that the time series tends to have a flat
peak near the mean. A shifted version that maps the normal distribution
to a value of zero is called excess kurtosis. In this case, a high kurtosis
is implied by a positive value, while a negative value represents a low
kurtosis. In the following, we use only the excess kurtosis K, defined by

R —4
K:W;(Xi—X) - 3. (2.5)

Serial correlation: The serial correlation, often also called autocorrelation,
refers to the correlation of a time series with itself at an earlier point
in time at lag k. Thus, a high serial correlation indicates repeating, i.e.,
seasonal, patterns in a time series. To calculate the serial correlation @y,
the Box-Pierce statistics [BP70] are used:

Qh =n- Z rl%v (26)

where h is the maximum lag considered (usually & ~ 20) and rj, repre-
sents the correlation coefficient between the original time series and the
time series with lag k.

Non-linearity: A system is considered non-linear if the changes of the input
are not proportional to the changes of the output. Hence, non-linearity
describes the degree to which the time series can be poorly written as a
linear combination of unknown variables or functions. In order to test
for non-linearity, non-parametric kernel tests or neural networks can be
utilized. In this thesis, Terdsvirta’s neural network approach [TLG93] is
implemented for this purpose.

Self-similarity: The similarity of an object to a part of itself is expressed
by the self-similarity, which is given by the Hurst exponent H [WPT98,
Ros96]]. To this end, Autoregressive Fractionally Integrated Moving Av-
erage (ARFIMA) processes can be employed as estimation method for

23

Chapter 2: Foundations

computing H. In ARFIMA models, the parameter of the integrated part
of the Autoregressive Integrated Moving Average (ARIMA) model d is re-
placed by a non-integer value. To estimate d, an ARFIMA(0, d, 0) is fitted
with maximum likelihood. Finally, the Hurst exponent H is calculated as

H=d+0.5. (2.7)

e Chaos: In order to understand the random behavior of a time series,
identifying and investigating chaos is of great value. The characteristic
chaos is given by the Lyapunov exponent, which is determined by the
method of R. C. Hilborn [Hil00].

2.2.2 Seasonality and Cyclicality of Time Series

According to R. Hyndman and G. Athanasopoulos, the terms seasonality and
cyclicality are often confused with each other or used synonymously in the field
of time series analysis [[HA18]]. Yet, the distinction between seasonal and cyclic
time series is crucial for time series modeling. Therefore, we briefly introduce
both types of time series and illustrate the differences using examples based on
R. Hyndman [Hyn11]].

The main property of seasonality in time series are fluctuations with a fixed
frequency around a certain baseline. For this reason, such time series are often
referred to as periodic. The oscillations are typically caused by seasonal influence
factors or the day-and-night behavior of humans. In fact, seasonal time series
may also exhibit multiple seasonal patterns with different frequencies. An
example of such overlapping frequencies can be caused by a weekday and
weekend pattern in addition to the day-and-night pattern. Figure2.3|displays
such a seasonal time series with two overlapping frequencies. This time series
depicts the electricity demand of Victoria, Australia, in Gigawatts from the
beginning of week 25 to the end of week 29 of 2014. Each value in the curve
specifies the electricity demand for the last half an hour. Victoria’s electricity
demand is affected by two seasonal factors. First, the time series encompasses a
diurnal (day-and-night) period. The electricity demand increases until midday,
after which the electricity demand decreases and bottoms out in the middle of
the night. This behavior repeats with a fixed regularity. In addition, a weekly
period (weekdays vs. weekends) is evident. Apart from weekends, the pattern
of electricity demand is similar for each day. On weekends, in contrast, the
peaks are substantially lower than on weekdays. Since this pattern occurs
weekly, the frequency is also constant.

Similar to seasonal time series, cyclic time series also exhibit recurring fluctua-
tions with peaks and troughs, but unlike seasonal time series, these fluctuations

24

2.2 Time Series Analysis

s . i J
S g | |
2|0 0
WA
24 25 26 Week27 28 29

Figure 2.3: The half-hourly electricity demand of Victoria, Australia, in GW in 2014.

actually do not emerge with a fixed frequency. Therefore, time series exhibiting
such non-periodic behavior are referred to as cyclic instead of seasonal. Apart
from the different distances between the fluctuations, cyclic time series often
also show highly varying amplitudes of the peaks. In contrast, seasonal time
series typically have roughly the same amplitude of their periods, unless the
seasonal pattern is overlapped by another seasonal pattern or the time series
exhibits a multiplicative composition type (cf. Section[2.2.4). An example cyclic
time series representing the annual number of lynx trappings in Canada from
1821 to 1934 is shown in Figure At first glance, the time series appears
to be seasonal due to the repeating peaks, but a closer look at the time series
reveals that some of the cycles last 8 years, 9 years, and sometimes even 10
years or more. Thus, the frequency of the cycles is not fixed. Furthermore, the
amplitudes of the peaks differ highly, although there is no trend in the time
series, nor is there any overlapping seasonality evident.

As already pointed out, the distinction between seasonal and cyclic time
series is a critical aspect, because some forecasting methods cannot handle
seasonal time series, while others perform much better for seasonal time series.

25

Chapter 2: Foundations

T o
T g]
8 R
I
O _
=
- 8
g B
o
® _
|_

o
€ 8-
A ™
© _
o
o 8
E 27
b4

o -

T T T T T T
1820 1840 1860 1880 1900 1920
Year

Figure 2.4: The annual number of lynx trappings in Canada from 1821 to 1934.

Therefore, distinguishing whether a time series is seasonal or cyclic is also of
great importance for the automatic selection of time series forecasting meth-
ods. Finally, with respect to cyclic time series, typical frequency estimation
approaches also find a dominant frequency, although applying the derived
frequency to cyclic time series leads to poor forecasting results, since the time
series do not have a steady periodic pattern and, therefore, the forecast drifts
compared to the actual values.

2.2.3 Periodograms for Frequency Estimation

In order to determine the frequency of a seasonal time series, spectral analysis is
typically applied. In the field of spectral analysis, a time series is considered as
a sum of cosines and sines with different frequencies and amplitudes. Based on
this assumption, the periodogram is a mathematical tool for estimating spectral
density [Sch98]]. To identify the most dominant frequency, the periodogram
computes the spectrum for numerous frequencies by applying a brute force
algorithm. Thus, for each potential frequency, the periodogram determines the

26

2.2 Time Series Analysis

spectrum using Fourier transform. More specifically, the periodogram involves
splitting a time series X with observations z;,t = 1,. .., n, into multiple cosines
and sines under the constraint that the sum of the cosines and sines found
along with the mean value of the time series must yield the original time series
observations. Thus, the discrete Fourier transform is applied for the frequencies

k
Uk:—withkrzl,...,ﬁz
n 2

1 n
_ f § :6727rztvkxt
n
t=1

n l n
_ N Z cos(2rtuy)wy — Zﬁ Z sin (2wt)z, (2.8)
t=1 t=1

Subsequently, the periodogram computes the squared modulus of the dis-
crete Fourier transform as I (vy):

I(vg) = | X (vp)]?

n 2
(Zcos 2ty)x) (Z (2mtvg)x > (2.9)

The result of applying the periodogram to the airline passengers time series
(cf. Figure[2.2)) is given in Figure Note that for illustrative purposes, we
have replaced the frequencies v, with the respective length of the seasonal
pattern under consideration. As this time series exhibits annual seasonality, the
length of a seasonal pattern is twelve. This is also apparent in Figure 2.5} as the
computed spectrum shows a prominent peak for this frequency. Furthermore,
decreasing peaks can also be seen for multiples of this frequency.

In general, a high spectral value I(vy) indicates a dominant frequency, while
small spectral values can be caused by noise. For noisy, random time series,
however, the spectrum should have a similar value for all possible frequencies,
since such time series do not contain a distinct seasonal pattern. Although
the periodogram finds a dominant frequency for seasonal time series, it may

27

Chapter 2: Foundations

o
o
[J—
o
~
o
o
o
o
n
e
S _
S 8
o S
n I
o
o
o
o
—
o -
I T T T T T T I
0 10 20 30 40 50 60 70
Frequency

Figure 2.5: The resulting periodogram for the monthly international airline passengers

time series (cf. Figure[2.2)).

also find a dominant frequency for cyclic time series. As demonstrated in
Figure cyclic time series can also have sinusoidal patterns, making the
automatic distinction between seasonal and cyclic time series a particularly
challenging and error-prone task. Thus, the distinction between seasonal and
cyclic time series must be carried out prior to the application of periodograms,
since a meaningful frequency should be calculated only for seasonal time series.
If this is not done, the forecasting accuracy can be severely reduced.

Note that the frequency of a time series can also be approximated by autocor-
relation when iterating over the lag parameter k (cf. Section[2.2.T)). However,
autocorrelation has the same problem of distinguishing seasonal from cyclic
time series. Furthermore, spectral analysis typically provides more accurate
results and should therefore be preferred over autocorrelation.

28

2.2 Time Series Analysis

2.2.4 Time Series Decomposition

As already mentioned in Section a time series can be thought of as a com-
bination of different components. In time series analysis, a common approach
is to reverse this composition and decompose a time series into its individual
components. Although several decomposition models have been proposed
in the literature, we will focus only on the structural time series model (STSM).
Based on the STSM, a time series X consists of three main components, namely
season S, trend 7', and irregular I, which is also often referred to as remainder.
However, depending on the type of composition, the original time series is
either composed as the sum of the individual components, i.e.,

X=54+T+1, (2.10)
or as the product of the individual components, i.e.,
X=5-T- 1 (2.11)

The first case is called additive composition, while the second case is called
multiplicative composition. An additive composition is present if the amplitude of
the seasonal fluctuations remains the same regardless of the trend. In contrast, a
time series exhibits a multiplicative composition if the amplitude of the seasonal
pattern changes with respect to the trend level. An example of a multiplicative
time series is shown in Figure Here, the amplitude of the seasonal pattern
increases considerably with rising trend.

A commonly used method for dividing a time series into these components
is Seasonal and Trend decomposition using Loess (STL) [CCMT90]. The main
advantages of STL over other time series decomposition methods based on
STSM are that it allows for arbitrary seasonal frequencies, is able to extract
changes in the seasonal pattern over time, and allows the user to control the
smoothing of the trend component. The main procedure of STL is performed
in two nested loops. The inner loop is used to smooth the seasonal and trend
components, while the outer loop is used to calculate the irregular component
as the difference between the actual observations and the smoothed seasonal
and trend components. In addition, each time point is assigned a robustness
score with respect to the corresponding value of the irregular component. These
robustness scores are then used for the next iteration of the inner loop. Yet, this
is only a brief insight into the STL algorithm. For further insights, please refer
to the original publication by R. Cleveland et al. [CCMT90].

Although STL can only handle additive decomposition of time series, a multi-
plicative time series can easily be transformed to show an additive composition.

29

Chapter 2: Foundations

For this purpose, the logarithm is applied to the original time series. Note that
for applying the logarithm to the time series, the time series might need to be
shifted along the vertical axis so that there are no values less than or equal to
zero. To prove the equivalence of the multiplicative decomposition and the
additive decomposition on logarithmized time series, it can be shown that

X=5-T-1
< log(X) =log(S-T-1)
= log(S) + log(T") + log(I). (2.12)

Figure 2.6| illustrates the result of the STL decomposition on the logarith-
mized monthly international airline passenger time series (cf. Figure[2.2]). The
horizontal axes always represent the time, while the logarithmized time series
and the extracted components, i.e., logarithmized season, logarithmized trend,
and logarithmized irregular, are displayed in the different subfigures on the
vertical axes from top to bottom. The logarithmized time series shows that
the multiplicative behavior has been successfully transformed into an additive
composition type. Furthermore, a clear seasonal pattern and a monotonic trend
are extracted by STL, leaving only a small irregular componeniﬂ

Once the components are determined, the time series can also be adjusted
by removing certain components of the time series. The most common com-
binations are de-seasonalization, de-trending, and de-trending together with
de-seasonalization. The de-seasonalized time series X _g is defined by

X g=X-5S=T+1. (2.13)
By contrast, the de-trended time series X _r is defined by
X =X-T=S+1. (2.14)
Finally, the de-seasonalized and de-trended time series X _g _ is defined by
X g r=X-5-T=1 (2.15)

and, thus, equals the irregular component.

"Note that the gray bar represents the same area for all four subfigures. Thus, a large gray
bar of a component shows that the respective component accounts for only a small portion of
the time series.

30

2.3 Time Series Forecasting

3 o

= Q

o ©

N 10 0

o w

£ 3

= N
c o
? o
g o
© o

o 9
T g
S 8 D
-

3 e
= 0l :
E | | e | ||| I| .”l |“I L ||||| | 4 T .'| 1l ||I|I|||||.I||I|||||||||| .|| L || I ||||| | . 8
o0 | | '“” || If I I I|‘I|'I e |||I I|I|I|II I‘ g
. =

1950 1952 1954 1956 1958 1960 I
Time

Figure 2.6: The resulting STL decomposition for the logarithmized monthly interna-
tional airline passengers time series (cf. Figure[2.2).

2.3 Time Series Forecasting

“Prediction is very difficult, especially if it’s about the future” is a famous quote
attributed to Niels Bohr. This statement proves correct, as there is an entire
field of research that focuses exclusively on the study of historical data in
order to make predictions on future values, namely the research field of time
series forecasting. Although sometimes referred to as predictions, the process
of analyzing time series, especially univariate time series (cf. Section[2.2)), to
make estimates on future observations is generally referred to as forecasting.
As time series are ubiquitous in our world, forecasting is an essential pillar in
the decision-making process and, therefore, is used in many fields like business,
economics, finance, science, and engineering.

Generally speaking, time series forecasting consists of three main steps.

1. Acquisition and examination of historical data, also referred to as time
series observations.

31

Chapter 2: Foundations

2. Fitting a model that captures the properties and structure of the historical
time series observations.

3. Provision of estimates on future observations, i.e., the forecast, and their
evaluation as soon as the actual values are available.

Such forecasts can either estimate a single future value, which is referred to as
a one-step-ahead forecast, or provide estimates for several successive time points
in a single step, which is referred to as multi-step-ahead forecasts.

As time series forecasting is of major importance for many different practical
applications and the “No Free Lunch Theorem” [WM97]] also holds true for
the field of time series forecasting, a wide variety of time series forecasting
methods have been developed. To provide a brief overview of commonly used
time series forecasting methods, the following subsections present a number of
basic as well as state-of-the-art individual forecasting methods.

2.3.1 Naive Forecasting

The simplest and most intuitive individual forecasting method is the so-called
Naive forecast. This method assumes that the last known observation z,, pro-
vides the most information on future values and, consequently, this last known
value is forecast for the entire forecast horizon. Formally, the Naive forecast
can be expressed as

«%nJrk = Tn, (216)

where 2, is the forecast for £ time points in the future.

For seasonal time series, in contrast, the Naive forecast does not forecast the
last known observation, but the last known observation with distance equal to
a multiple of the time series frequency. This method is called sNaive forecast
and is defined by

Tntk = Tptk—f(p+1)s (217)

where f denotes the frequency of the time series and p = {?J represents the

number of periods to look back to the known observation.

Finally, an extension of the Naive forecast is presented by the so-called Random
Walk model, which is also known as ARIMA(0,1,0). Here, the time series
is assumed to exhibit random behavior and, thus, the Random Walk model
forecasts the last known value together with a cumulative sum of randomly
sampled values. This process is defined by

k
Bnik = Tn+ Y70, (2.18)

=1

32

2.3 Time Series Forecasting

where r; are observations of an independent and identically distributed (i.i.d.)
process. In the domain of time series forecasting, such a process is also referred
to as ARIMA(0,0,0) (cf. Section[2.3.4)).

The main advantage of Naive and Random Walk forecasts is quite intuitive:
The application of these methods incurs hardly any computational costs and
the forecasts can therefore be delivered extremely fast. However, since the
forecasting accuracy is often rather poor, these methods are only used as a
baseline in real applications.

2.3.2 Exponential Smoothing State Space

A well-known approach to extrapolating data is the use of exponential smooth-
ing. The general concept of Simple Exponential Smoothing (SES) was introduced
by R. Brown in 1956 [Bro56|]. The SES model extrapolates a future value by
assigning a weight to each observation in the history and, then, computing the
sum of the weighted observations. Therefore, the one-step-ahead forecast of
an SES model is defined as

Tnt1 = axy + (1 — a) &y,
Tny1 = axp + (1 —a) (axp—1+ (1 —a) (azp—o+ (1 —a)(...)))
1

—ar,+a(l—a)z, 1 +a(l—a) s, o+ F+a(l—a)" o,
(2.19)

where 0 < a < 1 represents the smoothing factor of the SES model. The com-
mon assumption in time series forecasting is that more recent observations
are more relevant and represent future observations better. Therefore, « is
typically set quite high. However, the drawback of this approach is that it
does not consider trend or seasonal components of the time series. To address
this drawback, several adaptations of the SES model have been proposed. In
1957 and 1960, C. Holt and P. Winters presented approaches that took into
account the seasonal and trend components [[Hol57,Win60]]. However, since
each component (i.e., trend and season) can be either nonexistent, additive, or
multiplicative, there are nine possible combinations. To provide assistance on
when to choose which combination, several researchers have provided articles
with guidelines [Peg69,|GJ85]]. Subsequently, R. Hyndman et al. [[HKOSO0§||
introduced a framework for modeling time series based on the Exponential
Smoothing State Space Model. The model distinguishes between the three com-
ponents error, trend and season, which is also the reason why the framework is
called ETS. The selection of the component combination in ETS can either be
set manually or left to the framework. In the latter case, ETS determines the

33

Chapter 2: Foundations

most appropriate combination based on information criteria, such as Akaike’s
Information Criterion (AIC) and Bayesian Information Criterion (BIC).

2.3.3 Autoregressive Moving Average

Another class of individual forecasting methods are the Autoregressive Moving
Average (ARMA) models. ARMA models, as the name implies, consist of
two submodels, the autoregressive AR(p) model and the moving average
MA(q) model. On the one hand, the AR part forecasts future values as a
linear combination of p historical observations x;_;, referred to as order p, their
weights ;, also referred to as AR coefficients, a white noise random error ¢,
and a constant term c. Thus, the AR(p) model is defined as.

p
= pi-mitete (2.20)
=1

On the other hand, besides the white noise random error ¢; and a constant
term ¢, the MA part of ARMA takes the ¢ past errors ¢;_; and their weights ©;,
referred to as MA coefficients, to forecast the future value. Formally, the MA (q)
model is defined by

q
Ty = ZQj “€—j T €+ (2.21)
j=1
Finally, the entire ARMA (p,q) model is defined by

p q
Ty = Z Pi - Te—j + Z O -€_j+cte (2.22)
i=1 j=1

Note that the random errors ¢; are assumed to be i.i.d. and follow the stan-
dard normal distribution. The parameters p and ¢ of an ARMA model can be
estimated using the Box-Jenkins method [[B]70]].

2.3.4 Autoregressive Integrate Moving Average

The Autoregressive Integrating Moving Average (ARIMA) model [B]70]] is a com-
mon choice for individual forecasting methods and is an extension of the ARMA
model introduced in Section2.3.3] The main drawback of ARMA models is their
strong assumption of stationary time series. In time series analysis, stationarity
means that the properties of the time series do not depend on the time. For this
reason, time series exhibiting a trend or seasonal pattern are non-stationary,

34

2.3 Time Series Forecasting

since the observed values depend on the point in time. In contrast, an example
of a stationary time series would be white noise, because the time of observa-
tion has no effect on the monitored value. To overcome this shortcoming of
ARMA models, ARIMA models transform a non-stationary time series into a
stationary time series by differencing. Therefore, ARIMA models contain the
same parameters as ARMA models (i.e., the order of the AR model p and the
order of the MA model ¢q) together with an additional parameter, namely, the
order of the integrated part of the model d. Note that in the case of d = 0, the
ARIMA (p,d,q) model is equivalent to an ARMA (p,q) model.

However, the ARIMA model is also based on two assumptions. First, it
assumes that the time series under consideration is linear and second, it further
assumes that the time series follows a certain known statistical distribution.
Note that the first assumption is extremely stringent, since real-world data
are hardly only linear. Therefore, the main drawback of ARIMA models is
the linear shape assumption of the model [Zha03]]. To address the limitations
of the normal ARIMA models, numerous variants have been proposed. For
the particular assumption of linearity, the seasonal ARIMA (sARIMA) model
was developed for seasonal time series. In contrast to the ARIMA model,
the sARIMA model is defined by seven parameters. In addition to the three
parameters of ARIMA, sARIMA requires the same parameters for the seasonal
components along with the length of a seasonal pattern. In the following, we
use the term ARIMA models to refer to the set of ARIMA and sARIMA models,
unless we specify precisely that seasonality is excluded.

Finally, similar to ARMA models, the parameters of an ARIMA model and
its variations can also be estimated using the Box-Jenkins method [[B]70]].

2.3.5 Trigonometric, Box-Cox Transformation, ARMA Errors, Trend
and Seasonality Model

The main shortcoming of exponential smoothing models, namely their poor
ability to fit complex seasonal patterns, is addressed by the so-called Trigono-
metric, Box-Cox Transformation, ARMA Errors, Trend and Seasonality (TBATS)
model [DLHS11]]. As the name implies, this method combines several existing
techniques, namely Fourier terms to model different potential seasonalities,
the Box-Cox transformation [BC64] to reduce the variance in the time series
and, consequently, to deal with non-linearity, and ARMA error corrections. To
determine the most suitable model, TBATS fits numerous models with different
parameter settings, such as whether or not to apply the Box-Cox transformation,
whether seasonality should be used, or if there is a significant trend. Finally,
Akaike’s Information Criterion is applied to determine the best model.

35

Chapter 2: Foundations

2.3.6 Neural Network Autoregression

A special neural network design called Neural Network Autoregression (NNetAR)
can be used to forecast time series. The architecture of NNetAR is a Feed-
Forward Neural Network with a single hidden layer [HAB718]. For more
information on Feed-Forward Neural Networks, please refer to Sectionm
As input, NNetAR receives lagged values of the time series. Therefore, the
NNetAR model is defined by two parameters. The first parameter p corresponds
to the order of the AR model and, thus, denotes the number of lagged inputs. By
contrast, the second parameter k indicates the number of nodes in the hidden
layer. In other words, the input layer has the size of the AR order p, the hidden
layer consists of k nodes, and the output layer is set to a single node to forecast
one value. To forecast multiple steps at once, an iterative process is used that
integrates the forecast of the previous iteration.

The two-parameter NNetAR model can also be extended for seasonal time
series by adding the parameters f and P, which denote the frequency, i.e.,
the length of a seasonal pattern, and the number of seasonally lagged inputs,
respectively [HA1S]].

2.4 Machine Learning Methods

Unlike univariate time series forecasting methods, machine learning methods
require features to learn a relationship between the desired target and the in-
put. Therefore, machine learning models cannot directly learn the temporal
dependency between successive observations. To solve this problem, on the
one hand, features can be forecast using the techniques presented in Section 2.3}
Then, these feature forecasts can be passed to machine learning methods to
predict future observations. Similarly, the original observations can be lagged
and passed as features to the machine learning algorithm (cf. Section[2.3.6)).
However, only a limited number of predictions can be made using this tech-
nique, i.e., only as many as the minimum of the applied lags. On the other
hand, targets can be created so that the time component is inherently included.

In general, a machine learning task f can be formulated as a learning problem,
which involves mapping a matrix of features X to a vector of targets Y

[X=Y, (2.23)

where Y can be either a finite set of known classes (classification), any real-
valued number (regression), or a set of unknown classes (clustering).

With respect to critical event prediction, the target can represent the remain-
ing time until the next critical event as an arbitrary number. In this case, the

36

2.4 Machine Learning Methods

problem would be modeled as a regression task. However, if the remaining
time is not required to be this fine-grained, the remaining time can also be
discretized into bins, resulting in a classification task. For both approaches
described, the actual target must be known in order to learn the regression
or classification model and evaluate the prediction quality. Therefore, such
problems are called supervised learning.

In contrast, if the targets are not known, clustering can be applied to identify
patterns in the data and group similar instances into the same cluster while
leaving dissimilar instances in different clusters. Such a problem is referred to
as unsupervised learning.

This section provides a brief introduction to commonly used machine learn-
ing methods for clustering, classification, and regression. However, since a
vast number of approaches have already been proposed, we focus on the ones
employed in the contributions of this thesis. For more details on clustering
methods, we refer the reader to the book by L. Rokach and O. Maimon [[RMO05]].
In addition, the book by T. Hastie et al. [HTF09]], provides useful information
on classification and regression methods.

2.4.1 K-Means Clustering

In order to partition a set of instances X, each represented by a feature vector
x;, into a certain number of groups that show high cohesion within groups and
high separation between groups, clustering algorithms can be applied. Thus,
the objective of clustering is to ensure that instances in the same group are
similar to each other and dissimilar to instances in other groups. A popular
method in this area is the k-Means algorithm. As input, the k-Means algorithm
requires only the feature vectors x; and the desired number of clusters to be
found. The k-Means algorithm goes back to several researchers. However, it is
most commonly attributed to S. Lloyd [[L1082]] and E. Forgy [For65]]. Formally,
the general goal of the k-Means algorithm is defined by

k k
argmin » > [|x — p;[|* = argmin) _ |S;|Var (S;), (2.24)
S S -
7=1

j=1x€eSs;

where S is the set of clusters with S; being the j-th cluster and p; is the mean
feature vector for the instances in cluster S;.

To achieve this goal, the k-Means algorithm follows a two-step approach,
after an initial random placement of the cluster means 1, in the feature space.
Subsequently, each instance x; is mapped to the cluster S; with the closest
mean /;. For this purpose, the squared Euclidean distance is employed. In the

37

Chapter 2: Foundations

second step, the cluster means f; are updated as centroids of the respective
cluster S;. These two steps are repeated iteratively until the assigned instances
no longer change between clusters.

2.4.2 Hierarchical Clustering

Contrary to the k-Means algorithm, hierarchical clustering does not start with
the desired number of clusters, but uses either a bottom-up or a top-down
approach. The bottom-up approach, also referred to as agglomerative, starts
with as many clusters as there are instances x; in X. That is, each instance has its
own cluster. Then, in each step, two clusters are merged to reduce the number
of clusters until only one cluster is left, representing the set of all instances
x;. In contrast, the top-down approach, also referred to as divisive, works the
other way round. More precisely, the algorithm starts with a single cluster
containing all instances x;, and splits one cluster into two separate clusters in
each step until |S;| = 1, i.e., each cluster contains only a single instance. Both
approaches result in a tree structure, referred to as a dendrogram. A dendrogram
typically shows the root cluster, which contains all instances, at the top and the
individual instance clusters as leaf nodes.

Similar to the k-Means algorithm, the distance between instances must be
computed to decide which clusters to merge or split. However, in hierarchical
clustering, a large number of different distance metrics can be used, such as
the (squared) Euclidean distance, the Manhattan distance, or the Hamming
distance. Apart from the distance metric, however, hierarchical clustering also
needs a measure to describe the dissimilarity between two clusters. For this
purpose, so-called linkage criteria can be used, such as the maximum (complete-
linkage), the minimum (single-linkage), or the average (average-linkage) of
all pairwise distances between the two clusters or the distance between the
centroids of the two clusters (centroid-linkage).

Once the dendrogram is generated, a cutting point must be defined to obtain
the final clustering result. This can be done either by specifying a certain
number of clusters or by defining a maximum distance. However, the latter
case requires profound expert knowledge.

2.4.3 Support Vector Machine

Unlike the previously described clustering methods, Support Vector Machines
(SVM) [[CV95]], which are based on the so-called structural risk minimization
principle, are designed for classification tasks. Therefore, SVMs intend to
transform the training data by a non-linear mapping into a higher dimensional

38

2.4 Machine Learning Methods

feature space that has a stronger generalization capability. For this non-linear
mapping, the so-called kernel trick is applied. Once the input space is mapped
to the higher dimensional feature space, a decision boundary is sought to
distinguish between classes. In terms of SVMs, this decision boundary is
referred to as a hyperplane. For a p-dimensional feature vector, an SVM tries to
find an optimal hyperplane of dimension p — 1 that maximizes the separation
between classes. Finally, training an SVM is equivalent to solving a linearly
constrained quadratic optimization problem, which means that the solution is
always unique and globally optimal.

An example of a two-dimensional feature space with two different target
classes is shown in Figure Figure shows several potential hyperplanes
that would linearly separate the two classes (namely the red squares and the
blue circles) and, therefore, would yield the same accuracy on the training
data. In fact, the number of potential hyperplanes is even infinite. However,
to improve the generalization capability, an SVM optimizes the margins to the
so-called support vectors of the two classes. A support vector is the instance
with the shortest distance to the hyperplane. By maximizing this margin with
respect to both classes, the same maximum margin d is obtained for the support
vectors of both classes. Such an optimal hyperplane is shown in Figure [2.7b]
Here, the red square and the blue circle that are connected to the hyperplane by
a dashed line, which indicates the maximum margin d, represent the support
vectors of the two classes.

(a) Feature space with several hyperplanes. (b) Feature space with optimal hyperplane
and maximum margin d.

Figure 2.7: Two-dimensional feature space containing multiple instances of two differ-
ent classes.

39

Chapter 2: Foundations

In order to solve regression problems, an adaptation of SVM, the so-called
Support Vector Regression (SVR), was developed [DBK™97]]. However, in the
following, we refer to this version also as SVM.

2.4.4 Random Forest

Random Forest is a machine learning method based on the concept of ensemble
learning, which was first introduced by L. Breiman and A. Cutler [Bre01]] and
builds upon an earlier version of T. Ho [Ho95]. The general idea of ensemble
learning is the concept of the “wisdom of the crowd”. More specifically, ensem-
ble methods combine a large number n of uncorrelated models to infer a final
result. Typically, ensemble learners train numerous weak learners and aggre-
gate their results to obtain a model with high predictive power, i.e., a strong
learner. In this context, a weak learner is a classification method that correlates
rather weakly with the true classification, while a strong learner correlates very
well with the true classification. The two most common methods for generating
and combining weak learners are boosting and bagging. While boosting aims
at iteratively improving models by targeting instances that were misclassified
in the previous iteration (cf. Section[2.4.5)), bagging builds many individual
models and derives a result by majority vote of the models’ predictions [Bre96]].
Random Forest falls into the category of bagging ensemble learners using de-
cision trees as weak learners. Such a decision tree is a directed, acyclic graph
in the form of a tree structure, where each node contains a decision rule and
the leaves represent the final decision. After creating the set of decision trees,
Random Forest combines the individual predictions of the decision trees to
obtain a final prediction. This concept is illustrated in Figure

By using the ensemble technique, Random Forest overcomes the main disad-
vantage of single decision trees, namely their tendency to overfit the training
data and, as a result, to generalize rather poorly [[Ho95]. In order to prevent
overfitting, however, Random Forest must ensure that the decision trees do
not correlate among each other. A first approach to achieve this goal was
proposed by T. Ho [Ho95]]. She suggested using only randomly selected fea-
tures for model learning of the individual decision trees. L. Breiman and A.
Cutler [Bre01]] built upon this approach when they introduced the bagging
approach. In bagging, not only are the features randomly selected, but also
the training samples themselves. That is, for each of the n decision trees, a
random subset of all the training data is sampled with replacementﬂ and, then,
the feature space of each sample is also randomly sampled.

2Sampling with replacement refers to the concept that instances in the same sample can be
selected multiple times.

40

2.4 Machine Learning Methods

(Decision
Tree 1

(..
Decision

rDecision
Tree 2

Treen

Prediction 1 Prediction 2

Prediction
Averaging

!

Final Prediction

Figure 2.8: A schematic illustration of Random Forest consisting of n decision trees.

Random Forest can be employed for either classification or regression. With
respect to a classification task, the final prediction result is the class with the
most individual predictions of the decision trees. For regression, the predictions
of the individual trees are combined using the arithmetic mean.

2.4.5 eXtreme Gradient Boosting

Similar to Random Forest, eXtreme Gradient Boosting (XGBoost) [[CG16] also
builds upon ensemble learning using decision trees. However, in contrast
to Random Forest, XGBoost employs boosting instead of bagging. Generally
speaking, XGBoost is a particular implementation of gradient boosted decision
trees. The goal of XGBoost is fast execution speed and high model performance,
both for classification and regression tasks.

41

Chapter 2: Foundations

Boosting as an ensemble learning method using decision trees was proposed
by Y. Freund and R. Schapire [FS97]]. The general idea is to fit many decision
trees successively to re-weighted versions of the training data. That is, boosting
methods train a weak learner, evaluate its accuracy on the training data, and,
subsequently, adjust the weights of the incorrectly predicted instances in the
training data to focus on those samples. Then, these re-weighted training data
are used to learn another weak learner, which is also added to the ensemble.
Hence, this approach is also called additive training. This iterative process is
repeated several times, typically as long as adding new weak learners improves
the overall prediction quality. The final result is obtained by a weighted average
of the weak learners’ predictions. Thus, the weight computation is based on
the weak learner’s accuracy during training.

In general, boosting can also be considered as an optimization problem. In
terms of XGBoost, the cost function can be described as the sum of the training
loss and the regularization term, which in turn describes the tree complexity.
In other words, XGBoost penalizes large and complex trees, as they tend to
overfit to the training data. When minimizing the cost function, the gradient
descent algorithm is applied to determine which trees to add next.

2.5 Deep Learning Models

Similar to machine learning methods, deep learning models also require fea-
tures as input, although the features can be the observations of the time series
themselves. However, deep learning models typically require many more train-
ing instances to learn the relationship between the features and the respective
target. In turn, deep learning methods can learn more complex relationships
and require less manual feature engineering. Deep learning methods belong
to the neural network family, especially to those with a large number of nodes
and multiple layers. The challenge in applying deep learning models is to find
a suitable network architecture and hyperparameter setting. To this date, many
different types of neural networks, such as Feed-Forward Neural Networks,
Convolutional Neural Networks, and Recurrent Neural Networks have been
proposed and new types are being introduced continuously. Compared to the
other types of neural networks, the advantage of Recurrent Neural Networks is
that they can explicitly model and learn time dependence.

This section provides a brief introduction to the neural network types em-
ployed in this thesis. However, this serves only as a brief overview of neural
network types. For more information on deep learning methods, we refer the
reader to the book by I. Goodfellow et al. [GBCB16]].

42

2.5 Deep Learning Models

2.5.1 Feed-Forward Neural Network

The Feed-Forward Neural Network (FFNN) is a simple neural network architec-
ture that aims at detecting patterns in data, learning from past observations,
and providing generalized results with respect to current knowledge. A key
advantage of FFNNs is their ability to capture non-linear patterns without mak-
ing assumptions about the statistical distribution of observations. The general
architecture of an FFNN is shown in Figure Such an FFNN consists of an
input layer, one or more hidden layers, and an output layer. The main property
of a fully-connected FFNN is that every node in one layer is connected to every
node in the subsequent layer. Note that each connection has a weight assigned
to it. The FFNN shown in Figure [2.9| consists of n input nodes, z hidden layers,
each consisting of m;,i=1,...,z neurons, and [output neurons.

Hidden Layers
2,...,(z-1)

Input Layer Hidden Layer 1 Hidden Layer z Output Layer

L N BN Y1
Y2
L N BN
V3
L) v
Inputs Weights wj; Weights w; Weights w; Weights wy; Outputs

Figure 2.9: The simplified architecture of a fully-connected Feed-Forward Neural
Network with z hidden layers.

First, the FENN receives the input values, namely the features z1,x2, ..., 2y,
which are passed to the input neurons i1, i2, . . . , i,,. This input is then processed
further by the network. For this purpose, the neurons in the first hidden layer
hi,h3, ..., hs, arefirstcomputed by multiplying the input values by the weight
wl. of the respective connection and adding a bias value bl. Here, w}. denotes

iJ P & J v
the weights toward the first hidden layer from input neuron i to neuron hjl-.
Formally, the value of h} is computed as

hi=f (b} +) wj; x x) , (2.25)
=1

43

Chapter 2: Foundations

where f(y) denotes the applied activation function. The activation function
is an essential component of neural networks, as it allows learning of non-
linear relationships. However, this requires a non-linear activation function. In
general, there are many different activation functions, such as identity, logistic
(also known as sigmoid), hyperbolic tangent (tanh), and Rectified Linear Unit
(ReLU). As these are the most commonly used activation functions, Table
contains their formulas, with e denoting Euler’s constant.

Table 2.1: Formulas for commonly used activation functions in neural networks.

Name Formula

Identity fly) =y

Logistic fly) = 1+ev

Hyperbolic tangent f(y) = tanh(y) = &
yperbolic tangen y) = V= e

Rectified Linear Unit f(y) = max{0,y}

Next, the information is passed through the hidden layers. To this end, the
j-th neuron of the h-th hidden layer is computed as

W= f (bj? - mihjw wl % h§’”‘”> . (2.26)
i=1
Finally, the value of the j-th output neuron is computed as
op=f (bj + iw;’] X hf) . (2.27)
i=1
As can be seen from the formulas, the learning goal of an FFNN is to update
the biases of the neurons b;? and the weights wf”j, h =1,...,z as well as

o

wy;. For this purpose, the backpropagation algorithm [RHW86]] is typically
applied, since it allows learning the dependencies between arbitrary sets of
input combinations. Therefore, the gradient of loss is propagated backwards
through the network to adjust the weight of each connection. The FFNN repeats
this process of input prediction and weight updating until a certain predefined
tolerance level is reached or a maximum number of iterations is exceeded.

2.5.2 Recurrent Neural Network

As opposed to Feed-Forward Neural Networks, Recurrent Neural Networks
(RNNs) allow so-called feedback connections. The most commonly used feedback

44

2.5 Deep Learning Models

connection is direct feedback, where the output of a neuron is linked to its own
input. Thus, the output of a previous time step can be used as additional input
to the same neuron. Such a direct feedback connection is depicted on the left-
hand side of Figure[2.10] The output of the neuron can be considered as internal
hidden state that is propagated through all time steps to include information
from previous time steps while new data is being received. For this reason,
RNN s are specifically tailored to sequential data, such as sentences or time
series. The structure of RNNs is composed of so-called cells, as shown by the
gray box on the left-hand side of Figure To better understand the training
of RNNS, this is typically visualized over time. That is, the RNN is unfolded
over time. The right-hand side of Figure illustrates such an unfolding of
an RNN with direct feedback for ¢ time steps. To this end, the first input x; is
initially passed to the RNN and yields the output y;. The derived hidden state
h1 is then passed to the next time step, where it is used in combination with
the new input x5 to derive the next output y»2. This process continues until the
last input z; is processed in combination with h;_; to derive the last output ;.
However, the major drawback of standard RNNs are the vanishing and explod-
ing gradient problems [KKO01]]. Concerning the vanishing gradient, during
training, gradients decrease drastically from layer to layer, which can cause the
weights to stop changing. On the contrary, if the gradients are too large, their
multiplication causes superlinear growth, leading to an unstable network and
eventually to too large values, which are finally manifested in NaN values. For
this reason, RNNs can only model short-term temporal dependencies.

Output y Y1 V2 y3 Ve

Unfolding in t
Time Steps I I

T
Hidden State — [hI H hf — hf -

Input x X1 Xy X3 X¢

Time

Figure 2.10: A simplified illustration of a Recurrent Neural Network with direct feed-
back connection unfolded over ¢ time steps.

The most commonly used variations of the standard RNN are the Long
Short-Term Memory networks (LSTM) and the Gated Recurrent Units (GRU).
In contrast to the standard RNN, these are more capable of learning long-
term temporal dependencies via so-called gates. That is, these variants of the

45

Chapter 2: Foundations

standard RNN solve the vanishing and exploding gradient problems [[HS97],
which is the reason for their popularity. While LSTM uses three gates, namely
input, output, and forget gate, GRU uses only two gates, namely reset and
update gate. The gates of LSTM and GRU are used to decide which information
should be memorized over time and which information should be forgotten.
As LSTM involves more gates and parameters, it requires significantly more
memory consumption and runtime compared with GRU, but also typically
provides higher predictive power. Finally, for training LSTMs and GRUs, the
backpropagation-through-time [Wer88]] algorithm is typically employed, which
can be considered a generalization of the standard backpropagation algorithm.

2.6 Evaluation Measures for Forecasting and Classification

In order to assess the quality of time series forecasts and regressions as well
as classification tasks, we briefly introduce common evaluation measures. To
this end, Sectionprovides an overview of error measures for time series
forecasting. Note that these methods can also be used for regression results.
Next, Section presents commonly used prediction quality measures for
binary and multi-class classification.

2.6.1 Forecast Error Measures

A number of measures have been proposed to assess the accuracy of forecast-
ing methods. However, in time series forecasting, these measures represent
the error instead of the accuracy. Hence, the lower the value of the measure,
the better the forecast. This section is based on the work of R. Hyndman and
A. Koehler [HKO06]|, who group forecast error measures into four categories,
namely scale-dependent measures, measures based on percentage errors, mea-
sures based on relative errors, and scaled error measures. However, we first
introduce terms and notations necessary for the following subsections. For this
purpose, Table 2.2|summarizes the most important notations.

The evaluation of forecast errors on the forecast horizon, i.e., the future values
unknown during training, is also referred to as out-of-sample evaluation, while
the evaluation of forecast errors on the historical training data, i.e., the historical
values known during training, is referred to as in-sample evaluation.

2.6.1.1 Scale-dependent Error Measures

The first group of forecast error measures is formed by the scale-dependent error
measures. As the name implies, the value of the scale-dependent error measures

46

2.6 Evaluation Measures for Forecasting and Classification

Table 2.2: Notations for forecast error measures.

Notation Meaning
n Length of the time series
h Length of the forecast horizon
X Observation at time ¢
X Vector of observations in the forecast horizon
F; Forecast at time ¢
F Vector of forecasts in the forecast horizon
et = Xy — F; Forecast error at time ¢
ef =Xy — FY Forecast error of a baseline method at time ¢
pr = £t 100% Percentage forecast error at time ¢
& | |
T = % Relative forecast error at time ¢
g = (n=1e Scaled forecast error at time ¢

Yoo | X — X

is highly affected by the scale of the time series. Therefore, these measures
should not be used to compare forecasts for multiple time series with different
scales. However, scale-dependent measures can be used to compare forecasts
from different methods for a single time series. Well-known scale-dependent
error measures are the mean absolute error (MAE), which is defined by

1
MAE (X, F) = - > el (2.28)
1

o+
Il

and the root mean square error (RMSE), which is defined by

RMSE (X, F) = (2.29)

2.6.1.2 Measures based on Percentage Errors

As the name already reveals, measures based on percentage errors use the percent-
age error instead of the absolute error. Due to this error normalization, these
error measures can also be used to compare forecast errors across different time

47

Chapter 2: Foundations

series with different scales. A commonly used error measure from this group
is the mean absolute percentage error (MAPE), which is defined as

h

MAPE (X, F) Z (2.30)
=1

However, the major drawback of measures based on percentage errors is the
assumption of a meaningful zero. As can be seen in Table the percentage
error is defined as the ratio between the forecast error and the actual observation
multiplied by 100%. Thus, the percentage error is undefined if the time series
has any zeros in the forecast horizon. In addition, values close to zero also cause
bias, as this leads to a highly skewed distribution. A second shortcoming of
most measures based on percentage errors is that they penalize overestimates
harder than underestimates. This also applies to the example of MAPE. To
this end, an alternative version of the MAPE was introduced, the so-called
symmetric MAPE (sMAPE), defined as

let]
sMAPE (X, F) 2.31
h Z | Xy | + ‘Ft ()

Nevertheless, sMAPE does not completely solve the drawback of MAPE, since
SMAPE penalizes lower forecasts more severely than higher forecasts.

2.6.1.3 Measures based on Relative Errors

While the first two groups of forecast error measures consider only the error
produced by the forecasting method under examination, the measures based on
relative errors incorporate a baseline forecasting method and put the forecast
errors in relation to each other. A typical baseline is presented by the Naive
model. Asaconsequence, measures based on relative errors are easy to interpret
and are independent of the scale of the time series. However, when the baseline
method performs very well, i.e., the error of the baseline method is close to
zero, the value of the measure tends to explode. The most commonly used
measure based on relative errors is the mean relative absolute error (MRAE),
which is defined as

MRAE (X, F) rt|. (2.32)

||M:

48

2.6 Evaluation Measures for Forecasting and Classification

2.6.1.4 Scaled Error Measures

The fourth and final group of forecast error measures is represented by the
scaled error measures. Unlike the measures based on relative errors, scaled error
measures normalize the forecast error by the development behavior of the
actual training time series, i.e., by the derivative of the actual training time
series. Therefore, scaled error measures are also independent of the scale of
the input data. However, since the forecast error is scaled with respect to the
in-sample MAE from the Naive forecast, the scaled error measure is undefined
if the time series has zero variance, i.e., if all values in the time series are equal.
A common choice for a scaled error measure is the mean absolute scaled error
(MASE), which is defined as

MASE (X, F)

:*\l—‘

h
Z gl (233)

2.6.1.5 Coefficient of Determination

A special case among the evaluation measures for forecasting is the coefficient of
determination. In contrast to the forecast error measures described above, the
coefficient of determination R? indicates to what extent the forecast agrees with
the actual values. Therefore, a higher R2-score denotes a better forecast, where
R? exhibits a range of (—o0, 1]. Hence, the coefficient of determination is strictly
speaking a quality measure rather than an error measure. Mathematically, the
coefficient of determination is defined by

h 2
R*(X,F)=1- — L1 (2.34)
2= (Xi = px)?

with px denoting the mean of the time series observations. Thus, the squared
forecast error is normalized by the squared forecast error of forecasting the
mean value for the entire forecast horizon, which relates to measures based
on relative errors (cf. Section2.6.1.3)). However, the first term inverts the error
measure to a kind of quality measure.

2.6.2 Classification Quality Measures

Various measures can be applied to evaluate the quality of classification models,
with different measures capturing different capabilities of the model. Here,
we briefly describe the most relevant classification quality measures, which
are also used in this thesis. However, in Table we first introduce general
notations necessary for the further understanding.

49

Chapter 2: Foundations

Table 2.3: Notations for classification quality measures.

Notation Meaning

TP Number of instances correctly predicted as positive
TN Number of instances correctly predicted as negative
FP Number of instances falsely predicted as positive
FN Number of instances falsely predicted as negative

2.6.2.1 Measures for Binary Classification

In a binary classification problem, typically one class is labeled positive while
the other class is labeled negative. Thus, the predictions can be presented in a
so-called confusion matrix. An exemplary confusion matrix for such a binary
classification is given in Table Here, the rows represent the predicted class,
while the columns show the actual observed class.

Table 2.4: An example confusion matrix for binary classification.

Observed o .
Predicted Positive Class | Negative Class
Positive Class TP FP
Negative Class FN TN

Based on TP, TN, FP, and FN, the following measures can be calculated to
characterize the prediction quality.

e Accuracy: The accuracy provides the ratio between the number of correctly
predicted instances and the total number of predicted instances. Formally,
the accuracy is defined as

N TP + TN
ccuracy = .
Y= TP+ TN+ FP + EN

(2.35)

That is, the sum of the values on the principal diagonal of the confusion
matrix is divided by the total sum of all entries in the confusion matrix.
Although the accuracy is easy to interpret, it also has a clear drawback.
In case the different classes are not equally present in the test set, a high
accuracy can be achieved by just predicting the majority class. Therefore,
other quality measures are necessary in combination with accuracy.

50

2.6 Evaluation Measures for Forecasting and Classification

e Precision: The precision indicates the ratio of correctness when predicting
the positive class. That is, the precision is defined as

TP

Precision = TP+ TP

(2.36)
e Recall: In contrast to precision, the recall specifies how many of the actual
positive instances were detected. Mathematically, this is expressed as

TP

Recall = m

(2.37)

e Fl-score: As precision and recall are both very important measures for
prediction quality, they are combined in the F1-score using the harmonic
mean. Formally, the Fl1-score is defined by

Recall - Precision
Fl-score =2 Recall + Precision’ (2:38)

e Matthew’s correlation coefficient: The Matthew’s correlation coefficient
(MCC) [Mat75] is a kind of correlation coefficient that analyzes the re-
lation between the predicted and observed classes and, therefore, can
be used even if the number of instances per class is highly diverse. The
MCC ranges from -1 to 1, where a negative value indicates disagreement
and a value close to one indicates a perfect agreement. With an MCC
close to zero, the prediction quality is similar to a random choice classifier.
Mathematically, the MCC is defined by

(TP - TN) — (FP - FN)

MCC = . (2.39)
\/(TP +FP) - (TP + FN) - (TN + FP) - (TN + FN)

o Cohen’s kappa: Contrary to the measures presented above, Cohen’s kappa
is not directly defined by the confusion matrix, but measures the quality
of a predictor by comparing its predictions to a random choice predictor
based on class frequencies. Therefore, Cohen’s kappa does not suffer
from class imbalances. Formally, Cohen’s kappa is defined by

Po — Pe

1- Pe ’
where p, denotes the accuracy of the learned predictor and p. represents
the expected accuracy of a random choice predictor that uses the class
distribution of the training set as the sampling frequency. According to J.
Landis and G. Koch [[LK77]], the kappa value can be interpreted in the
steps shown in Table

Kappa =

(2.40)

51

Chapter 2: Foundations

Table 2.5: Interpretation of Cohen’s kappa according to J. Landis and G. Koch [[LK77]].

Kappa Interpretation

Kappa < 0

0 < Kappa < 0.20
0.21 < Kappa < 0.40
0.41 < Kappa < 0.60
0.61 < Kappa < 0.80
0.81 < Kappa

Poor agreement

Slight agreement

Fair agreement

Moderate agreement
Substantial agreement
(Almost) perfect agreement

2.6.2.2 Measures for Multi-Class Classification

In the case of multiple classes, the definition of a fixed positive class and a
fixed negative class is no longer possible. However, some quality measures,
such as accuracy and Cohen’s kappa, can still be calculated in the same way.
The accuracy is still the sum of the principal diagonal entries divided by the
total sum of all entries in the confusion matrix. Given that kappa builds upon
the accuracy, this measure can also be calculated in the same way for multiple
classes. For the other measures, the binary measures must be computed class-
wise. Accordingly, each class is considered as the positive class, while all other
classes are considered as a single negative class. A schematic confusion matrix
for a classification task consisting of four different classes is shown in Table
Here, TP, TN, FP, and FN are denoted for class 3, where TN = >, TN;, FP =
>_;FPj, and FN = >, FNj. Once the particular measure has been calculated
for each class, the results must be aggregated into a single value. For this
purpose, there exist three aggregation methods:

e Macro: When combining the measure X calculated for each class at the
macro level, the simple arithmetic mean is calculated. Therefore, the

Table 2.6: A schematic confusion matrix for a four classes classification with notations
for class 3.

Observed Class 1 Class 2 Class 3 Class 4
Predicted (negative) | (negative) | (positive) | (negative)
Class 1 (negative) TN, TNy FN; TN,
Class 2 (negative) TN> TN5 FN, TNy
Class 3 (positive) FP, FP, TP FP;
Class 4 (negative) TN3 TN FNj3 TNy

52

2.6 Evaluation Measures for Forecasting and Classification

macro aggregation is defined as

1 C
X =- X 241
macro - pz:l s (2.41)

where X denotes the measure, X, the class-wise value of measure X for
class p, and ¢ the total number of classes.

Weighted: In contrast to macro aggregation, weighted aggregation consid-
ers the sample size of each class. That is, the weighted mean is calculated,
with the weights equal to the respective class size n,. Mathematically, the
weighted aggregation is defined by

weighted X = - an . (2.42)
=1"p

Micro: Unlike the other two methods, micro averaging considers all classes
at once. That is, TN is equal to TP and FN is equal to FP, resulting in the
same values for micro precision and micro recall. Therefore, the micro
F1-score is also equivalent to micro precision and micro recall. Finally, all
three micro measures are equal to the overall accuracy.

53

Chapter 3
State-of-the-Art

In order to present the state-of-the-art in the areas covered in this thesis, we
organize related literature into two sets. First, we categorize approaches in
the literature on hybrid time series forecasting into three groups, explain each
group in general, and present representative contributions for each of the three
groups in Section 3.1} Subsequently, we introduce several contributions to the
general domain of critical event prediction in Section 3.2, Again, we divide this
section into three subsections for different aspects of critical event prediction.

3.1 Hybrid Time Series Forecasting Methods

The “No Free Lunch Theorems” were proposed by D. Wolpert and W. Macready
in 1995 and 1997 and were originally intended for search [WMO95]] and opti-
mization algorithms [WM97]], respectively. In general, the “No Free Lunch
Theorem” for optimization algorithms states that there cannot exist an optimiza-
tion algorithm that outperforms all other optimization algorithms for all use
cases. Instead, tailoring an optimization algorithm to meet the requirements of
a particular scenario inevitably leads to a degradation in quality for another
scenario. Although this theorem was formulated for optimization algorithms,
it can be applied to many other areas of mathematics and computer science as
well. One such area of research is time series forecasting. To transfer the “No
Free Lunch Theorem” for optimization algorithms to time series forecasting,
it can be inferred that there is no single forecasting method that achieves the
highest accuracy for all time series, regardless of its particular properties. In
order to reduce the impact of this “No Free Lunch Theorem” in time series
forecasting, many hybrid forecasting methods have been presented in the lit-
erature. In this thesis, we refer to hybrid forecasting methods as forecasting
methods that combine at least two individual forecasting methods in some
form. Thus, the goal of such hybrid forecasting methods is to compensate for
the drawbacks of one forecasting method by incorporating another or even
multiple forecasting methods that exhibit their strengths specifically in the

55

Chapter 3: State-of-the-Art

weaknesses of the others. To examine the state-of-the-art in hybrid forecasting,
we conducted a broad literature review and categorized the approaches into
three groups: (I) weighted forecasting method ensembles, (II) forecasting
method recommendation, and (III) component-based forecasting.

3.1.1 Weighted Forecasting Method Ensembles

The idea of weighted ensembles of forecasting methods was first introduced
in 1969 by J. Bates and C. Granger [[BG69]] and is therefore historically the
first group of hybrid time series forecasting methods. More precisely, the final
forecast is generated by a linear combination of forecasts derived from at least
two different forecasting methods. For this purpose, a weighting must be
assigned to each forecast. Since this weighting process is the core component of
such ensemble forecasting methods, J. Bates and C. Granger proposed several
methods for weight calculation and compared the accuracy of the resulting
forecasts with the accuracy of the individual forecasting methods included in
the ensemble.]. Bates and C. Granger have shown that forecast accuracy can
be increased by using weighted ensembles, because the ensembles reduce risk,
and thus variance, compared to relying only on a single forecasting method.

Twenty years after the proposal of weighted forecasting method ensembles, R.
Clemen examined numerous algorithms for weight computation and found that
simple approaches, such as equal weights, are not inferior to more sophisticated
approaches [[Cle89]. In particular, he showed that correlation-based weight
calculations should be avoided, since these approaches worsened the forecast
accuracy in the conducted study. Finally, he concluded that ensembles are
particularly useful when the forecasts of the different methods vary highly.

A further investigation of different weight calculation algorithms was con-
ducted by L. de Menezes et al. [DMBT00]. Besides evaluating different weight
calculation approaches, L. de Menezes et al. provided guidelines on which
weight calculation method to choose with respect to the training observations of
the time series. To this end, the authors summarized that the so-called outper-
formance method [Bun75|] should be preferred for small training sizes, while
for medium training sizes with low correlation, they suggested the so-called
optimal method with independence assumption. For large training sizes, they
recommended the methods called optimal and constrained regression-based
model. L. de Menezes et al., however, also pointed out that equal weights,
equivalent to the arithmetic mean, also perform well and should be used if the
time series exhibit positive correlation and similar error variances.

R. Adhikari et al. [[AVK15]| proposed an ensemble forecasting method that
does not combine all available forecasting methods, but only a certain subset

56

3.1 Hybrid Time Series Forecasting Methods

that is assumed to perform well for the time series under consideration. There-
fore, the available time series observations are split into an in-sample training
and an in-sample validation part. In a first step, the forecasting models are
trained on the in-sample training data only, while their accuracies are calculated
on the in-sample validation part. To this end, the forecast error measure mean
scaled error is applied. Based on this error measure, the forecasting models are
ranked from best to worst. Finally, only the n top ranked forecast models are
included in the final ensemble model used for out-of-sample forecasting. The
individual forecasts of the selected models are then weighted by the inverse
of their error measure on the in-sample validation part. Using a set of nine
different forecasting methods and a data set consisting of four time series, R.
Adhikari et al. showed that this method outperformed all individual forecasting
methods as well as the combination of all forecasting models.

Another novel approach to weight estimation for ensemble forecasting was
proposed by M. Sommer et al. [SSH16|]. The authors stated that systems are
typically subject to change and, therefore, the systems must deal with unfore-
seen new situations. Thus, the authors’ goal was to automate weight estimation
during runtime and keep system designers out of the update loop. To this
end, M. Sommer et al. proposed the use of the eXtended Classifier System
for Function approximation (XCSF) as weight estimation method. XCSF is
an evolutionary rule-based machine learning method specialized for function
approximation using a combination of gradient-based local learning and a
steady-state niche genetic algorithm. Thus, XCSF partitions the problem space
into several subspaces and learns linear approximations of the objective function
within the corresponding niches. With respect to time series forecasting, XCSF
computes coefficients for each potential forecasting method. As individual
forecasting methods within the ensemble approach, M. Sommer et al. selected
different parametrizations of ARIMA (i.e., ARIMA(0,0,1), ARIMA(0,2,2),
and ARIMA(1,0,1)), ETS, and Random Walk with Drift. Finally, the authors
compared their approach on ten time series against three different weight esti-
mation algorithms and the individual methods themselves. The results showed
that the performance of the XCSF weight estimation approach depends on the
forecast error measure. With respect to both comparisons, namely the individ-
ual methods and the other weight estimation methods, the XCSF performed
best for some forecast error measures and mediocre or even worst for others.
Lastly, the authors concluded that an expanded set of potential forecasting
methods tended to improve the forecast accuracy in almost all cases.

Y. Wang et al. [WZT 18] introduced an ensemble approach for combining
probabilistic load forecasting methods. To this end, the authors proposed a

57

Chapter 3: State-of-the-Art

Constrained Quantile Regression Averaging (CQRA) method in which the
CQRA parameters were estimated using a linear program aimed at minimizing
the flipper loss, while the CQRA parameters were required to be non-negative
and sum to one. More specifically, Y. Wang et al. applied three different quantile
regression methods, namely Quantile Regression Neural Network, Quantile
Regression Random Forests, and Quantile Regression Gradient Boosting. Then,
the weights for the combination of these three models were determined by
solving an optimization problem. To estimate the quality of the different fore-
casting methods for out-of-sample forecasting, Y. Wang et al. also used an
initial subset of the training data for model training, the next part for model
validation, and the last part for model testing. These performances of the
different methods were then used in the optimization problem to derive suit-
able weights for the forecasting methods. Finally, the forecasting methods
were applied to provide the out-of-sample forecast and their forecasts were
aggregated using the weighted average with respect to the weights obtained
by the optimization problem. The authors evaluated their proposed CQRA
approach on two data sets, showing that their approach reduced the pinball
score compared to the best individual probabilistic load forecast. In addition,
it also outperformed nine ensemble methods, such as weighted averaging and
several quantile regression averaging methods.

A weighted ensemble forecasting approach specifically designed for multi-
step-ahead forecasting was proposed by A. Galicia et al. [GTLT19]]. In their
ensemble, the authors included three machine learning methods, namely Deci-
sion Tree, Gradient Boosted Trees, and Random Forest. To estimate the weights
for each of these methods, A. Galicia et al. used the weighted least square
method. However, for h-step-ahead forecasting, each value in the horizon was
modeled by a particular model that receives the same inputs, but a different
target. This technique results in » models for each forecasting method, which
in turn yields weights not only for each method but also for each value in the
forecast horizon. The authors explicitly rejected multi-step-ahead forecasting
based on rolling history and horizon, claiming that this approach performed
worse due to error potentiation. In addition to the static weight estimation
approach, which uses the same weights for all time series in the test set, the
authors also implemented a dynamic alternative that allows the weights to be
updated during runtime. A. Galicia et al. compared both ensemble methods to
the individual methods with respect to the mean relative error and concluded
that both ensemble methods outperformed the individual methods, while the
dynamic update also achieved better forecasts than the static weights. Finally,
the authors conducted a second experiment to demonstrate the superiority

58

3.1 Hybrid Time Series Forecasting Methods

of the ensemble methods compared to other advanced forecasting methods,
namely an Artificial Neural Network approach, a Pattern Sequence-based fore-
casting approach, and another deep learning approach.

The so-called FFORMA (Feature-based Forecast Model Averaging) was pro-
posed by P. Montero-Manso et al. [MMAHT20]] and uses a meta-learning ap-
proach to estimate the weights of the forecasting methods in the ensemble.
Therefore, a large training database of diverse time series is crucial. In a first
step, 42 time series characteristics are computed for each time series in the
training database. Then, all forecasting methods in the ensemble pool are fitted
to the time series individually. For this purpose, the authors included nine time
series forecasting methods, namely the Naive and sNaive models, Random
Walk with Drift, Theta [[AN00], ARIMA, ETS, TBATS, NNetAR, and a model
based on STL decomposition and autoregression. Then, FFORMA applies a
machine learning method, namely XGBoost, to learn the dependencies between
the time series characteristics and a proper set of weights for aggregating the
forecasts of the different models. In their experiments, P. Montero-Manso et
al. showed that FFORMA outperforms both the simple arithmetic mean as
ensemble method as well as the state-of-the-art individual forecasting methods.

3.1.2 Forecasting Method Recommendation

The second category of hybrid time series forecasting methods deals with the
recommendation of certain methods based on quantifiable characteristics of
time series. To this end, a rule set is typically generated, which can either be
created manually, i.e., based on expert knowledge, or learned automatically.

First approaches toward the recommendation of time series forecasting meth-
ods were based on expert knowledge. Therefore, these systems are also referred
to as expert systems. Such an expert system was proposed by F. Collopy and J.
Armstrong [[CA92], in which they integrated four forecasting methods, namely
Random Walk, regression, Brown'’s linear exponential smoothing, and Holt’s
exponential smoothing. To provide guidelines for method selection, they calcu-
lated 18 time series characteristics and derived a rule set consisting of 99 rules
in total. Finally, the authors compared the forecast accuracy of their method
selection guidelines with simple arithmetic averaging of the forecasting models
included in the expert system and showed that their guidelines outperformed
the ensemble approach. Although M. Adya et al. [ACAKO1]] introduced an
approach to reduce the amount of human intervention required, the proposed
expert system was not yet fully automated.

To further automatize the forecasting method recommendation, the second
subset of these methods relies on algorithms that derive rules in terms of a

59

Chapter 3: State-of-the-Art

learning objective. For the application of such algorithms, the database must
be divided into a training set and a test set. While the algorithms are applied
to the training set, the test set is subsequently used to assess the quality of the
forecasting method recommendations.

The methodology for deriving recommendation rules for time series forecast-
ing methods automatically was first proposed by B. Arinze [|Ari94]]. The general
procedure consists of five steps. First, a set of possible forecasting methods
must be defined, followed by a set of time series characteristics. In the third step,
for each time series, a set of features, i.e., the time series characteristics, and
a target, i.e., the forecasting method with the highest accuracy, are combined.
Then, a rule induction tree is generated based on the previously combined
instances. Finally, the selected characteristics are computed for new time se-
ries and the respective rules are evaluated. In this work and an incremental
work [[AKA97]], the authors determined six time series characteristics to derive
rules for six different forecasting methods. The authors concluded that the
recommendation system already yielded very promising results, although the
approach was still rather exploratory.

R. Prudéncio and T. Ludermir [PL04]] examined two different rule learning-
based approaches for forecasting method recommendation and evaluated them
in two separate case studies. The first approach was based on seven different
time series characteristics and included only two forecasting methods, namely
Simple Exponential Smoothing and Time-Delay Neural Network. To infer
selection rules from the time series characteristics, the authors used a variation
of the well-known C4.5 algorithm (i.e., the] .48 algorithm). With respect to their
tirst case study, the authors showed that this approach improved the forecast
accuracy compared to using either of the two individual methods, although the
best method was suggested in only about 63% of all cases. For their second case
study, R. Prudéncio and T. Ludermir applied another meta-learner to not only
select the presumed best method, but to create a complete ranking from best to
worst. For this purpose, they employed an adaptation of the NOEMON [KT99]]
design, using Multi-Layer Perceptrons for the classification. In contrast to the
tirst case study, the authors selected five time series characteristics and the
forecasting methods Random Walk, Holt’s linear exponential smoothing, and
autoregression for the second case study. Again, the results indicated that the
recommendation approach outperformed all individual methods.

Two further approaches have been proposed by X. Wang et al. [WSMH09]].
In their paper, the authors applied clustering and rule learning algorithms to
derive categorical and quantitative rules, respectively. Therefore, the authors
calculated nine different time series characteristics. In addition, four of them

60

3.1 Hybrid Time Series Forecasting Methods

were also extracted from the de-trended and de-seasonalized time series, re-
sulting in a set of 13 time series features. The time series forecasting methods
chosen were ARIMA, ETS, NNetAR, and Random Walk. Their first approach
to generating judgmental and conceptual rules used hierarchical clustering
and Self-Organizing Maps to group similar time series together and separate
dissimilar time series. However, as their second approach aimed at generating
quantitative rules, which is more similar to the other approaches in the field
of recommending forecasting methods, the authors used the C4.5 algorithm
to learn rules that match the extracted time series characteristics with the pre-
sumed best forecasting method. This was done by sorting the four forecasting
methods for each time series with respect to their achieved forecast accuracy.
However, for each time series, only the best forecasting method was assigned
class label 1, while the other forecasting methods were assigned class label 0.
These classes were then used as targets for the rule learning algorithm C4.5.
This design results in a rule set that indicates whether or not a forecasting
method should be selected for a time series given its particular time series
characteristics. X. Wang et al. provided all the necessary parameter settings to
reconstruct the C4.5 rule learning algorithm as well as the rules they derived.
Unfortunately, however, they did not evaluate the forecast accuracy achieved
by their conceptual and qualitative rules.

In their work [LG10]], C. Lemke and B. Gabrys introduced a different char-
acteristics set compared to X. Wang et al. and examined the applicability of
different rule generation approaches. Although several time series characteris-
tics were similar to X. Wang et al., they also removed certain characteristics and
introduced several others. To this end, C. Lemke and B. Gabrys divided the
time series characteristics into general characteristics, frequency domain char-
acteristics, autocorrelation characteristics, and diversity characteristics. First,
the authors used this set of time series characteristics to learn a decision tree.
The decision tree was chosen because it can be interpreted as a readable set
of rules. Thus, the authors provided a set of guidelines for selecting forecast-
ing methods. Second, C. Lemke and B. Gabrys applied three different rule
generation methods, namely Feed-Forward Neural Network, Decision Tree,
and Support Vector Machine. In this step, the authors applied a technique
called zoomed ranking. In this technique, the time series characteristics are
first computed and then they are grouped using k-Means clustering. Then, for
anew time series, the time series in the cluster with the most similar time series
characteristics with respect to a given distance metric are selected for further
analysis. Subsequently, a ranking of these time series is created by means of an
adaptation of the adjust ratio of ratios, i.e., the achieved forecast error measures

61

Chapter 3: State-of-the-Art

of the two forecasting methods are divided. Finally, the method that has the
best rank is selected. The experiments performed by C. Lemke and B. Gabrys
suggest that the ensemble forecasting methods studied provided more robust
forecasts than individual forecasting methods.

M. Kiick et al. [KCF16]] proposed a forecasting method recommendation
approach that considers not only typical time series characteristics but also
error-based meta-features. To this end, the authors introduced a novel error-
based feature that splits the training time series into an in-sample training part
and an in-sample validation part. While the in-sample training part is used to
adjust the forecasting method, the adjusted method is applied to the in-sample
validation part to generate the forecast. The forecast error is calculated using
sMAPE rolling over the entire horizon. In total, M. Kiick ef al. calculated 127
statistical, model-based, and error-based features. In addition, the authors
compared several feature sets against each other. As forecasting methods, the
approach included only exponential smoothing methods, namely a simple
exponential model, a seasonal exponential model, a seasonal-trend exponential
model, and a trend exponential model. Then, the authors learned a Multi-
Layer Perceptron to select the presumed best forecasting method based on the
particular feature set. For this purpose, the problem was modeled as a multi-
class classification task. The evaluation shows that the error-based features
improved the forecast accuracy and that the Multi-Layer Perceptron-based
forecasting method selection outperformed Random Walk, selecting one of the
individual methods, and using the best of the four models with respect to the
training or validation accuracy.

Although not peer-reviewed, T. Talagala et al. have uploaded a technical
report introducing their FFORMS (Feature-based Forecast Model Selection)
approach [THA18]). In their set of potential forecasting methods, the authors
included 15 different methods, namely white noise, ARMA, ARIMA, Random
Walk with and without Drift, Theta, six ETS models, STL-AR, sARIMA, and
sNaive. However, not all forecasting methods were considered for all data
types. Thus, expert knowledge is required to a certain degree. As features,
the authors selected 25 time series characteristics for non-seasonal time series
and 30 time series characteristics for seasonal time series. In addition to the
previous approaches, FFORMS includes a time series augmentation step. More
precisely, ETS and ARIMA models are fitted to the time series in the training
data set to generate similar time series, thus increasing the number of training
instances. To automatically select the presumably best forecasting method, T.
Talagala et al. used Random Forest in terms of multi-class classification. To
evaluate FFORMS, they compared the forecast accuracy with all individual

62

3.1 Hybrid Time Series Forecasting Methods

forecasting methods included in FFORMS. The results showed that FFORMS
often outperformed the individual methods. Yet, in some cases, the individual
methods also outperformed FFORMS.

3.1.3 Component-based Forecasting

The last category of hybrid forecasting methods explicitly leverages the strengths
of individual forecasting methods for particular fields by applying different fore-
casting methods to specific parts of the time series. In general, these component-
based forecasting methods can be further divided into two groups. The first
group of approaches applies multiple forecasting methods sequentially to the
residuals of the previous method. Therefore, it is crucial for these methods that
the subsequent forecasting methods have different advantages compared to
the previous forecasting methods. Otherwise, the subsequent methods would
not be able to extract additional information from the residuals of the previous
method. In contrast, the second group of component-based forecasting meth-
ods employs time series decomposition directly in advance. Then, a particular
forecasting method is chosen for each time series component.

G. Zhang [[Zha03]] proposed an approach belonging to the first category.
That is, the author combined ARIMA with a neural network because he wanted
to compensate for the main shortcoming of ARIMA, which, according to the
author, is the assumption of a linear form of the model. In contrast, Feed-
Forward Neural Networks are capable of fitting complex non-linear patterns.
However, Feed-Forward Neural Networks tend to overfit to the training data.
Therefore, G. Zhang proposed a sequential application of both methods to take
advantage of their individual benefits, while compensating for the drawbacks.
First, an ARIMA model was fitted to the original time series to model the linear
component of the time series. Then, the residuals between the ARIMA model
and the original time series observations were calculated. These data were then
used to train the Feed-Forward Neural Network. Thus, the basic assumption of
this approach is that the residuals contain only non-linear patterns and random
errors. To evaluate the model, G. Zhang applied the proposed hybrid model
and the two individual methods to three time series. With respect to the mean
square error and mean absolute deviation, the results have shown that the
hybrid model significantly improved the forecast accuracy compared to the
ARIMA and Feed Forward Neural Network models on their own.

A very similar approach to G. Zhang [[Zha03]] was presented by P. Pai and C.
Lin [[PLO5]]. The only considerable difference is the machine learning method
chosen. Instead of the Feed-Forward Neural Network used by G. Zhang, the
authors of this paper used a Support Vector Machine. Besides this adaptation,

63

Chapter 3: State-of-the-Art

the approach follows the procedure of G. Zhang. To evaluate the proposed
hybrid model, the authors compared their approach with the two individual
methods and a combination of them. In agreement with G. Zhang, the authors
also found that the sequential application of ARIMA and SVM improved the
forecast accuracy compared to the individual methods and the simple combi-
nation. In addition, the authors pointed out that the hyperparameters of the
methods must be tuned in combination rather than model by model.

Another approach to the sequential application of forecasting methods was
proposed by R. Adhikari and R. Agrawal [[AA14]. Their hybrid forecasting
method was developed particularly for forecasting financial time series. The
key characteristic of financial time series is that they exhibit remarkably random
behavior when considered as univariate time series. Therefore, the authors
introduced a combination of Random Walk and an ensemble consisting of
a Feed-Forward Neural Network and an Elman Neural Network, which is a
special type of Recurrent Neural Networks. Similar to the previous approaches,
the statistical forecasting method, i.e., Random Walk, was used to model the
linear part of the time series, while the neural network ensemble was applied to
learn the non-linear component. The neural network ensemble was aggregated
using the simple arithmetic mean. To evaluate their model, the authors used
four financial time series and calculated the mean absolute error, mean square
error, and symmetric mean absolute percentage error for their proposed hybrid
approach as well as for all three individual methods. The results showed that
the hybrid approach significantly outperformed the individual methods.

In contrast to these component-based forecasting approaches that apply the
methods sequentially to the residuals, other component-based approaches ex-
plicitly decompose the time series into components and apply one forecasting
method to each component. One such approach was proposed by A. Conejo et
al. [CPEMO5]]. The authors applied wavelet decomposition and, subsequently,
used ARIMA models to forecast the components. More specifically, their pro-
posed approach was tripartite. In the first step, the time series was split into
four components using wavelet transform. This decomposition is performed to
reduce the complexity in each time series. Then, an ARIMA model was fitted to
each component and, consequently, used to forecast the respective component.
Thus, this approach does not explicitly use different forecasting methods, but
different parametrizations of one and the same method. However, ARIMA
models also cover a wide range of potential models (cf. Section[2.3.4)). In the
third and final step, the inverse wavelet transform was applied to reconstruct
the final forecast by recombining the forecasts of each component time series.
In order to evaluate this hybrid approach, A. Conejo et al. conducted a case

64

3.1 Hybrid Time Series Forecasting Methods

study consisting of one time series divided into four successive time series.
Thus, the method was applied to the four resulting time series and compared
with individual ARIMA and Naive models. The authors pointed out that their
hybrid method not only reduced the average forecast error, but also reduced
the variance in the forecast error.

Another approach in the same domain was proposed by J. Xie et al. [XCCP06]],
who used time series decomposition together with neural networks. In their
work, the authors integrated dynamic unit, specialized units, and multiple-
neural networks into Adaptive Time-Delay Neural Networks (ATNN). That
is, the proposed neural network architecture, called Dynamic Spline ATNN
(DSTNN), contained two types of decomposition units. The first type of de-
composition units extracts the seasonal behavior of the time series, while the
second type focuses on the trend part. To extract the seasonal information,
the approach included a maximum entropy-based spectral analysis technique.
For trend estimation, the authors calculated a moving average combined with
a polynomial fit. In addition to these decomposition units, the DSTNN also
included a dynamic spline interpolation unit based on cubic polynomial spline
interpolation. Finally, the authors examined the forecast accuracy of their ap-
proach on a single time series using the root mean square error and the mean
absolute error as forecast error measures. Compared to a conventional Time-
Delay Neural Network, the results demonstrated that the DSTNN approach
improved the forecast accuracy for a multi-step-ahead forecast with respect to
both forecast error measures.

S. Schliiter and C. Deuschle [[SD10] conducted a broad case study evaluating
numerous wavelet transforms and comparing their advantages with respect
to forecast accuracy with several individual time series forecasting methods.
The authors considered the main advantage of wavelet transforms for time
series forecasting to be their decomposition into a time-dependent sum of fre-
quency components. These components can capture seasonal patterns with
time-varying intensity as well as time-varying period length quite well. Al-
though these frequencies are easier to forecast, the overall complexity of the
model nevertheless increases when integrating wavelet decomposition into
the forecasting workflow. The authors justified this statement by arguing that
an appropriate wavelet function must be selected and the parameters of this
wavelet function must be defined, which in turn increases the number of points
of error. Therefore, the authors investigated whether or not the trade-off be-
tween improved forecast accuracy and increased model complexity in terms
of wavelet transforms is worthwhile. To examine the performance of wavelet
transforms in the area of time series forecasting, S. Schliiter and C. Deuschle

65

Chapter 3: State-of-the-Art

applied four different wavelet functions to four time series and compared their
performance with ARMA, ARIMA with the integration order set to 1, and
Census X-12. The authors evaluated both one-step-ahead and multi-step-ahead
forecast accuracy using mean square error, mean absolute deviation, and mean
absolute percent error. The authors concluded that there is no best combina-
tion of wavelet transform and time series forecasting techniques for all time
series. Although in most cases there was a combination that outperformed
each method, this best combination varied greatly between time series.

N. Liu et al. presented a hybrid component-based time series forecasting ap-
proach [LTZ™14] based on Empirical Mode Decomposition, Extended Kalman
Filter, Extreme Learning Machine with Kernel, and Particle Swarm Optimiza-
tion. To obtain the individual time series components, the authors applied
Empirical Mode Decomposition, resulting in a set of Intrinsic Mode Function
components. Then, the authors used either Extended Kalman Filter or Extreme
Learning Machine with Kernel on each of the Intrinsic Mode Function compo-
nents. In addition, they optimized the hyperparameters of the model using
Particle Swarm Optimization. As this approach was specifically designed for
on-line forecasting, this hyperparameter optimization was performed in an
initial off-line step, while there were also periodic hyperparameter updates
during runtime. The authors also carried out a case study demonstrating that
the hybrid approach provided good forecast accuracy and runtime.

A further component-based approach to time series forecasting was pro-
posed by C. Di et al. [DYW14]]. Their approach was specifically designed for
hydrological time series due to their non-linear, non-stationary, and multiscale
characteristics. In general, the proposed approach consisted of four steps. First,
the raw time series was denoised using Empirical Mode Decomposition. Then,
the denoised time series was decomposed using Ensemble Empirical Mode
Decomposition, resulting in a set of Intrinsic Mode Function components and a
residual component. In a third step, all components were forecast using a mod-
ified version of a Radial Basis Function Neural Network (RBFNN). In the final
step, the authors learned a Linear Neural Network (LNN) to combine all fore-
casts of the Intrinsic Mode Function components and the residual component.
C. Di et al. evaluated their approach on six time series with respect to mean
relative error, mean absolute error, and root mean square error. To this end,
the authors compared their approach with individual time series forecasting
methods, namely RBENN and ARIMA, their proposed hybrid approach either
without denoising or without decomposition, and the application of other
methods within the four-stage approach, i.e., wavelet transforms instead of
Ensemble Empirical Mode Decomposition, ARIMA instead of RBFNN, and sim-

66

3.2 Critical Event Prediction

ple addition instead of LNN. The results revealed that the proposed approach
using all four steps and the particular methods described above performed
best for all six time series with respect to all three forecast error measures.

C. Bergmeir et al. [[BHB16]] proposed another approach based on bootstrap
aggregation of exponential smoothing models. More precisely, the approach
consisted of five steps. First, Box-Cox transformation was applied to the time
series to remove multiplicative effects (cf. Section[2.2.4)). Subsequently, the
transformed time series was decomposed into season, trend, and remainder
components using STL decomposition. Then, the core process of the approach
was performed. That is, the remainder was bootstrapped to construct a large
number of time series that exhibit the same trend and seasonal behavior as the
original time series. Although the bootstrapped time series exhibit a similar ran-
dom behavior, it is not identical. To this end, the authors sampled continuous
fixed-length sequences from the original remainder and sequentially assem-
bled them into a new remainder. Then, the seasonal and trend components
were combined with the newly created remainders and the inverse Box-Cox
transformation was applied. After augmenting the original time series with
this set of bootstrapped time series, an ensemble of exponential smoothing
models was fitted to these time series. Finally, the forecasts from this ensemble
were aggregated using their median to obtain the final forecast for the original
time series. In order to evaluate their bootstrap approach, C. Bergmeir et al.
applied the hybrid model to the M3 data set [MHO0]| and compared it to a
variety of forecasting methods. Although ETS is known to perform very well
on the M3 data set, the bootstrap approach outperformed ETS as well as many
other forecasting methods. In fact, on certain subsets of the M3 data set, the
bootstrap approach even performed best.

3.2 Critical Event Prediction

This section provides an overview of existing approaches to critical event pre-
diction. Therefore, we first present approaches based on time series forecasting
methods and, subsequently, describe model-based approaches that rely on
multivariate monitoring data and do not involve explicit time series forecasting
tasks. Note that some approaches in the first category also apply multivariate
models after forecasting each time series in the multivariate data set. Finally, we
present several approaches that focus on re-training machine learning models
during runtime. For a general overview of methods for predicting critical events
in terms of failures, we refer the reader to the comprehensive overview by F.
Salfner et al. [SLM10]. The planning of countermeasures is hardly addressed

67

Chapter 3: State-of-the-Art

here, since this thesis focuses on the prediction of critical events, while the
planning of appropriate countermeasures is beyond the scope of this thesis.

3.2.1 Critical Event Prediction using Time Series Forecasting

S. Oe et al. [OSN80]] proposed an approach to critical event prediction of lathe
tools in terms of increased flank wear. That is, the authors modeled critical
events of machine equipment, i.e., their transition from a normal state to an
anomalous failure state, as a degradation process described by a time series
of acoustic monitoring data. Using this time series, an autoregression model
of order p was trained, where p was estimated using Akaike’s Information
Criterion. To detect degradation, the authors compared the actual observations
with modeled observations of a normal machine condition. Next, the authors
applied four measures indicating the difference between the models and, there-
fore, the probability of a faulty machine condition. Their model included two
thresholds, with the first threshold implying a warning and the second a severe
tailure. Finally, they applied their model to real-world acoustic monitoring
data of a lathe tool and proved the effectiveness of their model.

J. Hellerstein et al. [HZS99]] introduced an approach to predict critical events
in the form of threshold violations for HTTP requests. To this end, the authors
modeled non-stationary and stationary parts of the workload time series using
multiple forecasting models, each capturing a different relevant part of the time
series. For evaluating their approach, J. Hellerstein et al. used data captured
from a production web server and concluded that the proposed approach was
able to predict threshold violations well if the prediction horizon was not too
long and the actual values were not too close to the threshold.

A similar approach was suggested by R. Vilalta et al. [VAH"02]]. In addition to
regression-based long-term forecasts of performance measures and categorical
target prediction of specific events, the authors presented short-term prediction
of threshold violations. Similar to the work of J. Hellerstein et al. [HZS99]], R.
Vilalta et al. used workload data describing HTTP requests arriving at a web
server. R. Vilalta et al. also applied different forecasting models for different
parts of the time series and employed an autoregression model of order two
(i-e., AR(2)) for temporal dependencies. Furthermore, the authors included
breakpoint detection by means of the Generalized Likelihood Ratio algorithm.

R. Sahoo et al. [SOR™ 03] analyzed event logs and system performance coun-
ters of a 350-node cluster system monitored for one year. First, the authors
filtered the monitoring data to remove redundant or misleading information.
Then, R. Sahoo et al. applied numerous time series forecasting methods to
estimate future values of critical system performance counters, such as system

68

3.2 Critical Event Prediction

utilization, idle time, or network I/O. The investigated forecasting methods in-
clude mean, multi-step-ahead Naive forecast, i.e., forecasting the last observed
value for the entire horizon, mean of a pre-defined window of the last obser-
vations, autoregression, moving average, and autoregressive moving average.
The results showed that the multi-step-ahead Naive forecast performed best,
because performance counters often change only slowly. Moreover, the ARMA
model performed poorly with little training data, but improved when the size of
the training data was increased. Furthermore, the authors applied a rule-based
classification algorithm to predict rare critical events captured in the event logs.
Here, the results showed that the approach was able to predict these critical
events with an accuracy of up to 70%.

An adaptation of the well-known ARIMA model was introduced by W. Wu et
al. [WHZ07]] with the objective of forecasting the development of a machine’s
state of health. The authors stated that the main shortcoming of ARIMA is its
poor performance for long-term forecasting. Therefore, the authors proposed
an adapted version of ARIMA that remedies this shortcoming by reducing the
accumulation of systematic errors within ARMA models and, consequently,
within ARIMA models for multi-step-ahead forecasting. In addition, their
approach automatically updated the parameters of the improved ARIMA model
during runtime to allow for adjustments as time series characteristics change.
Finally, the authors evaluated their model on real-world vibration data of a
rotating machine. To this end, W. Wu et al. calculated the root mean square of
the vibration data as an indicator of the current health status of the machine.
The authors showed that their adapted ARIMA version achieved lower forecast
errors than the original ARIMA model for the 50-step-ahead forecast on two
time series with respect to the forecast error measures root mean square error,
mean absolute error, and mean absolute percentage error.

J. Zhao et al. [[ZXL07]] proposed a modification of the ARMA model to forecast
machine downtime using transformed monitoring data. That is, the monitoring
data were transformed into an indicator variable for machine downtime. The
derived time series was then preprocessed using a moving average with window
size eight. The authors state that this step was performed to increase the
robustness of the time series and to handle non-linear and non-stationary
time series. Next, the authors applied an ARMA model to the residuals of
the preprocessed time series. Based on the values obtained by the sample
autocorrelation function and the partial autocorrelation function, the authors
selected an AR, MA, or ARMA model to forecast the time series. To this end, the
parameters of the models were estimated using Akaike’s Information Criterion
and Bayesian Information Criterion. In addition, J. Zhao et al. verified whether

69

Chapter 3: State-of-the-Art

the residuals resulting from the application of the model to the historical data
were white noise or still had autocorrelation patterns. The final model was
used to forecast the indicator variable for machine downtime. To evaluate
the modified ARMA model, the authors used a time series obtained from
a semiconductor ATM factory. The modified ARMA model was compared
with an ordinary ARMA model, where the results showed that the proposed
modification outperformed the ordinary ARMA model. However, a comparison
with ARIMA is missing, although ARIMA addresses the same shortcoming of
ARMA models as the proposed approach.

A critical event detection model for failure detection of point mechanisms in
railroad networks was described by F. Garcia ef al. [[GPR10]]. The general idea
of their approach was to model the normal behavior of a point mechanism and
compare it with the actually observed behavior. To this end, the authors applied
Vector Autoregressive Moving Average (VARMA), which can be viewed as
a modification of ARMA models for multivariate time series, to forecast the
time required for the next movement of the point mechanism along with its
95% confidence interval using the last 50 fault-free executions to learn the
VARMA model. They estimated the parameters of the AR and MA submodels
using multivariate autocorrelation and multivariate partial autocorrelation. In
addition, the authors manually differenced the time series with order one to
achieve stationarity. After forecasting the assumed time of movement, they
used multiple Harmonic Regression models for different regions of the 95%
confidence interval to forecast the signal. The authors then selected the forecast
with least variation. The final step of failure detection was the comparison of the
actually observed values with the predicted values. F. Garcia et al. demonstrated
the applicability of their model using real-world data from an operating point
mechanism at a British railroad junction.

L. Lahyani et al. [LMC12]] presented an approach to predict Quality of Service
degradations in publish/subscribe networks. For this purpose, the authors
employed an autoregression to forecast the latency between two adjacent bro-
kers. Based on exponentially weighted moving average, the authors calculated
thresholds for the Quality of Service. Using the forecasts provided by the
autoregression model and the calculated thresholds, Quality of Service degra-
dations were assumed when the forecast exceeded the threshold. I. Lahyani et
al. evaluated the quality of their approach using simulation data and concluded
that their approach predicted the simulated Quality of Service degradations
well with an accuracy of 75% and a recall of almost 86%.

T. Chalermarrewong et al. [CAS12]] described the application of ARMA and
Fault Tree Analysis for the prediction of hardware failures in data centers. To

70

3.2 Critical Event Prediction

this end, the authors used ARMA to forecast future values of system perfor-
mance counters, such as memory utilization, processor utilization, and proces-
sor temperature. In addition, their model included automatic re-training of the
ARMA model. Then, thresholds were used to convert the ARMA forecasts into
binary variables, which in turn were used as input for the Fault Tree Analysis.
In combination with the multi-step-ahead forecasts of the ARMA model, the
Fault Tree was utilized to estimate the time remaining until the failure occurs
and to suggest possible migration actions. A cluster simulation was used by
the authors to evaluate their presented model. The results have shown that the
model was able to predict the failures with an accuracy of 97%. However, the
model also produced many false positives, resulting in a precision of only 53%.

In contrast, W. Liao et al. [LWP12]] focused on estimating and forecasting a
machine condition index to minimize the long-term costs in terms of mainte-
nance activities and operating costs. To estimate the machine condition index,
Principal Component Analysis (PCA) was carried out first to extract features
and reduce the dimensionality of the data. Subsequently, the dominant feature
was clustered to reveal different patterns in the data. Then, chi-square test
was performed to determine the health index of the considered machine. To
estimate the future development of the machine’s health index, an ARMA
was employed. When the health index of the machine exceeded a pre-defined
threshold, a critical event was assumed and a maintenance action was triggered.
Experimental results based on drilling machine data indicated that the model
was able to reproduce the actual degradation process very well.

C. Zhao and F. Gao [[ZG15]] introduced a three-stage approach to failure
prediction. First, they extracted critical fault effects using a combined relative
analysis based on Principal Component Analysis. A faultindex was constructed
by means of Mahalanobis distance between the considered data and the train-
ing data of the normal condition, allowing identification of diverging patterns.
Finally, a Vector Autoregressive (VAR) model was applied to forecast the iden-
tified error effects. For this purpose, a threshold value of the fault index was
set as a critical event alert limit. C. Zhang and F. Gao evaluated the prediction
performance of their model in two case studies, where they also analyzed the
influence of the prediction horizon on the mean absolute deviation. With re-
spect to their case studies, the authors demonstrated the effectiveness of their
approach, although they did not compare their model with other approaches.

Another ARMA-based approach to critical event prediction was proposed by
M. Baptista et al. [BSAM*18]]. They focused on predicting failures for aircraft
engines using ARMA models in combination with data-driven methods. For
this purpose, the approach required a time series of past failure events as input.

71

Chapter 3: State-of-the-Art

Based on this time series, the ARMA model was trained to forecast the time of
the next failure event. In addition, various statistical features were calculated
on the time series of failure events. Then, Principal Component Analysis was
applied to the set of both features to transform the feature set into a new feature
set consisting of linearly uncorrelated features. Using this PCA feature set,
five different data-driven regression methods were trained, namely k-Nearest
Neighbor, Random Forest, Neural Network, Support Vector Regression, and
Generalized Linear Regression. To assess the proposed model, the authors
used a case study of real-world aircraft engine data. To rank the data-driven
methods, the authors calculated eight forecast error measures and concluded
that Support Vector Regression performed the best on average, although the
performance of each method was highly dependent on the error measure
considered. Furthermore, the authors showed that their approach was superior
compared to typical failure prediction based on the Weibull distribution.

M. Narayan and A. Fey [NF20] introduced an approach for predicting critical
events in robotic forces. The authors consider the main drawback of state-of-the-
art forecasting methods to be the high runtime for model learning. Therefore,
the authors presented a fast forecasting approach for forces. For this purpose,
the authors employed Pseudo Partial Derivative to transform the non-linearity
within a time series into a single time-varying scalar. After this transformation,
a dynamic linear model was used to forecast future values. However, this
model is only capable of forecasting one-step-ahead. Based on the resulting
forecasts, critical events can be detected. In order to investigate the quality of
their proposed model, the authors used simulation data and compared their
model with ARIMA using mean square error as forecast error measure. The
results revealed that the proposed model outperformed ARIMA by 11% in
terms of prediction error and exhibited a much shorter maximum runtime.

An approach to predict critical events for smart manufacturing was presented
by K. Villalobos et al. [[VSI21]]. Their approach included two main steps, namely,
forecasting sensor measurements and analyzing whether or not the sensor
measurement forecasts are anomalous. As time series forecasting methods,
the authors evaluated ARIMA, Convolutional Neural Network (CNN), and
Long Short-Term Memory (LSTM). Their experimental results suggested that
on their use cases, the ARIMA model seemed superior for short forecasting
horizons, while the LSTM model outperformed the ARIMA model for longer
forecasting horizons. Therefore, the authors chose LSTM as the forecasting
method for their model. Furthermore, the authors implemented concept drift
detection for their forecasting model. That is, the model observed the forecast
error over time and triggered a re-learning of the model if the forecast error

72

3.2 Critical Event Prediction

exceeded a certain threshold. The analysis of the forecasts was performed
using Residual Neural Networks. K. Villalobos et al. evaluated their model for
three critical event types and created a specific Residual Neural Network for
each critical event type. In their case study, only temperature sensor values
were recorded from a real-world production plant. The first critical event type
was only a fixed threshold value of a particular temperature sensor. Therefore,
the proposed model was able to achieve an area under the receiver operating
characteristic curve (AUC-ROC) of 99.9%. The second critical event type could
have also been modeled using thresholds, although multiple thresholds would
have been required. Again, the proposed model achieved a very high AUC-
ROC of 99.2%. Finally, the third critical event type could have not been modeled
using thresholds. Nevertheless, the model of K. Villalobos ef al. resulted in an
AUC-ROC value of 97.3%.

3.2.2 Critical Event Prediction using Multivariate Learning Models

One category of models that can be used to detect failures in machines are
statistical models. N. Gebraeel [Geb06]], for instance, focused on analyzing
the degradation of components based on vibration data to predict the health
of machines. He proposed a stochastic degradation modeling framework to
model the remaining life of already partially degraded equipment. However,
the model focused only on exponentially degrading components. In addition, N.
Gebraeel presented two sensory update techniques. To evaluate the proposed
statistical approach, he conducted experiments with real-world vibration data
from rolling element thrust bearings. The results showed the strength of the
degradation models updated with the proposed sensory update techniques.

H. Cai et al. [|[CJF"20]] proposed a so-called similarity matching procedure
using the kernel two sample test to find the most similar instances in the
training data set. Using this statistical matching, they provided an estimate of
the remaining useful life of the examined machine along with its probability
distribution by using Weibull analysis. The authors used this to provide a
confidence interval on top of the actual prediction. In order to demonstrate the
advantages of their proposed model, H. Cai et al. used a publicly available data
set of aircraft engines.

Typically, however, recent approaches use machine learning or deep learn-
ing approaches for machine failure detection and prediction. Y. Liang et
al. [[LZXS07]] presented a failure prediction workflow for event logs from a
supercomputer, namely the IBM BlueGene/L. First, the authors transformed
the event logs into data interpretable for classification algorithms. Next, the
authors applied three common classification algorithms, namely a rule-based

73

Chapter 3: State-of-the-Art

classifier (i.e., RIPPER), a Support Vector Machine, and k-Nearest Neighbor.
Furthermore, the authors also implemented a modified version of the k-Nearest
Neighbor algorithm. The authors compared the performance of the different
algorithms with respect to recall, precision, and F1-score. While all algorithms
performed well at a prediction horizon of 12 hours, the prediction quality
dropped drastically for shorter prediction horizons. Nevertheless, the modi-
fied k-Nearest Neighbor algorithm achieved the best results. For the 12-hour
prediction horizon, the modified k-Nearest Neighbor algorithm provided an
F1-score, precision, and recall of about 70%, 60%, and 80%, respectively.

J. Sikorska et al. [SHM11]] conducted a thorough review of different types
of models for predicting the remaining useful life of technical equipment.
Therefore, the authors described four categories of classification models, namely
knowledge-based models, life expectancy models, artificial neural networks,
and physical models. For each of these models, the authors summarized a
list of benefits and drawbacks with respect to several criteria, resulting in a
set of manually generated guidelines for selecting remaining useful lifetime
prediction models for both industrial practitioners and researchers. The main
criteria considered by J. Sikorska et al. were the size and quality of the available
training data, the impact of noise, the type of maintenance, whether multiple
failure patterns can be modeled in parallel, and whether the model can handle
novel failure patterns. Finally, the authors pointed out many further selection
criteria, such as the mathematical knowledge of the operator.

Z. Tian [Tial2] proposed a time-to-failure prediction approach for bearings
using a Feed-Forward Neural Network. To this end, Z. Tian introduced a fitting
function based on the Weibull distribution to transform the historical monitor-
ing data into a shape that exhibits less noise effects. After applying this function
to the input data of the Feed-Forward Neural Network, the neural network
predicted the health of the machine in terms of lifetime percentage. The input
data of the Feed-Forward Neural Network was the age of the bearing along with
several monitoring features. However, not only the observations of the current
measurement were passed to the Feed-Forward Neural Network, but also those
of the previous measurement. In this way, deterioration between successive
measurements was supposed to be better detected. The Feed-Forward Neural
Network proposed by Z. Tian consisted of two hidden layers with three and
two nodes in the first and second hidden layer, respectively. A single output
node was used, whose value was interpreted as the lifetime percentage. The
proposed approach was evaluated using real-world vibration data from pump
bearings. A comparison with another Feed-Forward Neural Network showed
that the proposed model performed superior.

74

3.2 Critical Event Prediction

An approach tailored to remaining useful life prediction of lithium-ion bat-
teries was introduced by Q. Miao et al. [MXC™13]. Their approach extended
the standard Particle filter algorithm by an additional preprocessing step. In
a first step, the authors applied the unscented Kalman filter to estimate the
proposal distribution for retrieving the posterior probability. Subsequently,
they applied the standard Particle filter to obtain the prediction. Therefore,
they named their modified Particle filter algorithm unscented Particle filter.
The authors used their proposed approach to predict the remaining useful
lifetime of a lithium-ion battery in terms of cycles and compared the results
with the standard Particle filter algorithm with respect to percentage error and
root mean square error. The evaluation indicated that the unscented Particle
filter outperformed the standard Particle filter and that the prediction quality
of both methods improved with increasing degradation of the battery.

T. Pitakrat et al. [PVHG13|] compared numerous machine learning methods in
terms of their hard disk drive failure prediction performance. For this purpose,
they used a data set consisting of S.M.A.R.T. measurements of 369 hard disk
drives. This data set was first introduced by J. Murray et al. [MHKDOS5]]. In order
to detect not only currently failed hard disk drives, but also to predict future
failures, the authors marked all instances as “failed” that failed within the next
seven days, while all others were marked as “healthy”. Based on the SM.AR.T.
feature set and the derived failure targets, the authors trained 21 machine
learning methods as binary classifiers. To compare the binary classifiers, the
authors considered not only the predictive power of the classification models,
but also their required runtime for training and prediction. As error measures,
the authors chose precision, recall, false positive rate, accuracy, and F1-score.
Finally, the authors concluded that there was no significantly superior method,
but that the selection of an appropriate machine learning method depends on
the requirements and constraints of the particular application.

The application of Feed-Forward Neural Networks for hard disk drive failure
prediction, by contrast, was proposed by B. Zhu et al. [ZWL713]]. Their network
consisted of a single hidden layer and used backpropagation for weight up-
dating. As input, the authors passed both the normalized and raw S M.A.R.T.
measurements to the network. In addition, the authors also calculated the
change rates of the SSM.A R.T. features and used them as additional input to
their Feed-Forward Neural Network. Moreover, the authors also trained a
Support Vector Machine with the same set of features. Their evaluation data
set included 23,395 hard disk drives, with less than 2% of the devices failing.
For predicting hard disk drive failures, B. Zhu et al. compared the prediction
performance for different prediction horizons, with all models trained as bi-

75

Chapter 3: State-of-the-Art

nary classifiers. The results showed that the Support Vector Machine achieved
the lowest false alarm rate. However, the failure detection rate of the Feed-
Forward Neural Network was significantly better compared to the Support
Vector Machine, while it also maintained a low false alarm rate.

G. Susto et al. [[SSPT14]] proposed an approach to the field of predictive
maintenance. The proposed approach relied on multiple classification models
with varying prediction horizons to reduce the total operation costs. To this end,
each classifier was trained as a binary classification model where all instances
that suffered a failure within the defined prediction horizon were marked as
failed. Thus, the only difference between the classifiers was the length of the
prediction horizon. Next, the predictions were analyzed with respect to the total
operating costs incurred. These costs included both the costs of unexpected
failures and the costs of underused machine life. Finally, the proposed approach
triggered maintenance when the classifier that achieved the lowest total cost
in the decision system predicted an imminent failure. As machine learning
methods, the authors compared the performance of Support Vector Machine
and k-Nearest Neighbor. In order to assess their approach, G. Susto et al.
applied a Monte Carlo simulation based on data from tungsten filaments used
in ion implantation. The results showed that the proposed approach using
Support Vector Machines as multiple classifiers outperformed a single Support
Vector Machine and also achieved less total costs and fewer unexpected failures
compared to the proposed approach using k-Nearest Neighbor classifiers.

A framework for generating machine learning-based time-to-failure predic-
tions for software systems was introduced by A. Pellegrini et al. [PDSA15]. As
their framework assumed only system-level features, namely the number of
active threads combined with memory, swap space, and CPU features, their
framework was application-independent. To reduce the dimensionality of the
feature space, the authors incorporated a feature selection mechanism based
on Lasso regularization. For the prediction of time-to-failure, the six machine
learning methods linear regression, M5P decision tree, REP-Tree, Lasso predic-
tor, Support Vector Machine, and Least-Square Support Vector Machine were
integrated. Furthermore, the framework collected four error measures as well
as two measures regarding the runtime required for model learning. For the
evaluation of their framework, the authors gathered monitoring data using two
virtual machines. As a basis, the e-commerce benchmark TPC-W was chosen.
Finally, the authors concluded that the decision tree-based methods M5P and
REP-Tree yielded the best results for their particular case study.

C. Xu et al. [XWL™16] predicted the health status of hard disk drives using a
Recurrent Neural Network. Their network architecture used a single hidden

76

3.2 Critical Event Prediction

layer and employed backpropagation for weight optimization. In addition,
the authors manually selected relevant features through reverse arrangement
test, rank-sum test, and Z-scores. The authors applied their Recurrent Neural
Network to three data sets and compared its prediction quality with Hidden
Markov Models, Binary Neural Networks, Classification Trees, Multi-Class
Neural Networks, and Conditional Random Fields. The results indicated that
the proposed Recurrent Neural Network outperformed the other models with
respect to failure detection rate and false alarm rate.

The work of M. Botezatu et al. [BGBW16]] also dealt with the prediction of
hard disk drive failures. To this end, the authors first conducted feature selec-
tion using statistical hypothesis testing, assuming that the time series of feature
measurements should exhibit a permanent change prior to the occurrence of
the failure. Subsequently, they applied exponential smoothing to flatten the
feature time series. As the classes were highly imbalanced, the authors also
performed informative downsampling to balance the number of classes. To
predict the degradation of hard disk drives, the authors tested several machine
learning models, namely Decision Tree, Gradient Boosted Decision Tree, Logis-
tic Regression, Random Forest, Regularized Greedy Forest, and Support Vector
Machine. Finally, the authors also introduced a transfer learning technique to
apply a model learned on a particular hard disk drive model to another model.
For the evaluation, the authors used a data set of more than 30,000 hard disk
drives collected over a 17-month period and predicted whether the hard disk
drive will fail the next day. The prediction quality was evaluated in terms of
precision, recall, and F1-score. Their results showed that Regularized Greedy
Forest provided the best predictions with an F1-score of up to 98%, even though
Gradient Boosted Decision Trees provided comparable results. In addition, M.
Botezatu et al. demonstrated the importance of transfer learning when different
hard disk drive models are present in the test set than in the training set.

Y. Lei et al. [LLGT16]] focused on predicting the remaining useful lifetime of
rotating machines and presented a novel two-stage approach for this purpose.
First, the authors introduced a novel health indicator, namely the weighted
minimum quantization error. This health indicator was built upon the min-
imum quantization error introduced by H. Qiu ef al. [QLLY03]] by adding a
weighting step. To compute the health indicator, the authors first calculated
numerous typical features and derived the so-called trendability by calculating
the Spearman correlation coefficient of the features with time. Features with a
trendability below a certain threshold were discarded, while the others were
grouped using correlation clustering to remove redundant features. The re-
maining features were then fused by means of a Self-Organizing Map. However,

77

Chapter 3: State-of-the-Art

the Self-Organizing Map was trained using only data from healthy machine
states. Finally, the weighted minimum quantization error was calculated as
the difference between the features of a healthy model and the actual features,
with higher weights given to the features with high trendability. The second
stage of the proposed approach employed this health indicator to model the
degradation process and predict the remaining useful lifetime. The modeling
part was performed using the Paris-Erdogan model, while a Particle filter was
applied for the prediction. Here, the parameters of the models were estimated
using maximum likelihood estimation. The authors evaluated their proposed
approach on the publicly available PRONOSTIA data set, which consists of
several rolling element bearings. As base-level features, the authors calculated
28 features from the time domain, the time-frequency domain, and based on
trigonometric functions. Finally, Y. Lei et al. compared the percentage error of
their proposed approach with two other approaches that used the same data
set. The authors concluded that their proposed approach outperformed the
other two in terms of achieving the smallest percentage error as well as the
smallest variation in percentage error.

Similar to Y. Lei et al., L. Guo et al. [GL]"17]] also proposed a remaining
useful lifetime prediction approach specifically tailored to bearings. The overall
procedure of their approach also followed that of Y. Lei et al. That is, the
authors calculated various features from the raw measurements and selected
only the most relevant for further processing. Thereby, the authors used six
related similarity features from the time and frequency domains as well as
eight statistical features from the time-frequency domain. The feature selection
was based on the correlation with time and the monotonicity of the particular
teature. However, unlike Y. Lei et al., L. Guo et al. did not explicitly derive a
health indicator, but instead passed all remaining features to a Long Short-Term
Memory neural network. The authors evaluated the percentage error of their
proposed model on the PRONOSTIA data set and in an industrial case study
of wind turbine analysis. For both evaluation scenarios, the authors compared
their proposed approach with an approach employing a Self-Organizing Map
instead of an LSTM. Here, L. Guo et al. found that their approach considerably
outperformed the Self-Organizing Map for both applications.

J. Liet al. [LSWT17]] described the application of two tree-based machine
learning methods for hard disk drive failure prediction. The models employed
were Decision Trees and Gradient Boosted Regression Trees. While the first
method directly classified hard disk drives as “good” or “failed’,” the second
method provided a health score between 0 and 1. To derive an output class, the
authors set a threshold of 0.2 and marked instances as “failed” if the Gradient

78

3.2 Critical Event Prediction

Boosted Regression Trees predicted a value below that threshold. As input,
the authors passed S.M.A.R.T. features to the models. However, they first se-
lected the most relevant features using quantile functions. That is, the authors
visualized the quantile functions of each S.M.A.R.T. feature for healthy and
failed hard disk drives and manually selected strong discriminator features.
For the evaluation of the tree-based models trained with the manually selected
S.M.ART. features, the authors used three different data sets consisting of
a total of 121,698 hard disk drives. As prediction measures, J. Li et al. chose
failure detection rate, false alarm rate, and time in advance. They also com-
pared their tree-based models with the Feed-Forward Neural Network using
backpropagation by B. Zhu et al. [ZWL"13]. The result indicated that both
tree-based models were superior to the neural network and that the Decision
Tree-based model best predicted the hard disk drive failures with a failure
detection rate of about 93%, while it maintained a false alarm rate of less than
0.01%. Finally, the authors analyzed the potential cost reduction of integrating
their hard disk drive failure prediction models into RAID-6 systems.

The prediction of hard disk drive failures was also addressed by the work of
L. Chaves et al. [CdPL"18]. However, the authors did not distinguish between
good and failed hard disk drives, but predicted the remaining useful lifetime.
Their approach also used S.M.AR.T. features as health indicators of hard drive
failures, but they used a Bayesian Network as failure prediction method. To
select only meaningful features for the regression task, the authors applied re-
cursive feature elimination with Random Forest as baseline prediction method.
For each of the remaining features, the authors fitted a linear model to a fixed
window of the feature time series and used the slope of the linear model as an
additional trend feature. As a final step in feature preprocessing, they applied
a binning technique to discretize the features into categories. The Bayesian
Network structure contained nodes for each feature and a parent node rep-
resenting the operating time of the hard disk drive, while the parameters of
the Bayesian Network were estimated using Laplace Smoothing. To assess the
prediction quality of their proposed model, the authors used a data set that
encompassed 49,056 hard disk drives. I. Chaves et al. compared their Bayesian
Network with a standard reliability method as well as with two approaches
from other research teams, namely another Bayesian Network-based approach
and a Recurrent Neural Network-based approach. The authors demonstrated
that their Bayesian Network outperformed the standard reliability method and
the other Bayesian Network with respect to the measures a-\ performance,
prognostics horizon, and relative accuracy. As the Recurrent Neural Network-
based approach did not provide predictions with uncertainty, the comparison

79

Chapter 3: State-of-the-Art

was made only with respect to relative accuracy, where the Recurrent Neural
Network-based approach performed slightly better.

Y. Zhang et al. [ZXHP18|] presented a Long Short-Term Memory-based ap-
proach for predicting the remaining useful lifetime of lithium-ion batteries. The
authors pointed out that previous approaches neglected the use of long-term
dependencies on capacity degradations, so they decided to use Long Short-Term
Memory. Their proposed network architecture included resilient mean square
backpropagation for network optimization, dropout to prevent the network
from overfitting, and Monte Carlo simulation to model prediction uncertainties.
Furthermore, the network consisted of two hidden Long Short-Term Memory
layers with 50 and 100 neurons, respectively, and a Feed-Forward output layer
with one neuron. Finally, the authors compared their Long Short-Term Mem-
ory with a Support Vector Machine, a Particle filtering algorithm, and a basic
Recurrent Neural Network. The models were applied to six lithium-ion battery
data sets measured under two different temperatures. The results suggested
that the proposed Long Short-Term Memory approach outperformed the other
models, although the confidence intervals resulting from the proposed Long
Short-Term Memory were often comparatively large.

The use of simulation data for model training while applying the learned
models to real-world data was analyzed by C. Sobie et al. [SFN18]]. Their ap-
proach was specifically tailored to classify bearings with race faults. Using the
simulated data, they extracted statistical features based on angle synchronous
averaging and envelope functions. In addition, the authors also derived the
energies of the first wavelet decompositions. Then, the features were normal-
ized using Z-score normalization. As classification methods, Sobie et al. used
standard machine learning methods, namely logistic regression, k-Nearest
Neighbor, Random Forest, Support Vector Machine, and Multi-Layer Percep-
tron, a Convolutional Neural Network with one hidden layer, and first-Nearest
Neighbor Dynamic Time Warping. The comparison of model training using
simulation data with model training using real-world data indicated that the
models trained on simulation data were superior to those trained on real-world
data with respect to accuracy. In addition, the Convolutional Neural Network
and first-Nearest Neighbor Dynamic Time Warping outperformed the classical
machine learning methods based on feature extraction.

J. Shen et al. [SWLY18|] proposed a part-voting Random Forest approach for
hard disk drive failure prediction. To this end, the authors trained a Random
Forest model to distinguish between normal hard disk drives and hard disk
drives with impending failures. In addition, they used a sliding window on
the predictions to correct misclassifications due to noise. More specifically,

80

3.2 Critical Event Prediction

they calculated the ratio of “failed” and “good” predictions and if it exceeded
a certain threshold, the final prediction was set to “failed”. The part-voting
strategy was incorporated to select only a particular subset of decision trees
from the Random Forest for individual instances based on their SM.A.R.T.
measurements. Here, the authors applied clustering to group similar time
series and cluster-wise removed decision trees from the Random Forest based
on their performance on the out-of-bag samples. For the evaluation of the part-
voting Random Forest, J. Shen et al. used two data sets with a total of 64,193
hard disk drives. After manually selecting S.M.A.R.T. features, they applied
their part-voting Random Forest model and compared it with Classification
Tree, Recurrent Neural Network, and a standard Random Forest. The results
proved that the part-voting Random Forest yielded Pareto optimal results with
respect to failure detection rate and false alarm rate.

In contrast to J. Shen et al., X. Sun et al. [SCH19]] used a temporal Convolu-
tional Neural Network with modified loss function for hard disk drive failure
prediction. For this purpose, the authors first normalized the input features
based on the failure probability to allow the aggregation of monitoring data
from different vendors and also to predict failures for every vendor. Then, they
described their temporal Convolutional Neural Network, which consisted of
two successive convolutional layers, each combined with a max pooling layer,
and two fully-connected layers at the end. The input of the neural network were
two-dimensional data, where the dimensions were represented by feature space
and time. One-dimensional kernels were used to slide in the time dimension to
extract meaningful information. The final output of the second fully-connected
layer was the probability of failure. In addition, the authors proposed a novel
loss function based on binary cross-entropy to handle imbalanced data sets.
That is, the binary cross-entropy was multiplied by different weights depending
on whether the sample was correctly or incorrectly classified. In order to evalu-
ate their proposed model, the authors used a data set consisting of 71,839 hard
disk drives. First, X. Sun et al. selected S.M.A R.T. features based on change
point detection and, then, compared the prediction quality of their model with
Random Forest, Long Short-Term Memory, and two Convolutional Neural Net-
works with different loss functions. Their proposed temporal Convolutional
Neural Network utilizing the novel loss function produced the highest values
with respect to precision, recall, and F1-score.

D. Knittel et al. [KMN19]] proposed an approach for the diagnosis of milling
machines using feature extraction steps and the application of different machine
learning methods. Their use case focused on composite sandwich structures
with honeycomb cores. On the basis of raw machine data, the authors derived

81

Chapter 3: State-of-the-Art

41 features from both the time and frequency domains. In addition, D. Knittel et
al. applied Principal Component Analysis to reduce the dimensionality of the
feature space. Thereby, the authors used only the first five principal components.
The labels were created using the flatness value. Here, the authors created two
classes representing the good and bad machine health conditions. To learn
the relationship between the first five principal components and the created
machine health state classes, the authors tested k-Nearest Neighbor, Support
Vector Machine, and Decision Tree. In their experimental results, the authors
relied on accuracy and concluded that the Support Vector Machine provided
the best machine health state detection.

A deep learning approach to classify different bearing fault types was pre-
sented by D.-T. Hoang and H.-J. Kang [[HK19b]|. Their approach converted
one-dimensional vibration time series into gray-scale vibration images based
on the amplitude of the vibration signal. These vibration images were then
used as input to a Convolutional Neural Network., which consisted of two con-
volutional layers, each followed by a subsampling layer, and a fully-connected
layer at the end. To evaluate their proposed model, the authors conducted
a case study of bearing data in normal condition and three different types
of faults. The authors compared their vibration image Convolutional Neu-
ral Network with a one-dimensional Convolutional Neural Network and a
Stacked Autoencoder. Without the presence of noise, both Convolutional Neu-
ral Network-based approaches clearly outperformed the Stacked Autoencoder.
Moreover, the proposed Convolutional Neural Network with vibration images
proved to be the most robust in the presence of increased noise.

Convolutional Neural Networks have also been employed by T. Han et
al. [HLYJ19]] for the detection of faulty machine conditions. Therefore, the
authors pre-trained their Convolutional Neural Network on a large data set and
compared three transfer learning strategies for the adaptation to new, unseen
data sets. The evaluation was performed using a gearbox fault data set, where
accuracy was considered as the measure of quality. The comparison showed
that the use of transfer-learning strategies significantly improved the predictive
power compared with using the pre-trained model only as well as completely
re-training the models. In addition, the results suggested that one transfer-
learning strategy performed best, although the different strategies performed
closely for some scenarios.

J. Zhang et al. [|[ZZH"20] introduced the application of transfer learning for
predicting rare failures of hard disk drives and solid state drives. Here, transfer
learning refers to transferring a model trained on a particular drive model
to another drive model, of which there is only limited monitoring data. The

82

3.2 Critical Event Prediction

approach presented by J. Zhang et al. involves two main steps, namely the
application of the transfer learning algorithm TrAdaBoost and an algorithm for
mapping instances to drives. The first algorithm is an adaptation of the boosting
method AdaBoost that allows transfer learning. Here, the authors investigated
the use of four different weak learners, namely Support Vector Regression,
Gradient Boosted Regression Tree, Regularized Greedy Forests, and Recurrent
Neural Networks. The latter component of the proposed approach finally
estimated the health state of the drive under consideration. J. Zhang et al. used
two real-world data sets to compare their transfer learning model with standard
machine learning models using the measures failure detection rate, false alarm
rate, F1-score, and AUC-ROC value. The evaluation results exemplified the
improvement using transfer learning compared to standard machine learning
methods with respect to all four weak learners within TrAdaBoost.

Another approach for the detection and prediction of rare critical events
was proposed by M. Dangut et al. [DSJ20]]. The authors presented a two-stage
approach by means of deep learning models focusing on aircraft engines. First,
an Autoencoder was trained to detect critical event patterns in the monitoring
data. To this end, the encoder component of the Autoencoder was trained using
data from engines in a healthy state only. Then, critical events were detected
based on the reconstruction error after decoding the encoded signal. The
assumption was that a high reconstruction error implied a critical event because
the encoder was trained only on data from healthy engines. Subsequently, the
data was passed to the critical event prediction component only if a critical
event was detected. For the prediction task, a bidirectional Gated Recurrent
Unit was implemented. In order to evaluate the two-stage model, the authors
used real-world data from aircraft engines and compared their approach with
two types of Recurrent Neural Networks, namely Long Short-Term Memory
and Gated Recurrent Unit. The experimental results revealed that the two-stage
approach surpassed the individual Recurrent Neural Networks.

J. Campos and E. Costa [[CC20] presented an approach for failure prediction
of an operating system based on fault injection data. For this purpose, the
authors emulated 16 different types of faults using the so-called SWIFI (Soft-
ware Implemented Fault Injection) fault injector. The faults were injected in the
form of bugs into the Linux kernel of a running operating system. Next, the
authors grouped the 16 fault types into four failure classes. Using these classes
as well as the normal class, the authors trained six different machine learning
algorithms to predict whether a bug will occur in the near future and, if so, to
which failure class the bug will belong to. For their experiments, the authors
measured three distinct workloads, each with approximately 4500 runs. The

83

Chapter 3: State-of-the-Art

results showed that the best machine learning method for predicting failures
in the operating system was XGBoost with an F2-scoreﬂ of up to 98.5%.

S. Haidong et al. [HZJH20]| proposed a fault diagnosis model for rotary ma-
chines based on Autoencoders and transfer learning. To achieve this, they devel-
oped a Stacked Autoencoder with scaled exponential linear unit, correntropy,
and non-negative constraint to learn the dependencies between measurement
data and rotary machine faults. A parameter transfer strategy was deployed to
adapt this pre-trained model to new application scenarios. In addition, Parti-
cle Swam Optimization was used for automated parameter adjustment. The
authors applied their model to data sets of bearings and gears, comparing the
prediction quality of their model with different transfer learning Autoencoders
and Deep Belief Networks with respect to accuracy. The results showed that
Autoencoders yielded the best results, with the proposed model being superior.

A comparison of deep learning (i.e., Feed-Forward and Recurrent Neural
Networks) and statistical (i.e., Projection to Latent Structure) approaches for
IoT-enabled manufacturing was conducted by D. Shah et al. [SWH20]. Ad-
ditionally, they evaluated the impact of different feature engineering efforts.
For their comparison, the authors acquired monitoring data from a pipe flow
testbed. Their results demonstrated the necessity of appropriate feature extrac-
tion and feature selection. More specifically, merely applying deep learning
models to the raw monitoring data yielded only very poor prediction quality.
Nonetheless, D. Shah et al. concluded that statistical methods combined with
feature engineering provided high and robust accuracy.

A digital twin-based approach toward predictive maintenance of Comput-
erized Numerical Control (CNC) machine tools was described by W. Luo et
al. [LHY20]]. Their proposed framework combined data-driven remaining
useful lifetime estimation, physical model-based degradation model, and in-
ternal state simulation. The authors evaluated their hybrid framework using a
case study focusing on cutting tool failures. Therefore, W. Luo et al. compared
their hybrid model with stand-alone model-based and stand-alone data-driven
approaches, demonstrating that their hybrid framework significantly improved
the prediction of remaining useful lifetime with respect to percentage error.

D. She and M. Jia [S]21]] also introduced a remaining useful lifetime predic-
tion approach tailored to bearings. However, the authors not only predicted
point estimates, but also provided confidence intervals describing the uncer-
tainty in the predictions. In a first step, their approach computed a health index
based on measurement data. Next, the authors trained a bidirectional Gated
Recurrent Unit to predict the remaining useful lifetime based on the time series

'F2-score is a variation of F1-score that assigns a higher weight to recall.

84

3.2 Critical Event Prediction

of health indices. More specifically, their network architecture consisted of five
bidirectional GRU layers and fully-connected regression layers. To derive confi-
dence intervals, the authors used bootstrapping. Accordingly, they randomly
sampled & times from the original training data to learn k prediction models.
These models were merged to obtain a mean and variation of the remaining
useful lifetime predictions. To evaluate their proposed model, D. She and M. Jia
used a bearing data set on which they compared the predictions of their model
with Particle filter model, Gated Recurrent Unit, Long Short-Term Memory, and
Fully-Connected Neural Network with respect to root mean square error and
mean absolute percentage error. For this experiment, the bidirectional Gated
Recurrent Unit proposed by D. She and M. Jia provided the most accurate
remaining useful lifetime prediction with respect to both error measures. In
addition, it also provided comparatively narrow confidence intervals.

X. Bampoula et al. [BSNA21]] proposed a critical event prediction method for
rolling mill machines in the steel production industry. For this purpose, they
used two temperature and two hydraulic force sensors to predict the remaining
useful lifetime of rolling mill machines to reduce maintenance actions and,
consequently, costs. Their approach employed two stages. First, a Long Short-
Term Memory Autoencoder was learned to classify the current health state
of the machine. To this end, three health states were modeled, namely good,
mediocre, and bad. Next, an individual Long Short-Term Memory Autoencoder
was trained for each of the three classes of machine health states. These Long
Short-Term Memory Autoencoders were used to regress the remaining useful
lifetime with respect to the identified machine state. To evaluate their approach,
the authors used real-world data from a rolling mill machine. The authors
showed that their approach achieved an F1-score of about 80% and can predict
critical events with a lead time of approximately one day.

3.2.3 Update Strategies for Critical Event Prediction Models

One of the first incremental learning algorithms for machine learning models
was proposed by J. Schlimmer and R. Granger [SG86]. In this work, the au-
thors first described three evaluation criteria for incremental learning, namely
amount of training data, costs of updating, and quality of the learned abstrac-
tion. For their proposed model, they used a binary classification model, where
each feature was assigned a weight as a base-level predictor. The classification
was then based on Bayesian formulas. J. Schlimmer and R. Granger incorpo-
rated an updating scheme that adjusted feature weights based on the error
type (i.e., false positive or false negative). Finally, they demonstrated the effec-

85

Chapter 3: State-of-the-Art

tiveness of their model using two case studies with different noise levels. As a
measure of evaluation, the authors applied accuracy.

Another early approach was described by R. Solomonoff [[Sol89]]. His incre-
mental learning approach used algorithmic probability theory to emulate the
human learning process. Therefore, the approach began with a small set of
rules, also referred to as concepts, that represented initial knowledge. During
application, the system increased its knowledge by adding new rules and ad-
justing the probabilities for each rule. Thus, this approach is quite related to
the (semi-)autonomic construction of an expert system. However, the author
unfortunately did not provide an evaluation of the proposed model.

N. Syed et al. [SLS99]] introduced an incremental learning approach for Sup-
port Vector Machines to deal with concept drifts. As quality criteria, they
also referred to those introduced by J. Schlimmer and R. Granger [SG86]], but
added three more criteria for evaluating the robustness and reliability of the
incremental learning model, namely stability, improvement, and recoverability.
In terms of stability, the accuracy achieved on the test sets should not differ
significantly between incremental learning steps. Moreover, the accuracy of the
incremental learning model should improve across the incremental learning
steps, as a larger amount of training data should improve the model quality.
The recoverability criterion addressed the ability to recover from potential qual-
ity degradation via subsequent incremental learning steps. To incrementally
learn the Support Vector Machine, the authors stored only the support vectors
in the memory so that the model could be easily and efficiently updated incre-
mentally. Finally, the authors compared their incrementally learned Support
Vector Machine with a Support Vector Machine that was completely re-trained
for each evaluation batch. Here, N. Syed et al. were able to show that the incre-
mental Support Vector Machine occasionally outperformed the Support Vector
Machine with all data, while it mostly achieved a slightly worse accuracy.

Incremental learning of Support Vector Machines has also been addressed
by C. Diehl and G. Cauwenberghs [[DC03]]. Their approach was based on
the Karush-Kuhn-Tucker condition, which divides all training instances into
three different sets, namely margin support vectors, error support vectors,
and reserve vectors. As updating process, the authors employed adiabatic
incremental learning, where for a perturbation of the new vector coefficients, the
goal was to identify the required changes in the margin vector coefficients and
the bias that maintain the Karush-Kuhn-Tucker conditions. The perturbation
parameter ranged from 0 to 1 and was incremented at each perturbation. When
the perturbation parameter reached one, all new vectors were assigned to one of
the three sets and all vectors satisfied the Karush-Kuhn-Tucker conditions. For

86

3.2 Critical Event Prediction

the evaluation, the authors compared their incremental Support Vector Machine
with a complete re-training of a Support Vector Machine for a data set with
varying hyperparameter settings of kernel width and regularization parameter.
However, the predictive power of the models was not assessed, but only their
computational cost in terms of the number of floating point operations, the
number of kernel evaluations, and the number of perturbations. The results
showed that the smaller the kernel width, the less computational time the
incremental learning approach saved. However, the higher the regularization
parameter was, the higher the computation time savings were.

An adaptation of Extremely Random Forest for incremental on-line learning
was proposed by A. Wang et al. [WWCLQ9]]. The approach used streaming
data to learn a model for classification tasks. To this end, lists of matching
instances and their respective classes were stored in each leaf node of the deci-
sion trees. When new instances arrived, they were passed through the decision
trees and also stored in the leaf nodes. Then, the Gini index was calculated
as a measure of the impurity of leaf nodes to decide when to construct a new
tree for the instances stored in that leaf node. The authors compared this in-
cremental Extremely Random Forest to a standard Extremely Random Forest
with respect to accuracy on multiple typical machine learning classification
tasks, such as spam classification. However, the standard Extremely Random
Forest outperformed the incremental Extremely Random Forest on most tasks.
The authors also applied their model to a video object tracking task and com-
pared the performance achieved with an approach used by another research
team. Here, however, the proposed incremental Extreme Random Forest model
substantially outperformed the other approach.

J. Guajardo et al. [GWM10] investigated the updating of machine learning
models for forecasting tasks instead of classification tasks. The general idea
of the authors was to use the sequentially arriving ground truth data of the
monitored systems as an extension of the training data to update the forecasting
model. More specifically, the authors focused on Support Vector Regression
as a forecasting method and considered only seasonal time series for their
approach. First, J. Guajardo et al. applied a wrapper method to select only
relevant features and tuned the hyperparameters using a grid-search on the
validation data set. To emulate the on-line forecasting procedure, the test data
set was divided into several consecutive sequences, each containing a single
period of the seasonal pattern. After predicting a period, the actual monitoring
values were added to the training data set and used to train a new Support
Vector Regression model. This process was repeated until no more test data
were available. The authors used four time series from the M1 competition

87

Chapter 3: State-of-the-Art

and five sales time series to evaluate the forecast quality with respect to mean
absolute percentage error, mean square error, and mean absolute error. They
compared the accuracy of their model with the achieved forecast accuracy
of the static Support Vector Regression model trained on the initial training
data set only. The reported results demonstrated the improvement of forecast
accuracy for almost all evaluation scenarios.

The framework ADAIN for incremental model learning from stream data
was introduced by H. He et al. [HCLX11]]. Their framework first learned an
initial model using a mapping function. Thereby, the authors recommended
non-linear regression models and selected Multi-Layer Perceptron for their later
procedure. As new stream data became available, the model was applied to
that data to obtain an estimate of the model error for the new data distribution.
For the update task, higher weight was assigned to the misclassified instances
to focus on those instances where the current learning method encountered
difficulties. In this way, the model was refined and the whole process was re-
peated when new batches of data arrived. The authors analyzed their proposed
approach both analytically and experimentally. The experiments demonstrated
the effectiveness of their model, while the authors also showed that using Sup-
port Vector Regression instead of Multi-Layer Perceptron as mapping function
yielded similar results.

M. Pratama et al. [PAAL13]] proposed a parsimonious network based on a
fuzzy inference system called PANFIS. Here, PANFIS started with an empty
rule set and iteratively updated the set of fuzzy rules in five steps. First, the
rules were updated based on extended Self-Organizing Map theory. Next, new
fuzzy rules were identified using the so-called datum significance concept.
Using the e-completeness criterion, the antecedent fuzzy rules were selected.
Then, similar rule sets were merged and inconsistent rules were pruned. Finally,
the parameters were adjusted to the new conditions. To evaluate this update
procedure, the authors used both synthetic as well as real-world data sets. The
authors compared their model with state-of-the-art evolving neuro-fuzzy meth-
ods with respect to root mean square error and non-dimensional error index,
showing that PANFIS was able to keep up with state-of-the-art approaches. For
some scenarios, PANFIS even surpassed these approaches.

A neural network-based ensemble model with model updating based on
concept drift detection was introduced by S. Xu and J. Wang [XW16]]. To
classify data streams, they employed Extreme Learning Machines, i.e., a Feed-
Forward Neural Networks with one hidden layer. As the main parameters
of such an Extreme Learning Machine are the size of the hidden layer and
the selected activation function, the authors automatically tested different

88

3.2 Critical Event Prediction

numbers of neurons on the hidden layer and selected the setting that resulted
in the highest validation accuracy. In addition, they learned an ensemble
of Extreme Learning Machines to improve the robustness of the predictions
by randomly selecting the activation function used for each of the Extreme
Learning Machines. The final prediction was computed as a weighted majority
vote, where the weight of each Extreme Learning Machine was derived from
the accuracy achieved on the validation set. To detect concept drifts, S. Xu and J.
Wang used the Hoeffding bound. If no concept drift was detected, the classifiers
were incrementally updated by adjusting the number of neurons in the hidden
layer. However, if concept drift was detected, the classifiers with the smallest
weights and, thus, the worst accuracy on the validation set were discarded.
Finally, the proposed incremental Extreme Learning Machine approach was
compared to a standard Extreme Learning Machine, a Backpropagation Neural
Network, and other related approaches from other research teams, using both
artificial and real-world data sets. The authors showed that their approach
achieved the highest accuracy and the shortest runtime in most cases.

E. Castro et al. [CMJG™ 18], by contrast, focused on incrementally adding new
classes during runtime for image classification tasks. Their approach was based
on deep neural network architectures. In this approach, each classification layer
was responsible for a particular feature in the image and output logits that
were then used to compute a softmax function for the final classification. The
novel contribution of the authors was the introduction of a cross-distilled loss
function that preserved the already learned knowledge about old classes, while
cross-entropy loss was utilized to dynamically learn relationships about the
newly added classes. To retain knowledge about all classes, only representative
examples per class were stored. These representative examples were identi-
fied via herding selection, which considers the deviation of examples from
the average over all examples of the same class. The authors evaluated their
proposed model using two real-world image classification data sets available
online. Thereby, the authors applied a Convolutional Neural Network as classi-
fication model. The results found that the proposed model outperformed the
current state-of-the-art approaches for image classification.

M. Islam et al. [IHL18]] also dealt with image processing, but considered up-
dating prediction error parameters of object tracking models. For this purpose,
the authors used a kernelized correlation filter tracker as the base-level method.
However, instead of the commonly used fixed learning rates, they employed
dynamic learning rates for prediction error updating. For dynamically adjust-
ing the learning rate, M. Islam et al. computed the peak-to-sidelobe ratio to
handle sudden illumination variations, deformations, abrupt motion changes,

89

Chapter 3: State-of-the-Art

and occlusions. To evaluate the proposed update procedure, the authors used
three object tracking data sets and compared the distance precision score, over-
lap success score, and average running speed of their model with nine other
approaches. By doing so, the authors showed that their model achieved an
effective trade-off between object tracking quality and speed.

The binary prediction of impending hard disk drive failures was analyzed by J.
Xiao et al. [XXW*18]. For this purpose, they applied an Online Random Forest,
where the quality of splits was assessed using Gini impurity. The individual
decision trees in the Online Random Forest were updated based on two Poisson
distributions, discarding outdated trees to unlearn old and, thus, potentially no
longer useful information. Such outdated trees were determined based on their
age as well as their out-of-bag error. For the evaluation of the described Online
Random Forest, the authors used two data sets with different hard disk drive
models. With respect to the failure detection rate and the false alarm rate, the
authors first showed the superiority of Random Forest over a simple Decision
Tree as well as Support Vector Machine. Next, they compared Online Random
Forest with a static Random Forest model, a monthly re-trained Random Forest
model using all data, and a monthly re-trained Random Forest model using
a temporal data replacement strategy. The results illustrated the importance
of incremental learning, with the described Online Random Forest and the
monthly re-training using all available data performing the best.

C. Constantinides et al. [CSGK19]] described an incremental learning ap-
proach for intrusion detection systems. To this end, they built a model using
multiple submodels. First, two Self-Organizing Incremental Neural Networks
were trained for each type of intrusion attack. The outputs of each pair of
two neural networks were then passed to a binary Support Vector Machine.
Subsequently, the predictions of the numerous Support Vector Machines were
used as input to a multi-class Support Vector Machine for the final prediction.
This model was initially learned with only a small amount of data and then
incrementally updated. For this purpose, a validation module was integrated
to provide feedback to the learning component. At fixed cycles, the models
were updated based on new, misclassified instances. Using a typical intrusion
detection benchmark data set, the authors demonstrated that the detection
accuracy increased over time, thus with increasing training data. Moreover,
the incremental approach outperformed a static off-line model.

An extensive comparison between re-training and incremental learning of
machine learning models and neural networks in the domain of performance
prediction of adaptable software was conducted by T. Chen [Chel9]|. He used
eight machine learning methods and a Multi-Layer Perceptron. During re-

90

3.2 Critical Event Prediction

training, all available data were used to learn a new model of the same predic-
tion method, while incremental learning updated the existing models based on
newly arrived data. Three data sets were used in the study, each with different
characteristics. After analyzing the results, T. Chen concluded that neither
strategy performed best with respect to the mean absolute error for all sce-
narios. Instead, incremental learning yielded lower mean absolute errors for
the Multi-Layer Perceptron, while re-training was superior for the Support
Vector Machine, for example. Nevertheless, the results suggest that re-training
provides more robust predictions than incremental learning. In contrast, the
training time for incremental updates was significantly shorter and less varying.

Similar to F. Castro et al. [CMJG"18]],J. He et al. [HMSZ20] also addressed the
challenge of new classes at runtime for image classification. However,]. He et al.
not only focused on integrating new classes, but also added new instances of the
existing classes into the update loops to counter concept drift. As classification
method, the authors employed the Nearest Class Mean classifier. To integrate
new classes into an existing model, J. He et al. developed a novel loss function
based on cross-distillation with accommodation ratio. For the old classes,
only representative sets were stored instead of all instances. New instances
of existing classes were used to update the respective class representative set.
Apart from incremental learning, periodic off-line re-training was also carried
out to handle catastrophic forgetting and concept drift even better. For the
evaluation of their proposed model, the authors used three image classification
data sets. They compared the accuracy achieved by their model with state-of-
the-art approaches and showed that their model performed superior.

W. Rang et al. [RYC'20] introduced an update strategy that controls the
selection of samples in the training set. Thus, they described a middle layer that
processes incoming and already available data. For this purpose, a data life
index was calculated by assessing the impact of each sample during the previous
update cycle. Based on this data life index, samples were grouped into four
categories, with the last category discarding data. The authors demonstrated
the effectiveness of their approach using pattern recognition, classification, and
recommendation tasks, where it resulted in lower costs and less training time
compared to standard periodic updates.

In their framework, Y. Xiang et al. [XPL21]] combined data-driven and physics-
driven prediction models. The physics-based model was constructed using
simulation data, while simulation data were used in combination with ex-
perimental data to learn the data-driven model. For the data-driven model,
Gaussian process regression was used. Both models were then combined by
assigning a weight to each of the models. Y. Xiang et al. computed these

91

Chapter 3: State-of-the-Art

weights based on the minimum deviation of the probability distributions of
the posterior error and another data-driven model. By means of a validation
step, the framework identified whether an update was required. In the case of
a sufficiently large divergence, updates were performed based on maximum
likelihood estimation. Using a case study of temperature data, the authors
showcased the effectiveness of their proposed hybrid model.

92

Part 11

Improving Time Series Forecasting

.",A

Chapter 4 Telescope

Telescope: Remainder Learning for
Component-based Time Series Forecasting

Beyond its application in the mere estimation of future values, time series
forecasting is also an important component of many critical event prediction
systems, where forecasts are combined with thresholds to predict impending
threshold violations. As a result, time series forecasting has become an im-
portant element of decision-making processes, used in many fields including
business, economics, finance, science, and engineering [MSR16]]. For this rea-
son, time series forecasting represents a highly active research field in the last
decades. Many different forecasting methods have been developed during this
time, each with its own advantages for specific time series domains. However,
there is no single forecasting method that performs best for all time series, as
stated by the “No Free Lunch Theorem” [WM97]]. Instead, the forecast qual-
ity and runtime of each forecasting method benefit from certain time series
characteristics, while other characteristics degrade these for that particular
forecasting method. For this reason, expert knowledge is required to decide
which forecasting method to choose for each time series. Although expert
knowledge is useful, this is a time-consuming task that cannot be fully au-
tomated. Another approach is trial and error, which is hardly applicable in
practice due to its inefficiency. Therefore, hybrid forecasting (also known as
mixed or combined forecasting) was introduced to overcome this problem of
individual approaches by combining the advantages of at least two individual
forecasting methods. However, a serious shortcoming in the literature is that
most contributions to hybrid forecasting approaches do not provide runtime
evaluations. In general, ensemble forecasting approaches, such as those pre-
sented in Section have a very high runtime due to the fact that multiple
forecasting methods must be executed on the entire time series, weights need
to be estimated, and the results have to be combined. In contrast, forecasting
method recommendation provides a short on-line runtime since only one fore-

95

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

casting method is applied, but it requires a large database of time series from
the same domain and also a time-consuming training step for rule generation.
However, the runtime of component-based forecasting strongly depends on
the adopted decomposition method. In addition, these approaches also exhibit
other shortcomings. Most hybrid forecasting approaches in the literature based
on time series decomposition follow two different approaches. One group
relies on decomposition methods and only applies one forecasting method for
each time series component. The other group utilizes two forecasting methods,
where the second forecasting method is subsequently applied to the residuals
of the first forecasting method.

In order to improve forecasting performance not only on average, but also in
terms of reliability and runtime, we present a novel hybrid, multi-step-ahead
forecasting approach for seasonal, univariate time series based on explicit time
series decomposition and three different forecasting methods. We call the
proposed hybrid forecasting approach Telescope in reference to the analogy with
the vision of far-distant objects. However, this approach is also subject to the
“No Free Lunch Theorem” in that the following assumptions must be made:

1. The time series to be forecast is univariate.

2. Only seasonal time series (cf. cyclical time series, see Section [2.2.2)) with
a length of more than two full periods are passed to Telescope for fore-
casting future values.

3. As only seasonal time series are allowed, the lengths of the periods must
be constant. Yet, several overlapping seasonal patterns are permitted.

In addition, several hundreds of historical observations are required to obtain
superior results. Although Telescope can also be applied to shorter time se-
ries, existing individual forecasting methods can already handle short forecast
horizons very well, too. To emphasize the strength of Telescope, longer time
series (at least 500 to 1000 observations) and, thus, more values in the forecast
horizons should be targeted.

This chapter describes Telescope in detail, with the remainder organized as
follows: The overall design of Telescope is described in Section 4.1} followed by
in-depth introductions to the different phases of Telescope in Sections
Finally, the chapter is summarized and the respective research questions are
answered in Section [4.6]

The content of this chapter is based on the master’s thesis of M. Ziifle [[ZGf17]]
and a related publication at the International Work-Conference on Time Series
Analysis (ITISE) [ZBH'17]]. Extending the approach presented in this thesis,

96

4.1 Owerall Design of Telescope

we further refined particular components of Telescope, resulting in publications
at the 11th ACM/SPEC International Conference on Performance Engineering
(ICPE) [BZG™20], the 36th IEEE International Conference on Data Engineering
(ICDE) [BZH"20a]], and the Proceedings of IEEE [BZH"20b]|. However, these
modifications of Telescope were mainly driven by A. Bauer and are, therefore,
part of his PhD thesis [Bau20]]. Finally, we made the most recent version of
Telescope available on our GitHub pageﬂ as a fully automated end-to-end
forecasting tool that requires only the historical time series observations and
the forecasting horizon as input and provides a forecast of the specified length.

4.1 Overall Design of Telescope

The approach of Telescope, a novel hybrid, multi-step forecasting approach for
univariate, seasonal time series, is based on time series decomposition, clus-
tering techniques, and three individual forecasting methods, namely ARIMA,
NNetAR, and XGBoost. A diagram of the simplified forecasting procedure is
shown in Figure However, this is only a brief summary of the Telescope
workflow to demonstrate the fundamental steps employed to derive forecasts
from historical observations.

Telescope’s general workflow starts with a preprocessing step. After the raw
values are passed to Telescope, the algorithm estimates the frequency of the
seasonal time series, i.e., the length of a period, by applying periodograms to
the raw time series. Additional information on the mathematical foundations of
periodograms are provided in Section[2.2.3| Then, Telescope applies an anomaly
detection and removal method based on the generalized extreme studentized
deviate test. In the final step of the preprocessing phase, the resulting time series
is analyzed to determine its composition type. In the case of a multiplicative
time series, a transformation is required and Telescope applies the logarithm
to the time series so that the resulting time series is of additive composition
type. Subsequently, Telescope performs two independent phases, namely the
creation of the categorical information and the decomposition of the time series.

As can be seen on the left side of Figure 4.1} categorical information are gen-
erated using clustering. For this purpose, the time series is split into individual
periods with respect to the frequency estimated in the preprocessing phase.
For each of these periods, statistical characteristics are computed and used
to perform k-Means clustering. A brief summary of the k-Means clustering
algorithm can be found in Section Once k-Means has determined the

!Telescope repository: https://github.com/DescartesResearch/telescope

97

https://github.com/DescartesResearch/telescope

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

Raw Input Values

!

Frequency Determination
— Periodogram —

|

Anomaly Removal
—AnomalyDetection —

|

Time Series Transformation

Preprocessing

— Logarithm —)

Creation of Decomposition
Categorical v
Information Time Series Decomposition

a A 3 -STL-

Feature Calculation per Period [
— Statistical Features — ¥ ¥ ¥
Seasonality Trend Remainder
g y | Extraction Extraction Extraction
Period Clustering
—k-Means —
. J
Component
A4 A4 -
- h Seasonality Trend Forecasting
CentrCfdA’Iilo'\rle(_:astmg Forecasting Forecasting
\ J — Repeating —)| —ARIMA -
Remainder v
Forecastlr_lg_ = Forecasting with Covariates
Composition — XGBoost —

|

Time Series Retransformation
— Exponential Function —

Forecast Output

Figure 4.1: A simplified illustration of the Telescope approach.

98

4.1 Owerall Design of Telescope

cluster label of each period, these are forecast by the application of an artificial
neural network (ANN), or more precisely by NNetAR (cf. Section|2.3.6).

The other phase (right side of Figure4.1)) decomposes the time series accord-
ing to the structural time series model. Specifically, STL is used here for time
series decomposition. STL splits a time series into three components, namely
seasonal, trend, and remainder. Each of these components can be considered
as a new time series, with the sum of all components yielding the original time
series. By definition, the seasonal component is a repeating pattern and, thus,
this pattern is continued for the entire forecasting horizon. In contrast, ARIMA
is applied to forecast the trend. Finally, the remainder component contains the
part of the original time series that cannot be explained by seasonality or trend.
Thus, the remainder component is the statistical part that may be caused by
noise or other disturbing factors. Therefore, the remainder is hard to forecast
using individual forecasting methods and, hence, is correlated with a high
error rate. For this reason, Telescope does not forecast the remainder directly,
but learns it indirectly in the final phase.

In the last phase, XGBoost is applied to regress the values of the time series
by adding several covariates to the original data. For this purpose, the created
categorical information and the time series component forecasts are passed
to XGBoost as covariates, while the original values of the time series are the
target of the regression. Finally, in case the time series was transformed in the
preprocessing phase, the corresponding re-transformation, i.e., the exponential
function, is applied and Telescope returns the forecast values of the horizon
(displayed in red in Figure [d.T)).

In addition to Figure Telescope is presented as a more detailed pseu-
docode in Algorithm [I} Here, the general workflow is the same as shown in
Figure but Algorithm [I| provides additional details that would exceed the
scope of Figure For instance, Telescope performs more time series inves-
tigations in the preprocessing phase (cf. Lines 1-13). Apart from frequency
estimation, removal of anomalies, composition type identification, and deter-
mination of the minimum value to transform the scale of the original data into
positive values, another test is performed that checks whether the time series
exhibits a significant trend (cf. Line 5). Testing whether the time series has a
significant trend is an important task of Telescope, since the accuracy of the
XGBoost forecasts depends strongly on the trend behavior of the time series. To
this end, STL is applied to the original time series to decompose the time series.
The trend component is then forecast and its range is compared to the range
of the entire time series to determine if the trend represents a large portion of
the range of the time series. In particular, the choice of boosting method of

99

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

Algorithm 1 Telescope workflow

Input: time series to be forecast z, length of the forecast h
Output: forecast values fc_xzgb

determine time series frequency and remove anomalies
f = determineFrequency(x)
T = removeAnomalies(z, f)

###t tests for significant trend, multiplicative decomposition, and necessity of shifting
has_trend = testTrend(z, f, h)
log_test = testMultiplicativeDecomposition(z, f, ACF = TRUE)
min_value = min ()
if (log_test) then

if (min_value < 0) then

T =T + abs(min_value) + 1

end if

Z =log()
end if

=
LN P

—_
b

#Ht time series decomposition, season, and trend forecasting

decomp = stl(ts(z, f), s.-window = "periodic", t.window = length(z)/2)
fe_season = elongate(decomp|"season"], h)

model = fittingModels(decomp["trend"])

fe_trend = forecastTrend (Z, f, model, h)

— o e

—_
©

creation of categorical information
: clusters = clusterPeriods(Z, f)
: fc_clusters = forecastClusters(clusters, f, T, repeats, h)

NN
= O

N
N

. ### data preprocessing and execution of XGBoost
if (log_test) then
cov = cbind (decomp|"season"], clusters)
label = T — decomp["trend"]
fe_cov = cbind(fe_season, fc_clusters)
: else
cov = cbind (decomp["trend"], decomp["season"], clusters)
label =2
fe_cov = cbind(fe_trend, fc_season, fc_clusters)
: end if
zgb = doXGB.train(label, cov, getBooster(fc_trend, decomp|"trend"],))
fe_xgb = predict(xgb, fc_cov)

W W WWRNNNNNNN
PN 20 RN DR

W
>

##H# re-transform the scale of the data and return the forecast
if (log_test) then

fe_xgb =exp(fc_xgb) x exp(fc_trend)

if (min_value < 0) then

fe_xgb = fe_xgb — abs(min_value) — 1

end if
: end if
: return fc_xzgb

AR W W W W W
e A AL

100

4.1 Owerall Design of Telescope

XGBoost depends on the result of this test. As a final check of the preprocessing
phase, the minimum value of the history is determined. If the decomposition
is of the multiplicative type and in addition the minimum value is less than
or equal to zero, the minimum value plus one is added to all observation val-
ues in the history before the application of the logarithm. Afterwards, these
logarithmized values are used for the further workflow of Telescope.

Regarding time series decomposition, Algorithm [I|displays two input pa-
rameters, namely s.window and t.window. The s.window is set to periodic for
seasonal extraction and the t.window is the span of the loess window used
for trend extraction. For this reason, t.window should be a large value. Here,
Telescope sets t.window to half the length of the history to prevent seasonal
patterns from appearing in the trend component.

Although ARIMA is a state-of-the-art individual time series forecasting
method, it cannot handle exponential trend patterns. Thus, the nature of the
trend must be determined in advance. For this purpose, STL decomposition is
applied to the original and logarithmized data respectively. Subsequently, linear
models are fitted and, in the case of the logarithmized data, the exponential
function is applied to the linear model to re-transform the scale. Once the
models are fitted, the root mean square error is used to identify the model with
less residuals. The trend type is determined according to the superior model.

XGBoost not only indirectly forecasts the remainder component, but also
combines the forecasts of the individual time series components. However,
since XGBoost offers numerous hyperparameters, there is no globally best
parametrization of XGBoost for all time series. Again, several tests must be
performed to adjust the most important parameters. First, Telescope checks
whether the type of decomposition is multiplicative or additive. For time series
with multiplicative decomposition, only the cluster labels and logarithmized
seasonality are passed as covariates, with the de-trended, logarithmized time
series as the regression target. After the forecast is performed, the exponential
function is applied to the XGBoost forecasting result and the trend forecast,
respectively. Finally, these results are multiplied to derive the final forecasting
result. In contrast, if the time series exhibits additive decomposition, XGBoost
is applied to the time series values as the regression target and the cluster
labels, seasonality, and trend as covariates. A second test deals with the choice
of boosting method, where two boosting methods are considered. The first
boosting method is for time series with a strong trend pattern, while the second
boosting method is for time series with only little or no trend. In a final step,
Telescope checks whether the time series has been logarithmized and if the
minimum value of the original time series is less than or equal to zero, as in

101

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

this case, the time series has been shifted to a positive scale. Consequently, the
value added to the time series to make each observation value positive must be
subtracted again after forecasting.

4.2 Time Series Preprocessing

The time series preprocessing phase of Telescope consists of three main steps,
which are described in more detail in this section. Section [£.2.1| presents the
frequency determination algorithm, followed by the detection and removal of
anomalies in Section[4.2.2] Finally, the trend tests are explained in Section [4.2.3}

4.2.1 Frequency Determination

The frequency determination is the first preprocessing step as depicted in the
topmost gray box Preprocessing in Figure 4.1/and follows a two-stage approach.
First, a periodogram is employed to derive the most dominant frequency and
next, a test is performed to determine whether this frequency is a typical
time series frequency. This second step is crucial because periodograms often
provide only rough estimates that vary around the actual frequency.

The procedure for the first stage, namely the estimation of the time series fre-
quencies by means of periodograms, is given in Algorithm[2 For this purpose,
the time series observations and a counter indicating the iteration number are
required as input features. The time series observations must be passed to the
algorithm, since the periodogram is computed on them (cf. Lines 3 and 6).
However, since the frequency estimation algorithm often has to be applied mul-
tiple times because the found frequencies do not match any of the typical time
series frequencies in the second stage, the iteration number is used to indicate
whether a new periodogram has to be computed or not. As the periodogram is a
deterministic computation, the execution of the periodogram on the same data
with the same input parameters will always yield the same result. Therefore,
the periodogram is calculated only in the first two iterations and stored in the
workspace so that it can be re-used in later iterations (cf. Lines 4 and 7). If no
common frequency is found in the first iteration, a span is added in the second
iteration to smooth the time series (cf. Line 6). In addition, as the iteration
counter increases, the algorithm determines and checks the next dominant
frequency. To estimate the dominant frequency, the frequency with the highest
spectrum is chosen. Generally speaking, the i-th most dominant frequency is
the frequency with the i-th highest spectrum. Nevertheless, finding the highest
spectrum does not necessarily indicate that the time series is seasonal and

102

4.2 Time Series Preprocessing

Algorithm 2 Frequency estimation using periodograms

Input: observation values z, iteration number numlIters
Output: i-th likeliest frequency f

9:
10:
11:

12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

1
2
3
4
5:
6
7
8

##t only determine periodogram for the first try

. if (numlters ==1) then

pgram = spec.pgram(z)
writeToWorkspace (pgram)

else if (numlIters == 2) then
pgram = spec.pgram(x, spans = 5)
writeToWorkspace(pgram)

. end if

determine highest spectrum and corresponding frequency
max_spectrum = getlHighestSpectrum (pgram, numlIters)
best_freq = getFrequencyForSpectrum (maz_spectrum)

determine spectrum for the periodogram of diffs with lag best_freq

dif f_values = diff(z, best_freq)

dif f_pgram = spec.pgram(dif f _values)

dif f_max_spectrum = getlHighestSpectrum (di f f _pgram, numliters)

accept frequency if the spectrum of the periodogram of diffs is considerably smaller
if (dif f_max_spectrum < tolerance_level x max_spectrum) then
f =best_freq
else
f=-1
end if
return f

that the spectrum found provides the frequency of the time series. In case the
spectrum is only slightly higher than for several other frequencies, the time
series is likely to be random. To determine if the frequency found is actually
a likely frequency of the time series, a second periodogram is computed. For
this purpose, the difference between each value in the original time series and
its precursor with a distance equal to the estimated frequency is computed
(cf. Line 13). After this differentiation, the seasonal pattern with this particular
frequency should no longer be present in the time series. Thus, the highest
spectrum is determined for the second periodogram as well to compare the
highest spectrum of the original periodogram and the one after differentiation.

103

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

If the highest spectrum of the second periodogram is smaller than a tolerance
value multiplied by the highest spectrum of the first periodogram (cf. Line 17),
the particular frequency is returned. Otherwise, the found frequency is dis-
carded and -1 is returned (cf. Line 20). The tolerance level can be adjusted,
however, it is fixed to 0.5 in this thesis.

Algorithm 3| shows the procedure of the overall frequency determination.
In contrast to the frequency estimation algorithm, the entire frequency deter-
mination requires only the observed values of the time series. Also, only this
method is called from the Telescope workflow, since it includes the frequency
estimation in Line 12. First, a list of all common frequencies must be loaded
(cf. Line 2). Afterwards, the frequency estimation presented in Algorithm [2]is
applied until either a common frequency is found (cf. Line 15) or the number of
maximum iterations is exceeded (cf. Line 10). To check whether the frequency

Algorithm 3 Frequency determination

Input: observation values z
Output: most likely frequency f

1: ### get a list of all common frequencies

2: common_fs = getCommonFrequencies()
3 f=-1

4: numlters =1

5: maxlters =10

6: ### only leave the loop if the maximum number of iterations is reached or a frequency

estimated by the periodogram is accepted

7: while (f == —1) do

8: if (numlters > maxlIters) then

9: f=1
10: break
11: endif

12: estimated_f = estimateFrequencyPeriodogram (z, numlIters)

13: ### test whether there is a common frequency close to the estimated frequency
14: if (nearby(estimated_f, common_fs)) then

15: f = getClosestFreq(estimated_f, common_fs)

16: end if

17: numlters = numliters + 1

18: end while

19: return f

104

4.2 Time Series Preprocessing

estimated by Algorithm [2]implies a common frequency, it is compared with
the list of common frequencies. If the frequency matches one of the common
frequencies (cf. Line 14), the common frequency matching with least differ-
ence is returned as the frequency of the time series (cf. Line 15). Otherwise,
the entire frequency estimation and verification loop is repeated up to nine
more times, where the i-th most dominant frequency is considered in the i-th
iteration. Finally, if no frequency passes the verification tests after 10 iterations,
the frequency is set to 1, indicating that the time series is not seasonal. In this
case, Telescope terminates as its assumption of a seasonal time series is not
satisfied and, consequently, an alternative forecasting method must be chosen.

4.2.2 Anomaly Detection and Removal

Given that anomalies can severely affect the quality of time series decomposition
methods and, consequently, the accuracy of forecasts, anomaly detection and
removal is a critical task for decomposition-based time series forecasting. There-
fore, the detection and removal of anomalies is the second preprocessing step
as depicted in the topmost gray box Preprocessing in Figure Algorithm
presents the procedure of the anomaly detection and removal mechanism
implemented in Telescope. As input, the algorithm requires the time series
observations and frequency. First, the indices of the anomalies are extracted by
applying the method of Hochenbaum et al. [HVK17]] (cf. Line 2). This method
performs a modified version of seasonal and trend decomposition with loess
(STL) to split the time series into seasonal, trend, and remainder components.
To do this, the frequency of the time series is required, which is the reason
for the anomaly removal to be performed after the frequency determination.
Subsequently, generalized extreme studentized deviate test (ESD) with median
instead of mean and absolute median deviation instead of standard deviation is
applied to the remainder to identify outliers. According to Hochenbaum et al.,
substituting these metrics improves the accuracy of outlier detection [HVK17].
However, especially in many human-generated or influenced time series, miss-
ing values, i.e., a kind of anomaly, are usually replaced by zeros and the method
presented above cannot detect them as anomalies, so the anomaly detection
and removal method implemented in Telescope provides an optional input
parameter that defaults to false but can be easily enabled. If this Boolean vari-
able is set to true, the algorithm scans the time series for zeros and adds their
indices to the indices of detected anomalies (cf. Lines 5 and 6).

Once all anomalies are identified, they can be removed (cf. Line 9). To
this end, the positions of the precursor and the successor of each anomaly
are determined (cf. Lines 10 and 11). Note, however, that the precursor and

105

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

successor are not necessarily the adjacent observations of the anomaly, but the
closest observations that are not anomalies. Finally, each anomaly is set to the
mean of its precursor and successor to return the revised time series.

Algorithm 4 Anomaly removal

Input: observation values z, frequency f, Boolean indicating whether zeros
need to be removed remove_zeros (default: FALSE)
Output: corrected values =

1: ### get all indices of anomalies
2T==
indicesAnoms = AnomalyDetection(z, f)

@

###t set indices of zero values to anomaly indices if remove_zeros set to TRUE
if (remove_zeros) then

indicesZeros = findIndicesWithValueZero(x)

indicesAnoms = sort(append (indices Anoms, indicesZeros))

end if

9: ### replace anomaly values by the mean of the two non-anomaly adjacent values
10: for all (position in indices Anoms) do

11: prev = getNonAnomalyPrecursor(position)

122 next = getNonAnomalySuccessor (position)

13: Z[position]= mean(prev, next)

14: end for

15: return x

4.2.3 Trend Tests

The trend tests constitute the final step of the time series preprocessing as
shown in the topmost gray box Preprocessing in Figure Subsequently to
the time series decomposition, the trend type, namely linear or exponential
(exp), must be determined, since ARIMA cannot handle exponential trends.
To this end, Algorithm [|illustrates the procedure for determining the trend
type realized in Telescope. As input features, the algorithm requires only the
trend component extracted by the STL decomposition. In a first step, the al-
gorithm fits a linear model to the original trend (cf. Line 2) and employs this
model to reconstruct the data (cf. Line 3). Next, a linear model is fitted to the
logarithmized trend (cf. Lines 5 and 6). Accordingly, this model represents
an exponential trend model. Afterwards, the exponential function is applied

106

4.2 Time Series Preprocessing

to the data reconstructed with the second linear model (cf. Line 7), so that
both reconstructions can be compared. Once both models are learned and the
data are reconstructed, the residuals of both models are calculated and can
be compared. Therefore, the root mean square error (RMSE) is derived for
both models based on the original observations (cf. Lines 9 and 10). Finally,
the type of trend with smaller residuals is returned. However, since the expo-
nential model often appears almost like a linear model due to the very small
exponential growth, a tolerance factor is included in the comparison to avoid
such misbehavior (cf. Line 11).

Algorithm 5 Fitting linear or exponential model

Input: trend determined by stl trend
Output: linear or exp according to the best fitting model model

1: ### determine linear model
2: linear_model = Im(trend)
3: counts_linear = predict(linear_model)

4: ### determine exponential model

5: log_trend = log(trend)

6: exp_model =1lm(log_trend)

7. counts_exp = exp(predict(exp_model))
8: ### return the model with smaller RMSE

9: linear_error = rmse(trend, counts_linear)

10: exp_error = rmse(trend, counts_exp)

11: model = argmin(linear_error, tolerance X exp_error)
12: return model

The second trend test examines whether the time series exhibits a signifi-
cant trend pattern since XGBoost with its default settings cannot handle such
time series. However, only one parameter of XGBoost needs to be adjusted
to improve its performance for such time series, namely the so-called booster.
To this date, XGBoost offers three different boosting methods, namely gbtree,
gblinear, and dart. While gbtree and dart construct trees, gblinear uses a linear
function for modeling. Therefore, gblinear is capable of modeling linear trends
that exceed the range of input values, while gbtree and dart should not be used
for such tasks. Nonetheless, gbtree is preferable for time series without strong
linear trends, as it outperforms gblinear for such time series of more stationary
nature. To this end, inspecting the proportion of trend in the forecast horizon
of the time series is again a crucial component for parameter tuning of XGBoost.

107

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

However, since the proportion of trend in the forecasting horizon is unknown at
modeling time, it must be estimated. The heuristic implemented in Telescope is
shown in Algorithm[6] As input features, the algorithm requires the time series
observations, the frequency, and the length of the forecasting horizon. First,
the time series is decomposed using STL (cf. Line 2) and the trend component
is extracted (cf. Line 3). Here, the parametrization of STL is essential, since
Telescope by definition considers only seasonal time series. If t.window is not
set or is set too short, seasonal patterns often remain in the trend component,
which reduces the quality of the decomposition. Next, the first trend test given

Algorithm 6 Test trend

Input: observation values z, frequency f, length of the forecast h
Output: TRUE if there is a strong trend pattern, FALSE otherwise

1: ### decompose time series
2: decomp = stl(ts(z, f), s.window = "periodic", t. window = length(z)/2)
3: trend = decomp|"trend"]

4: ##4# fit the right model (linear or exponential)
model = fittingModels(z, f)

5L

preprocessing of data and forecasting the trend
if (model == exp) then
trend = log(trend)
arima = auto.arima(trend, stepwise = TRUE, seasonal = FALSE)
10: forecast_trend = forecast(arima, h)
11: forecast_trend = exp(forecast_trend)
12: else
13: arima = auto.arima(trend, stepwise = TRUE, seasonal = FALSE)
14: forecast_trend = forecast(arima, h)
15: end if

o »®» N

16: ##H# determine the proper booster

17: booster = getBooster(forecast_trend, trend, x)
18: if (booster == gblinear) then

19: has_trend = TRUE

20: else

21: has_trend = FALSE

22: end if

23: return has_trend

108

4.3 Creation of Categorical Information

by Algorithm[5]is applied to determine the trend type (cf. Line 5). In the case of
an exponential trend, the time series must be logarithmized, since ARIMA can-
not handle such strong trends (cf. Line 8). Subsequently, ARIMA is applied to
model and forecast the trend according to the length of the forecasting horizon
(cf. Lines 9, 10, 13, and 14). Note that ARIMA is explicitly used with seasonality
disabled. Many implementations of ARIMA include variations of the ARIMA
model, such as sSARIMA for seasonal time series. However, since Telescope
decomposes the time series and only considers the trend component here, these
variations of ARIMA are not required for this task. Instead, these variations
would only increase the runtime, which is the reason that they are explicitly
excluded here. Again, in the case of an exponential trend, the exponential
function must be applied to the forecast to transform it back to the original
scale (cf. Line 11). Once the trend is forecast, the proper boosting method is
derived (cf. Line 17). The procedure of booster determination is described in
Algorithm [12]in Section 4.5 If the algorithm for booster determination returns
gblinear, a strong trend pattern is assumed and the trend test returns true. In
contrast, if gbtree is delivered by Algorithm (12} false is returned.

4.3 Creation of Categorical Information

Aiming to further improve forecast accuracy, Telescope extracts additional cate-
gorical information from the time series. To this end, Section[4.3.1|describes the
partitioning of the time series into individual periods, the extraction of statisti-
cal characteristics of these periods, and their clustering. However, as forecasts
of these categorical information are also required, Section [4.3.2) presents the
procedure for cluster label forecasting.

4.3.1 Clustering of Single Periods

As a general rule, the predictive power of machine learning improves as more
covariates are added, up to a certain point where the model overfits and, thus,
deteriorates again. Since the core component of Telescope uses XGBoost, a
machine learning technique, covariates are desirable. In addition to the seasonal
and trend components of the STSM model, further categorical information can
be extracted from the time series. However, extracting meaningful categorical
information from univariate time series is a challenging task. The approach
implemented in Telescope is based on clustering the individual periods of the
time series (cf. the two topmost white boxes of the gray box Creation of Categorical
Information in Figure[4.1]). To this end, Algorithm [7] presents the workflow of

109

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

the clustering approach. The algorithm takes the time series observations and
frequency as input and first divides the time series into individual periods
based on the specified frequency, as this represents the length of the seasonal
pattern (cf. Line 2). Then, the statistical characteristics variance and range are
calculated for each period (cf. Lines 4-8). After normalizing both characteristics
to the range of zero to one (cf. Lines 10-11), k-Means clustering is applied to
this feature space (cf. Line 12). Given that additional information is hard to
estimate, the number of clusters is set to two, as too many clusters might lead
to insufficient distinctions between clusters. Finally, the cluster centroids are
returned if the cluster has reached a certain quality level.

Algorithm 7 Cluster periods

Input: observation values z, frequency f
Output: cluster labels for all periods clusters

1: ### split the time series into single periods
2: periods = splitIntoSinglePeriods(z, f)

calculate characteristics for each period
for all (period in periods) do

vals = getValuesInPeriod (period)

var = cbind (var, variance(vals))

range = cbind(range, max(vals) — min(vals))
end for

9: #i## normalize characteristics

10: range = normalize(range)

11: var = normalize(var)

12: clusters = kmeans(range, var, centers = 2)

13: ### only return clustering if it is good enough

14: silhouette = calculateSilhouette(clusters, dissimilarity (var, range))
15 if (silhouette < 0.75) then

16: clusters = —1

17: end if

18: return clusters

However, clustering does not extract valuable information for all types of
time series. In some cases, categorical information produced by the application
of clustering methods can drastically reduce the forecast accuracy. For instance,
this is the case for the time series shown in Figure which displays the
quarterly gas production in Australia from 1956 to 2010 in petajoules.

110

4.3 Creation of Categorical Information

250+

200+

150~

100+

Gas Production in Australia [PJ]

50-

1960 1970 1980 1990 2000 2010
Year

Figure 4.2: The quarterly gas production in Australia [petajoules] from 1956 to 2010.

This time series exhibits seasonal and trend patterns as well as a multiplicative
decomposition. Here, the first 80% of the observations are used for model
training, while the remaining 20% are used for forecast evaluation. The end
of the training part is indicated by the vertical purple line in Figure The
clustering procedure described above provides the following centroid vector
for the training part, where each value represents one period:

2222222222222222222222111112221111111111111

As can be seen, the centroids in the history fluctuate, so forecasting this vector
of centroids leads to both types of centroids in the forecasting horizon, although
it is evident from Figure 4.2| that actually only centroid 1 would be reasonable.
For this reason, Algorithm[z utilizes the silhouette coefficient as a verification
that the cluster labels are meaningful (cf. Line 14). The silhouette coefficient is a
measure of the consistency of the clustering and ranges from -1 to 1. That is, the
silhouette coefficient compares the cohesion, i.e., how similar an object is to its
cluster, with the separation, i.e., how dissimilar an object is to the other clusters.
If the silhouette coefficient is greater than a certain threshold (i.e., 0.75), the
cluster structure can be considered strong. A silhouette coefficient between 0.5

111

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

and 0.75 implies a medium clustering quality. If the silhouette coefficient is less
than 0.5, the clustering quality is considered insufficient. Hence, Algorithm
requires a silhouette coefficient of at least 0.75. Only if the silhouette coefficient
reaches this threshold, the clustering is further used. Otherwise, clustering is
discarded and only the STSM components are used as covariates for XGBoost.

4.3.2 Cluster Label Forecasting

Following the clustering of each period in the time series history, the centroids
must be forecast so that they can be used as covariates for XGBoost, as depicted
by the lowermost white box of the gray box Creation of Categorical Information in
Figure The procedure for forecasting cluster labels employed in Telescope
is outlined in Algorithm 8] As input, the algorithm assumes the period cluster
labels, time series observations, time series frequency, number of repetitions to
learn the ANN, and the length of the forecasting horizon. First, the ANN is
trained for the specified number of repetitions (cf. Line 2). That is, the ANN is
trained with as many different starting weights as the number of repetitions
specifies. Their mean is then used to forecast the cluster labels (cf. Line 3).
However, since these forecasts represent the centroid for an entire period, the
cluster label must be repeated for every single observation in that period. For
this purpose, the frequency of the time series is required, since each cluster label
must be repeated as many times as there are observations within a period. The
only exception might be the last centroid, as this period might not be complete.
Then, the derived cluster labels for each observation are returned.

Algorithm 8 Forecast cluster labels

Input: cluster labels clusters, frequency f, observation values z, number of
repetitions for ANN repeats, length of the forecast h
Output: forecast of cluster labels labels

1: ### forecast cluster labels
2: ann = nnetar(clusters, repeats)
3: forecast_cluster = forecast(ann, h)

4: #it# repeat each cluster label f-times
5: labels = repeatClusterCenterForEntirePeriod (forecast_cluster, z, f)
6: return labels

112

4.4 Decomposition and Component Forecasting

4.4 Decomposition and Component Forecasting

Given that Telescope uses a kind of divide-and-conquer approach to forecast
univariate, seasonal time series, the time series must be broken down into
components that are easier to forecast. To this end, Section describes the
time series decomposition applied, while Section explains the forecasting
procedure applied to the derived time series components.

4.4.1 Time Series Decomposition

As mentioned above, Telescope applies STL decomposition, which separates the
original time series into seasonal, trend, and remainder components [CCMT90]|
according to the STSM model (cf. the gray box Decomposition in Figure [4.T]).
However, since STL cannot handle multiplicative decomposition, the type of
decomposition must be estimated beforehand. Therefore, a decision logic is im-
plemented in Telescope that examines the time series to determine whether the
time series has an additive or multiplicative composition type. This procedure
is presented in Algorithm [9]and requires only the time series observations and
frequency as input. In the first step, the procedure computes the STL decom-
position on the original time series (cf. Line 2), which represents the additive
composition type. Subsequently, the STL decomposition is also computed on
the logarithmized values of the time series (cf. Line 3), which represents the
multiplicative composition type. Subsequently, only the remainder components
of the STL decompositions are used for decision-making (cf. Lines 5-6). For the
multiplicative composition type, the exponential function is applied to scale the
remainder component back to its original scale. As a first heuristic, the sum of
squares is computed for both remainder components (cf. Lines 8-9). A second
decision heuristic is obtained using the interquartile range, again computed on
both remainder components (cf. Lines 11-12).

Furthermore, an optional Boolean parameter can be passed to the algorithm,
which is set to false by default. If this parameter is enabled, the autocorrelation
function is applied to the remainder components and the sum of squares are
computed on them (cf. Lines 16-17). By applying the autocorrelation function
to the remainders, the correlations of the residuals with a lagged version of
themselves are determined for several lags. This involves examining how much
information, such as repeating patterns, remains in the residuals. Finally, if at
least two of the three multiplicative decomposition heuristics exceed the addi-
tive decomposition heuristics, the composition type is set to additive, otherwise
it is set to multiplicative. However, if autocorrelation is disabled, both mul-
tiplicative decomposition heuristics must exceed the additive decomposition

113

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

Algorithm 9 Test for multiplicative decomposition

Input: observation values z, frequency f, Boolean AC'F' (default: FALSE)
Output: TRUE if decomposition is of type multiplicative, FALSE if additive

1: ### perform additive and multiplicative STL decompositions

2: decompgqq = stl(ts(z, f), s.-window = "periodic", t.window =
length(x)/2)

3: decompyur = stl(ts(log(z), f), s.window = "periodic", t.window =
length(x)/2)

4: ### determine remainder for the additive and multiplicative decompositions
5: resqqq = decompgqq| "remainder”]
6: TeSmuit = T — exp(decompy | "trend"]) x exp(decompyi| "season"])

7: ##H# calculate the sum of squares of residuals for the additive and multiplicative decomposi-
tions

8: ssresqqq = sum(square(resgdd))

9: ssTeSmui = sum(square(resmyit))

10: ### calculate the range from the 25% to the 75% quantiles of the residuals for the additive
and multiplicative decompositions

11: grangeqqq = percentile(resqqq, 75%) — percentile(resqqq, 25%)

12: grangemy: = percentile(resyt, 75%) — percentile(respuit, 25%))

13: ### decide via majority decision which decomposition to choose

14: is_mult = TRUE

15: if (ACF) then

16: ### calculate the sum of squares of the ACF of the residuals for the additive and multi-
plicative decompositions

17 ssacfqqq = sum(square(acf(resqdq)))

18: ssacfmu = sum(square(acf(resmuit)))

19: bools = c((ssresqqq < $ST€Smut),(qrangeqqq < qrangemut),

(ssacfadd < Ssacfmult))
20: if (count(bools, TRUE) > length(bools)/2) then
21: 1s_mult = FALSE
22: end if
23: else if (ssresqgqq < ssresmur && qrangeqqq < qrangemq,:) then
24: is_mult = FALSE
25: end if
26: return is_mult

114

4.4 Decomposition and Component Forecasting

heuristics to set the composition type to additive. In this case, a multiplicative
composition type is returned if the additive decomposition heuristics exceed
the multiplicative decomposition heuristics for at least one heuristic.

In case a multiplicative composition is detected, the logarithm must be ap-
plied to the time series before proceeding with the STL decomposition. In
addition, as mentioned in Section [4.2.3) it is essential to set s.window to periodic
and t.window to half the length of the history. However, when using multi-
plicative decomposition, the exponential function must be applied to the final
forecast to re-transform the scale of the time series.

4.4.2 Season and Trend Forecasting

The forecasting of the trend and season components is shown in the gray box
Component Forecasting in Figure[4.1} By definition (cf. Section [2.2.2]), seasonality
is an ever-recurring pattern, so the seasonal pattern extracted by the STL is
continued for the entire forecasting horizon. In contrast, trend forecasting is
a little more complex. The procedure for forecasting trend patterns within
Telescope is shown in Algorithm[I0l As input, the algorithm requires the trend
component extracted by STL, the type of trend (i.e., linear or exponential), and
the length of the forecasting horizon. If the time series exhibits an exponential

Algorithm 10 Forecast trend

Input: trend determined by stl trend, model model, length of the forecast h
Output: trend forecast forecast_trend

1: ### logarithmize the time series if the model is detected to be exponential
2: if (model == exp) then
3: trend = log(trend)

4: ### apply ARIMA without seasonality for fast trend forecasts
arima = auto.arima(trend, stepwise = TRUE, seasonal = FALSE)
6: forecast_trend = forecast(arima, h)

7. ### apply the exponential function to the logarithmized forecast
. forecast_trend = exp(forecast_trend)

9: else
10: arima = auto.arima(trend, stepwise = TRUE, seasonal = FALSE)
11: forecast_trend = forecast(arima, h)

12: end if
13: return forecast_trend

115

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

trend, the time series must be logarithmized since ARIMA cannot handle
exponential trends (cf. Line 3). Then, the trend is forecast using an ARIMA
model (cf. Lines 5-6). As mentioned in Section only standard ARIMA,
especially without seasonality, is used to maintain a short runtime. Seasonality
can be neglected, since the trend component no longer contains any seasonal
patterns. Once ARIMA provides the forecast, the exponential function must be
applied to the forecast to re-scale the values (cf. Line 8). If the time series instead
exhibits a linear trend, the ARIMA modeling follows the same approach, but
logarithmization and exponentialization are omitted (cf. Lines 10-11). Finally,
the trend forecast is returned.

4.5 Remainder Learning and Component Combination

The key component of Telescope is the applied machine learning method,
namely XGBoost. Within Telescope, XGBoost implicitly performs two main
tasks: Regressing the remainder component and combining the other forecast
time series with this remainder forecast. This last step of the Telescope workflow
is illustrated by the lowermost gray box Remainder Forecasting & Combination in
Figure To this end, an XGBoost model is learned with the cluster labels,
seasonal component, and trend component as covariates and the time series
observations as targets. However, as explained in Section 4.1} the trend compo-
nent is omitted from the covariates if the time series has an exponential trend.
The workflow of Telescope’s remainder forecasting and time series combination
using XGBoost is illustrated in Algorithm To regress the remainder and
combine the individual components of the covariates, the historical covariates
(ie., the trend and season components extracted from STL and the cluster labels
derived from the historical observations), the historical time series observa-
tions, the forecast covariates (i.e., the forecasts of trend, season, and cluster
labels), and the correct boosting method determined by Algorithm [12| must
be passed to the workflow. A major drawback of XGBoost is that it tends to
overfit to the training data, so the historical data must be split into training and
validation parts. Hence, 20% of the entries in the historical covariate matrix are
randomly sampled for training, while the remaining 80% are held back to vali-
date the learned model (cf. Lines 2-4). Regarding XGBoost, this set of training
and validation data must be combined into a list called watchlist (cf. Line 5).
In addition, numerous other parameters of XGBoost need to be set. To this
end, the algorithm loads a pre-defined list of parameters, which is specified in

116

4.5 Remainder Learning and Component Combination

Algorithm 11 Train XGBoost model

Input: historical covariate matrix hist_covariates, forecast covariate matrix
forecast_covariates, observation values z, boosting method booster
Output: final forecasting result forecast_zgb

split the time series in training and test parts to avoid overfitting

h = sample(nrow (hist_covariates),floor (0.2 xnrow (hist_covariates))
dtrain = xgb.DMatrix (hist_covariates[h], Z[h])

dval = xgb.DMatrix(hist_covariates[—h], Z[—h])

watchlist = list(dtrain, dval)

A

get the parameters from Table[E.]]
7. param_list = getParameters(Table 4.1))

8: #i#t# learn and apply the XGBoost model to return the final forecast

9: xgb = xgb.train(data = dtrain, watchlist = watchlist, params =
param_list)

10: forecast_xzgb = predict(zgb, forecast_covariates)

11: return forecast_xgb

Table lézlﬂ The only parameter that is not fixed is the boosting method, as this
is set to either gbtree or gblinear depending on the trend pattern. The decision
logic for this choice is shown in Algorithm [12l Once the covariates are split
into training and validation data and the XGBoost parameters are loaded, the
XGBoost model is learned (cf. Line 9). Finally, this model is applied to the
forecast covariates to regress the final forecast result (cf. Line 10).

As mentioned in the previous paragraph, the boosting method must be
chosen before learning the XGBoost model. The booster’s performance is highly
dependent on the trend behavior of the time series, as gblinear can handle
linear trends, while gbtree should not be used for time series with significant
trend (cf. Section[4.2.3)). Nevertheless, gbtree is superior for modeling time
series without a significant trend pattern. Therefore, Telescope implements
a decision logic for selecting the type of boosting method, which is shown in
Algorithm The decision logic requires the forecast of the trend and the
historical observation values as input. In the first step, the algorithm computes
the ranges of the trend forecast and the historical observation values (cf. Lines 2-
3). The range is defined as the maximum difference between two observations
and, therefore, the difference between the maximum value and the minimum

*For more details on the parameters of XGBoost, please refer to the documentation of
XGBoost: https://xgboost.readthedocs.io/en/latest/parameter.html,

117

https://xgboost.readthedocs.io/en/latest/parameter.html

Chapter 4: Telescope: Remainder Learning for Component-based Forecasting

Table 4.1: Parameter settings of XGBoost.

Parameter Value Assignment
objective "reg:linear"
booster booster (gbtree or gblinear)
eta 0.1
max_depth 5

min_child_weight 1
num_parallel_tree 2
nthread 2
nrounds 500
early_stop_rounds 50
maximize FALSE

value. If the range of the trend represents a large proportion compared with
the total range of historical observations, the trend is considered significant.
For this purpose, the ratio between these ranges is compared with a threshold,
which is set to 0.05 in this thesis. Finally, if the ratio is below this threshold, the
algorithm recommends the use of gbtree and otherwise gblinear.

Algorithm 12 Determine booster

Input: trend forecast forecast_trend, observation values
Output: booster recommendation booster

1: ### determine the range of the trend in the history and in the forecast
2: forecast_trend_range = max(forecast_trend) — min(forecast_trend)
hist_range = max(x) — min(x)

@

4: ### compare the ratio of the trend range in the forecast with the trend range in the history
5: if (forecast_trend_range/hist_range < threshold) then

6: booster = gbtree

7: else

8: booster = gblinear

9: end if

10: ### return the booster according to the comparison
11: return booster

118

4.6 Summary and Discussion

4.6 Summary and Discussion

We conclude this chapter by briefly summarizing the main contribution in
answering the research question RQ A.1 formulated in Section[1.3] Research
question RQ A.1 addresses the challenge of developing a novel hybrid fore-
casting method based on time series decomposition. To this end, we have
introduced Telescope, which employs seasonal and trend decomposition with
loess (STL) to split a time series into seasonal, trend, and remainder compo-
nents. However, prior to time series decomposition, Telescope preprocesses
the time series by means of frequency estimation, anomaly detection and re-
moval, trend type determination, composition type examination, and a shift
of the values, if necessary. Once the time series components are extracted,
the trend and seasonal components are forecast separately using ARIMA and
continuation, respectively. However, the remainder component is not forecast
directly. Apart from univariate time series forecasting, categorical information
are also extracted from the time series to further improve the forecast quality.
To forecast the categorical information, NNetAR is deployed in Telescope. Fi-
nally, Telescope applies XGBoost to regress the remainder component using the
forecasts of the other time series components and the categorical information
as features. Thus, Telescope provides a fully automated end-to-end forecasting
workflow that includes numerous sophisticated time series preprocessing tasks
to facilitate the forecasting process for the operator.

As the “No Free Lunch Theorem” states, there is no single method that per-
forms best for all types of data. This also applies to Telescope, so the following
assumptions are made. First, Telescope is specifically designed for univariate
time series. Second, due to the application of STL, Telescope is only applicable
to seasonal time series with more than two full periods of observation data.
Third, the length of the seasonal pattern exhibited by the time series must
not vary over time. However, multiple overlapping seasonal patterns with
different frequencies are allowed. Finally, Telescope is designed for multi-step-
ahead forecasting of long time series with comparatively many observations
per period. Nevertheless, Telescope can also be used for other time series and
one-step-ahead forecasting.

119

Chapter 5
Evaluation of Telescope

In this chapter, we evaluate the forecasting performance of Telescope and com-
pare it with several state-of-the-art time series forecasting methods with respect
to average forecast accuracy, robustness in forecast accuracy, and required run-
time for the entire forecasting task including model learning and forecasting. To
this end, we first present the general evaluation design in Section and then
provide the results of the experiments performed in Section[5.2] Furthermore,
we demonstrate the effectiveness and benefits of Telescope in an application
scenario where virtual machines are automatically scaled according to work-
load demand forecasts in Section [5.3] Finally, we conclude this chapter with a
concise discussion in Section 5.4l

5.1 Evaluation Design

As the threshold setting for critical event prediction depends on the partic-
ular use case and requires a priori domain knowledge, we did not evaluate
explicit threshold exceedances, but the forecast quality in general. This is also
representative for critical event prediction, since a more precise forecasting
method in turn yields less forecast errors and is therefore more applicable to
the prediction of critical events.

In order to assess the forecast quality of Telescope and compare it with
several existing state-of-the-art forecasting methods, a data set consisting of
53 different seasonal time series was used. The names, sources, and lengths of
these time series are summarized in Table This summary shows that the
time series originate from many different sources representing a variety of use
cases. Furthermore, the time series exhibit highly varying lengths, with the
shortest time series consisting of only 68 observations, while the longest time
series contains 33,795 observations.

121

Chapter 5: Evaluation of Telescope

Table 5.1: List of all seasonal time series used for the evaluation of Telescope.

122

Name Source Length
Sales Time Series Data Library [HY18]] 2820
Gasoline Hyndman [[DLHS11]] 745
TurkishElectricity Hyndman [[DLHS11]] 3288
CarSalesQuebec DataMarket [Bro17]| 108
Taylor forecast R package [HAB'18]] 4032
Gas forecast R package [HAB"18] 476
Winelnd forecast R package [HAB™18]] 176
alo fpp2 R package [Hyn18]| 204
Arrivals2 fpp2 R package [[Hyn18]] 127
Arrivals3 fpp2 R package [Hyn18]| 127
AusBeer fpp2 R package [[Hyn18]] 218
AusCafe fpp2 R package [Hyn18]| 416
AusTourists fpp2 R package [Hyn18§]] 68
Calls fpp2 R package [Hyn1§]| 27716
DebitCards fpp2 R package [Hyn18]| 164
Departuresl fpp2 R package [[Hyn18§]] 491
Departures2 fpp2 R package [Hyn18]| 491
Departures3 fpp2 R package [Hyn1§]| 491
Departures4 fpp2 R package [Hyn18] 491
Departures5 fpp2 R package [[Hyn18]] 491
ElecDemand1 fpp2 R package [Hyn18]| 17520
Hyndsight fpp2 R package [[Hyn18]] 365
QausElec fpp2 R package [Hyn18]| 218
QCement fpp2 R package [Hyn18§]] 233
QGas fpp2 R package [Hyn18]| 218
USMElec fpp2 R package [Hyn18] 486
VN2 fpp2 R package [Hyn1§]| 72
VN4 fpp2 R package [Hyn18] 72
AirPassengers datasets R package [R C18] 144
ChickWeight$weight datasets R package [R C18] 578
CcO2 datasets R package [R C18] 468
EuroDist datasets R package [R C18] 210
FDeaths datasets R package [R C18] 72
LDeaths datasets R package [R C18] 72
Loblolly$height datasets R package [R C18] 84

Continued

5.1 Ewvaluation Design
Name Source Length
MDeaths datasets R package [R C18] 72
Nottem datasets R package [R C18] 240
Seatbelts1 datasets R package [R C18] 192
Seatbelts2 datasets R package [R C18] 192
Seatbelts3 datasets R package [R C18] 192
Seatbelts4 datasets R package [R C18] 192
Seatbelts5 datasets R package [R C18] 192
Treering datasets R package [R C18] 7980
UKDriverDeaths datasets R package [R C18] 192
UKGas datasets R package [R C18] 108
USAccDeaths datasets R package [R C18] 72
Wikipedia Wikipedia Project—CountsE] 712
IBM N. Herbst et al. [HHKA14]] 2670
NASA Internet Traffic Archiv 5636
FIFA Internet Traffic Archive4 3711
Calgary Internet Traffic Archive? 33795
ClarkNet Internet Traffic ArchiveZ 1324
Saskatchewan Internet Traffic Archive? 20524

As Telescope is designed to perform multi-step-ahead forecasting for time
series with many observations per period, the first 80% of time series obser-
vations are used to train the forecasting model, while the last 20% of time
series observations are all forecast at once. Note that such multi-step-ahead
forecasting may result in a forecast of several hundreds or thousands of values
applying the forecasting method only once.

In order to quantify the forecast error of the applied forecasting methods,
three forecast error measures are calculated, namely mean relative absolute
error based on a posteriori Naive forecast, mean absolute scaled error, and
mean absolute percentage error (cf. Section [2.6.1)). Note that the baseline
generated by the a posteriori Naive forecast is only a theoretical calculation,
since it requires the latest observation and forecasts exactly that value. It would
be possible to forecast the last value of the training part of the time series for the
entire forecast horizon, however, this would result in a constant forecast with
inferior forecast insight. Therefore, we decided to use a posteriori knowledge

'Wikipedia Project-Counts: http://dumps . wikimedia.org/other/pagecounts-raw/
Internet Traffic Archive: http://ita.ee.1bl.gov/html/traces.html

123

http://dumps.wikimedia.org/other/pagecounts-raw/
http://ita.ee.lbl.gov/html/traces.html

Chapter 5: Evaluation of Telescope

for baseline calculation. In addition to the forecast error measures, we also
captured the time required for the entire forecasting task, which includes both
model training as well as forecasting.

As state-of-the-art forecasting methods, we compare Telescope with the four
statistical models ARIMA, ETS, sNaive, and TBATS as well as with the four
machine learning models NNetAR, Random Forest, Support Vector Machine,
and XGBoost. For more details on the statistical and machine learning methods,
please refer to Sections [2.3|and [2.4} respectively.

In the following, we report several aggregations of the achieved performances,
namely the average over all time series, the standard deviation of the perfor-
mance delivered across the data set, and the ranks per forecasting method.
Regarding the rank, the forecasting method with the best performance, i.e., the
lowest forecast error or the shortest runtime, receives rank 1, while the rank
increases gradually according to the ordered performance of the forecasting
methods. That is, the worst forecasting method receives rank 9, as there are nine
forecasting methods in competition. Also, the rank is calculated per evaluation
measure. Thereby, for all evaluation measures, the smaller the reported value,
the better the performance provided.

5.2 Comparing Forecast Accuracy and Time-to-Result

First, we present detailed insights into the forecast accuracy of Telescope and
the eight state-of-the-art methods for two well-known benchmark time series
for forecasting seasonal time series, namely Taylor’s Electricity Demand time
series and the Airline Passengers trace. We then examine the average forecast
performance as well as its standard deviation. Lastly, we present the average
rank achieved by each forecasting method for every evaluation measure.

5.2.1 Detailed Forecasting Comparison

This section provides a detailed perspective on the forecasts produced by Tele-
scope and the eight forecasting methods in competition for two representative
seasonal time series that are commonly used for assessing forecast accuracy.

5.2.1.1 Taylor’s Electricity Demand

The first time series analyzed is Taylor’s Electricity Demand that represents
the half-hourly electricity demand in England and Wales from June 5, 2000
to August 27, 2000. Thus, the time series consists of 4,032 observations and
exhibits two seasonal patterns. The first seasonal pattern is a diurnal seasonality,

124

5.2 Comparing Forecast Accuracy and Time-to-Result

i.e., the electricity demand follows a regular pattern based on the time of day.
In addition, the time series also shows a weekly seasonal pattern, where the
electricity demand depends not only on the time of day, but also on the day
of the week. More specifically, the daily maximum is noticeably smaller on
weekends than on weekdays. In total, the recorded time series contains 84
periods of the daily seasonal pattern and 12 periods of the weekly seasonal
pattern. Finally, the time series does not exhibit any trend pattern.

Figure 5.1]illustrates the forecasts of the nine forecasting methods. The time
is depicted on the horizontal axis, while the half-hourly electricity demand is
shown on the vertical axis. For visualization purposes, the first eight weekly
periods are truncated. However, they were still used for model training, so
the training time series consisted of the first 3,226 observations, while the later
806 observations had to be forecast all at once. The solid black line represents
the latest observations of the training time series, while the dashed black line
shows the actual observations of the testing part. The forecast of Telescope
is colored in green, the forecasts of the four statistical methods ARIMA, ETS,
sNaive, and TBATS are colored in increasingly darker shades of red, and the
forecasts of the four machine learning methods NNetAR, Random Forest (RF),
SVM, and XGBoost are colored in increasingly darker shades of blue.

The first finding is that most machine learning-based forecasting methods,
namely Random Forest, SVM, and XGBoost, cannot handle the time series at all,
since they only forecast a constant value. This is due to the fact that they only
receive the time information as input and no additional information for, e.g.,
autoregression. Moreover, ETS also does not forecast meaningful values, which
is due to the property of ETS not being able to process seasonal patterns with
more than 24 observations. In contrast, ARIMA, sNaive, TBATS, and NNetAR
provide good forecasts for weekdays. However, all four of these methods miss
the second seasonal pattern, namely the lower peak values for weekends. Note
that the forecasts of ARIMA and sNaive are almost identical and, therefore,
overlap most of the time. Only Telescope was able to model both seasonal
patterns, which can be seen in the compressed periods on weekends. Therefore,
Telescope’s forecast is also very close to the actual observations.

In order to analyze the forecast accuracy numerically, Table [5.2| presents
the achieved forecasting performance with respect to mean relative absolute
error (MRAE), mean absolute scaled error (MASE), mean absolute percentage
error (MAPE), and time-to-result. The numerical results provide the same
findings as the visual assessment, namely that Telescope provides by far the
smallest forecast errors with respect to all three forecast error measures. Tele-
scope achieved an MRAE, MASE, and MAPE of only 1.644, 1.624, and 3.688%,

125

Chapter 5: Evaluation of Telescope

E ’»\\4“‘(““4"“%\.\\"‘& b
=oon peane MODELERERERRRRARKAAS
g T T T T T
o) m w HH"‘” wu.ﬁ
: \» L R 1
2 25000 N
: 1 L
£ 20000 \J R J
3000 3500 4000
Time

=— QObservation ARIMA — sNaive NNetAR =— SVM

Forecasting Metho Telescope ETS — TBATS RF — XGBoost

Figure 5.1: The detailed forecasts for Taylor’s Electricity Demand time series using Tele-
scope (green), the four statistical methods (reddish), and the four machine learning-
based methods (bluish).

respectively. Moreover, the same two groups can be formed. However, the
numerical results allow sorting the forecast quality, which was not possible
on the basis of Figure Although the difference between sNaive, ARIMA,
and TBATS is marginal, sNaive performed second best, followed by ARIMA
and then TBATS, while NNetAR also produced a comparatively small forecast
error but still fell off a bit. Finally, the worst forecast accuracy is yielded by
ETS, XGBoost, Random Forest, and SVM in descending order. This ranking
is supported by all three forecast error measures. In terms of time-to-result,
sNaive delivered the forecast result the fastest, which is intuitive due to its
simple forecasting procedure. In addition, the other four methods in the poor
performing group also provided their results in less than two seconds. Among
the well-performing group, besides sNaive, only Telescope was able to produce
the forecast in less than 2 seconds. In contrast, the other three forecasting
methods required between 56 and 424 seconds.

126

5.2 Comparing Forecast Accuracy and Time-to-Result

Table 5.2: The achieved forecasting performance of the eight state-of-the-art forecasting
methods and Telescope for Taylor’s Electricity Demand time series. The best values for
each evaluation measure are highlighted in bold.

Forecasting Method MRAE MASE MAPE [%] Time-to-Result [s]

Telescope 1.644 1.624 3.688 1.933
ARIMA 3423 3.382 8.003 424.408
ETS 11.998 11.854 23.792 0.305
sNaive 3.390 3.350 7.982 0.002
TBATS 3565 3.523 8.115 121.210
NNetAR 4266 4.215 9.956 56.974
Random Forest 11.497 11.360 22.762 0.890
SVM 8.407 8.306 21.323 1.828
XGBoost 11.650 11.511 23.077 0.018

5.2.1.2 Airline Passengers

The second time series used to analyze forecasting performance in more detail
is the Airline Passengers trace, which contains the number of monthly interna-
tional airline passengers from 1949 to 1960 in thousands. The Airline Passengers
trace contains 144 values and shows a yearly seasonal pattern, resulting in a
total of 12 periods in the time series. Yet, unlike Taylor’s Electricity Demand,
it does not contain a second seasonal pattern, but instead displays a signifi-
cant trend. In addition, the Airline Passengers trace exhibits a multiplicative
composition type, i.e., the amplitude of the seasonal pattern increases as the
trend grows. Figure5.2|shows the entire time series and the forecasts produced
by the nine forecasting methods. The figure structure is similar to Figure
with the only difference being that the entire training observations are shown.
Similar to Taylor’s Electricity Demand, the forecasts from Random Forest, SVM,
and XGBoost are only constant values. However, here ETS was able to deliver a
forecast close to the actual observations, since the seasonal pattern has a length
of only 12 values. The forecasts by Telescope, ARIMA, TBATS, and NNetAR
also appear very promising, although TBATS tends to overestimate the actual
observations. The sNaive forecast captured the seasonal pattern very well, but
failed to model the trend component due to its repeating nature.

Given that the forecasts by Telescope, ARIMA, ETS, and NNetAR are very
close to the actual observations and, therefore, it is hard to tell which forecasting
method performed best by considering only Figure Table 5.3|reports the
achieved forecasting performance with respect to MRAE, MASE, MAPE, and

127

Chapter 5: Evaluation of Telescope

6001

4004

2001

Monthly Airline Passengers (Thousands)

0 50 100 15C
Time

=— QObservation ARIMA =— sNaive NNetAR =— SVM

Forecasting Metho Telescope ETS — TBATS RF — XGBoost

Figure 5.2: The detailed forecasts for the Airline Passengers time series using Telescope
(green), the four statistical methods (reddish), and the four machine learning-based
methods (bluish).

time-to-result. Again, Telescope achieved the lowest forecast error with respect
to all three forecast error measures. Telescope’s result showed an MRAE, MASE,
and MAPE of 0.367, 0.801, and 4.097%, respectively. Yet, ARIMA performed
almost as well as Telescope with an MRAE, MASE, and MAPE of 0.419, 0.914,
and 4.422%, respectively. The third and fourth best forecasts were produced
by ETS and NNetAR, respectively. TBATS and sNaive also delivered mediocre
forecast accuracy, while Random Forest, XGBoost, and SVM provided only
poor forecasts. The ranking of best to worst forecasting methods applies to
all three forecast error measures. When analyzing the time-to-result, sNaive
again delivered the fastest forecast. However, when analyzing only the top four
forecasting methods, Telescope, ARIMA, ETS, and NNetAR, NNetAR provided
the forecast with the shortest time-to-result of only 0.122 seconds, followed
by Telescope with 0.520 seconds, ARIMA with 0.604 seconds, and ETS with
0.803 seconds. Compared to Taylor’s Electricity Demand, the time-to-result for
all methods is negligible due to the short length of the time series.

128

5.2 Comparing Forecast Accuracy and Time-to-Result

Table 5.3: The achieved forecasting performance of the eight state-of-the-art forecasting
methods and Telescope for the Airline Passengers time series. The best values for each
evaluation measure are highlighted in bold.

Forecasting Method MRAE MASE MAPE [%] Time-to-Result [s]

Telescope 0.367 0.801 4.097 0.520
ARIMA 0419 0914 4.422 0.604
ETS 0.505 1.102 5.461 0.803
sNaive 1.375 3.000 13.804 0.001
TBATS 1.006 2.195 10.916 1.815
NNetAR 0.719 1.569 7.590 0.122
Random Forest 1.657 3.616 18.620 0.008
SVM 4386 9.571 44.237 0.004
XGBoost 1931 4.214 22.112 0.013

5.2.2 Average and Variation in Forecast Accuracy

In this section, the nine forecasting methods are analyzed across the entire
data set rather than for individual time series. Therefore, Table[5.4 presents the
average achieved forecasting performance of Telescope and the eight state-of-
the-art forecasting methods in competition with respect to the three forecast
error measures MRAE, MASE, and MAPE as well as the time-to-result.
Regarding average forecast accuracy, Telescope clearly achieved the least fore-
cast errors, as it yielded the best mean value for all three forecast error measures.
Speaking in numbers, Telescope reached an average MRAE, MASE, and MAPE
of 1.501, 1.959, and 33.553%, respectively. The second best forecasting method
was ARIMA, although its average forecast error measures were already 21%
(MRAE), 22% (MASE), and 25% (MAPE) higher compared with Telescope.
The other seven forecasting methods were even worse, with sNaive, TBATS,
and NNetAR still achieving useful forecasts, while the forecast error measures
of ETS, Random Forest, SVM, and XGBoost indicate only inferior forecast accu-
racy. This fact clearly demonstrates the superiority of Telescope for seasonal
time series. Regarding the time required for model creation and forest delivery,
it can be observed that especially the poorly performing methods achieved
the shortest time-to-result. The only exception is sNaive, which achieved the
shortest time-to-result due to its simplicity. However, sNaive cannot handle
trend patterns, which means that in practice, it should only be used when it
can be guaranteed that the time series does not exhibit long-term movements.
However, considering only the other well-performing forecasting methods

129

Chapter 5: Evaluation of Telescope

Table 5.4: The average achieved forecasting performance of the eight state-of-the-art
forecasting methods and Telescope. The best values for each evaluation measure are
highlighted in bold.

Forecasting Method MRAE MASE MAPE [%] Time-to-Result [s]

Telescope 1.501 1.959 33.553 3.105
ARIMA 1.819 2394 42.052 52.096
ETS 2.555 3.090 94.077 0.719
sNaive 2.079 2.787 35.671 0.009
TBATS 2.006 2.792 49.588 15.588
NNetAR 2.077 2.879 54.048 32.697
Random Forest 2.851 3.603 93.989 1.866
SVM 3.832 5.711 59.641 6.489
XGBoost 2.895 3.651 91.961 0.022

that are also able to handle trend patterns, i.e., Telescope, ARIMA, TBATS,
and NNetAR, Telescope clearly required the shortest time-to-result with an
average of only 3.105 seconds. In contrast, ARIMA, TBATS, and NNetAR deliv-
ered the forecast after an average duration of 52.096 seconds, 15.599 seconds,
and 32.697 seconds, respectively. Thus, the speed-up achieved by Telescope
reaches values of about 1578% compared with ARIMA, 402% compared with
TBATS, and 953% compared with NNetAR. Consequently, Telescope not only
achieved considerably higher forecast accuracy, but also significantly shorter
time-to-result compared with the other well-performing forecasting methods.

In addition to achieving high average forecast accuracy and short average
time-to-result, another design goal of Telescope is to provide robust results.
Therefore, Table [5.5|shows the standard deviations of the three forecast error
measurements and the time-to-result for Telescope and the eight state-of-the-art
forecasting methods in competition over the entire set of time series.

With respect to MRAE and MASE, Table shows that Telescope also
achieved the smallest standard deviation, indicating robust and, hence, re-
liable forecast quality. For these measures, ARIMA again scored the second
lowest, although far behind. Only with respect to MAPE, sNaive provided a
smaller standard deviation compared to Telescope. Nevertheless, Telescope
closely follows sNaive, while all other forecasting methods had a standard
deviation of MAPE of at least about 70% more than that achieved by sNaive.
Similar to the average time-to-result, most poorly performing forecasting meth-
ods, namely ETS, Random Forest, and XGBoost, showed little variation in the
time-to-result. Only SVM exhibited larger variations than Telescope. Based on

130

5.2 Comparing Forecast Accuracy and Time-to-Result

Table 5.5: The standard deviation of forecasting performance across the 53 time series
for the eight state-of-the-art forecasting methods and Telescope. The best values for
each evaluation measure are highlighted in bold.

Forecasting Method MRAE MASE MAPE [%] Time-to-Result [s]

Telescope 1.536 2.563 69.522 11.756
ARIMA 2.386 3.747 111.410 178.301
ETS 4202 4.860 388.705 0.653
sNaive 2497 3.863 65.441 0.051
TBATS 2595 4.425 126.322 37.041
NNetAR 2719 4783 152.103 109.268
Random Forest 3.568 4.370 362.623 6.623
SVM 4.261 7.004 116.731 24.678
XGBoost 3422 4.166 348.516 0.027

the simplicity of sNaive’s forecasting procedure, its standard deviation of time-
to-result is very small, although XGBoost yielded an even smaller standard
deviation. Comparing Telescope with the three main competitors, ARIMA,
TBATS, and NNetAR, Telescope again achieved the least variation in time-to-
result. In particular, ARIMA and NNetAR show a drastically higher standard
deviation in time-to-result, which makes both of them hardly applicable for
applications with real-time requirements, such as virtual machine auto-scaling.
Concluding, Telescope provides more robust and reliable forecast accuracy as
well as time-to-result compared to the state-of-the-art forecasting methods.

Even more details on the robustness of the delivered forecast accuracy as well
as the time-to-result of the nine different forecasting methods can be derived
from Figure5.3] Figure 5.4} Figure[5.5| and Figure 5.6, which show violin plots
of the achieved MRAE, MASE, MAPE, and time-to-result, respectively. To this
end, the different forecasting methods are shown on the horizontal axes, while
the achieved values are shown on the vertical axes. Due to high maximum
values, the vertical axes are scaled logarithmically.

Figure5.3|shows that Random Forest, Support Vector Machine, and XGBoost
exhibit only inferior forecast accuracy with respect to MRAE, as their peak
values are comparatively high, their minimum values are very high, and their
box plots are also at a much higher level. ETS also shows a long tail toward
high MRAEs. Again, this can be explained by the fact that ETS cannot handle
seasonal patterns with more than 24 observations per period. A similar violin
is shown by sNaive, although the extreme values are less low respectively high.
In addition, the box plot of sNaive is at a considerably higher level, especially

131

Chapter 5: Evaluation of Telescope

10.01 . H

MRAE

1.0

0.14

TelescopeARIMA ETS sNaive TBATS NNetAR RF SVM XGBoost
Forecasting Method

Figure 5.3: Violin plot of the achieved MRAE for all forecasting methods in competition.

the median. The violins of Telescope, ARIMA, TBATS, and NNetAR are similar
in many aspects, such as the range of their peak and minimum values, their
boxplots, and their medians. However, Telescope exhibits a much wider bulge
around the median, which is also evident in the shorter interquartile range of
the box plot. This indicates a more robust, high forecast accuracy of Telescope.

Similar results can be drawn from the analysis of the achieved MASE values
presented in Figure In particular, the bulge around the median in combina-
tion with the small interquartile range of Telescope’s forecasts are also evident
for MASE, while Random Forest, Support Vector Machine, and XGBoost cannot
keep up with the other forecasting methods at all.

The poor forecast quality of Random Forest, Support Vector Machine, and
XGBoost can also be observed in Figure 5.5 with respect to MAPE. However,
ETS also shows shortcomings here, as the peak values are extraordinarily high.
Telescope, ARIMA, sNaive, TBATS, and NNetAR, by contrast, exhibit a distinct
bulge around their median. Although the bulge of sNaive appears to be the
widest, its level is above the others. In contrast, the bulges of Telescope and
TBATS are at similar levels, but Telescope provides the smallest minimum value
as well as lower peak values than TBATS. The bulge of NNetAR is slightly lower
compared to Telescope and TBATS, yet NNetAR also exhibits high outliers.

132

5.2 Comparing Forecast Accuracy and Time-to-Result

10.01

MASE

1.04

0.14)

TelescopeARIMA ETS sNaive TBATS NNetAR RF SVM XGBoost
Forecasting Method

Figure 5.4: Violin plot of the achieved MASE for all forecasting methods in competition.

Finally, the bulge of ARIMA is not as pronounced as that of the other three
methods, but is at a similar level as NNetAR, while showing less high outliers.

Figure [5.6|illustrates the violin plots for the time-to-result. Considering only
the four best forecasting methods, namely Telescope, ARIMA, TBATS, and
NNetAR, it can be observed that Telescope shows the least variation with a
pronounced bulge around the box plot. In contrast, the violin plots of ARIMA
and NNetAR rather resemble lines, revealing that their time-to-result scatters
widely and, thus, is hardly reliable. Although the bulge is also visible for
TBATS, the time-to-result is at a substantially higher level. Moreover, Telescope
does not exhibit any outliers above 100 seconds, with a maximum time-to-result
of 85 seconds. In contrast, ARIMA, TBATS, and NNetAR exceed this value
significantly with a maximum time-to-result of 1025 seconds, 186 seconds, and
558 seconds, respectively.

To conclude, the violin plots as well as the average and variation in forecasting
performance demonstrate Telescope’s superiority in terms of both average
and robustness of the achieved forecast accuracy and time-to-result. This
makes Telescope suitable for applications with real-time requirements where
conventional state-of-the-art forecasting methods, such as ARIMA and TBATS,
should not be used due to their unreliable time-to-result.

133

Chapter 5: Evaluation of Telescope

10004 .

1001

MAPE [%]

=
Q@
T

TelescopeARIMA ETS sNaive TBATS NNetAR RF SVM XGBoost
Forecasting Method

Figure 5.5: Violin plot of the achieved MAPE for all forecasting methods in competition.

5.2.3 Achieved Ranks per Forecasting Method

As described in Section we also calculated the rank that each forecasting
method achieved for each evaluation measure on each time series. By rank,
we refer to the position of the forecasting method when ordering all nine
forecasting methods by their delivered results from best to worst. Thus, a rank
of one denotes best performance, while a rank of nine denotes worst result.

Table5.6|reports the average ranks of the forecasting methods for each evalu-
ation measure. The average ranks were derived as the arithmetic mean over
all time series in the data set. Similar to the average and variation of forecast
accuracy, Telescope achieved the smallest average rank for the forecast error
measures MRAE and MAE. More specifically, when examining MRAE and
MAE more closely, it can be seen that the average ranks of these measures
are the same for each forecasting method, indicating that the order of best to
worst forecasting method was always the same for both measures. Apart from
ARIMA, which also achieved comparatively low average ranks for MRAE and
MASE that are close to Telescope, the other seven forecasting methods were con-
siderably inferior. In contrast, with respect to MAPE, ARIMA achieved an even
smaller average rank than Telescope. However, when this result is combined

134

5.2 Comparing Forecast Accuracy and Time-to-Result

100.00 .
°
L]
2 : :
% L]
(%] (]
(O]
o .
| 1.004 é
e
|
()
=
|_
0.01-]

TelescopeARIMA ETS sNaive TBATS NNetAR RF SVM XGBoost
Forecasting Method

Figure 5.6: Violin plot of the time-to-result for all forecasting methods in competition.

with the findings obtained from Table which shows the average forecasting
performance, it can be concluded that ARIMA reached a smaller average rank
with respect to MAPE, but if Telescope performed better, it must have performed
substantially better than ARIMA. Otherwise, the average MAPE of Telescope
would not have been so much smaller compared to ARIMA, while the average
rank is higher. Considering the time-to-result, it is not surprising that sNaive
achieved by far the lowest rank of just above one. Yet, when comparing the
four more sophisticated and powerful forecasting methods, Telescope, ARIMA,
TBATS, and NNetAR, NNetAR reached the smallest average rank, closely fol-
lowed by Telescope, while ARIMA and TBATS were clearly outperformed. With
an average rank of 8.509, TBATS actually achieved almost the worst theoretical
result of nine. Comparing Telescope with NNetAR regarding time-to-result,
a similar conclusion can be drawn as for the comparison of Telescope with
ARIMA regarding MAPE. Table5.4|clearly shows that Telescope was on average
much faster than NNetAR, although NNetAR achieved a smaller average rank.
This amplifies the findings obtained from Table which showed that the
time-to-result of Telescope is much more robust compared to ARIMA, TBATS,
and NNetAR. That is, Telescope does not exhibit as large outliers as the other
methods, which can also be seen in Figure

135

Chapter 5: Evaluation of Telescope

Table 5.6: The average yielded rank for the eight state-of-the-art forecasting methods
and Telescope with respect to each evaluation measure. The best values for each
evaluation measure are highlighted in bold.

MRAE MASE MAPE Time-to-Result

Forecasting Method [Rank] [Rank] [Rank] [Rank]
Telescope 3.509 3.509 3.849 6.528
ARIMA 3.585 3.585 3.415 7.132
ETS 4.491 4.491 4.509 5.717
sNaive 4642 4642 4.660 1.019
TBATS 4.057 4.057 4113 8.509
NNetAR 4358 4358 4264 6.415
Random Forest 6.557 6.557 6.547 3.642
SVM 7.283 7.283 7.019 3.094
XGBoost 6.519 6.519 6.623 2.943

5.3 Application of Telescope for Critical Event Prediction of
Virtual Machine Scaling

A typical use case for critical event prediction using time series forecasting meth-
ods is the area of auto-scaling, where virtual machines are added or removed
according to current and estimated future demand. In addition, common auto-
scaling workloads show daily peaks and troughs due to the Internet usage
behavior of humans. Hence, time series in auto-scaling usually exhibit seasonal
patterns. Moreover, demand is measured with a high frequency, resulting in
a large number of observations within a single period. To scale the number
of virtual machines properly, not only the current demand is used, but also
an estimate of the future demand. First, the future demand must be forecast
as virtual machines require a certain amount of time to start up. Second, the
virtual machines should be up and running just before the demand arrives. As
a consequence, time series forecasting is the natural method of choice. Yet, time
series forecasting methods in the field of auto-scaling must meet four important
requirements: (I) The forecast accuracy should be as high as possible, (II)
the forecast accuracy should be stable, especially for seasonal time series with
many observations per period, (III) the forecasts are required within a fixed
time window, as otherwise, the result cannot be used, and (IV) the forecasting
method must be able to maintain the previous aspects while forecasting multi-
step-ahead, since there are many observations within a period. Note that the

136

5.3 Application of Telescope for Critical Event Prediction of Virtual Machine Scaling

fourth requirement often involves several hundreds of values. To summarize,
the runtime of the forecasting method should be as small and reliable as possi-
ble while keeping the accuracy of the forecasts high. In practice, however, most
common forecasting methods, such as ARIMA and ETS, cannot provide a stable
runtime or cannot handle time series with high frequencies very well. Given
that auto-scaling deals with time series exhibiting a strong seasonal pattern
and that TBATS was developed exactly for this type of time series, only TBATS
and Telescope are compared for this use case. Furthermore, we apply auto-
scaling to a multi-tier application. Multi-tier auto-scaling requires forecasting
the demand of numerous tiers to properly scale the number of virtual machines
at each tier simultaneously. The multi-tier auto-scaler employed in this use
case is called Chameleon and was developed as a single-tier auto-scaler by A.
Bauer [[Baul6|] and extended to a multi-tier auto-scaler by V. Lesch [Les17]].
More specifically, this use case implements three tiers, namely presentation,
business, and database. The service level objective (SLO) is that 95% of all
requests have a response time of less than 2 seconds. The time series used as
workload for this use case describes the number of requests sent to the social
bookmark and publication sharing system BibSonomyﬂ

Figure 5.7|illustrates the auto-scaling performance for all three tiers and the
requests per second when applying TBATS as forecasting method. To this
end, the top graph shows the presentation tier, the second graph depicts the
business tier, and the third graph presents the database tier. For these top
three diagrams, the black line represents the actual demand, while the red
line illustrates the supply. Finally, the bottom graph shows the requests per
second, where the black line represents the requests sent, the green line shows
the number of requests that confirm the SLO, and the red line depicts the SLO
violations. The top three graphs show that the supply does not match the
demand very well. In particular, from minute 30 to 80 and from minute 250 to
310, it can be seen that the supply collapses while the demand remains high,
indicating that the forecasts of TBATS either do not provide high accuracy or
require too much runtime, so the results were discarded. This finding can also
be derived by taking a closer look at the bottom plot, because the SLO violations
increase considerably for the time periods mentioned. More precisely, almost
all requests in these periods violate the SLO. Besides these two long periods,
most requests are served within less than 2 seconds, thus confirming the SLO.

The auto-scaling performance for all three tiers and the requests per second
when applying Telescope instead of TBATS is shown in Figure[5.8] The structure
of Figure|5.8|is the same as in Figure In contrast to Figure 5.7] the top three

3BibSonomy: https://www.bibsonomy.org/

137

https://www.bibsonomy.org/

Chapter 5: Evaluation of Telescope

Presentation Tier

=
o
T

demand

supply

Virtual Machines
[9)]

(=}

demand supply

Virtual Machines

demand supply

Virtual Machines
o N S o o

-
3
o

Sent SLO Conform SLO Violations

=

o

s]
T

Req. / Second

\ ‘
50 i M/w/\ S BRIV AR vamY
Y A=A B Vg
OAA/M\/’ VA a W A \Ar"'_r"“’/‘ VAN AAWAY L Ao i MM N
0 50 100 150 200 250 300 350 400

Minutes

Figure 5.7: Demand, supply, and requests evaluation of Chameleon for the BibSonomy
trace on multi-tier application with TBATS.

plots of Figure |5.8|reveal that the supply matches the demand very well. In
most cases, the number of virtual machines is scaled just before a change in
demand occurs, demonstrating the benefit of critical event prediction by means
of forecasting rather than reactive auto-scaling. The bottom diagram implies the
same conclusion, as there are hardly any requests violating the SLO. Only for a
few short periods of time (e.g., around minutes 90 and 160), a small number of
requests exceed the SLO. In general, however, the green line is almost equal to
the black line, so most requests confirm the SLO. Compared to TBATS, it can
be seen that Telescope considerably improves the auto-scaling performance.

To compare the auto-scaling performance achieved by TBATS and Telescope
as forecasting methods numerically, we used three measures and report the
values achieved by both forecasting methods in Table The first measure
is the average response time of the scaled service in milliseconds. For the
calculation of this measure, the response time of requests that do not confirm

138

5.3 Application of Telescope for Critical Event Prediction of Virtual Machine Scaling

Presentation Tier

demand

supply

=
o
T

Virtual Machines
[9)]

(=}

demand supply

Virtual Machines

demand supply

Virtual Machines
o N » (2] ©

Requests

Sent SLO Conform SLO Violations

I ﬁ/\wf fW\%

Req. / Second

/\/\N\/\Wf/\pffmw

0 Lloes
0 50 100

A
/\/\/\W\{\/\/\M/\ \/\/\ M\/}[\/\/\ ‘
150

200 250 300 350 400
Minutes

Figure 5.8: Demand, supply, and requests evaluation of Chameleon for the BibSonomy
trace on multi-tier application with Telescope.

the SLO of 2 seconds is set to this value. Thus, a maximum response time of
2000 milliseconds cannot be exceeded. The second measure of auto-scaling
performance is the percentage of requests that do not meet the SLO. The last
evaluation measure is called distance, as it describes the deviation of the auto-
scaler from the optimal auto-scaler, i.e., the auto-scaler that perfectly matches
the demand. For all three measures, a lower value indicates better auto-scaling
performance. Regarding the average response time, Telescope achieved a much

Table 5.7: Results of the multi-tier auto-scaling evaluation of Telescope and TBATS.

Forecasting Method | Response Time | SLO Violations | Distance

Telescope 1071.08 ms 9% 0.57
TBATS 1339.94 ms 36% 0.68

139

Chapter 5: Evaluation of Telescope

lower value of about 1071 milliseconds, while the average response time of
TBATS was about 1340 milliseconds. This increase of about 25% in the average
response time when using TBATS is caused by the large percentage of SLO
violations. When using Telescope, only 9% of all requests exceeded the SLO,
while 36% of all requests violated the SLO when using TBATS. Finally, the
distance measure confirms that auto-scaling with the use of Telescope is closer
to the optimal auto-scaler than auto-scaling with TBATS. Considering all these
evaluation results, Telescope significantly improves the critical event prediction
of virtual machine auto-scaling compared to the state-of-the-art method TBATS.

5.4 Concluding Remarks

To summarize the main contribution of this chapter, we answer research ques-
tion RQ A.2, which focuses on the comparison of state-of-the-art forecasting
methods with our proposed hybrid, component-based forecasting method
Telescope. The results of our experiments show the superiority of Telescope
compared with eight state-of-the-art forecasting methods. Compared with the
state-of-the-art method that yielded the second best forecast accuracy, namely
ARIMA, Telescope achieved on average 21%, 22%, and 25% less forecast errors
with respect to MRAE, MASE, and MAPE, respectively. A second criterion was
the time-to-result, since many applications require forecasts within fixed time
windows. Here, we have shown that Telescope achieved average speedups of
approximately 1578%, 402%, and 953% compared to the three most accurate
competitors ARIMA, TBATS, and NNetAR, respectively. Apart from this im-
provement in average forecast accuracy and time-to-result, we also discussed
Telescope’s enhanced robustness. To this end, we reported the standard devia-
tions of forecast accuracy as well as time-to-result and provided violin plots
of the achieved forecast accuracy as well as time-to-result. Both investigations
revealed the superior robustness of Telescope compared with the other fore-
casting methods. Finally, we applied Telescope to the use case of critical event
prediction of virtual machine auto-scaling and compared the achieved auto-
scaling performance with that obtained when using TBATS instead of Telescope.
Here, we demonstrated that the average response time of requests was reduced
by about 20% by using Telescope instead of TBATS. Furthermore, Telescope
resulted in only 9% SLO violations, while TBATS produced 36% SLO violations.

Although the results are very promising, one assumption must be mentioned.
The experiments included only seasonal time series, since Telescope cannot
handle non-seasonal time series. Thus, for applications where the seasonality
of time series cannot be ensured, a fallback method must be established.

140

Chapter 6

Meta-Learning for Time Series Forecasting
Method Recommendation

In order to react to changes in the system or the environment through adapta-
tion, Self-Aware Computing Systems integrate an analysis mechanism to mon-
itor data on system resources and the environment. Traditional approaches
make use of models or thresholds to track the current state of the system. How-
ever, since this is a status quo analysis of the system, it can only be used to
perform reactive system adaptations. Due to the increasing ubiquity of com-
puting power, for instance through the incorporation of cloud resources, the
integration of proactive adaptation by analyzing predicted system states is
becoming a viable alternative [KRV 15, Wey17|]. Using proactive rather than
reactive adaptations prevents delays in the adaptation process by allowing the
system to anticipate adaptation requirements in advance.

Regarding proactive adaptation, systems can incorporate forecasting meth-
ods to predict impending critical events that will lead to changes in the system
state. However, based on the “No Free Lunch Theorem” [WM97], there is no
forecasting method that is best suited for all scenarios. Hence, the choice of
forecasting method depends on the time series under consideration. Typically,
selecting the best forecasting method relies on expert knowledge, which makes
it costly, potentially subjectively biased, and often requires a significant amount
of time to produce results. In addition, Self-Aware Computing Systems must
deal with complex types of uncertainties [Wey17]], making it impossible to a
priori model all situations the system might encounter at runtime. Moreover,
this affects the selection of the appropriate forecasting method, since the char-
acteristics of the time series data might be unknown at design time. Therefore,
integrating expert knowledge at design time is not suitable for Self-Aware Com-
puting Systems. Consequently, the automatic selection of forecasting methods
at runtime must handle unforeseen situations and context changes.

In an effort to automate the process of using forecasting methods while
avoiding the need to rely on expert knowledge, several hybrid approaches have

141

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

been developed in the literature. As described in Section[3.1.1} one class of ap-
proaches is ensemble forecasting, which applies multiple forecasting methods
to the same time series and returns a weighted average of their forecasts as
final result [BG69,Cle89,NG74,DMBT00,KKZ00,SSH16|]. Another class of ap-
proaches processes time series component-wise, by applying different forecast-
ing methods to the individual components [LTZ ™14, XCCP06, CPEMO05,SD10]].
Then, the results of the component forecasts are aggregated to derive a forecast
for the overall time series. We have also contributed to this area of hybrid,
component-based time series forecasting techniques with the introduction of
Telescope. More information on the design and an evaluation of Telescope
is presented in the Chapters {4{and [5| respectively. Finally, another class of
hybrid forecasting approaches is based on forecasting method recommenda-
tion [[CA92,[AKA97,WSMHO09|[LG10,[NAL17]. Thus, a set of rules is derived to
select an appropriate forecasting method based on certain characteristics of the
time series under consideration.

In this chapter, we present two novel approaches for meta-learning the de-
pendencies between time series and the performance of forecasting methods on
them. The first meta-learning approach is based on a database of numerous di-
verse time series, on which several time series characteristics are computed and
the forecast accuracy of all potential forecasting methods is evaluated. Using
this information, a machine learning model is trained to learn the relationship
between the time series characteristics and the performance of each forecasting
method. The second approach to time series forecasting method recommenda-
tion is based on the assumption that newly arriving data of a time series do not
differ much from the last known observations. That is, the forecast accuracy of
the potential forecasting methods is computed using the last known observa-
tions as the out-of-sample horizon, while the previous observations are used
to train the forecasting methods. Therefore, the first approach requires a large
database with many particularly diverse time series. The second approach, by
contrast, does not require such a database, but it demands comparatively long
time series, so that a part of these can be used for validation.

The remainder of this chapter is organized as follows: Section [6.1)introduces
the meta-learning approach to learning the relationship between time series
characteristics and forecasting method performance based on a large and di-
verse database. The content of this section is based on our previous work
published as a full paper as part of the 16th IEEE International Conference
on Autonomic Computing (ICAC) [ZBL"19]]. A. Bauer et al. adopted the
approach to create a forecasting method recommendation system specifically
for seasonal time series only. This work has been published as a short pa-

142

6.1 Data-based Time Series Forecasting Method Recommendation

per as part of the 11th ACM/SPEC International Conference on Performance
Engineering [BZG"20]. In Section we present the second approach to
recommending time series forecasting methods, which considers only the his-
torical observations of the respective time series. The content of this section is
based on another previous work published as a short paper at the 15th Interna-
tional Symposium on Advanced Artificial Intelligence in Applications (AAIA)
as part of the 15th Conference on Computer Science and Intelligence Systems
(FedCSIS) [ZK20]]. Finally, Section [6.3|summarizes the chapter and answers
the corresponding research question. For evaluation results on both time series
forecasting method recommendation systems, we refer to Chapter|[7]

6.1 Data-based Time Series Forecasting Method
Recommendation

The most popular approach to time series forecasting method recommendation
is by X. Wang et al. [WSMHO09]] and postulates universally applicable rules for
the selection of forecasting methods. Due to its detailed introduction to the
subject of forecasting method recommendation, the approach is quite popular.
Curiously, although the approach is highly cited, the validity of these rules
has never been comprehensively evaluated. To fill this gap, we thoroughly
evaluate the rules proposed by X. Wang et al. (cf. Chapter[7) and present a
novel approach to dynamically (re-)learn recommendation rules based on a
growing collection of data sets. Thus, we investigate the following aspects:

e How do the rules proposed by X. Wang et al. perform on the original
training data set from their publication?

e Can the recommendation rules by X. Wang et al. be directly applied to
other data sets?

e How can we improve the quality of time series forecasting method rec-
ommendations?

To this end, we present the general basics on rule learning for time series
forecasting method recommendation in Section [6.1.T} followed by more details
on the approach of X. Wang et al. in Section[6.1.2] We then propose two novel
approaches to recommending forecasting methods. The first approach (cf. Sec-
tion generates rules by applying binary classification with oversampling,
while the second approach combines forecasting method recommendation and
weighted ensemble forecasting (cf. Section [6.1.4]).

143

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

6.1.1 Basics on Rule Learning for Forecasting Method Recommendation

In general, the common approach to recommending forecasting methods is to
learn rules that map time series characteristics to method recommendations.
For this purpose, numerous time series characteristics need to be determined to
cover the most relevant time series attributes. Subsequently, these features are
used to learn dependencies between the performance of forecasting methods
and the time series characteristics themselves.

X. Wang et al. [WSMHO09]] adapted an architecture for meta-learning from
Vilalta et al. called knowledge acquisition mode [[VGCBS04]], which was originally
intended for data mining tasks. Figure6.1illustrates the basic concept of this
approach. The essential part of this concept is the database of time series exam-
ples, since these are used for rule generation. If the time series in the database
are not representative enough or do not cover a broad range of time series
properties, the generated rules may not generalize well at runtime. However,
once the time series database is sufficiently large and covers all relevant time
series properties, the tripartite rule generation approach can be applied.

The left side of Figure |6.1| presents the forecasting component. Here, all
time series in the example database are forecast using the base-level methods,
i.e., the potential forecasting methods implemented in the recommendation
framework. For this purpose, all time series are split into a history, which is
used to train the forecasting model, and a validation set. The forecast values are
then compared to the original values in the validation set. Subsequently, the
forecast results are stored in the prediction results database. On the right side,
the computation of the time series characteristics is shown. During this step, the
characteristics (for instance those presented in Section are determined,
normalized, and stored in the meta-level attributes database. The third part
combines the database of prediction results and the database of meta-level
attributes into a meta-level data set that maps time series characteristics directly
to forecast accuracy. Based on these data, rule generation algorithms derive
application rules and store them in the knowledge base. As this approach is
quite intuitive and has proven successful in the data mining domain, we also
adopt this architecture for our forecasting method recommendation approach.

6.1.2 General Approach of X. Wang et al.

This section is intended to provide a brief overview of the approach by X.
Wang et al. to better understand its shortcomings and serves as a foundation
for our approach presented in Section For more details on the approach
by X. Wang et al., refer to their original paper [WSMH09]].

144

6.1 Data-based Time Series Forecasting Method Recommendation

Time Series Examples

—
1 L 1

Time Series Forecasting Time Series Characteristics
Methods Evaluation Extraction
Base-level l’
Methods Meta-level Meta_l-level
(Prediction Data Set Attributes
Results)

Rule Generation

Recommendation Rules (Knowledge Base)

Figure 6.1: Knowledge acquisition mode according to Vilalta et al. [[VGCBS04]. X.
Wang et al. applied an adapted version in [WSMHO09]].

X. Wang et al. proposed clustering and rule induction algorithms to generate
categorical and quantitative rules based on a variety of time series characteris-
tics [WSMHO09]|. Therefore, the authors presented nine time series characteris-
tics that are assumed to have a correlation with the performance of the four
forecasting methods ARIMA, ETS, NNetAR, and Random Walk. The nine time
series characteristics used by X. Wang et al. were trend, seasonality, periodicity,
skewness, kurtosis, serial correlation, non-linearity, self-similarity, and chaos.
In addition, X. Wang et al. also calculated the characteristics serial correlation,
non-linearity, skewness, and kurtosis for the de-trended and de-seasonalized
time series. Consequently, 13 features were determined for each time series.

Subsequently, hierarchical clustering and Self-Organizing Maps were pre-
sented in the field of time series forecasting. That is, X. Wang et al. described
how to use such clustering methods to group similar time series together and,
consequently, generate judgmental and conceptual rules. Moreover, they ap-

145

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

plied a decision tree technique, namely the C4.5 algorithm, to automatically
generate quantitative rules. Therefore, the forecasting methods were ranked
for each time series according to their achieved accuracy. Given that the rec-
ommendation system only tried to predict which forecast method to choose, X.
Wang et al. set the class label to 1 for the best forecasting method for each time
series. All other forecasting methods were given class label 0 for the respective
time series. The resulting class labels were used as prediction targets, while
the time series characteristics were used as meta-level features. Based on these
data, the C4.5 algorithm was applied to each forecasting method to generate
quantitative recommendation rules. This resulted in four sets of rules, one for
each forecasting method. Finally, the derived rules indicated whether or not
the particular forecasting method should be used.

To reconstruct the results, X. Wang et al. provided all necessary parameter
settings for the application of the C4.5 algorithm and presented the generated
rules. Unfortunately, however, neither the conceptual nor the quantitative rules
were evaluated. Furthermore, the data set used to learn the models was not
partitioned, so there was no distinction between training and validation data.

6.1.3 Binary Classification with Oversampling

To improve the forecast accuracy achieved by recommending forecasting meth-
ods, we developed a novel approach on the basis of the approach of X. Wang et
al. Our rule learning approach, which is schematically presented in Figure
directly addresses the limitations of the approach of X. Wang et al.:

1. The single decision tree created by the C4.5 algorithm tends to overfit to
the training data.

2. The training data are highly imbalanced.
3. Itis possible that no forecasting method is recommended by the rules.

Although any forecasting method can be incorporated into this approach, we
only include the four forecasting methods also used by X. Wang et al., i.e.,
ARIMA, ETS, NNetAR, and Random Walk, to maintain comparability. In the
following, this section describes the approach in more detail.

The first step is to compute the time series characteristics for all time series in
the training set. Here, we compute the same characteristics as X. Wang et al. and
also apply the same normalization to these characteristics. The normalization
is necessary because the different time series characteristics vary greatly in
range. Since this could disturb the learning process of decision tree algorithms,

146

6.1 Data-based Time Series Forecasting Method Recommendation

‘pauIniaz st T [oqe| ssep jo Aypiqeqoad
3S9YUSIY oy} ym poyiowr 3ursedaroy ayy ‘A[[eur] ‘poyiowr Surisedaroy yoes I0j T pue (s[oqe[ssep oy} 1oj sanriqeqoid
ur Sury[nsaz ‘spepoul 9say} 03 passed a1e 4 SILIdS SWIT) UOTIEPI[LA dU} JO SONISLIDIORIRYD 9 "UI9)SAS UOHEPUSWWIOIRI 3}
ur poyiour 3unsedaloy yoes 10§ Ypy 03 Ipy [9pow }s3I0] WOPpURY UOTIRdYISSL[d ATeurq B uIea] 0} pasn uay} a1e ¥ 0y I
SOTISLI9ORILD JO SIDLIJLW PUE SI0}DIA [9qe] SSe pajduresiaro ay], * 7 SoRSLI9)ORILYD JO XLIJeW d} PUe SI0)02A [oqe[SSEd
ayy “o'1 “eyep Surureny ayy o3 pardde st Surduwresioso 4sir] yoeoidde uorersuad s[ni sy} jJo UorENSN[[I dDHRUIBYDS :7'9 dInJ1]

[oge 1 0
sse1D H ‘M EEE:
‘godd SAINQLINY
sse|o |ans|-e18 N
4 uoneplife/
A
uonoIpaid
SISpON SAINQUNY [9A3] SJ0398A Bunjuey
159104 wopuey -e18|\ Buturea Bulurea ssinquUNY SJ0309N
pajdwesiano pajdwesianQ 19A3]-BI8IN Bunjuey
TN Buiurea Buurea
Nl\ b [1
&] = 1
i - < H —
y 153104] Burjdwes
|_J_\‘ wopuey | -13N\Q

147

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

the ranges of the different time series characteristics must be unified. Once
the characteristics are computed and normalized, they are stored in a matrix
of characteristics. Here, each row represents the time series characteristics for
one time series. Figure represents this feature matrix, i.e., the so-called
meta-level attributes, for the training set as 7" on the left-hand side.

Second, to assess the forecast accuracy and determine the best forecasting
method, the first 80% of time series observations are used to train the four
forecasting methods. The remaining last 20% of time series observations are
defined as the forecast horizon, which is used to compute the out-of-sample
accuracy. Once all four forecasting methods are trained, forecasts are provided,
and the accuracy is computed, the approach determines for each time series
which forecasting method provides the most accurate forecast. The result
of this step is a vector of zeros and ones for each forecasting method. Here,
each entry in a vector represents a time series. If the particular forecasting
method performs best for the time series under consideration, the value of that
particular cell in the vector is set to 1, and to 0 otherwise. Note that exactly
one forecasting method can receive the label 1 for a given time series, while all
other forecasting methods receive label 0. These vectors, the so-called ranking
vectors, can be seen in Figure|6.2|on the far left.

However, since there are four forecasting methods in competition, each
forecasting method can be expected to receive more zeros as class labels than
ones. This leads to a highly imbalanced training set and, therefore, degrades the
quality of the generated rules. Several approaches have been developed to deal
with such imbalanced data. One option is to adjust the performance measures
(e.g., precision, recall, and Fl-score) to correctly represent the imbalanced
data set. Another approach is to utilize oversampling or undersampling to
balance the number of instances for the minority and majority classes. Using
oversampling, new instances of the minority class are created either by simply
duplicating existing instances or by artificially creating new instances based on
existing instances. In contrast, undersampling discards instances of the majority
class until the number of instances for the minority and majority classes are
equalized. In the approach presented in this section, we apply oversampling to
avoid shrinking our training base. More specifically, we use the duplication
approach for oversampling, as it provided better performance for this scenario
in a preliminary study than the approach that synthetically generates new
instances. However, since the entire training set has to be oversampled, not
only the entries of the ranking vectors are duplicated, but also the corresponding
rows of the matrix of meta-level attributes. Figure|6.2]shows this oversampling
step and depicts the oversampled meta-level attribute matrices as 77 to 7T

148

6.1 Data-based Time Series Forecasting Method Recommendation

along with the respective ranking vectors. The oversampled entries of the
vectors and matrices are highlighted in gray. Note that the training sets of the
four forecasting methods may have different numbers of instances after the
oversampling procedure.

In the next step, a rule-learning algorithm derives rules using the oversam-
pled meta-level matrix as features and the oversampled ranking vectors as
labels. For this task, X. Wang et al. used the C4.5 algorithm, which constructs a
decision tree based on the time series characteristics of the training set. However,
such a single decision tree might not cover all relevant aspects for decision-
making and tends to overfit to the training data. To address this shortcoming,
we employ Random Forest, a decision tree-based ensemble learning method,
to dynamically learn the rule set. Unlike the single decision tree of the C4.5
algorithm, Random Forest constructs multiple decision trees by considering
only a randomly sampled subset of characteristics at each candidate split of the
decision tree and returns the majority of their predictions. For more informa-
tion on Random Forest, refer to Section[2.4.4] Although Random Forest can be
used for regression and classification, we perform binary classification with
labels 0 and 1, where 0 denotes that the particular forecasting method is not
recommended and 1 indicates that the Random Forest model recommends the
use of that particular forecasting method for the time series under consider-
ation. For this purpose, we set the Random Forest parameters to the settings
shown in Table H Finally, this step yields four Random Forest models, M
through My, one for each forecasting method (cf. Figure .

Table 6.1: Parameter settings of Random Forest for binary classification.

Parameter Description Setting
ntree Number of trees generated 500
mtry Number of randomly selected features as 2

candidates at each split

classwt Priorities of the classes false

In the last step, the best performing forecasting method for a particular time
series is predicted. For this purpose, the same time series characteristics as
for the training time series are computed for all time series in the validation
set. This matrix of meta-level attributes of the validation part V' is then passed

1For more information on the parameters of Random Forest, we refer to its documentation:
https://cran.r-project.org/web/packages/randomForest/index.html.

149

https://cran.r-project.org/web/packages/randomForest/index.html

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

to the Random Forest models. Note that this validation set consists of only
new time series that were not known during training. As each Random Forest
model predicts whether the particular forecasting method is appropriate, each
model provides two class probabilities per time series. The probability of class 1
indicates how likely that forecasting method is to be suitable for the particular
time series. Note that the class probabilities for a forecasting method add up
to one for each time series. In contrast, when summing the probabilities for a
particular class, i.e., 0 or 1, across all forecasting methods, the result does not
necessarily equal one because the class probabilities are derived from indepen-
dent models. Once all Random Forest models provide the class probabilities,
the forecasting method with the highest probability for class 1 is recommended
to ensure that a forecasting method is recommended in any case.

To summarize our approach and highlight its advantages over the approach
of X. Wang et al., we optimized the following aspects:

1. Due to the high imbalance in the class labels of the training data, which in
turn degrades the quality of the generated rules, we employ oversampling
on the ranking vectors as well as on the meta-level attribute matrices.

2. The rule learning algorithm applied by X. Wang et al., namely the C4.5
algorithm, constructs only a single decision tree, which tends to overfit
to the training data. In contrast, we apply Random Forest, an ensemble
learner based on constructing multiple trees using bagging and, conse-
quently, prevents overfitting.

3. The rules generated by X. Wang et al. recommend for each forecasting
method whether or not to apply the forecasting method. However, in
many cases, the recommendation system does not suggest the application
for any of the forecasting methods. Although this might be an interesting
insight into the data, it does not help autonomous systems in decision-
making. Therefore, our approach always recommends the forecasting
method with the highest probability of being suitable for the time series
under consideration.

6.1.4 Recommendation-based Ensemble Forecasting

The main issue of typical forecasting method recommendations is that by select-
ing only one forecasting method for each time series, the forecast accuracy over
a set of time series typically exhibits large variance. To remedy this drawback,
we additionally propose a combination of ensemble forecasting and forecasting
method recommendation. On the one hand, we employ linear regression to

150

6.1 Data-based Time Series Forecasting Method Recommendation

automatically adjust the weights for a linear combination of forecasts from
different forecasting methods. On the other hand, we utilize an activation func-
tion that filters out forecasting methods that are assumed to perform poorly on
the time series under consideration.

To this end, we derive a linear combination of each forecasting method Yy?
(ARIMA, ETS, NNetAR, and Random Walk). Each weight 9* is estimated by a
linear regression of the meta-level attributes of the previously examined time
series. Having only zero and one as input, the regression yields values within
this range. In the following, we interpret this output of the linear regression as
the degree to which the forecasting method is suitable for the particular time
series. However, in contrast to common weights in ensemble forecasting, these
weights must be activated. More precisely, if a weight satisfies the activation
function I', the corresponding forecasting method is used in the ensemble,
otherwise its weight is set to zero and, thus, the result of the forecasting method
is discarded. In addition, the linear combination is normalized by ¢, which is
the sum of the activated weights. In terms of activation, different functions can
be used. The activation function used in this thesis is two-fold, which means
that a weight is activated only if it meets both criteria. The weight ¥ must be
(I) greater than or equal to the mean of the weights ¥ and (II) greater than
or equal to the share a of the maximum weight 9. The first condition has the
advantage that by using the mean value of all weights, the presumed most
appropriate forecasting method is always included, while the presumed least
appropriate method is always omitted. However, in the unlikely case that all
weights have the same value, all forecasting methods are considered. As the
mean is biased toward outliers, the second condition allows having a higher
threshold than the mean if the outlier is close to zero. Finally, the steps of
the recommendation-based ensemble forecasting approach can be formally
expressed as follows, where Y denotes the final forecast:

Y = 521/ DY) with (6.1)
i€e{A,E,N,R}

9=) I, (6.2)
i€{A,E,N,R}

T = o - (1 — max(sign(max(d, a - 9) — 9'), 0)) , (6.3)

9 = mean(¥’), and (6.4)
i€{A,E,N,R}

¥ = max(¢) (6.5)
i€{A,E,N,R}

151

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

Both the binary classification with oversampling approach as well as the
recommendation-based ensemble forecasting approach can be applied to run-
time performance decisions in Self-Aware Computing Systems. In an offline
phase, the initial recommendation rules, respectively the linear regression mod-
els, must be learned. During runtime, these rules and weights can be used
for new and unseen time series, since the application of the recommendation
can be done in real-time. Subsequently, the new time series can be used to
dynamically re-learn the recommendation rules and weights. As the binary
classification approach with oversampling is based on Random Forest, which
is typically very fast in both learning and predictiorﬂ the dynamic re-learning
of rules is feasible with only low overhead at runtime.

The evaluation of the proposed approaches along with the comparison to
the approach by X. Wang et al. are presented in Section

6.2 History-based Time Series Forecasting Method
Recommendation

There are already several existing approaches to recommending forecasting
methods in the literature. While early approaches use manually created expert
systems, such as F. Collopy and J. Armstrong [[CA92]], more recent approaches
to recommending forecasting methods derive rules automatically, such as X.
Wang et al. [WSMHO09] and our approach presented in Section [6.1} However,
these automatic rule-learning approaches compute time series characteristics
of a large and diverse training database and evaluate the forecast accuracy of
the available methods using these meta-level attributes. Then, a rule-learning
technique is applied to map the time series characteristics to the best forecasting
method. Therefore, these approaches are highly dependent on the size and
diversity of the training database. However, such databases are not always
available, which is the reason why we present a different approach that does
not require such a training database. Instead, the performance of the different
forecasting methods is estimated under the assumption that the performance of
the forecasting methods on the last known part of the time series to be forecast,
which we refer to as the in-sample validation part, is representative for the
out-of-sample forecast. This also does not require a rule-learning approach,
since our approach selects the forecasting method with the highest R?-score
on the in-sample validation part of the time series under consideration. Fig-
ure[6.3|presents the simplified overall workflow of our history-based forecasting

20On our data sets, rule generation was done within minutes and the recommendation for a
single time series was completed within milliseconds.

152

6.2 History-based Time Series Forecasting Method Recommendation

Raw Input Values

Preprocessing
. Anomaly
Imputation
Removal

Modeling

Frequency Feature Unique Values
Estimation Generation Check

many values | few values

(Forecasting In-Sample Model Learning Classification
Validation Data on Training Data

|

Method Selection
based on In-Sample v —
- Classifying
\ Validation Iierformance Testing Data

(Model Learning on All Forecasting]
L Data Testing Data |

Model Learning

Vs

ANV
BAYAA

Forecast Output

Figure 6.3: The overall workflow of the history-based forecasting method recommen-
dation approach including preprocessing and modeling.

method recommendation approach, which consists of two main parts, namely
time series preprocessing (cf. Section6.2.1)) and modeling (cf. Section|6.2.2)).

6.2.1 Preprocessing

In most real-world applications, the acquisition of time series is an error-prone
process due to recording errors or transmission faults. Therefore, time series
often contain missing values or anomalous entries. For this reason, the work-
flow preprocesses the time series by imputing missing data and removing
anomalous values as the first step.

153

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

6.2.1.1 Missing Data Imputation

Missing data imputation is the first preprocessing step, as shown in the topmost
gray box of Figure Such missing values of a time series can be located either
at the beginning of the time series or somewhere within the time series. In
this contribution, it is assumed that in case of missing values within the time
series, only a few consecutive data points are missing. For missing values at the
beginning of a time series, we do not reconstruct the missing values because
these gaps can be arbitrarily long and reconstructing long time series is typically
highly error-prone and would therefore tend to worsen the forecasting model.
Furthermore, missing data at the beginning of a time series are not too critical,
as they merely shorten the time series.

Instead, the algorithm for imputing missing values within the time series is
shown in Algorithm [13] First, a daily pattern is assumed. This is a common as-
sumption for human-influenced time series, since the human behavior depends
on the time of day. Thus, the algorithm requires the time series observations
and the number of observations per day as input. The algorithm starts by
identifying the indices of missing values (cf. Line 2). Next, it loops through all
missing values and imputes the missing value based on the daily pattern along
with an estimated trend. For this purpose, the algorithm analyzes whether
there is a trend between the day of the missing data and the next or previous
day. If the missing value occurs before the end of the first season (cf. Line 4),
the algorithm computes the trend as the ratio between the value one season
after the first available measurement and the first available measurement itself
(cf. Line 8). However, if the value one season ahead is also missing, the trend is
set to non-existent (i.e., the trend factor equals 1) (cf. Line 5). Subsequently, the
algorithm imputes the missing value as the value one season later divided by
the trend factor. In contrast, if the index of the missing value is after one season,
but at maximum at the length of two seasons (cf. Line 11), the algorithm com-
putes the trend as the ratio of the value before the missing value to the value
one season before (cf. Line 15). Thus, the algorithm always computes the ratio
of two values with a distance of one daily pattern. Finally, if the index of the
missing value is greater than the length of two periods plus one, the algorithm
computes the ratio of the entire daily season before the missing value to the cor-
responding previous values one daily season apart (cf. Lines 21-23). The final
trend factor is determined as the median of this set of trend factors (cf. Line 24).
In the latter two scenarios, the missing value is computed by multiplying the
known value one season prior to the missing value by the computed trend
factor (cf. Lines 17 and 25). We apply this procedure in chronological order so
that imputed values can be used to impute subsequent gaps. If there are still

154

6.2 History-based Time Series Forecasting Method Recommendation

Algorithm 13 Impute missing values within a time series

Input: observation values x, observations per day n_day
Output: imputed time series ¢s

1. ts=x
2: indices = getNaNs(ts)
3: for all (index in indices) do

4: if (indexr < n_day) then
5 if (ts[getNextValue(ts, index) + n_day] in indices) then
6 trend =1
7: else
8 trend = ts|getNextValue(ts, index) + n_day] / ts[getNextValue(ts,
index) |
9: end if
10: ts[index]= ts[index + n_day] / trend
11: elseif (index > n_day & index < (2 x n_day)) then
12: if (ts[getPreviousValue(ts, index) — n_day] in indices) then
13: trend =1
14: else
15: trend = ts[getPreviousValue(ts, index) — n_day] /
ts[getPreviousValue(ts, index) |
16: end if
17: ts[index]= ts[index — n_day] x trend
18: else
19: trends = createEmptyList()
20: prev_value = getPreviousValue(ts, index)
21: for all (index in [(prev_value — n_day):prev_value]) do
22: trends = append(trends, ts[index] / ts[index — n_day])
23: end for
24: trend = median(trends, ignoreNaNs = TRUE)
25: ts[index]= ts[index — n_day] X trend
26: end if
27: end for

28: return ts

few missing values after applying this algorithm (i.e., the values one season
before or after the missing value are also missing), the value is imputed by
linear interpolation between the last known value before the missing value and
the first known value after the missing value.

155

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

6.2.1.2 Anomaly Removal

The second step of the preprocessing pipeline is the removal of anomalies, as
depicted in the topmost gray box of Figure Removing anomalies from time
series before model learning is an essential task, as such outliers can severely
degrade the quality of forecasting models. Therefore, we apply a method to
identify and remove anomalies. For this approach, the workflow implements
a modified version of the well-known three-sigma rule. However, unlike the
typical three-sigma rule, the workflow employs median instead of mean as
baseline, since the distributions of the time series are not necessarily symmetric.
In addition, the standard deviation is only computed between the 1st and
99th percentile of the data, since possible outliers would already affect the
standard deviation if it was computed over the entire time series. Also, we
set the tolerance multiplier to a more conservative value (i.e., 10-sigma rule),
as we do not want to remove normal peaks in a daily seasonal pattern. After
detecting outliers, i.e., observations less than the median minus ten times the
standard deviation or greater than the median plus ten times the standard
deviation, the algorithm overwrites these values with a linear interpolation
between the non-anomalous precursor and the non-anomalous successor.

6.2.2 Modeling

After imputing missing values and removing outliers, the workflow performs
the main part, namely modeling. This part is shown as the bottom gray box
in Figure It takes the preprocessed time series as input and eventually
provides the forecast.

6.2.2.1 Frequency Estimation

In the modeling component, the approach first estimates the seasonal frequency
of the time series. Although the imputation algorithm assumes a daily sea-
sonal pattern, this step tests whether there is further seasonality present after
imputing gaps and removing anomalies. Telescope already provides such a
frequency estimation method that uses a periodogram to extract the most dom-
inant frequencies and, subsequently, searches for meaningful human-based
frequencies nearby. For more information on Telescope’s frequency estimation
method, please see Section[4.2.1} Such human-based frequencies include 60
(minutely measurements with hourly seasonality), 24 (hourly measurements
with daily seasonality), or 365 (daily measurements with yearly seasonality).

156

6.2 History-based Time Series Forecasting Method Recommendation

6.2.2.2 Feature Generation

After estimating the time series frequency, lags of the univariate time series are
generated. Here, the approach uses lags one to six for all time series to provide
the most recent data as features. If the time series exhibits a seasonal pattern,
the approach also incorporates the seasonal lag to provide not only the most
recent data as features for the machine learning models, but also those from a
season ago. For such seasonal time series, these longer lags contain even more
important information than the smaller lags.

Apart from the lagged time series, the approach also provides the hour of
the day, the day of the week, and whether the day is a holiday as features for
the machine learning models. Since this approach is specifically designed for
human-based time series, this temporal information can add relevant informa-
tion in terms of additional seasonality. With respect to the holiday feature, this
information can also explain deviations from normal behavior.

6.2.2.3 Classification

In the subsequent step, the algorithm determines the number of unique val-
ues within the time series. We have found that for time series with only few
different values and, most importantly, no trend pattern, classification can be
advantageous over regression models. Thus, if the algorithm observes that a
time series consists of less than six different values, it learns a Random Forest
multi-class classification model (see the right-hand side of the gray Modeling
box in Figure[6.3)). In this case, the classification model contains as many classes
as the time series has different values, with each class representing the corre-
sponding value. Moreover, in the special case where the time series consists
of only one unique value, the algorithm forecasts exactly this value, since the
available training data do not contain any further information.

6.2.2.4 Regression

In contrast, the workflow applies twelve different forecasting and regression
methods if it encounters six or more different values in a time series, since the
“No Free Lunch Theorem” states that there cannot be a single best method for
all scenarios [[WM97]]. This procedure is illustrated on the left-hand side of
the gray Modeling box in Figure To this end, the algorithm again splits the
available training data into a training set and an in-sample validation set. The
in-sample validation set contains the last observation values of the time series
and is as long as the demanded out-of-sample forecasting horizon, while the
training set contains all previous values. In the remainder of this section, we

157

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

use the term training data to refer to this subset of the original training data and
in-sample validation data to refer to this forecasting horizon within the original
training data. In terms of test data, we continue to refer to the out-of-sample
data of the time series.

The twelve forecasting methods implemented in the history-based forecasting
method recommendation approach are median, mode, ARIMA, ETS, NNetAR,
Random Walk, sNaive, TBATS, Telescope with frequency estimation enabled,
Telescope with frequency estimation disabled, Random Forest, and XGBoost.
The first two methods forecast only a constant value of the training part, i.e., the
median and the mode, respectively, for the entire forecasting horizon. ARIMA,
ETS, NNetAR, Random Walk, sNaive, TBATS, and the two Telescope versions
also interpret the data as univariate time series. While the first six methods
simply forecast the univariate time series, both versions of Telescope learn
internal features but do not use the features described in Section [6.2.2.2] In
contrast, Random Forest and XGBoost receive the lagged time series, the hour
of the day, the day of the week, and the holiday as features. For both machine
learning methods, namely Random Forest and XGBoost, we have carried out a
hyperparameter tuning. The best parameter settings for Random Forest and
XGBoost are shown in Table[6.2]

Table 6.2: Parametrization of Random Forest and XGBoost.

Method Parameters

Random Forest ntree = 500, mtry =5

XGBoost nrounds = 2000, booster = gbtree, eta = 0.2, gamma = 0,
subsample = 0.9, max_depth = 10, objective = reg:linear,
watchlist = list(train, val)

Due to this approach being designed for multi-step-ahead forecasting, the
lag features must be continuously created during execution time. Accordingly,
the original values given by the training data are initially used and gradually
extended by the forecasts made. More precisely, the approach forecasts each
value in the horizon as a one-step-ahead forecast and after each of these one-
step-ahead forecasts, the feature set for the next value is generated. Note that the
forecast model still remains the same, with only the feature set being recreated
for each value in the forecasting horizon.

In order to estimate which forecasting method performs best for a given time
series, the approach uses the in-sample validation data to compute the R2-
score of each method. As described in Section the R?-score is defined

158

6.3 Summary and Discussion

as one minus the ratio between the sum of squares of forecast errors and
the sum of squares of forecast errors when forecasting the actual mean of
the forecasting horizon. Thus, the R?-score has an upper bound of 1 but no
lower bound, while a higher R?-score implies a better forecast. Note that the
normalization baseline of the R%-score is only a theoretical concept, since it
already contains information on the actual values in the forecasting horizon.
Once the algorithm computed all forecasts and assessed their R2-scores, the
approach selects the forecasting method that achieved the highest R?-score and
learns a new model using the entire time series (i.e., the training and in-sample
validation data). Finally, the approach forecasts the entire forecasting horizon
using the presumably best forecasting method. In addition, the algorithm
adjusts the forecasts under the assumption that human-based data typically do
not contain negative values. Therefore, it sets negative forecasts to zero, but
only if all values in the training data are non-negative.

The evaluation of the proposed history-based forecasting method recommen-
dation framework is presented in Section

6.3 Summary and Discussion

To conclude this chapter, we provide an answer to research question RQ A.3,
while also summarizing the core contribution of this chapter. Research question
RQ A.3 deals with the challenge of designing forecasting method recommen-
dation approaches to improve forecast accuracy. To this end, we have presented
two approaches. While the first approach is data-based and, hence, requires a
large and, in particular, diverse database, the second approach does not require
such a database, but is purely based on the assumption that newly arriving
data of a time series are strongly related to the last known data. The data-based
approach builds upon the approach of X. Wang et al. to derive rules linking time
series characteristics and the accuracy of forecasting methods. In this context,
shortcomings of the approach of X. Wang et al. were pointed out and measures
were proposed to solve them. More specifically, our approach addresses the
problem of imbalanced data by oversampling, overfitting of the single deci-
sion tree by applying an ensemble learner, and missing recommendations by
learning models with probabilities as output, which allows recommending the
forecasting method with the highest probability of being suitable for the partic-
ular time series. The second approach, by contrast, considers only the history
of a time series and splits it into a training part and an in-sample validation
part. While all forecasting methods are learned individually on the training
part, the in-sample validation part is used to determine the forecast accuracy.

159

Chapter 6: Meta-Learning for Time Series Forecasting Method Recommendation

Based on the assumption that future values are similar to the last known values,
the forecasting method that performed best on the in-sample validation part is
recommended for the forecasting task.

Due to the design of the data-based forecasting method recommendation
approach, a very large and, above all, diverse database is needed, otherwise
the learned rules will not generalize well. If such a database is not available,
the history-based forecasting method recommendation approach should rather
be used. This in turn requires time series of a certain length, since splitting
the historical data into internal training and in-sample validation parts might
otherwise result in too short time series. Moreover, the assumption that future
values will be similar to the last known values is not necessarily given.

160

Chapter 7

Evaluation of the Meta-Learning
Approaches for Time Series Forecasting
Method Recommendation

In this chapter, we evaluate the forecasting performance of the two forecasting
method recommendation approaches. Thus, Section [7.1| presents the results of
the data-based approach. Here, we first thoroughly examine the approach of X.
Wang et al. and, subsequently, compare it with our approach. In addition, we
also compare the forecasting method recommendation approaches with the
individual forecasting methods included in them. The contents of this section
are based on our previous work published as a full paper as part of the 16th
IEEE International Conference on Autonomic Computing (ICAC) [ZBL"19].
The history-based forecasting method recommendation approach is evaluated
in Section Similar to the data-based forecasting method recommendation
approach, it is compared with the individual forecasting methods included
in the recommendation framework, among other studies. The contents of
this section are based on another previous work published as a short paper
at the 15th International Symposium on Advanced Artificial Intelligence in
Applications (AAIA) as part of the 15th Conference on Computer Science and
Intelligence Systems (FedCSIS) [ZK20]. Finally, we conclude this chapter with
a brief discussion in Section[7.3l

7.1 Evaluation of the Data-based Forecasting Method
Recommendation

This section evaluates the forecast accuracy achieved by the approach of X.
Wang et al. and our data-based forecasting method recommendation approach.
First, Section describes the experimental setup. Next, Section exam-
ines the quality of the rules proposed by X. Wang et al., i.e., it addresses the
first two aspects raised in Section In Section we compare our own

161

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

approaches with a dynamic version of the approach proposed by X. Wang et
al. Subsequently, we discuss threats to validity in Section and summarize
our results in Section[Z.1.5

7.1.1 Experimental Setup

The entire analysis is implemented in R version 3.3.2. For the calculation and
normalization of time series characteristics, the original script, which was
already used by X. Wang et al., is used. The R package forecast is integrated
in version 7.3 to perform the forecasting methods [[HAB™18].

As we aim to evaluate the forecast accuracy achieved by the state-of-the-art
recommendation approach of X. Wang et al. and compare our novel approaches
with it, we first use the data set and the same forecasting methods mentioned
in the original paper. Nevertheless, it would be an interesting aspect for fu-
ture work to include other forecasting methods, such as TBATS, Theta, SVM,
and Telescope. Moreover, as some of the data sources are no longer avail-
able, we focus on the time series from the UCR Time Series Classification
Archive [CKH 15|, which constitute the main part of the original data set. This
data set consists of 377 time series and will be referred to as UCR hereafter. We
use this data set to evaluate the approach of X. Wang et al. on the data set the
rules were learned on. In addition, we use another data set consisting of 1005
time series from the M3 competition [MHO0] to investigate whether the rules
postulated by X. Wang et al. are also transferable to other data sets. Finally, we
use both data sets to compare our approaches with the rules of X. Wang et al.
and the individual forecasting methods.

In order to assess the recommendation quality, we calculate three evaluation
measures. The first measure is the average rank achieved by the recommenda-
tions. By rank, we refer to the same concept as in the evaluation of Telescope in
Chapter[5| Thus, the rank reflects the position at which the method is placed
according to the forecast accuracy. The second evaluation measure compares
the forecast error of each recommended forecasting method with the actual
best performing forecasting method in the competition. We refer to this second
evaluation measure as accuracy degradation, which indicates how much worse
the corresponding forecasting method performs compared to the actual best
performing method. Note that the ground truth of which forecasting method
would have been the best is only known ex post. For both measures, we chose
MAPE as forecast error measure, since it is independent of the value range
of the input and can therefore be aggregated over several time series with
different value ranges of the inputs. The third and final evaluation measure is
the percentage of missing recommendations.

162

7.1 Evaluation of the Data-based Forecasting Method Recommendation

7.1.2 Evaluation of the Approach by X. Wang et al.

First, we evaluate the postulated rules of X. Wang et al. [WSMHO09]| using the
average rank achieved by the recommendation system. To evaluate the rules
from X. Wang et al. on both their own training data as well as on another
data set, Table presents the average ranks when applying the rules from X.
Wang et al. on the UCR and M3 data sets. For this purpose, we apply only the
rules reported by X. Wang et al. On both data sets, we examine the accuracy
of both one-step-ahead and the multi-step-ahead forecasting. In addition to
the average ranks achieved by the rules of X. Wang et al., we also applied the
individual forecasting methods. Table[7.T]also reports the average ranks of these
four individual forecasting methods. The average rank of the recommendation
rules varies from 2.62 to 2.80. Since there are only four forecasting methods in
competition, the theoretical expected value of a random guess would be 2.5 if
all forecasting methods ranked best with equal frequency. In addition, it can be
seen that the average ranks of ARIMA, ETS, and NNetAR are better than the
average ranks of the recommendation rules for both the one-step-ahead and
multi-step-ahead scenarios of the UCR data set. Only Random Walk shows a
worse average rank for the UCR data set. Note that X. Wang et al. used the UCR
data set to learn their rule set, which makes these results even more surprising.
With respect to the M3 data set, ARIMA and ETS again outperformed the
recommendation rules for both scenarios. Even Random Walk shows a smaller
average rank than the rule-based selection for one-step-ahead forecasting. Only
NNetAR provided slightly worse average ranks than the rules of X. Wang et al.
for both scenarios on the M3 data set.

Table 7.1: Average ranks for the rules by X. Wang et al. and all individual forecasting
methods. The best values for each scenario are highlighted in bold.

Data set X.Wangetal. ARIMA ETS NNetAR RW
UCR one-step 2.62 2.33 2.42 2.34 2.92
UCR multi-step 2.80 1.95 2.64 2.59 2.83
M3 one-step 2.63 2.38 2.37 2.67 2.58
M3 multi-step 2.75 2.28 217 2.79 2.76

The distribution of achieved ranks when applying the recommendation rules
can be seen in Figure Here, the horizontal axis represents the four ranks
and the vertical axis shows the respective probability density. For each rank,
four bars are displayed, where each bar represents one scenario of one data set,
i.e., from left to right: one-step-ahead forecasting on UCR, multi-step-ahead

163

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

forecasting on UCR, one-step-ahead forecasting on M3, and multi-step-ahead
forecasting on M3. The figure shows that the most frequent rank yielded is
rank 4, representing the worst forecasting method in the system. This means
that for all four scenarios, the decision rules recommend the actual worst
method most often. In figures, the probability density of rank 4 is more than
30% for each scenario.

e
30 31
é 28
Q | —
2 & |28 24124 Data Set
8 20 =l 211 |21 UCR One
> UCR Multi
= M3 One
= 16
2 M3 Multi
S
b 10
0
1 2 3 4
Rank

Figure 7.1: Histogram of the distribution of achieved ranks for the rules by X. Wang et
al. on the UCR and M3 data sets.

Given that the rules generated by X. Wang et al. provide a separate recommen-
dation for each forecasting method as to whether or not it should be applied, it
is possible that the rules do not recommend any of the forecasting methods.
However, this does not help autonomous systems in predicting critical events or
decision-making in general. Forecasts are always required to identify impend-
ing critical events or to make decisions proactively. Table|7.2|shows the number
and percentage of missing recommendations for the data sets UCR and M3. For
each data set, the values for one-step-ahead and multi-step-ahead forecasting
are the same, since the recommendation depends only on the characteristics
of the training data. It can be seen that the recommendation system fails to
suggest a forecasting method for almost 15% of all time series in the UCR data
set and even 44% in the M3 data set.

Apart from the ranking and the investigation of missing recommendations,
the accuracy degradation is also examined. Thus, for each time series and
forecasting method, the achieved MAPE is compared with the lowest MAPE

164

7.1 Evaluation of the Data-based Forecasting Method Recommendation

Table 7.2: Missing recommendations for the rules of X. Wang et al.

Data Set Number of Missing Recommendations Percentage Share

UCR 55 14.6%
M3 442 44.0%

value for that particular time series. Table[7.3|reports the average accuracy
degradation. For each data set, the first row shows the mean value. It can be
seen that the mean is typically very large due to the presence of many outliers.
Moreover, for one-step-ahead forecasting on the M3 data set, the mean values
of X. Wang et al., ARIMA, ETS, and NNetAR are infinite, since Random Walk
reached a MAPE of 0% for a couple of time series. For this reason, the median
is also provided in the second row for each data set. Again, ARIMA and ETS
provide better median results for all data sets and scenarios compared to the
rule-based selection by X. Wang et al. NNetAR also provides a lower median
accuracy degradation than the recommendation rules in most cases. Only the
median of the multi-step-ahead forecast on M3 is slightly worse than applying
the rules of X. Wang et al. When comparing the recommendation rules with
Random Walk, neither the rules of X. Wang et al. nor Random Walk have a
significant advantage in the presented scenarios.

To conclude our goal of evaluating the recommendation quality of the rules
of X. Wang et al. on their own training data, we come to the finding that the

Table 7.3: Accuracy degradation for all forecasting methods and the rules by X. Wang et
al. For each data set, the first row shows the mean value and the second row the median,
with the best values being highlighted in bold.

Dataset X.Wangetal. ARIMA ETS NNetAR RW

UCR 992.6% 2096.9% 312.7% 404.0% 1053.2%
one-step 96.8% 46.1% 55.8% 48.6% 130.1%
UCR 282.3% 92.5% 3285% 391.4% 284.6%
multi-step 108.5% 31% 100.1% 74.1% 89.8%
M3 Inf Inf Inf Inf 1150.8%
one-step 106.4% 40.4% 42.5% 68.7% 62.3%
M3 69.4% 53.7% 42.6% 92.0% 81.6%
multi-step 33.4% 10.0% 7.9% 35.1% 34.0%

165

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

postulated rules of X. Wang et al. on the UCR data set achieve average ranks and
accuracy degradations worse than those of ARIMA and ETS. Thus, the mere
use of one of these methods would provide a better forecast accuracy. Therefore,
the recommendation quality is insufficient. ARIMA and ETS also outperform
the rules of X. Wang et al. on the M3 data set. Moreover, the percentage of
missing recommendations increases dramatically compared with the UCR data
set. Thus, regarding the second evaluation criterion for the rules of X. Wang et
al., namely testing the transferability of their postulated rules, we conclude that
the rules are not transferable, as they provided only inferior forecast quality
also on the M3 data set.

7.1.3 Evaluation of Alternative Approaches

To evaluate our proposed alternative approaches, we use randomly sampled
80% of the time series from both data sets to learn the dependency between
time series characteristics and the performance of the forecasting methods.
Subsequently, the remaining 20% of the time series from both data sets are
used to evaluate the recommendation systems. Given that such a split might
be arbitrary, the data sets are randomly split 100 times and the results of all per-
mutations are averaged. Due to the fact that proactive planning in autonomous
systems, such as Self-Aware Computing Systems, usually requires forecasts of
the variable under observation for several time steps at once, we only examine
multi-step-ahead forecasts in the next sections.

7.1.3.1 Binary Classification with Oversampling

In general, it is not possible to cover all aspects of time series in such small
training databases like the UCR or M3 dataset (cf. Section[7.1.1]). Thus, either a
huge and diverse time series database is needed or the learned recommendation
system targets only a specific domain. As our evaluation is based on two data
sets, we consequently create the rules twice, i.e., once for each data set. Thus,
unlike X. Wang et al., we do not provide general rules for selecting forecasting
methods. Instead, we learn the rules dynamically on each data set under study,
which leads to a more realistic setting of a recommendation system optimized
for a particular domain.

Tables[7.4}[7.5, and [7.6)show the comparison of (I) the rules by X. Wang et al.,
using the C4.5 algorithm for rule generation, with (II) the dynamic generation
of rules following the procedure of X. Wang et al., but using the C5.0 algorithm,
an extension of the C4.5 algorithm, and with (III) our approach based on binary
classification with oversampling. Replacing the C4.5 algorithm with the C5.0

166

7.1 Evaluation of the Data-based Forecasting Method Recommendation

algorithm, which generally produces more accurate results, updates the X.
Wang et al. approach to the current version. Dynamically generating the rules
means learning the rules on the training portion of each data set rather than
learning a global, static set of recommendation rules for all data sets. Apart from
this adaptation of dynamic rule learning and the use of C5.0 instead of C4.5,
approach (II) applies the rule induction process of X. Wang et al. To compare
the three approaches, we use average ranks, missing recommendations, and
average accuracy degradation as evaluation measures.

With respect to the average ranks (cf. Table[7.4]), both approach (II) as well
as our approach show substantial improvements. However, for the M3 data
set, approach (II) improved the average rank even more than our approach.
However, the difference between the average ranks of these two approaches is
rather small, i.e., 0.07. In contrast, our approach outperformed approach (II) on
the UCR data set with respect to the average rank by 0.03. Again, the difference
between the two approaches is quite small.

Table 7.4: Average ranks for the rules by X. Wang et al. (I), learned rules using C5.0 with-
out oversampling (II), and our binary classification with oversampling approach (III).
The best values for each data set are highlighted in bold.

Approach UCR M3
(I) Original Rules from X. Wang et al. 2.80 275
(II) Learned Rules - no Oversampling 1.89 2.07

(II) Binary Classification with Oversampling 1.86 2.14

Concerning the average degradation of accuracy (cf. Table[7.5)), our approach
and approach (II) again yielded very similar results on both data sets. The
measure achieved by our approach is similar to that of approach (II) on the M3
data set and is only 0.2 percentage points worse than approach (II) on the UCR
data set. Yet, both the dynamic rule learning modification of X. Wang et al., i.e.,
approach (II), and our approach considerably reduced the average accuracy
degradation compared with the static rules postulated by X. Wang et al.

Nevertheless, when considering the missing recommendations (cf. Table,
it is evident that approach (II) does not provide a recommendation for a very
large fraction of the time series. In fact, the percentage of missing recommen-
dations increased dramatically compared with the rules of X. Wang et al., i.e.,
from 14.5% to 31.6% and from 44.0% to 79.6%. Thus, approach (II) performs
a kind of “cherry-picking”, since it provides recommendations only for time
series for which it is relatively confident. In contrast, our approach guarantees
to recommend a forecasting method for all time series. Thus, our approach rec-

167

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

Table 7.5: Average degradation in accuracy for the rules by X. Wang et al. (I), learned
rules using C5.0 without oversampling (II), and our binary classification with over-
sampling approach (III). The best values for each data set are highlighted in bold.

Approach UCR M3
(I) Original Rules from X. Wang et al. 282.3% 69.4%
(II) Learned Rules - no Oversampling 79.5% 39.5%

(IIT) Binary Classification with Oversampling 79.7% 39.5%

ommends a forecasting method even if none of them is perfectly fitting for the
time series. For such scenarios, it is difficult to estimate which of the forecasting
methods would perform best, as the models try to learn which forecasting
method performs well for certain time series characteristics. However, in this
scenario, there is no forecasting method that performs well, but still the one
with the smallest forecast error should be recommended. Thus, it is reason-
able that the average rank and accuracy degradation is slightly larger than for
approach (II). Beyond that, in practice, it is impractical for most autonomous
systems not to recommend a forecasting method, since they need this input for
their proactive decision-making process.

Table 7.6: Share of missing recommendations for the rules by X. Wang et al. (I),
learned rules using C5.0 without oversampling (II), and our binary classification with
oversampling approach (III). The best values for each data set are highlighted in bold.

Approach UCR M3
(I) Original Rules from X. Wang et al. 14.5% 44.0%
(II) Learned Rules - no Oversampling 31.6% 79.6%

(IIT) Binary Classification with Oversampling ~ 0.0% 0.0%

As the results of the binary classification with oversampling approach pre-
sented in Tables and [7.6] were averaged over 100 random splits for
training and testing, the results of all splits are also provided in the form of
box plots. To this end, Figure presents the box plots for the ranks and
Figure[7.2b|displays the distributions of accuracy degradation. For both figures,
the data sets, i.e., UCR and M3, both for the multi-step-ahead forecasting, are
shown on the horizontal axes.

Figure shows that the interquartile range, indicated by the top and
bottom of the box plot, is very small for the M3 data set, as the first quartile has
a value of 2.10 and the third quartile is at 2.19. In addition, there are only a few

168

7.1 Evaluation of the Data-based Forecasting Method Recommendation

2.50,

150

2.25

100

T+

Rank

2.00,

1.75

Degradation in Accuracy [%]

1.50 0
UCR Multi M3 Multi UCR Multi M3 Multi
Data Set Data Set
(a) Ranks. (b) Degradation of accuracy.

Figure 7.2: Box plots of ranks and accuracy degradation for 100 splits using the binary
classification with oversampling approach on the M3 and UCR data sets.

outliers. Thus, this shows that the average rank for the oversampling approach
is barely dependent on the choice of the split between training and validation
data. For the UCR data set, the variation is a bit larger. The interquartile range
here is from 1.79 to 1.92. However, this range is still acceptable.

With respect to the degradation of accuracy, Figure reveals that the
deviation for the M3 data set is very small, i.e., the first quartile is at 33.0%
and the third quartile at 44.2%. This underlines the previous statement that
the performance of this approach does not depend much on the split of the
data. In contrast, the degradation in accuracy varies greatly on the UCR data
set. Here, the interquartile range is much larger compared to the M3 data set,
ranging from 63.0% to 100.2%. Moreover, the long whiskers indicate that some
of the splits strongly affect the deterioration of accuracy on the UCR data set,
presumably because this data set is smaller than the M3 data set and is also
intended for time series classification rather than forecasting.

Figure[7.3|provides a histogram of the obtained ranks for the binary classifica-
tion with oversampling approach for the data sets UCR and M3. The horizontal
axis shows the ranks, while the vertical axis depicts the probability density.
Two bars are shown for each rank, with the left bar representing the UCR data
set and the right bar representing the M3 data set. Unlike the histogram of

169

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

50 51

40

39

80 Data Set

25 UCR Multi
M3 Multi

20

20 21

19

16

Probability Density [%]

10

Rank

Figure 7.3: Histogram of the rank distribution for the approach using binary classifica-
tion and oversampling on the UCR and M3 data sets.

achieved ranks for the original rules by X. Wang et al. (cf. Figure[7.)), the
probability densities of the ranks are strictly decreasing. Thus, rank one is by
far the most frequent for both data sets with 51% and 39% for the UCR and the
M3 data set, respectively. In addition, the worst forecasting method for each
time series, i.e., rank four, is the least recommended (9% for the UCR data set
and 16% for the M3 data set), with a distinct distance to the other ranks.

Considering the average rank, accuracy degradation, distribution of ranks,
and share of missing recommendations our binary classification with oversam-
pling approach demonstrates considerable improvements in the recommen-
dation quality. Moreover, when comparing the recommendation quality with
each individual forecasting method, our approach also outperformed them.
On the UCR data set, ARIMA performed best with an average rank of 1.95
(cf. Table and an average accuracy degradation of 92.5% (cf. Table[7.3)).
Accordingly, the average rank of our approach is 0.09 lower and the average
accuracy degradation is 12.8 percentage points less (cf. Table[7.4). On the M3
data set, ETS achieved the best results of the individual prediction methods.
However, our approach still obtained better results than ETS with a reduction of
0.03 in the average rank (cf. Tables (7.1 &[7.4]). Moreover, our approach reduced
the accuracy degradation by 3.1 percentage points (cf. Tables[7.3|&[7.5)).

170

7.1 Evaluation of the Data-based Forecasting Method Recommendation

7.1.3.2 Recommendation-based Ensemble Forecasting

In order to evaluate the recommendation quality of the linear ensemble model
with activation function, Table[7.7|reports the accuracy degradation for all fore-
casting approaches when using multi-step-ahead forecasting, averaged over all
100 splits. As this linear model approach generates a completely new forecast,
it can be considered a fifth forecasting method in addition to ARIMA, ETS,
NNetAR, and Random Walk. Thus, a comparison of the ranks would yield com-
pletely different results than those shown above. Therefore, only the accuracy
degradation is shown for this approach. However, note that the values of accu-
racy degradation here are slightly larger than in the previous sections, since the
optimal forecast may now be the recommendation-based ensemble forecasting
approach. Table|7.7|demonstrates that the recommendation-based ensemble
forecasting approach achieved the lowest degradation in accuracy for the M3
data set, followed by the binary classification with oversampling approach and
ARIMA. All other approaches were clearly outperformed. With respect to the
UCR data set, the binary classification with oversampling approach achieved
the best result ahead of ARIMA and the recommendation-based ensemble
forecasting approach. Again, the other approaches were all far behind. On
the M3 data set, the rules by X. Wang et al. outperformed only NNetAR and
Random Walk, while they performed worst on the UCR data set.

Table 7.7: Degradation in accuracy for all approaches with multi-step-ahead fore-
casting, averaged over all 100 random splits. The best values for each data set are
highlighted in bold.

Method M3 UCR
Original Rules from X. Wang et al. 69.8% 404.9%
ARIMA 59.9% 98.0%
ETS 46.2% 345.6%
NNetAR 91.0% 386.3%
Random Walk 83.6% 300.9%
Binary Classification with Oversampling 42.3% 82.1%

Recommendation-based Ensemble Forecasting 40.6% 104.9%

7.1.4 Threats to Validity

We have tried to reconstruct the original data set used by X. Wang et al., which
consists mainly of the UCR data set. Unfortunately, the exact time series have

171

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

not been reported, but only the counts. However, by analyzing the year of
publication of X. Wang et al., we were able to identify the data sets used from
the UCR archive. Still, we could not use time series from the other sources, as
some of them were no longer available or could not be clearly identified. In
total, we used 46 of 62 time series data sets. As these are almost 75% of the
original data set, the results for the rules proposed by X. Wang et al. might
be slightly better when using the entire original data set, but the missing time
series would not cause the rules to perform best compared with the individual
methods and our proposed approaches. Furthermore, X. Wang et al. postulate
universally applicable rules, so they should be independent of the data set.

Moreover, the time series from the UCR data set originally aim at classifica-
tion, not forecasting. The predictability of these time series is rather poor, since
their entropy is very low, e.g., some time series exhibit only Dirac impulse-like
peaks. For this reason, the forecasts are generally relatively inaccurate. This
results in a largely random ranking of the best forecasting methods for such
time series. Although Random Walk is typically used as a baseline forecasting
method, this approach performs comparatively well on these time

Given that the rules of X. Wang et al. did not recommend any forecasting
method for several time series, we omitted these time series from the evaluation
in Section [7.1.2] If missing recommendations were penalized, for instance by
setting their rank to the worst possible, the approach of X. Wang et al. would
have performed even worse.

As we tried to reproduce the setup of X. Wang et al., we only considered time
series with more than 100 and less than 1000 values. Therefore, the obtained
results might be valid only for time series with the given length. However, for a
real-time system that operates in a dynamic environment, this short time frame
might be valid to adapt to the rapidly and frequently changing environmental
conditions that cause context drift in the data.

To ensure comparability, we have considered only the forecasting methods
also used by X. Wang et al., namely ARIMA, ETS, NNetAR, and Random Walk.
Thus, the results are valid only when using these methods. However, since
there are only four methods in the recommendation system, a significant im-
provement in the average rank is hard to validate. In addition, some of the
forecasting methods are very similar, for instance, ETS and ARIMA often pro-
vide very similar results for short time series with little information content and
short seasonal patterns. However, the data sets contain many time series of this
type. To validate the recommendation system in more detail and independently
of the approach of X. Wang et al., more and especially more diverse forecasting
methods should be integrated into the recommendation system.

172

7.2 Evaluation of the History-based Forecasting Method Recommendation

7.1.5 Summary of Evaluation Findings

The approach proposed by X. Wang et al. has not yet been evaluated, so we exam-
ined the recommendation quality on the original and an additional, well-known
time series data set. Furthermore, we introduced a novel forecasting method
recommendation system that overcomes the shortcomings of the approach of X.
Wang et al. as well as a recommendation-based ensemble forecasting approach.
The key findings of our evaluation are:

(I) The experimental results reveal that the rules proposed by X. Wang et al.
are outperformed by all forecasting methods except Random Walk on both data
sets. Therefore, the static rules should not be implemented by autonomous
systems to select time series forecasting methods.

(II) Compared with the rules of X. Wang et al. and the individual forecasting
methods, our binary classification with oversampling approach yields the best
results on both data sets for both average rank and average degradation in
accuracy. Thus, we also show that the recommendation of forecasting meth-
ods can certainly provide better and more robust results than the individual
methods on their own. Moreover, our recommendation approach resolves the
“cherry-picking” issue, i.e., the lack of recommendations.

(IIT) The approach of using a linear regression model with activation function
for the recommendation and combination of forecasting methods achieves the
best results on the M3 data set and the third best results on the UCR data set.
In contrast, the binary classification with oversampling approach achieves the
second best results on the M3 data set and the best results on the UCR data
set. Therefore, it cannot be definitively concluded which of the approaches is
superior in general.

7.2 Evaluation of the History-based Forecasting Method
Recommendation

This section presents the experimental results of the proposed history-based
forecasting method recommendation framework based on the FedCSIS 2020
Challenge data set [JPBS20]). First, the necessity of time series preprocessing is
demonstrated by means of example time series in Section In Section[7.2.2}
the forecast accuracy achieved by the history-based recommendation frame-
work is compared with the individual forecasting methods integrated within
it. Subsequently, Section [7.2.3| provides further details on the distribution of
recommended forecasting methods. Section discusses threats to validity,
followed by a brief summary of the main evaluation findings in Section[7.2.5|

173

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

7.2.1 Time Series Preprocessing Steps

As the time series in the FedCSIS 2020 Challenge data set represent real-world
monitoring data of network device workloads, they also show missing values.
However, in order to apply forecasting methods, these must first be imputed.
Figure [7.4] depicts an exemplary time series of the FedCSIS 2020 Challenge
data set with a gap of seven missing values. Here, the original time series is
displayed in black, while the green color indicates the imputation generated
by our algorithm. It can be seen that the imputation produces reasonable
reconstructions based on the existing values of the preceding and succeeding
data points. In particular, the imputation algorithm even reconstructs a first
spike for the double-spiked seasonal pattern, similar to the other seasonal highs,
since the algorithm considers precursors and successors with a distance equal
to the frequency of the seasonal pattern.

7.5

5.01

Workload

2.5]

0.0

Dec 21 Dec 22 Dec 23 Dec 24 Dec 25
Time

Figure 7.4: An example time series of the FedCSIS 2020 Challenge data set with imputed
values highlighted in green.

While Figure 7.4 exemplarily demonstrates the imputation of missing values,
Figure[/.5|illustrates an example of the second preprocessing step, namely the
removal of anomalies in one of the 10,000 relevant time series of the FedCSIS
2020 Challenge. The black line indicates the corrected time series, while the
red line displays the anomalous values in the original time series. It can be

174

7.2 Evaluation of the History-based Forecasting Method Recommendation

seen that the peak value of the daily pattern significantly exceeds the normal
range and, therefore, the anomaly detection algorithm overwrites these values
by interpolating between the first non-anomalous precursor and the next non-
anomalous successor. If such anomalies were not removed before modeling, the
forecasting methods could learn a completely different, incorrect behavior. In
particular, if the anomaly is at the end of a time series, as seen in Figure[7.5) the
trend component may be biased such that the approximation would erroneously
detect an exponential trend.

2500004

2000004

1500004

Workload

1000004

500000

| il ol st oL

Dec Jan Feb
Time

Figure 7.5: An example time series of the FedCSIS 2020 Challenge data set, with the
removed anomaly highlighted in red.

7.2.2 Forecasting Accuracy for the FedCSIS 2020 Challenge

In total, the FedCSIS 2020 Challenge data set consists of 10,000 time series to be
forecast. The time series represent the network device workloads in hourly res-
olution. Although the forecasting horizon of all time series is one week, i.e., 168
observations, the lengths of the training parts vary. As the evaluation measure
of the FedCSIS 2020 Challenge was the R?-score, we employed this measure as
decision measure for the history-based forecasting method recommendation
framework. Recall that unlike typical forecast error measures, a higher value of

175

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

the R2-score indicates better forecast accuracy. However, to assess the forecast
accuracy of the proposed recommendation framework and compare it with the
individual state-of-the-art methods, we also computed the forecast error mea-
sures MASE and MAPE. As competing individual forecasting and regression
methods, we selected all methods included in the recommendation pool of the
history-based recommendation framework.

Given that we do not only consider the forecast accuracy per se, Table
illustrates the average rank achieved when ordering the forecasting methods
from best to worst accuracy, the median forecast accuracy, and the median
degradation in forecast accuracy with respect to MASE, MAPE, and R2-score.
The accuracy deterioration is calculated ex post by comparing the achieved
forecast accuracy of the considered forecasting method with the forecast accu-
racy of the method that actually performed best. In terms of forecast accuracy
and degradation in forecast accuracy, we considered the median to be a more
meaningful measure, because the values of the measures on the 10,000 time
series exhibited significant outliers biasing the aggregation of forecast accuracy.

First, the bold highlighted values clearly show that the proposed history-
based forecasting method recommendation framework (HbRF) provided the
smallest forecast error, respectively the highest forecast accuracy. Regarding the
average rank, this can be observed as it achieved the lowest average rank for all
three evaluation measures. Only Telescope 1], i.e., Telescope using the internal
frequency estimation algorithm, was able to keep up with the recommendation
framework. The other individual methods were considerably outperformed.
With respect to the median forecast accuracy, Random Forest was also able to
keep up with Telescope I, as it achieved smaller median MASE and MAPE
values. However, the median R?-score of Telescope II was still better compared
to Random Forest. More specifically, even Telescope without internal frequency
estimation, i.e., Telescope I, achieved the same median R2-score as Telescope
with internal frequency estimation. Yet, the use of internal frequency estima-
tion greatly improved the median MASE and MAPE. The advantage of using
internal frequency estimation is also evident in the median accuracy degrada-
tion. Here, it improved the forecast accuracy with respect to all three evaluation
measures. Random Forest, though, produced an even smaller median accuracy
degradation than Telescope II. Nevertheless, the median accuracy degradation
achieved by the history-based forecasting method recommendation framework
is still substantially lower, with reductions of about 40%, 31%, and 36% with
respect to MASE, MAPE, and R2-score, respectively.

Overall, an interesting finding is that most conventional forecasting methods
for univariate time series performed poorly. In fact, ARIMA, ETS, NNetAR,

176

7.2 Evaluation of the History-based Forecasting Method Recommendation

%BSSELT %096'ST %ILELL | 8200 %9981 FHTT | 029S T1#09 9619 1500gDX
%989 %LST6L %T0S6 | 9000 %L09'ST 98T'T | 869F £99G $9€'C | 159104 wopuey
%8SS6 %ITYTT %EEOOL | F000- %9LL'8T €6T'T | 9ISF 890G /89F 11 2doosapaL
%LISTL %6ISST %IFLFL | $000- %0¥0'61 <TCTT | TH9% LIFS 80TS 1 2doosafar
%I0E0C %E00°SE %F8IFT | STO0- %S6S6T 8€€T | 1ITS ¥96'S $209 SILvdl
%1969 %9LE9S %SLS6E | 9LT0- %l/S'E€T SYST | L0TS FLLL TOVL SATEN'S
%BCITTL %lL0EL9 %O0T'TS | L9TO- %ESTZT 0081 | 9958 891’8 6108 | S[eM wopuey
%SI9FH %E66'FS %STYOF | ¥80°0- %8¥THC 6¥9T | £969 66€L SIFL AVIINN
%9LLOV %89L'9S %VTS6E | €900 %SESIT 9091 | 6689 9494 S99 s1d
%T999T %ITLTY %I8Y6T | SIO0- %TESTT 6VFT | F64S 8269 TH89 VINRIV
%ECOSL %9ISLLT WSLTVE | T8TO- %SI¥'ST ¥EST | I€T'6 TEC9 8TTL SpoN
%WBFSLIY %ITHIT %8I0ET | TCL'0- %I8YTT LTV | 8SLL 989°S 168'S UeIpaIN
%EIET %6STEL %889°S | €00°0- %T6VLL SSO'L | €€0F ISLV L8P TIqH
. AAVIN dSVIN | 4 ddVIN dSVIN | 4 ddVIN dSVIN | poweiy
uonepeida Loemooy p | Aoemdy pN _ yuey ‘Say _ Sunsesarog

“P1oq ur papy3YSTY a1 SI1Nsesul UOREN[eAd des 10§ SaN[eA }$3q 3], "91095-,3] pue ‘AIVIN ‘ASYIN
01 10adsa1 3Im spoyjaw UoIssar3al pue SurjsedaIo] [eNPIATPUT dA]OM] Y} pue (YqH) STOMIUWTeI] UOT}ePUSWIIOIdI Paseq
-K10381Y4 9} Aq paure;qo ‘AdeIndde 3SedaI10f }saq [eNjde Y} pue AdeIndde }sedaio aAndadsar ay) usamiaq uostredwod 3sod-xo
Se pajeno[ed ST YOTYM ‘AdeIndde JSeddI0) Ul UOiepeIdap URIpaul pue ‘AdeIndde jSeddIo] uerpaw sjuel aderase oy :§°Z d[qeL

177

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

Random Walk, and sNaive provided worse forecasts than using a simple base-
line, namely forecasting only the median for the entire forecasting horizon.
Among the set of conventional forecasting methods for univariate time series,
only TBATS was able to compete with the median forecasts. Considering the
set of more advanced forecasting approaches, namely both Telescope versions
as well as Random Forest regression and XGBoost regression, all four methods
performed superior compared with the median baseline, although XGBoost per-
formed considerably worse than both Telescope versions and Random Forest.
In general, the best individual methods were Telescope II and Random Forest.
However, since their ranking varied from evaluation scenario and measure
to evaluation scenario and measure, it cannot be determined unambiguously
which of these two methods performed better. Nevertheless, both were clearly
outperformed by the proposed history-based forecasting method recommenda-
tion framework. However, it should be noted that the history-based forecasting
method recommendation framework naturally results in a much larger runtime,
since a model must be trained for each forecasting method in the recommenda-
tion pool to decide which method is most suitable.

7.2.3 Share of Forecasting Methods Recommended

In order to provide further insight into the results of the history-based forecast-
ing method recommendation framework, Figure[7.6|depicts the distribution
of forecasting methods recommended by the framework for the FedCSIS 2020
Challenge data set. Due to the lack of variation in 124 time series, the single
unique value that forms the time series is forecast for the entire forecasting
horizon. Further, 104 other time series have more than one but less than six
individual values within the time series. For these time series, Random For-
est classification (RF Class.) is applied. For the remaining 9772 time series,
forecasting or regression is used. Median and mode are used 431 and 325
times, respectively. In agreement with the poor average and median forecasting
performance (cf. Section[7.2.2), the conventional statistical forecasting methods
were chosen rather infrequently. In terms of numbers, ARIMA, ETS, NNetAR,
Random Walk, sNaive, and TBATS were selected 611, 540, 786, 341, 88, and
696 times, respectively. Thus, such statistical forecasting methods were used
a total of 3062 times. On the contrary, the more sophisticated approaches,
namely Telescope I and II as well as Random Forest regression (RF Reg.) and
XGBoost regression, collectively were used a total of 5954 times. Thus, these
approaches were used almost twice as often as the statistical approaches, even
though this set of approaches involves one-third fewer algorithms. Interest-
ingly, although Telescope II and Random Forest regression achieved the best

178

7.2 Evaluation of the History-based Forecasting Method Recommendation

30004

2663

20004

Count

1193

©
a
(@]

10004
611 540

431 305

s oo
N [

786
341
88
—

Constant
RF Class
Median
Mode |
ARIMA
ETS
NNetAR
RF Reg.
XGBoost |

Random Walk
sNaive |
TBATS

Forecasting Method

Figure 7.6: The distribution of methods used by the history-based recommendation
framework over the 10,000 time series in the FedCSIS 2020 Challenge data set.

individual performances (cf. Section[7.2.2), the recommendation framework
chose Random Forest regression about 123% more often. More specifically,
with 2663 applications, the history-based forecasting method recommendation
framework applied Random Forest regression even more frequently than both
versions of Telescope combined.

7.2.4 Threats to Validity

The history-based forecasting method recommendation framework is based
on the assumption that the accuracy of a forecasting method on the last part
of the training set, i.e., the in-sample validation part, is related to the actual
out-of-sample accuracy. However, this may not be the case for all types of
time series. In particular, if a time series exhibits breakpoints at the end of the
in-sample validation part or even later in the out-of-sample testing part, this
assumption may not be fulfilled.

179

Chapter 7: Evaluation of Meta-Learning for Forecasting Method Recommendation

Furthermore, the history-based time series recommendation framework is
only applicable to long time series, where separating the training time series
into a smaller training part and an in-sample validation part is feasible. Other-
wise, other aggregation or recommendation approaches should be employed.
A possible approach to handle shorter time series is shown in Section[6.1} where
characteristics are derived from the training part of the time series and classifi-
cation models are learned to estimate the best forecasting method given the
particular set of time series characteristics.

Finally, the time series of the FedCSIS Challenge data set represent only
network device workloads. The statistical forecasting methods might perform
better for other types of time series. As a reminder, when only the univariate
time series were used as input to the forecasting methods, without deriving
additional features, these methods achieved sufficient forecast accuracy that
clearly exceeded that of the machine learning-based methods (cf. Chapter [5)).

7.2.5 Summary of Evaluation Findings

The experimental results using the FedCSIS 2020 Challenge data set revealed
the three main findings:

(I) Typical forecasting methods for univariate time series do not provide a
sufficient forecast accuracy for network device workload forecasting. Instead,
features should be derived to provide more accurate forecasts. This fact is
demonstrated by the improved forecast accuracy obtained by both Telescope
versions and the iterative regression methods Random Forest and XGBoost.

(II) The “No Free Lunch Theorem” also applies here, as the history-based
forecasting method recommendation framework significantly outperformed
all individual forecasting and regression methods. Considering only the indi-
vidual forecasting methods, there is no unambiguously best method, although
Telescope with internal frequency estimation and Random Forest regression
appear to be the most accurate.

(IIT) The history-based forecasting method recommendation framework ap-
plied each method in the recommendation pool several times, resulting in a
broad variety of applied forecasting methods. Nevertheless, the approaches
using additional features (i.e., Random Forest regression and XGBoost regres-
sion) or deriving features themselves (Telescope with and without internal
frequency estimation) were selected most frequently.

180

7.3 Concluding Remarks

7.3 Concluding Remarks

The main contribution of this chapter is the evaluation of the proposed time
series forecasting method recommendation approaches. Thus, this chapter pro-
vides an answer to research question RQ A.4. To highlight the most important
outcomes regarding the comparison of the proposed time series forecasting
method recommendation approaches with the state-of-the-art approach in the
field as well as state-of-the-art individual forecasting methods, this section
provides a brief summary.

First, using two time series data sets, we have shown that the state-of-the-
art forecasting method recommendation system by X. Wang et al. does not
provide satisfactory forecasting quality. Moreover, we have shown that the
design of their recommendation system leads to a large proportion of missing
recommendations. In contrast, our proposed data-based forecasting method
recommendation system not only surpassed all individual forecasting methods
but also the rules of X. Wang et al. Moreover, it ensures to suggest a forecasting
method for every time series, rather than “cherry-picking” time series where
the estimation of the best forecasting method is fairly distinct. A second data-
based approach, which combines ensemble forecasting with forecast method
recommendation, also exhibited high forecast accuracy. While our first ap-
proach performed best for one data set, the second approach was superior for
the other data set.

Second, the history-based forecasting method recommendation framework,
which does not rely on a large and diverse database of time series, but only on
the historical observations of the time series under consideration, was evaluated
on the FedCSIS 2020 Challenge data set. Here, we compared the recommen-
dation framework with all individual forecasting methods included in the
recommendation pool and demonstrated its superiority over the individual
methods. In addition, we demonstrated the versatility of the forecasting meth-
ods chosen by the recommendation system.

181

Part 111

Modeling, Detecting, and Predicting
Machine Failures

Chapter 8

End-to-End Workflow for Automated
Anomaly Detection of Industrial Machine
Components

Rapid developments in the Internet-of-Things (IoT') and the continuous minia-
turization of sensors are leading to new applications in areas such as Indus-
try 4.0 and Industrial IoT. In Industry 4.0, the already existing automation of
static work steps is extended by the automation of flexible work steps enabled
by more intelligent self-adjusting machines [VHH16]]. To this end, the machines
are equipped with more sensors allowing extensive monitoring of the machines
as well as data collection. However, the mere monitoring and collection of data
is only a first step, providing no benefit by itself. Instead, the main goal is the
intelligent analysis of monitoring data in combination with machine learning
and data mining algorithms.

Early-stage machine anomaly detection is one such application that benefits
from the intelligent use of monitoring data. A prominent example showcasing
the immense impact of proactively identifying production problems is the
case of Volkswagen in 2016, where production problems led to financial losses
of up to 400 million Euros per week [Zeil6]]. Although this case highlights
the relevance of automated and early mechanisms to detect machine failures,
companies often implement periodic or threshold-based maintenance plans
due to insufficient understanding of machine learning approaches that can be
used to detect anomalies proactively. In contrast, machine failure prediction
is a hot topic in academia, with many researchers contributing to the field. To
this end, we have presented several approaches to machine failure prediction
in Chapter 3, among others. The approaches referenced there use different
methods to determine a machine health index and derive the remaining useful
life. However, the applicability of the aforementioned approaches is highly
dependent on the specific machines and the available data. Therefore, many
companies struggle to identify an approach suitable for their problem and

185

Chapter 8: Automated End-to-End Workflow for Machine Anomaly Detection

to adapt the methods proposed in the literature to their individual machine.
Therefore, in this chapter, we present a novel generalizable end-to-end workflow
for automatic anomaly detection for machines that is tailored to the specific
requirements of manufacturing machines. More specifically, the workflow
targets multi-purpose machines with different tools. Automatic anomaly detec-
tion is a necessary step to predict machine deterioration and avoid equipment
downtime. Specifically, the contributions of this approach are the following:

e We propose a clustering-based approach to segment raw machine data
into different work steps and, thus, multiple machine tools (i.e., phases).

e We present a generic workflow for data preprocessing and oversampling
that involves applying basic machine learning methods to learn the dis-
tinction between normal and degraded behavior in order to predict the
current deterioration state of production machines.

e We evaluate the learned model with real-world data from a general-
purpose machine to demonstrate its applicability to machine anomaly
detection (cf. Chapter[9)). The experimental results show that by using
only basic machine learning classifiers (i.e., in contrast to deep neural
networks), the workflow is able to learn the distinction between normal
and anomalous states with only very little training data. This is an essen-
tial criterion for the practical application in Industry 4.0 that deep neural
networks typically cannot fulfill, as they require large training data sets.

The content of this chapter is based on our earlier work, which has been
accepted and is currently under publication in the journal ISA (International
Society of Automation) Transactions [[ZML™21]]. The remainder of this chap-
ter is organized as follows: Section [8.1| outlines the general data acquisition
approach for multi-purpose machines. Then, Section[8.2] describes the overall
design of the end-to-end workflow for machine anomaly detection. Finally,
Section [8.3| concludes this chapter with a brief summary answering the cor-
responding research question. For details on the real-world case study and
experimental results, please refer to Chapter (9]

8.1 Data Acquisition
In any data mining application, one of the most fundamental steps is data

acquisition. In the field of industrial machinery, obtaining relevant data is
often challenging. Although machines typically rely on sensor data for their

186

8.1 Data Acquisition

operation, extracting them for further analysis is difficult. However, with the
increasing interest in data analytics in recent years, the interface for extracting
sensor data has been enabled so that some of the limited computing power of
industrial machines can now be used to leverage available data sources.

A subgroup of industrial machines is that of CNC (computerized numerical
control) machines. The overall components of such a CNC machine with
relevant sensors and the resulting data flow are illustrated in Figure The
core of the machine is its numerical control (NC), which controls motion
by executing programmed instructions and is usually complemented by a
programmable logic controller (PLC). Together, they form the central point for
all data in the machine. The PLC is connected to the individual drive controllers
via a real-time bus (RT Bus) system. Each drive is then connected to one or
two motors. The drive controllers supply current to the motors according to
the axis position required by the controller. They are also responsible for other
motion-related tasks, such as acceleration and deceleration ramps, and can
also interpolate motion. The motor is mechanically connected to the moving
parts of the machine. Internal sensors provide the drive with measured values
necessary to control the motion. These data can also be transmitted to the
control system (NC/PLC) via the bus system. However, the ability to extract
such high-frequency data from the control system is highly manufacturer-
specific, if it exists at all.

We had access to a five-axis CNC milling machine for the approach presented
in this chapter. It allows X, Y, and Z motions, among other capabilities, and
is equipped with Bosch Rexroth components, such as controller, drive, and
motors. A tool magazine with numerous slots enables automatic tool changes.
In addition, a software tool for data acquisition with the NC controllers allows

(2
CNC Machine
T1ve
O—/ Nominal
Position
: I S le &
m Drive Sensor aBrBFfeer
Readings 1 kHz
o————— External
 Spindlc gEERVEE O Vi || Server
_ oO——— 2kHz

Figure 8.1: Data flow inside and outside of a CNC machine.

187

Chapter 8: Automated End-to-End Workflow for Machine Anomaly Detection

us to collect drive-internal data. We chose the position and velocity of the axes
along with torque and power draw from the DC intermediate circuit and tem-
perature of the motors, as these are common standard parameters that should
be captured by most of today’s machines. The collected data are buffered by
the controller and transmitted once the measurement is complete. Triggering
can be done from the NC program, which is also recorded synchronously. This
means that the program instructions can be directly linked to measurement val-
ues of physical signals. Recording synchronous NC commands simplifies phase
detection, but it is difficult to apply this to different domains or applications
where such data are not accessible. Here, we tackle the phase detection problem
without relying on a recorded NC program (cf. Section[8.2.1)). The NC program
is only used as gold standard data to validate the results (cf. Section[9.2)).
Besides the machine-internal sensors, an external vibration sensor is also used.
Since vibrations inevitably occur in any rotating machine, this appears to be a
natural choice. A position close to the main spindle of the machine was chosen
to mount the sensor. Therefore, Fig shows the machine with the sensor

(a) CNC milling machine. Circle: Position of ~ (b) Closer view on the mounting position of
the additionally mounted vibration sensor on the vibration sensor. Compared to Figure[8.2a]
top of the machine. the z-axis is rotated by 90 degrees.

Figure 8.2: CNC milling machine with highlighted sensor mounting position.

188

8.2 Design of the End-to-End Machine Part Anomaly Detection Workflow

position circled, while Fig [8.2b|provides a closer view of the sensor mounting
position. The part on which the sensor is mounted moves with the spindle in X,
Y, and Z directions. The sensor used (called CISS) is a multi-sensor specialized
for industrial applications. Although it features 3-axis inertial sensors, such as
accelerometer, gyroscope, and magnetometer, as well as several environmental
sensors with a maximum sampling rate of 1 kHz, it also allows a sampling rate
of 2 kHz if only the accelerometer is active. For our use case, a rotational motion
of the main spindle with less than 10000 min~! (about 167 Hz) is expected,
so the sampling rate of 2 kHz is sufficient to capture the expected vibrations
and harmonics. For this reason, we use the CISS only as a vibration sensor. We
have chosen this sensor over more sophisticated measurement equipment, as it
offers sufficient resolution and accuracy at a low price and ease of use. These
advantages also make it suitable for retrofitting existing machines. Besides, a
detailed acoustic analysis is out of the scope of this thesis.

8.2 Design of the End-to-End Machine Part Anomaly
Detection Workflow

This section presents a novel, end-to-end workflow to automatically identify
anomalous tools in CNC milling machines. For this purpose, Figure 8.3 pro-
vides a simplified overview of the approach. First, data acquisition takes place
(cf. Section[8.1)), followed by a data conversion step. During data conversion,
the raw data extracted from the machine (typically in XML format) is converted
into a readable format for further analysis. The remaining procedure of this
workflow consists of two steps: (I) dividing the raw machine signals into dif-
ferent phases (cf. Section[8.2.1)), each representing a particular production step,
and (IT) identifying anomaly effects in each phase (cf. Section[8.2.2]). Here, the
tirst part itself involves two steps: (I) a distinction between on and off phases

Data Data On/Off Tl Anomaly
L . . Step .
Acquisition Conversion Recognition o Detection
Identification

Sec. 8.1 Sec. 8.2 Sec. 8.2.1.1 Sec. 8.2.1.2 Sec. 8.2.2

,
Ges) 1 2 2
Coe) | | | | - Ol |0| |0 - O| |O| |0

Figure 8.3: The overall end-to-end workflow for machine tool anomaly detection.

189

Chapter 8: Automated End-to-End Workflow for Machine Anomaly Detection

(cf. Section[8.2.1.1]) and (II) a production step identification for the on phases
(cf. Section[8.2.1.2]). Here, an on phase represents the use of a tool, while an
off phase corresponds to a tool change. Given that the proposed approach is
an automated end-to-end workflow, the output of each step is directly used as
input for the next step. The operator only needs to configure one parameter,
which is the number of production steps executed by the CNC milling machine.

8.2.1 Phase Detection

This procedure aims at separating the raw data time series into individual
signals that can be unambiguously assigned to specific work steps in the manu-
facturing process. Performing this step is necessary to achieve comparability
of the individual work steps across several manufacturing processes. Given
the overall goal of detecting anomaly effects for individual tools in the CNC
milling machine, comparing time series of the entire manufacturing process
does not provide viable results, as the variations within the time series are too
subtle and are lost in the data set. The process of dividing the raw time series
into phases again requires two main steps: (I) dividing the raw data into on
and off phases and (II) assigning each on phase to a specific identifier. Such
mechanisms are essential due to the fact that anomalies can only be detected for
individual tools with their respective manufacturing processes. As mentioned
earlier, it is not always feasible to extract the phases from the NC program,
as this would limit the approach’s applicability. In other words, this would
require domain knowledge and, consequently, make it impossible to transfer
the approach to other domains or use cases where these data are not accessible.

8.2.1.1 On/Off Recognition of Tool Change Phases

Due to the fact that anomaly effects of individual tools do not cause variations
in the machine signals during the tool change phases, these must be filtered
out. For this purpose, the raw machine signals are passed to this stage of
the algorithm. Here, k-Means clustering [LIo82] is performed on the data,
where £ is set to two, since this component of the workflow should distinguish
only between on and off phases. Accordingly, each measurement timestamp
is assigned to either cluster label 1 (on phase) or cluster label 0 (off phase),
depending on the signals from the machine. However, the use of k-Means
clustering on noisy raw data results in many mislabelings. Figure[8.4alillustrates
this behavior, with the horizontal axis showing the time since the start of
the measurement and the vertical axis depicting the cluster label for each
timestamp, i.e., either 1 or 0, representing on and off, respectively. Each circle

190

8.2 Design of the End-to-End Machine Part Anomaly Detection Workflow

in the figure indicates whether the particular set of features was clustered as
an on or off phase. In the optimal case, we would want to have long sequences
with the same cluster labels with no interruptions. These long sequences
would represent a single phase. However, as evident in Figure there are
many interruptions (i.e., rapid changes between cluster labels) within the long
sequences that indicate mislabelings. Therefore, the approach implements a
systematic threshold-based smoothing of the provided cluster labels.

O GEEENE) GEENNEEEO GEEDOGEREDCENED

Label

0 100 200
Time since Start [s]

(a) Clustering with many mislabelings (interrupted sequences of the same cluster label).

Label

0 100 200
Time since Start [s]

(b) Clustering without mislabelings (clear boundaries between sequences of different labels).

Figure 8.4: One manufacturing process divided into on (label 1) and off (label 0)
phases according to the cluster labels.

To remove mislabelings, the derivative =’ of the labels is computed first:
,_dz
Codt

As the signal is a discrete time series of length n, the derivative 2’ is equal to
the first order difference of the time series x:

x (8.1)

191

Chapter 8: Automated End-to-End Workflow for Machine Anomaly Detection

Ty =xi — @y, foriinl,...,n —1 (8.2)

Subsequently, the indices of the timestamps with a non-zero derivative are
extracted. This ordered set of indices p indicates possible label changes:

p={0}U{ilz; #0, foriin1,...,n — 1} U {n} (8.3)

However, since p contains all potential cluster label changes, they may occur
due to a new phase or due to a mislabeling within an actual phase. To this end,
the distance between indices along the time axis is computed. If the distance
is greater than a certain threshold), a new phase is assumed, otherwise the
label changes are treated as mislabelings. The ordered set of final cluster label
changes c is computed as

c=1{pjl (pj —pj—1) > A, for jin2,...,[p|}. (84)

Although the threshold A has a default value, it can also be adjusted by the
operator in case the tools are changed or the data are recorded with a different
sampling frequency. In the case of mislabelings, i.e., p; that are not included
in ¢, the label of the next accepted cluster is assigned. Figure shows the
resulting on/off recognition after applying this procedure. The scattered cluster
labels are now attached to longer sequences of identical cluster labels.

8.2.1.2 Production Step Identification and Mapping

After identifying the tool changes (i.e., off phases) and production steps (i.e.,
on phases) in the raw data, the workflow must map the individual production
steps to each other. To accomplish this, each production step is assigned a
specific tool with its particular production process. Typically, an anomaly
in one machine tool does not affect the production steps of other tools, so
the workflow only identifies anomalies for such individual phases. Based on
this mapping, the specific phases can be grouped across all manufacturing
processes. Figure|8.5(schematically visualizes the workflow of the production
step identification and mapping method.

As input, the production step identification and mapping algorithm receives
the raw machine signals and the breakpoints between on and off phases to sepa-
rate the machine data into segments phase by phase (cf. step (1) in Figure[8.5)).
Subsequently, the algorithm computes features for each phase (cf. step (2) in
Figure[8.5]). Preliminary experiments have indicated that the best results were
obtained for the measures mean and standard deviation. Finally, the workflow
applies hierarchical clustering [RMO05] to the feature space in order to group

192

8.2 Design of the End-to-End Machine Part Anomaly Detection Workflow

(1) Data (2) Feature (3) Hierarchical
Consolidation Calculation Clustering

On/Off Phases

S 52
S T
g &9 L |.— .. . =
> \3,- & Nclusters 7
s 32
—_—>
AL
S,
O 2373
. j o) 33
Machine Data g ol ¥
2 2 2
% gl &
= = =
(8] (8] (8]

Figure 8.5: The simplified production step identification and mapping using hierarchi-
cal clustering.

similar phases to a common identifier (cf. step (3) in Figure[8.5)). Hierarchical
clustering constructs a tree structure, also referred to as a dendrogram. Such
a dendrogram either starts with all instances in a cluster and, subsequently,
splits each cluster into two clusters until all clusters consist of only one instance
(divisive, top-down), or starts with a separate cluster for each instance and
gradually merges two clusters into one until only one cluster remains (agglom-
erative, bottom-up). Here, the workflow applies the bottom-up approach with
centroid linking as the agglomeration method. Accordingly, the centroid of
each cluster is determined and the distance between centroids a and b of two
clusters A and B is computed as Dcentroid_linkage:

Dcentroid_linkage (A,B) = d(a,b) (8.5)

Therefore, the workflow employs the Euclidean distance as distance metric d,
where [is the dimension of the feature space:

d(a,b) = lla=blla = \| > (ai = b;)* (8.6)

=1

However, a dendrogram cutting point is required, which specifies the in-
tended number of clusters. This parameter is the only setting to be made by the
operator. However, for a given manufacturing process, the production steps
are known beforehand and, therefore, the number of clusters is equal to the
number of production steps plus one for the tool change phase.

193

Chapter 8: Automated End-to-End Workflow for Machine Anomaly Detection

8.2.2 Machine Learning-based Anomaly Detection Approach

Based on the preprocessed signals, the workflow learns several machine learn-
ing models to detect the effects of machine anomalies and compare their de-
tection performance. As an alternative, we have also implemented a typical
order analysis method, i.e., resampling the signal into the order domain before
computing the Fourier transform [[UW99]]. However, this commonly used fre-
quency analysis method did not provide satisfactory results (cf. Section[9.3.1]).
Therefore, our end-to-end workflow integrates machine learning methods by
applying these algorithms to the individual phases identified by the previously
presented workflow steps. This step targets to learn the dependency between
anomaly effects and intrinsic properties of the machine signals.

Nevertheless, a common problem in machine learning and artificial intel-
ligence applications is the amount of training data. Training such methods
depends heavily on the amount and variety of data, which are the basis for
good generalizability and predictive power of the resulting model. Therefore,
the workflow includes a method for enlarging the training data set and, subse-
quently, applying the machine learning methods. In the following paragraphs,
these steps are described in more detail.

The workflow uses vibration signals to detect machine anomalies. Exemplary
monitored signals of a three-axis vibration sensor are presented in Figure
As mentioned in Section the implemented vibration sensor provides a com-
paratively high sampling rate of 2 kHz. This high frequency of the vibration
signals allows resampling of the measurements. Accordingly, the original vibra-
tion time series of each phase are split into r resampled time series. Each new
time series ts; starts at the i-th position, i = 1, ..., 7, of the original vibration

2000

“
2 1000
<|C 0
s ~1000
~2000
1000

2
Z 0

|
> ~1000
3000
2 2000
Z 1000
0
~1000

0 100 200 300
Time since Start [s]

7—

Figure 8.6: An example of the vibration signals provided by the vibration sensor.

194

8.2 Design of the End-to-End Machine Part Anomaly Detection Workflow

time series. After adding a value v; of the original vibration time series to the
resampled vibration time series, — 1 values are skipped until the next value is
added. This resampling strategy can be described as follows:

ts; = (vi,vi+r,vi+2,~,...) s i=1,...,7“ (87)

Subsequently, these resampled vibration time series of individual phases
are used to compute several statistical characteristics that describe the intrinsic
behavior of the time series. For this purpose, the following characteristics are
selected, where x denotes the time series and n the length of the time series:

e Mean: Represents a base level around which the vibration signal varies.
_ 1
=— Z X (8.8)

e Median: Similar to the mean, but less sensitive to outliers. A large differ-
ence between the mean and the median indicates high outliers.

.1
% =5 (% m41)/2) + T[rry21) (8.9)

e Standard deviation: Describes the extent of variation within the time
series.

n

§= (nil) z_; (z; — z)* (8.10)

e Skewness: Measures the asymmetry of a probability distribution function
around its mean value.

1 n
iz = TZ‘;’Q with my, =~ > (2; - 2)F (8.11)
My [t

e Kurtosis: Similar to skewness, kurtosis describes the shape of the proba-
bility distribution function. Instead of asymmetry, the kurtosis quantifies
the steepness of the probability distribution function.

- My

fia =
—

(8.12)

195

Chapter 8: Automated End-to-End Workflow for Machine Anomaly Detection

e Root mean square (RMS): The square root of the mean of the squared
values of the measured signal is directly related to the energy content of
the vibration.

(8.13)

o Crest factor: Measures the extremeness of peaks in a waveform. A large
value indicates high peaks compared with the RMS of the waveform.

max (|x])

¢="Rms

(8.14)

e Gradient: 3; represents the slope of the measured signals. For this pur-
pose, a linear model f (¢;; 5o; 51) of the measured signals is fitted to the
measurement time ;.

p1 with f (t;; Bo; B1) = Bo + Piti (8.15)

e Peak to peak (PTP): Specifies the total range between the minimum and
maximum values.
PTP = max (z) — min (z) (8.16)

This characteristics computation step provides a feature vector for each resam-
pled time series of each phase. Coupled with a class label indicating whether
or not an anomaly is present, such a feature vector represents a single instance
used to train the machine learning models. As the machine learning methods
employed are supervised, the entire workflow requires labeled training data.
For the evaluation of the approach, the class label is supposed to be predicted
by the machine learning models. Therefore, only the feature vectors without
labels are passed to the method. The predicted class labels are then compared
with the actual class labels to assess the anomaly detection quality. As machine
learning methods, the proposed approach utilizes Random Forest [Bre01]],
Support Vector Machine [[CV95]], and XGBoost [[CG16]], while a simple logistic
regression model serves as the basis of comparison.

8.3 Summary and Discussion

The main contribution of this chapter is the introduction of an automated end-
to-end workflow for anomaly detection in industrial machine tools, addressing

196

8.3 Summary and Discussion

research question RQ B.1. The key components of the approach are data seg-
mentation, mapping, and classification. First, the raw machine signals are
divided into manufacturing and tool change phases using k-Means clustering.
Then, similar manufacturing phases are mapped to common identifiers, while
different manufacturing phases are mapped to other identifiers via hierarchical
clustering. After these preprocessing steps, each manufacturing phase is ana-
lyzed individually. Thereby, the original signals are resampled to expand the
size of the training set. Subsequently, statistical characteristics are computed
for each time series, which are then used to learn a classification model that
distinguishes between normal and anomalous machine tool states. Due to
resampling, these models can be learned with a small number of measurement
runs for training. Based on the automated end-to-end design, the operator only
needs to specify the number of manufacturing steps performed by the machine.

Unlike many existing approaches that involve expensive sensors and so-
phisticated expert knowledge, the presented approach relies only on standard
industrial monitoring data, namely position and velocity of the axes, torque
and power draw from the DC intermediate circuit, temperature of the motors,
and machine vibration. Therefore, the workflow is generalizable so that it can
be easily adopted for other machines. However, due to the analysis of vibration
data, the approach is specifically tailored to rotating machines.

197

Chapter 9

Evaluation of the End-to-End Workflow for
Automated Anomaly Detection of Industrial
Machine Components

In order to assess the performance of the proposed automated end-to-end
anomaly detection workflow, we carried out a real-world case study. First, Sec-
tion 9.1 describes the experimental setup. Then, Section [9.2]shows the results
obtained from the phase detection component of the workflow, followed by
Section which provides the evaluation results of the anomaly detection
component. Subsequently, Section 9.4 summarizes the main evaluation find-
ings and discusses potential threats to validity. Finally, Section 9.5/ draws a
brief conclusion of this chapter. The contents of this chapter are based on our
previous work, which has been accepted and is currently under publication in
the journal ISA (International Society of Automation) Transactions [[ZML™21]].

9.1 Experimental Setup

For emulating a faulty tool, we have attached a small weight to a drill in radial
direction. It does not interfere with the drilling process, but as an unbalance in
the rotation of the tool, it causes additional vibrations in the entire machine. At
higher rotational speeds, this caused an audible oscillation, which differs from
the usual operating noise of the machine. Unbalance effects cause increased
wear and defects, so they should be avoided. While sophisticated systems for
detecting tool wear and breakage are available on the market, the expense and
effort required to deploy them are usually high. The systems must be integrated
into the machine and require detailed process information. For this reason
and for the simple nature of the emulation, an unbalance is a suitable example
defect that allows us to investigate a loosely coupled detection system with
little involved process knowledge.

199

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

As for the manufacturing process, an NC program was prepared to mill a
5 mm deep shape into the surface of an aluminum block. This process was
chosen because it can be easily repeated without the need for large amounts
of material by simply lowering the zero reference by 5 mm in between runs.
The prepared faulty tool is used in two drilling operations (i.e., phases P3 and
P5) with two different rotational speeds. In total, 5 different tools are used in 6
manufacturing steps. During these phases, which are referred to as on phases,
the main spindle rotates. In between these on phases, automatic tool changes
are performed. These are referred to as off phases. The on phases in which the
tool with the prepared unbalance is active are referred to as unbalance phases.
Table[9.1| contains an overview of the phases in the recorded NC program.

Table 9.1: Overview over the phases in the recorded NC program. The tool with
unbalance is used in phases 3 and 5.

Phase | Description

- Initial tool pickup: Cutter head @ 63 mm
P1 Surface milling, circular deepening, rectangular deepening (3200 min™")
- Tool change: Insert drill @ 24 mm
P2 | Drill start bore for milling circular pocket (3000 min™")
- Tool change: Slot mill & 20 mm
P3 | Widening start bore (2800 min—!)
- Tool change: Roughing cutter @ 32 mm
P4 | Pre-milling circular pocket, roughing rectangular deepening (2800 min ')
- Tool change: Slot mill & 20 mm
P5 | Roughing circular pocket (4500 min—')
- Tool change: HSC end mill @ 20 mm
P6 | Contour edges (17000 min~!)
- Return last tool to magazine

Two aluminum blocks were used for the experiments carried out here, allow-
ing a total of 30 runs of the described machining process to be recorded. Of
these, 13 were with an attached unbalance, as described above.

9.2 Accuracy of the Phase Detection Component
Here, the accuracy of the phase segmentation (i.e., the on/off phase recognition)
and the production step identification and mapping are evaluated. The on/off

phase recognition algorithm is evaluated by comparing the timestamps of
the phase edges provided by our algorithm with the timestamps captured

200

9.2 Accuracy of the Phase Detection Component

in the NC data. We record the NC data only as a gold standard to evaluate
the accuracy of the on/off recognition algorithm, as narrowing the proposed
workflow to scenarios where NC data are available would limit the applicability
of the approach (cf. Section[8.T). The parameter for threshold-based smoothing
was set to 100 ms. This parameter was determined empirically to provide a
meaningful distinction between on and off phases.

Table presents the results in terms of time differences. Each column
represents a change between two phases, with a phase change ID with an
asterisk symbolizing that the phase has changed from an on phase to an off
phase. In contrast, phase change IDs without an asterisk denote phase changes
from off phases to on phases. Table9.2|reports the mean time difference, the
standard deviation of the difference, and the interquartile range of the difference
for each of these phase change IDs. All units are presented in milliseconds.
Here, a positive mean time difference means that the time computed by the
algorithm is later than the time from the NC data, while a negative value
indicates the opposite. For presentation reasons, the table has been split into
two smaller tables, which are displayed one below the other.

Regarding the mean difference, a clear distinction between phase changes
from on to off phases and phase changes from off to on phases is evident. Phase
changes from off to on phases range from about 300 ms to 360 ms. In contrast,
phase changes from on to off phases show a mean difference of only about
65 ms to 140 ms, except for the last phase change, which exhibits an average
time difference of almost 550 ms. These deviations are not sufficient for a clear

Table 9.2: Mean p [ms], standard deviation ¢ [ms], and interquartile range (IQR)
[ms] of the deviation between the timestamps of the predicted phase change and
recorded phase change. A * indicates that the phase changed from a manufacturing
step to a tool change phase.

ID | CHl CH2* CH3 CH4 CH5 CHeé*
p | 356.957 98957 313913 78.087 301348 66.870

o 18.190 16.339 1.041 13.588 0.982 8.081
IOR 35.5 32.5 2.0 26.0 1.0 14.5

ID | CH7 CHS8* CH9 CH10* CH11 CH12*

I 301.000 112522 301.217 137.174 305.696 -548.826
o 1.243 14.235 1.043 10.836 0.974 11.472
IQR 2.0 27.5 1.0 16.5 1.0 22.0

201

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

distinction between different phases. However, both the standard deviation
and the interquartile range show that the variation between runs is very small.
In contrast to the mean values, the standard deviation and interquartile range
show smaller values for phase changes from off to on phases. The interquartile
range is of particular interest because it represents that across all phase changes,
half of all values fall within a range of at most 35.5 ms. For 5 of the 12 phase
changes, this limit is even significantly smaller, reaching a maximum of 2 ms.
This demonstrates that the proposed on/off recognition algorithm identifies
the timestamps very well. Nevertheless, the identified timestamps differ by a
relatively fixed offset compared with the timestamps of the NC data. However,
this fixed offset can be determined during a calibration phase and, therefore,
does not affect the quality of the on/off recognition. Furthermore, the offset can
be explained by the fact that the NC data may use a different point in time as a
phase change than the algorithm.

The hierarchical clustering-based production step identification and mapping
algorithm, which is executed on the detected on and off phases, even obtained
a perfect matching with an accuracy of 100%.

9.3 Prediction Quality of the Anomaly Detection Component

For identifying the degradation effects caused by the attached unbalance, we
employed two approaches. First, we used an acoustic analysis method to
investigate the vibrations. However, since the results were not convincing, we
applied a second approach using machine learning methods. In the following,
we first discuss the results of the order analysis in Section followed by
the results of the machine learning methods in Section[9.3.2}

9.3.1 Acoustic Analysis

Unbalance, as an example of a machine tool anomaly, often produces audible
effects, which we also experienced during data collection for our experiments.
Therefore, the use of acoustical methods seems natural. Thus, our first attempt
was to apply a basic order spectrum analysis to find a discrimination between
good and anomalous measurements.

The occurring frequencies in the signal strongly depend on the rotational
speed of the main spindle of the machine under investigation. A more general
measure for varying rotational speeds than the frequency spectrum is the order
analysis [UW99]]. Here, the energy of the signal is displayed over the orders
and not the frequency. The orders are multiples of the rotational frequency and

202

9.3 Prediction Quality of the Anomaly Detection Component

provide a normalization for varying rotational speeds. While order analysis
is often applied to varying rotational speeds in order to obtain a spectrogram
over an acceleration ramp, it can still be helpful to normalize various constant
rotational speeds. The transformation can be simplified in such constant cases.
In our case study, the spindle is accelerated only once in each phase, i.e., after
picking up the tool, and then maintains the programmed speed. The speed vari-
ation is negligible, with a deviation of only about +5 min~!, so the assumption
of a stationary case is valid.

To this end, we calculate the fast Fourier transform (FFT) and apply Welch's
method [Wel67]] to cancel out noise effects. We employ a window size of 1000
samples, which corresponds to 0.5 s, with an overlap of 50% and apply the
Hanning window function. The frequency values are transformed to orders via
division by the fundamental order fj, which is the average rotational frequency
of the spindle for that segment.

In the case of an unbalance, we expect the effect to be visible in the spec-
trum. In particular, we expect the energy of the first order to be significantly
higher [Wir98]]. Figure[9.1|shows an overlay of all spectra for the measurements
with and without unbalance for the second unbalance phase (i.e., phase P5).
The comparison shows that the shapes of the curves with and without unbal-
ance are similar. While there is no pronounced difference in the first order, it
is noticeable that the overall level is slightly increased. In contrast, the first
unbalance phase (i.e., phase P3) exhibits no difference at all and is therefore
not presented here.

165

160

Amplitude [dB]
5 & & &

i
w
w

130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Orders

Figure 9.1: Order spectra of all measurements in X direction for the second unbalance
phase P5. Measurements of the experiments with attached unbalance are plotted in
red, measurements of the normal experiments are plotted in green.

203

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

Differences between the two unbalance phases could be attributed to the
higher rotational speed in the second unbalance phase, as we generally expect
higher excitation levels and, therefore, a more significant effect of the unbalance.
The lack of an increased first order might indicate that the unbalance, although
having an audible effect, does not affect the structure-borne sound as much.
While a slight effect is visible in the plot, it is difficult to derive criteria that
clearly separate the two classes.

Based on this result, it can be seen that order analysis as a stand-alone classi-
fier or as a preprocessing step is not as sensitive to the anomaly as expected.
For various anomaly effects, it might be even less effective. We conclude that
the acoustic approach is not suitable for our simplified means of data collection
and that a more generic approach would improve the applicability.

9.3.2 Comparison of Machine Learning Methods

In order to augment the data set, we resample the original vibration signals
to a lower sampling rate (cf. Section[8.2.2)). For our experiments, we set the
resampling factor r to 4. Therefore, the actual sampling rate of the vibration
sensor is reduced from 2 kHz to 500 Hz. Given that we focus on automatic
anomaly detection, the machine learning task is a binary classification. Thus, we
chose accuracy, precision, recall, F1-score, and Matthew’s correlation coefficient
(MCC) as evaluation measures. For more details on these evaluation measures,
please refer to Chapter

We split the data into a training and a testing set to investigate the predictive
power of the learned machine learning models. For this purpose, we used
70% of the data for model learning and the remaining 30% of the data for
validating the respective model performance. We are aware that splitting the
data into training and testing sets may result in an arbitrary ranking of the
machine learning models. Therefore, we conducted the experiment 100 times
with random splits between the training and testing data sets. However, we
ensured that resampled signals originating from the same base signal were
used for either training or testing. Otherwise, the results would be biased
since the resampled vibration signals are very similar to the original signal. As
introduced in Section[8.2.2 we applied logistic regression (LogReg), Random
Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB) to the data
in order to detect the unbalance. The parametrizations used for the algorithms
as well as the R libraries are given in Table

The results for the first unbalance phase (i.e., phase P3) are presented in
Figure As we conducted 100 experiments per machine learning method,
the figure depicts box plots of the distributions of the obtained scores. The

204

9.3 Prediction Quality of the Anomaly Detection Component

Table 9.3: Parametrization and used R libraries for the machine learning methods.

Method Library Parameters

LogReg stats::glm family = binomial(link = "logit")
RF randomForest [[BCLW18|] ntree = 500, mtry = 10

SVM e1071 [MDH"19] kernel = "polynomial”, degree = 3,

coef0 = 0, cost = 5, scale = FALSE,
epsilon = 0.1, shrinking = TRUE

XGB xgboost [[CH19] objective = "binary:logistic",
booster = "gbtree", gamma = 0.5,
eta = 0.1, max_depth = 10,
nrounds = 1000, subsample = 0.75,
colsample_bytree =1,
eval_metric = "error",
eval_metric = "logloss",
watchlist = list(train, val)

horizontal axis represents the different evaluation measures, while the left ver-
tical axis shows the obtained scores for the measures accuracy, precision, recall,
and Fl-score. On the contrary, the right vertical axis is used for Matthew’s
correlation coefficient since this measure ranges from -1 to 1 instead of 0 to 1.
Analogous to the other four measures, a larger value of MCC indicates a better
prediction. Accordingly, an MCC of 1 corresponds to a perfect prediction, while
-1 represents the worst possible prediction. Each of the four different colors rep-
resents one of the machine learning methods, i.e., logistic regression (orange),
Random Forest (green), SVM (blue), and XGBoost (purple). Furthermore, the
brightness of the color denotes whether the resampling method was applied
or not. Here, lighter shades represent r = 1 and, thus, that the resampling
method was not used, while darker shades represent the results obtained with
a resampling factor of r = 4.

Overall, the medians of accuracy, precision, recall, and F1-score range from
about 0.45 up to about 0.80 (left y-axis). Concerning Matthew’s correlation co-
efficient, the medians range from 0.00 to 0.50 (right y-axis). However, the SVM
and the logistic regression without resampling obtained rather arbitrary results.
Their obtained values are close to random guess (0.50 for accuracy, precision,
recall, and F1-score and 0.00 for Matthew’s correlation coefficient). Random
Forest and XGBoost without resampling, by contrast, already produced promis-

205

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

1.004 . 1.0

0.751 0.5 .
© I I I I I I % Setting

0
= @ E3 LogRegr=1
g S B LogReg r=4
° Q B RFr=1
g osor - |- - -B-1H A - ~4-00 § m RFr4
= g B SVMr=1
S . ® m SVMr=4
< . : % B XGBr=1
XGB r=4
0.25] 050 ™
0.00{ - ool e . --1.0
Accuracy Precision Recall F1-Score MCC
Metrics

Figure 9.2: Achieved values of the machine learning methods for each evaluation
measure for the first unbalance phase (i.e., phase P3). The dashed horizontal line
shows the theoretical baseline of the application of random guess.

ing results that were significantly dissimilar to the random guesses. First, this
proves that unbalance detection is possible. Second, Figure 9.2|demonstrates
that applying the resampling approach with a factor of » = 4 improved the
performance of all machine learning methods for all evaluation measures. This
is evident from the fact that both the medians and the 25th percentiles (i.e., the
lower end of the box) of the approaches with resampling are always higher
than those of the respective approaches without resampling. Regarding the
75th percentiles (i.e., the upper end of the box), resampling outperforms the
original signal in 18 out of 20 cases. Only for recall, a higher third quartile
was achieved when applying Random Forest and XGBoost without resam-
pling. With the application of resampling, the SVM and logistic regression also
produced acceptable results, which are clearly distinguishable from simple,
random guesses. Nevertheless, they did not reach the performance of Random
Forest and XGBoost with resampling.

For a numerical comparison of the anomaly detection quality of the machine
learning methods, Table 9.4/ aggregates the average values obtained for each
setting and each evaluation measure. Again, the results show that resampling
the vibration signal improved the performance of all machine learning meth-
ods for all evaluation aspects. In addition, Random Forest outperformed the
other machine learning methods with respect to accuracy, recall, F1-score, and
Matthew’s correlation coefficient. Only in terms of precision, XGBoost achieved

206

9.3 Prediction Quality of the Anomaly Detection Component

Table 9.4: Mean 1 of the machine learning measures for resampled (r = 4) and non-
resampled (r = 1) signals of the first unbalance phase (i.e., phase P3). The best values
of each measure are printed in bold.

Model RF SVM LogReg XGB
Res. Factor r=4 r=1 r=4 r= r=4 r=1 r=4 r=

Accuracy [p] 0.725 0.661 0.669 0461 0.671 0529 0.717 0.667
Precision [p1] 0.761 0.665 0.705 0.523 0.688 0.532 0.781 0.702
Recall] 0.786 0.769 0.674 0.482 0.709 0.534 0.752 0.762
F1-Score [1] 0.736 0.677 0.670 0.505 0.672 0.569 0.735 0.693
MCC [1] 0.505 0.393 0.352 -0.042 0.360 0.069 0.464 0.363

a higher value than Random Forest. SVM and logistic regression could not
keep up with Random Forest and XGBoost in this experiment.

In addition to the average anomaly detection performance, the robustness of
the learned models is also of great importance. For this purpose, the variation
of the predictive power over the randomized experiments is considered. The
advantage of more robust models is that the prediction quality can be trusted
more, while less robust models show increased uncertainty. Table 9.5(contains
the standard deviations of the anomaly detection performance across all 100
experiments for each machine learning method. Here, logistic regression with
resampling achieved the lowest standard deviation with respect to accuracy,
recall, F1-score, and MCC. Only with respect to precision, XGBoost with resam-
pling achieved a slightly smaller value. However, as illustrated in Table the
overall predictive power of logistic regression cannot keep up with Random
Forest and XGBoost in our use case. Moreover, the standard deviations of Ran-

Table 9.5: Standard deviation o of the machine learning measures for resampled
(r = 4) and non-resampled (r = 1) signals of the first unbalance phase (i.e., phase
P3). The best values of each measure are printed in bold.

Model RF SVM LogReg XGB
Res. Factor r=4 r=1 r=4 r=1 r=4 r=1 r= r=1

Accuracy [¢] 0.153 0.173 0.130 0.178 0.126 0.196 0.147 0.152
Precision [¢] 0.221 0.226 0212 0.264 0.192 0.314 0.189 0.200
Recall [o] 0205 0.262 0.217 0260 0.182 0.299 0.195 0.239
F1-Score [¢] 0.167 0.179 0.166 0.169 0.143 0.181 0.147 0.165
MCC [o] 0253 0.325 0.251 0364 0.231 0417 0.276 0.313

207

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

dom Forest and XGBoost using resampling are only slightly larger than that of
logistic regression with resampling. Furthermore, the table reveals that resam-
pling reduced the standard deviation for all machine learning methods and
evaluation measures. In some cases, such as the MCC for all machine learning
methods and precision for logistic regression, the reduction is even substantial.
Therefore, it can be concluded that the proposed resampling method improved
the results for the first unbalance phase on average and made the machine
learning models more robust.

Figure[0.3|presents the obtained machine learning measures for the second
unbalance phase (i.e., phase P5). The layout and color-coding of the figure
are identical to Figure However, compared with Figure the anomaly
detection performance is much better and in most cases, the 75th percentile
even reaches 1.00. Similar to the first unbalance phase, the predictive power of
logistic regression learned without resampling scored by far the worst. Nev-
ertheless, the SVM was able to keep up with Random Forest and XGBoost in
this unbalance phase. Again, employing the resampling approach always per-
formed better or at least as well as the approach that derived the characteristics
merely on the original vibration data. Only in a single case, namely the 25th
percentile of the F1-score for XGBoost, the original vibration data achieved a
higher value than the resampling approach. The reason for the considerably
improved unbalance detection is most likely the increased rotational speed. In

1.004 . , . -1.0
0.751 , . -0.5 .
. ' : Z Setting
o . S
= . C . © E LogRegr=1
g o ol . & B LogRegr=4
-) S & RFr=l
© 050 f|- - === - Ul — e ~dbeeblie e e e s e —l00 g<_) B RFr=4
% c B SVMr=1
G O @ SsVMr=4
< % B3 XGBr=1
XGB r=4
0.25; -0.5 Q -
0.004 -1.0
Accuracy Precision Recall F1-Score MCC
Metrics

Figure 9.3: Achieved values of the machine learning methods for each evaluation
measure for the second unbalance phase (i.e., phase P5). The dashed horizontal line
shows the theoretical baseline of the application of random guess.

208

9.3 Prediction Quality of the Anomaly Detection Component

contrast to unbalance phase P3, which is presented in Figure 9.2} the rotational
speed was increased from 2800 min~! to 3500 min .

Table reports the mean values obtained for each evaluation measure
by all machine learning methods with and without resampling. Again, the
proposed resampling method significantly increased the average anomaly de-
tection quality for all settings. As with unbalance phase P3, Random Forest
with resampling outperformed the other machine learning methods on all
measures except precision. However, for this second unbalance phase, SVM
with resampling achieved the highest average precision. Nevertheless, XGBoost
with resampling was only slightly worse than Random Forest with resampling
on all evaluation measures. In contrast to the first unbalance phase, SVM also
performed competitively and was able to keep up with Random Forest and
XGBoost. Only logistic regression could not keep up with the other methods.

Table 9.6: Mean p of the machine learning measures for resampled (r = 4) and non-
resampled (r = 1) signals of the second unbalance phase (i.e., phase P5). The best
values of each measure are printed in bold.

Model RF SVM LogReg XGB
Res. Factor r=4 r=1 r=4 r=1 r=4 r=1 r=4 r=1

Accuracy [] 0.908 0.879 0.890 0.860 0.817 0.593 0.907 0.857
Precision [p] 0.926 0.875 0.933 0.908 0.834 0.623 0.921 0.889
Recall [1] 0917 0908 0.879 0.845 0.827 0.586 0.910 0.884
F1-Score [] 0.909 0.875 0.891 0.860 0.813 0.609 0.902 0.869
MCC [p] 0.809 0.770 0.776 0.699 0.649 0.214 0.805 0.739

The standard deviations for all settings in the second unbalance phase P5
are reported in Table Similar to the first unbalance phase P3, the resam-
pling procedure increased the robustness of the machine learning methods,
as demonstrated by the reduction in the standard deviation for all settings.
However, unlike the first unbalance phase, logistic regression with resampling
no longer achieved the lowest standard deviations. More specifically, compared
with the other three machine learning methods with resampling, logistic re-
gression performed considerably worse regarding the standard deviation for all
evaluation measures. Random Forest achieved the lowest standard deviation
for the measures accuracy, recall, F1-score, and MCC. However, SVM reached
the same standard deviation for MCC and even outperformed Random Forest
with respect to precision. Compared with the first unbalance phase, the stan-
dard deviations for all methods except logistic regression have decreased for
all evaluation measures.

209

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

Table 9.7: Standard deviation o of the machine learning measures for resampled
(r = 4) and non-resampled (r = 1) signals of the second unbalance phase (i.e., phase
P5). The best values of each measure are printed in bold.

Model RF SVM LogReg XGB
Res. Factor r=4 r=1 r=4 r=1 r=4 r=1 r=4 r=1

Accuracy [o] 0.086 0.106 0.092 0.099 0.115 0216 0.098 0.151
Precision [¢] 0.130 0.170 0.119 0.138 0.196 0.300 0.143 0.165
Recall [o] 0.123 0.141 0.147 0.186 0.185 0.311 0.144 0.198
F1-Score [¢] 0.088 0.121 0.097 0.103 0.130 0.197 0.112 0.143
MCC [o] 0.196 0.207 0.196 0.236 0.224 0.428 0.215 0.249

As a summary, the average anomaly detection performance increased from
the first to the second unbalance phase and the standard deviation decreased.
This behavior could occur due to the fact that the rotational speed increased
from 2800 min~! (first unbalance phase P3) to 3500 min~! (second unbalance
phase P5). Moreover, the proposed resampling technique increased the predic-
tive power and considerably reduced the variation in predictive power. The best
overall results were obtained by Random Forest with resampling, as it achieved
the best average anomaly detection power in 8 out of 10 cases and showed the
smallest variation in anomaly detection power in 4 out of 10 cases. Finally, the
experiment demonstrated that the proposed workflow is able to accurately
detect anomalies in machine tools when proper resampling is applied.

9.4 Discussion

As a recapitulation of the most important results, Section briefly outlines
the evaluation results. Although our goal was to introduce an optimal and
universally applicable workflow, we are aware of certain limitations. These are

discussed in Section [9.4.2]

9.4.1 Summary of Evaluation Findings

As a brief summary of the experimental real-world case study, the key findings
are as follows:

(I) On the basis of the measured machine-internal data and vibration signals,
conventional acoustic analysis cannot detect the anomalies well. This observa-
tion is mainly due to the requirements of such methods to receive data with

210

9.4 Discussion

high sampling rate and signal resolution, which in turn requires expensive
sensors. The minor differences were not sufficiently meaningful to act as classi-
fiers without human assessment. However, our goal was to achieve automated
detection using standard machine data and inexpensive sensors while keeping
the required amount of training experiments low.

(II) The proposed machine learning-based end-to-end workflow for auto-
matic anomaly detection is able to segment the data for each production step
and detect the anomalies with an F1-score of up to 90.9%. Moreover, the case
study demonstrates that the proposed resampling technique of the original
signal considerably improves the quality of the anomaly detection.

(IIT) The proposed automatic workflow detects anomalies in machine tools
with high accuracy even with little training data. This proves that the workflow
can be quickly integrated into industrial production processes.

(IV) Random Forest yields the overall best anomaly detection results based
on the features and parametrization used in this case study. The application
of XGBoost also achieves comparably good results. In contrast, the results for
SVM and logistic regression without resampling are close to random guessing.
When resampling is used, their performance also increases but still does not
reach the anomaly detection quality of Random Forest and XGBoost.

(V) Increasing the rotational speed results in more accurate anomaly de-
tection rates. This is consistent with the physical properties of an unbalance,
as higher rotational speeds imply larger resulting forces, which in turn affect
the measured signals. Therefore, the type of detection may not be suitable for
phases with significantly lower rotational speeds.

9.4.2 Threats to Validity

The goal of this contribution was not to develop a novel machine learning ap-
proach but to combine several existing base-level machine learning techniques
in an intelligent way to automatize the process of anomaly detection in machine
monitoring data, especially for standard machine signals and low-cost sensors.
By demonstrating the applicability and effectiveness of such an automated
workflow based on comparatively simple machine learning techniques, we aim
to bring academic theory and industrial practice closer together.

We are aware that 30 measurement runs only provide a small data set for
machine learning models. In practice, however, it is an important criterion
that methods can be applied quickly without long measurement and training
times. The workflow integrates the resampling technique to augment the
training data artificially, whereby it achieves such good performance despite
the limited training data. The experimental results show that the automatic

211

Chapter 9: Evaluation of the End-to-End Machine Anomaly Detection Workflow

workflow already achieves good performance even with these few training data.
However, increasing the amount of training data would most likely improve
the models even further.

The main problem of most anomaly detection mechanisms for machine data
is reusability and transferability, as they require in-depth domain knowledge
and dedicated data that other practitioners cannot acquire. However, the
proposed workflow requires only one input from the operator, which is the
number of distinct production steps performed by the machine. Furthermore,
the proposed automated workflow relies only on standard physical quantities
(cf. Section[8.1)) that can be measured on any comparable machine, making the
approach transferable.

As an alternative to sensors with integrated analog-to-digital conversion,
analog input signals were also sampled via the machine’s PLC. Although this is
possible in principle, it has some major downsides. The PLC code would have
to be adapted, which can be a hindrance for existing production machines, if
only for liability reasons. Furthermore, sampling the data at a high frequency
imposes an additional load on the control. Depending on the use of the machine,
e.g., controlling a high number of axes in real time, the computing resources
could already be exhausted. Finally, the sampling rate would depend on the
cycle time of the PLC. Typically, depending on the model and brand, the fastest
possible cycle times are in the range of 1 ms to 10 ms, i.e., 1 kHz to 0.1 kHz.
In practical applications, the cycle time is often intentionally relaxed, e.g., to
10 ms or 20 ms, to avoid stressing the system when fast cycles are not needed.
Input modules with oversampling capabilities could make sampling more
independent of PLC cycle time but require additional hardware. Therefore,
using the PLC directly is not optimal for our scenario to acquire additional
high-frequency data from external sensors.

While the resolution of the vibration sensor used proved insufficient for
detailed acoustic analysis, a more elaborate measurement setup would have
provided a better signal and, therefore, possibly better results for the acoustic
features. We did not pursue this in favor of a more straightforward solution in
terms of measurement and preprocessing. This allows to keep the approach
manageable and the cost low while maintaining satisfactory performance.

Although more runs were recorded, only the runs that processed material
were used for the experimental results. For runs where the machine processed
no material, but the operations were done through air only, the vibration
signals as well as some internal machine data, such as torque and DC link
power, contain considerably less information, resulting in different data pat-
terns. Therefore, the learned models were not applicable to these runs.

212

9.5 Concluding Remarks

9.5 Concluding Remarks

This chapter provides results of the automated end-to-end workflow for anomaly
detection of machine tools in a real-world case study. Thus, it contributes to
research question RQ B.1 by demonstrating the quality and effectiveness of
the proposed approach. To this end, we emulated machine anomalies by at-
taching a small weight to a drill of a CNC machine in radial direction. The
results revealed that the end-to-end workflow accurately segmented the raw
machine signals of entire manufacturing processes into individual production
and tool change phases. Moreover, by applying hierarchical clustering, similar
production phases were perfectly mapped to common identifiers. Additionally,
we compared conventional acoustic analysis with the machine learning models
integrated into the proposed workflow to detect anomalies in machine tools.
Here, we have shown that the conventional approach could not distinguish
between phases with and without anomalies. In contrast, Random Forest pro-
vided the best overall anomaly detection quality with an F1-score of up to 90.9%.
Finally, we demonstrated the benefits of resampling the original vibration data
to augment the training data. This procedure not only improved the average
quality of anomaly detection, but also the robustness and, consequently, the
trustworthiness of the models.

However, there are also two noteworthy limitations of the case study con-
ducted. First, only one machine and one type of anomaly was investigated.
In the future, the applicability of the presented workflow should be studied
for further machines and anomalies. The second limitation is that the results
revealed that the higher the speed, the better the anomaly detection quality. In
turn, this suggests that the proposed workflow may not provide satisfactory
results for rotating machines with too low rotational speeds.

213

Chapter 10

Comparison of Modeling Alternatives for
Time-to-Failure Prediction

Chapter [8 presented a novel approach for automated end-to-end detection
of anomalies in machine tools. However, merely detecting current anomaly
patterns does not provide enough information for many applications. Instead,
the time-to-failure, sometimes also referred to as remaining useful lifetime, is
desirable because it provides additional information on the estimated time of
the breakdown. Thus, it allows for more detailed planning and scheduling of
countermeasures. However, with respect to machine learning-based time-to-
failure prediction, several modeling alternatives are conceivable. Therefore,
this chapter focuses on four main time-to-failure prediction modeling alterna-
tives on the use case of hard disk drives. However, to first introduce important
fundamentals, Section[10.1] provides general information on hard disk drive
monitoring. Given the fact that time-to-failure data is generally highly imbal-
anced, we then present three binary classification alternatives with different
oversampling strategies in Section[10.2] Subsequently, we model the time-to-
failure using multi-class classification instead of binary classes in Section
Therefore, a new labeling strategy is used to generate meaningful target values.
In Section time series forecasting is incorporated to estimate the develop-
ment of the features to improve both binary and multi-class prediction. As a
final time-to-failure modeling alternative, we employ regression to predict the
time-to-failure as a continuous value, rather than considering only fixed time
windows in the form of classes (cf. Section[10.5). Finally, we briefly summarize
this chapter by answering the respective research questions in Section[10.6]

Parts of the content of this chapter are based on our previous work published
as a full paper as part of the 20th International GI/ITG Conference on Measure-
ment, Modelling and Evaluation of Computing Systems (MMB) [[ZKE™20]].

215

Chapter 10: Comparison of Modeling Alternatives for Time-to-Failure Prediction

10.1 Introduction to Hard Disk Drive Monitoring

The increasing size of today’s data centers along with the expectation of 24/7
availability is continuously increasing the complexity of managing hardware,
as large IT companies such as Google, Amazon, Microsoft, and IBM have
millions of servers worldwide. The administration of these servers is therefore
becoming an increasingly expensive and time-consuming task. In particular,
unexpected crashes of servers, for example due to hard disk drive failures, can
cause unavailable services and data loss. For this reason, hardware is usually
equipped with monitoring mechanisms to observe the current condition.

A system known as Predictive Failure Analysis for monitoring internal hard
disk drive parameters to improve reliability was first implemented in hard
disk drives by IBM in 1992 [Sea99]. Compagq, Seagate, Quantum, and Con-
ner integrated another monitoring system called IntelliSafe [OP95]] just a few
years later. In 1995, Seagate sought a version compatible with other hard-
ware manufacturers. Therefore, IBM, Quantum, Western Digital, and Seagate
collaborated to develop a new hard disk drive monitoring system based on
IntelliSafe and Predictive Failure Analysis. The result of this collaboration was
the Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.) [[Sea%99]].
Nowadays, this technology is implemented as a monitoring system in most
hard disk drives (HDDs) and also solid state drives (SSDs). Here, various
internal parameters and operations, such as head-flight height, spin up time,
and number of drive calibration retries, are stored during runtime. Although
most drive manufacturers include SSM.A.R.T. for drive monitoring, each drive
manufacturer can define its own set of attributes to monitor and thresholds
for these parameters that should not be exceeded. Nevertheless, there is a
subset of SM.A.R.T. attributes that are commonly monitored by most drive
manufacturers, such as spin up time, read error rate, and start/ stop count.
However, S.M.A R.T. lacks intelligent analysis and linking of the various param-
eters. In particular, predictive analytics would allow detecting potential failures
or crashes in advance, avoid delays caused by unexpected failures, and, thus,
improve reliability in cloud computing. Moreover, since it enables warnings
before the failure actually occurs, it can support administration, for instance by
offering the potential to guarantee the existence of a backup of the data and
the availability of a replacement device.

In general, hard disk drive failures can be divided into two types: predictable
and unpredictable failures. Predictable failures occur due to slow mechanical
processes, such as wearing. Since the SM.A.R.T. technology employs only
static thresholds of individual parameters, it can only detect slow degradation
effects caused by predictable mechanical failures. According to Seagate [Sea%99],

216

10.2 Binary Classification for HDD Failure Prediction

mechanical and, thus, mostly predictable failures are responsible for about 60%
of all failures. Therefore, the detection rate based on S.M.A.R.T. thresholds alone
is insufficient. Unpredictable failures, by contrast, tend to occur spontaneously.
The reasons for such unpredictable failures are typically of electronic nature or
sudden physical failures. Although the mere use of manufacturer thresholds
does not cover both types of failures, a study by Google [PWB07]|] showed that
certain SM.A.R.T. attributes, for instance the number of (offline) uncorrectable
sectors and the number of reallocation events, are strongly correlated with hard
disk drive failures.

10.2 Binary Classification for HDD Failure Prediction

In order to predict impending failures by means of a binary classification ap-
proach, we divide the data into two different classes. For this purpose, all
instances with a time-to-failure of one week or less are given class label 1,
while the remaining S.M.A.R.T. data instances are labeled with class label 0.
This labeling procedure was also performed by T. Pitakrat et al. [PVHG13]].
Although T. Pitakrat et al. conducted a broad comparison of different machine
learning methods, they did not evaluate the impact of oversampling techniques
to balance the number of instances of both classes. To this end, we apply three
different ways of training the machine learning model: (I) binary classifica-
tion without further data preparation (referred to as unmodified), (II) binary
classification with Enhanced Structure Preserving Oversampling (ESPO) as
oversampling technique, and (III) binary classification with Synthetic Minority
Oversampling Technique (SMOTE) as oversampling mechanism. Figure [10.]]
schematically illustrates the three different alternatives. After preparing the
training data, we apply Random Forest as machine learning technique as it is
typically comparatively fast for model learning and prediction, robust against
overfitting, and can handle multiple classes efficiently. Although handling
multiple classes is not explicitly required for comparing data preparation for
binary classification, it is necessary for multi-class classification in Section [10.3]
and, therefore, to maintain comparability between the binary and multi-class
approaches. Moreover, Random Forest obtained strong and robust results in
the comparison of machine learning methods by T. Pitakrat et al. [PVHG13]].

10.2.1 Unmodified

In the binary classification approach without any further preprocessing steps,
we pass the S.M.A R.T. measurement instances along with their respective

217

Chapter 10: Comparison of Modeling Alternatives for Time-to-Failure Prediction

(1) ESPO

Random Forest

Training
Data

() Unmodified

(111) SMOTE

Figure 10.1: Schematic illustration of the three binary classification alternatives.

class label to Random Forest to learn the dependency between the SM.A.R.T.
measurements and the class labels. Upon learning the model, we provide
unseen instances to the learned model to predict whether or not the SM.AR.T.
attributes of the hard disk drive indicate an impending failure.

10.2.2 Enhanced Structure Preserving Oversampling

Dealing with imbalanced data is a non-trivial challenge for machine learning
methods. In this context, imbalance refers to training data containing signif-
icantly more instances of one class (majority class) than of the other class
(minority class). This often yields biased models that tend to overestimate
in the direction of the majority class. In the case of hard disk drive failure
prediction, the number of instances of the class representing hard disk drives
that will fail within the next week is much smaller. There are two common
methods to deal with such class imbalances, namely undersampling and over-
sampling. Undersampling involves dismissing instances of the majority class
in order to achieve a balance in the number of class instances. Oversampling, in
contrast, creates new instances of the minority class based on existing instances.
For this approach, we utilize oversampling instead of undersampling since
removing majority class instances would reduce the size of the training data set,
which typically reduces the quality of the mode]ﬂ In this second alternative of
the binary classification approach, we employ ESPO as oversampling method.
ESPO synthetically generates new instances of the minority class based on the
multivariate Gaussian distribution [[CLWN13]]. To this end, ESPO estimates

This does not apply if the data set is still sufficiently large after the undersampling.

218

10.3 Classification of Multiple Failure Levels

the covariance structure of the minority class instances and regularizes the un-
reliable eigenspectrum [|[CLWN13]]. Finally, ESPO expands the set of minority
class instances by maintaining the main covariance structure and generating
protection deviations in the trivial eigendimensions [CLWN13]]. Once the mi-
nority class is oversampled, we follow the same model learning procedure as in
alternative (I). However, with this alternative, the machine learning procedure
receives more training data and approximately equally distributed training
data with respect to the two classes.

10.2.3 Synthetic Minority Oversampling Technique

This alternative is similar to alternative (II), but uses SMOTE instead of ESPO
as oversampling technique. SMOTE produces new minority class instances by
combining instances that are close to each other in the feature space [CBHKO02]].
To this end, SMOTE determines the nearest neighbors of each minority class
instance. Next, SMOTE picks a random subset of these neighboring instances
and computes the differences between their features and the features of the
respective instance. The computed feature differences are then weighted by a
random number between 0 and 1. Finally, SMOTE adds the resulting weighted
difference to the features of the instance under consideration and provides the
result as a new minority class instance [CBHKO2]].

10.3 Classification of Multiple Failure Levels

In order to not only predict whether or not a hard disk drive will fail in the
near future, but to more accurately predict the time-to-failure, multi-class
classification can be used instead of binary classification.

10.3.1 Failure Level Labeling

For the prediction of upcoming failures in multiple time windows, the target
variable must be re-defined. To this end, we have converted the binary failure
variable of the original data into a new failure label that includes multiple
classes. In the original data, the failure state is 0 if the hard disk drive is running
properly, turning to 1 only if the hard disk drive is stopped due to a failure,
i.e., the time-to-failure is zero. Given that the goal is to predict multiple failure
levels, other class labels are required. Therefore, we define a set of relevant
classes, each representing a different time-to-failure window: 0, (0,1], (1,2],
(2,51, (5,12], (12,24], (24,48], (48,72], (72,96], (96,120], (120,144], (144,168],
(168,00). Thus, each of these labels represents the interval of the time-to-failure

219

Chapter 10: Comparison of Modeling Alternatives for Time-to-Failure Prediction

in hours. The last class label (168,00) indicates that no failure will occur within
the next week. Thus, this class corresponds to class 0 of the binary classification
approach. In contrast, the entire set of all other classes corresponds to class 1
of the binary classification approach. For the sake of simplicity and readability,
we will refer to each of these time-to-failure classes only by its upper bound in
the following. That is, if the time-to-failure prediction model yields label 48,
the failure is expected to occur at the earliest after 24 hours (i.e., after the next
smallest class label), but no later than 48 hours. Algorithm [I4]illustrates the re-
labeling task flow, while Figure[10.2] presents an example of such a re-labeling
process. The left-hand side shows the original data with the time-to-failure
in the left column, S.M.A.R.T. attributes in the middle columns, and the two
failure states in the right column. On the right-hand side, the figure displays
the data with the newly created class labels in the right column.

Algorithm 14 Re-labeling

Input: time-to-failure t¢f to be re-labeled and breakpoints label_breaks for
different time-to-failure classes

Output: lower bound lower_bound and upper bound upper_bound of the re-
spective time-to-failure class

1: ### if the failure is currently present, the lower and upper bounds are the same
2: if (ttf ==0) then

3: return [0,0]

4: end if

i=1
while (i < length(label_breaks)) do

if (label_breaks[i] < ttf) then

lower_bound = label_breaks[i]

end if
10: if (label_breaks[length(label_breaks) —i)] > ttf) then
11: upper_bound = label_breaks[length(label_breaks) — (i — 1)]
12 endif
13: i=1+1
14: end while
15: return [lower_bound, upper_bound)]

Y ®» N7

220

10.3 Classification of Multiple Failure Levels

Time-to- |[S.M.A.R.T. | Failure Time-to- |S.M.A.R.T.| Failure
Failure | Attributes | State Failure | Attributes | Classes

172.634 0 172.634 Inf
170.651 0 170.651 Inf
168.651 0 168.651 Inf
166.651 0 Re_Labeling 166.651 e 168
97.167 0 97.167 120
95.167 0 95.167 96
0 1 0 0

Figure 10.2: An example of the re-labeling technique.

10.3.2 Model Learning

Once the new class labels are computed based on the time-to-failure, the
S.M.A.R.T. attributes are passed to the time-to-failure prediction model as
features, while the newly created time-to-failure labels are used as target vari-
ables. Thus, the model not only learns whether or not the hard disk drive is
about to fail, but also learns the time-to-failure in discretized form. Therefore,
the binary classification (cf. Section is extended to a multi-class scenario,
with each class representing a certain time window in which the predicted
failure is expected to occur.

10.3.3 Downscaling to the Binary Classification Case

Although the multi-class model is also evaluated for multi-class classification,
the predictions of the multi-class time-to-failure prediction approach are also
scaled down to the same two classes that are included in the binary approach.
This is done because the macro measures of the multi-class classification are
not directly comparable to the binary classification measures. For this purpose,
the class oo of the multi-class approach is equivalent to class 0 of the binary
approach. Instead, class 1 of the binary approach is expressed by the totality of
all classes except class oo of the multi-class approach.

221

Chapter 10: Comparison of Modeling Alternatives for Time-to-Failure Prediction

10.4 Integrating Forecasting into the Feature Generation Step

In order to further enhance the time-to-failure prediction quality, we integrate
time series forecasting to estimate future S.M.A.R.T. readings. To this end, we
interpret the sequence of S M.A.R.T. measurements for each hard disk drive
as a multivariate time series. This multivariate time series is partitioned into
univariate time series, with each univariate time series containing the historical
observations of a single SM.AR.T. feature. Next, the length of each time
series is determined. Depending on the length of the time series, either Naive
forecasting or ARIMA is applied to produce a one-step-ahead forecast. Note
that we did not choose Telescope because the S.M.A.R.T. time series do not
exhibit seasonal patterns. If the S.M.A.R.T. time series has less than 10 values,
Naive forecasting is applied, since such time series are not sufficiently long to
learn a more complex model. Otherwise, an ARIMA model is fitted on the time
series of S.M.A.R.T. observations. After learning the forecast model, a one-step-
ahead forecast is produced for each univariate time series and, thus, for each
SM.ART. feature. These forecast S.M.A.R.T. features are added to the current
S.M.ART. features and passed to the time-to-failure prediction model. In order
to compare the time-to-failure prediction models presented in Sections [10.2]
and [10.3 with this time-to-failure prediction models using additional forecast
information, the Random Forest prediction model is learned in both variants,
binary and multi-class classification.

10.5 Regression for Time-to-Failure Prediction

The binary classification presented in Section[10.2] only provides predictions
of whether or not a hard disk drive is likely to fail within the given horizon.
The multi-class classification approach from Section further provides a
more concrete time window with lower and upper bounds, i.e., the predicted
time-to-failure class, within which the failure is expected to occur. However,
all these predictions are only discretized.

To obtain continuous predictions of the time-to-failure, regression must be
utilized instead of classification, since classification can only predict a discrete
output, which must belong to a certain set of classes. In addition, the output
class must also be included in the training set so that the model can learn the
association between the features and the target class. In contrast, regression
can predict any continuous value from the input features. Hence, regression
models can predict values that are not present in the training set. To this
end, we implement two time-to-failure regression alternatives using Random

222

10.6 Summary and Discussion

Forest. The first approach takes all available data to learn the Random Forest
regression model. For this reason, we refer to this approach as naive. The
second alternative learns the Random Forest regression model exclusively on
those training instances where the failure occurs within the next 168 hours.
As we conduct this filtering step before learning the model, we refer to this
approach as pre-filtering. Next, the Random Forests regression model is applied
to only those S.M.A.R.T. measurements where a failure will occur within the
defined horizon. To obtain this information, the approaches presented in the
Sections - can be employed, for instance. The concept of pre-filtering
the training set to hard disk drives that actually fail within the next week aims
to focus the regression model on failing devices. For healthy hard disk drives, a
time-to-failure regression is meaningless since, if there is not yet an indicator of
impending failure, it is not possible to distinguish whether the hard disk drive
will last, for instance, another year or two years. Therefore, the time-to-failure
for healthy hard disk drives can only be guessed. By pre-filtering the data set,
we explicitly target the regression model to the relevant parts of the data to
achieve a more accurate time-to-failure prediction.

10.6 Summary and Discussion

To conclude this chapter, we briefly summarize the main contributions of this
chapter by answering the modeling aspects of research question RQ B.2, which
generally addresses the challenge of how to implement proactive prediction of
critical events for technical systems. However, this research question consists of
three individual parts, of which this chapter provides answers to the first two,
namely research questions RQ B.2.1 and RQ B.2.2. Research question RQ B.2.1
specifically targets imbalances in the data set. In critical event prediction in
general and specifically for technical systems, such critical events, e.g., severe
failures causing breakdowns, occur quite infrequently. Therefore, the available
training data for model learning typically contain only few instances of critical
events, but a large set of instances representing a healthy system state. However,
such data imbalances negatively affect the learning process of machine learning
models. In fact, the machine learning models already achieve high prediction
quality with respect to conventional measures by predicting only the majority
class. Although this yields good evaluation measures, the predictions do
not contain meaningful information. To remedy this issue, the minority class
instances in the training set can be oversampled or the majority class instances in
the training set can be undersampled. Here, we use two oversampling strategies,
namely Enhanced Structure Preserving Oversampling and Synthetic Minority

223

Chapter 10: Comparison of Modeling Alternatives for Time-to-Failure Prediction

Oversampling Technique. The next research question RQ B.2.2 focuses on how
to model the time until the critical event occurs. For this purpose, we presented
three alternatives. On the one hand, if it is only necessary to predict the presence
of upcoming critical events, a binary classification can be employed, where the
positive class represents a critical event within a given time window. On the
other hand, if the time-to-failure is required in bins, a multi-class classification
should be used, with each class representing a particular time window with
a lower and an upper bound. Finally, in case that fine-grained time-to-failure
predictions are required, regression should be used. However, in the latter
case, we still propose to incorporate classification as a pre-filtering step so that
only instances with an impending critical event are passed to the regression
model for training and prediction. For instances representing healthy machine
states, the prediction of a time-to-failure does not provide meaningful results,
but only results in high errors and, thus, confusion. Last, we proposed to
integrate time series forecasting for feature generation. For this purpose, the
features of successive instances can be considered as time series, to which a
forecasting model can be applied. The benefit of including feature forecasts
is that deterioration patterns can be detected even earlier, assuming that first
indications of deterioration must nevertheless be apparent.

224

Chapter 11

Evaluation of Time-to-Failure Modeling
Alternatives

This chapter provides experimental results for the time-to-failure modeling
alternatives presented in Chapter[I0} To this end, Section [I1.1]first describes
the overall evaluation design. In Section[I1.2) the oversampling techniques for
binary classification are evaluated and compared with using only the original,
imbalanced data set. Subsequently, the prediction quality of the multi-class
classification approach is assessed in Section[11.3} followed by the regression
model in Section[I1.4] Section[11.5|provides runtime comparisons of the three
time-to-failure modeling alternatives. The evaluation of prediction quality
when integrating time series forecasting for feature forecasts is shown in Sec-
tion Then, Section summarizes the main evaluation findings and
discusses threats to validity. Finally, we conclude this chapter in Section [11.8]
by answering the respective research question.

Parts of the content of this chapter are based on our previous work published
as a full paper as part of the 20th International GI/ITG Conference on Measure-
ment, Modelling and Evaluation of Computing Systems (MMB) [ZKE"20]].

11.1 Evaluation Design

In order to assess the performance of the classification and regression models,
we use a data set comprising 369 HDDﬂ This data set was first used by J.
Murray et al. [MHKDO05]]. Although the data set includes 64 SSM.A.R.T. features
for each measurement instance, we only consider 25 in our experiments. Many
of the excluded parameters are constant throughout the entire measurement
period and, therefore, do not contain information about the health state of the
hard disk drives. The time-to-failure is of course excluded for the classification
tasks and used as target variable for the regression task. The remaining 25

'HDD data set: http://dsp.ucsd.edu/~jfmurray/software.htm

225

http://dsp.ucsd.edu/~jfmurray/software.htm

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

features in the reduced data set are FlyHeight5-12, GList1-3, PList, ReadError1-
3, ReadError18-20, Servol-3, Servob, Servo7-8, and Servol0. This reduced
feature set was also used by T. Pitakrat et al. for their comparison of machine
learning methods [PVHG13]]. Out of the 369 hard disk drives included in the
data set, 178 did not fail during the measurement period, while 191 suffered a
critical failure. This high number of failed hard disk drives is due to consumers
sending in their failed hard disk drives with the S.M.A.R.T. parameters from the
previous weeks. As a result, the number of failed and intact hard disk drives in
this data set is fairly balanced. However, the data set contains continuous, i.e.,
approximately two-hourly, measurements of each HDD. This results in a total
of 68,411 measurement instances. However, since we not only predict for each
hard disk drive whether it will fail one day in the future, but we predict the
time-to-failure for each measurement instance of the SM.A.R.T. parameters,
this leads to an imbalanced data set. Figure [I1.1]presents a histogram of the
distribution of the time-to-failure classes in the considered data set. For this
purpose, the time-to-failure classes are plotted on the horizontal axis and the
number for each time-to-failure class is plotted on the vertical axis. The figure
clearly demonstrates the dominance of the last class, i.e., the class indicating
that there will be no failure within the next 168 hours. Furthermore, it can
be seen that in particular the time-to-failure classes 0 to 5 are very small with

40000

300004

Count

200004

100004

N T
0 1 2 5 12 24 48 72 96 120 144 168 o
Class

Figure 11.1: Histogram of the distribution of time-to-failure classes.

226

11.2 Binary Failure Prediction

only 260 to 653 instances. For the binary classification, the class indicating an
impending failure within the next 168 hours comprises 23,749 instances, while
the class representing no failure within this time consists of 44,662 instances.

For the application of the oversampling methods considered and compared
in these experiments, we used the R libraries 0STSC [[DKW17]] for ESPO and
unbalanced [[DPCB15]] for SMOTE. Moreover, we used the Random Forest
implementation provided by the R library randomForest [BCLW18§]].

In agreement with the literature, we use a split of approximately 80:20 for
model training and model testing. Accordingly, about 80% of all data are used
to learn the model, while the model is evaluated on the remaining roughly
20% of the data. As a single experiment alone is not significant, we run the
experiment 25 times to reduce random bias, since most of the techniques and
methods employed are based on random numbers.

11.2 Binary Failure Prediction

To ensure reproducibility, Table specifies the parametrization of Random
Forest and the oversampling methods used to compare the binary classification
models. We set the number of decision trees constructed to 100 and the number
of features randomly selected as candidates for each split to five for all three
binary classification alternatives.

Table 11.1: Libraries and methods utilized along with the parametrization for the
binary classification models.

Alternative Library:Method Parameters

ntree = 100, mtry =5,
replace = TRUE

OSTSC:0OSTSC() ratio=1.0,r=1.0

(I) Unmodified randomForest:randomForest()

(II) ESPO ntree = 100, mtry =
: = 100, mtry =5,
randomForest:randomForest/() replace = TRUE
type = "ubSMOTE",
unbalanced:ubBalance() percOver = 300,
(IIT) SMOTE percUnder = 150, k =5

ntree = 100, mtry =5,

randomForest:randomForest() replace = TRUE

227

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

Table reports the average hard disk drive failure prediction quality
achieved with respect to accuracy, precision, recall, and F1-score. The results
show that alternative (II) ESPO obtained the highest accuracy, precision, and
Fl-score. Only in terms of recall, ESPO was outperformed by both the un-
modified binary approach and the approach using SMOTE. However, all three
approaches differed only slightly with respect to recall. Considering all four
evaluation measures, ESPO achieved the best overall performance of the binary
classification alternatives.

Table 11.2: Average achieved values of the three binary classification alternatives. The
best values for each evaluation measure are highlighted in bold.

Alternative | Accuracy Precision Recall F1-Score
(I) Unmodified | 97.472% 94.347% 96.993% 95.649%
(II) ESPO 97.642% 94.913% 96.970% 95.928%

(IIT) SMOTE 95.734% 89.086% 96.995% 92.869%

AsTable only presents the average values and not the variation within the
25 repetitions, Figure visualizes the prediction quality using box plots. For
this purpose, the horizontal axis shows the evaluation measures accuracy, preci-

1.004

| esEs

[}
>
C_>tS Alternative
3 * E3 Unmodified
3 E3 ESPO
5 E3 SMOTE
< 0.90]
0.851

Accﬂjracy Precision Recall F1-Score

Figure 11.2: Box plots of the prediction quality for the binary classification alternatives.

228

11.3 Failure Level Classification

sion, recall, and F1-score, while the vertical axis shows the achieved values. The
orange, blue, and purple boxes represent the approach without oversampling,
the ESPO oversampling approach, and the SMOTE oversampling approach, re-
spectively. Again, the figure reveals that the unmodified and ESPO approaches
outperformed SMOTE significantly with respect to all measures except recall.
Regarding recall, all three approaches provided approximately the same value
with only minor variations within repetitions. The highest variation is evident
for the precision. Here, the interquartile range exhibited the largest value.

To conclude the comparison of class balancing strategies, employing ESPO
oversampling obtained the overall best prediction quality, although the model
without oversampling produced only slightly worse results. In contrast, SMOTE
oversampling actually degraded the overall prediction quality compared with
the model using no oversampling. Thus, oversampling can improve the predic-
tive power of the model, but it depends on the particular technique applied.

11.3 Failure Level Classification

In contrast to the binary classification alternatives, we set the number of classi-
fication trees for Random Forest to 500, since predicting multiple classes is a
more difficult task than distinguishing between only two classes. Table[11.3]
presents the average confusion matrix over all 25 experiment runs. Here, the
rows represent the actually observed time-to-failure classes and the columns
reflect the predicted time-to-failure classes. The value in each cell illustrates
the number of instances predicted for that particular combination of observed
and predicted class labels. The confusion matrix clearly shows that most of the
values fell on the main diagonal, meaning that most instances were predicted
correctly. Moreover, most incorrect predictions were predicted in adjacent
time-to-failure classes. In other words, the impending failure was detected,
only the time windows were missed by a few hours to a day. Thus, these in-
correctly predicted classes are less critical in practice as the critical event is
nevertheless predicted with a relatively accurate time horizon. Furthermore,
it is apparent that the actual time-to-failure classes 1, 2, and 5 could not be
predicted as accurately as the others. Their class-wise accuracies are each less
than 75%, while the class-wise accuracies of the other classes range from 87.1%
up to 99.9%. This is most likely due to the fact that there are only very few
training instances for these classes and further, the temporal distance between
these classes is very small. In contrast, the white cells of the rightmost column
show the number of cases in which the hard disk drive actually failed in the
respective time window, but the multi-class approach did not predict a failure

229

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

454" g 1 0 1 1 0 I 0 ! ! 0 0 oo
99 6CL 91 0 0 0 0 0 0 0 ! 0 0 891
6¢ 8 9L 0¢ 0 0 0 0 0 0 0 0 0 44"
¥e 0 9 [4=v4 4! 0 0 0 0 0 0 0 0 o<t
¥c 0 0 1] 892 9 0 0 0 0 0 0 0 96
¥c 0 0 0 [44 ()4 4! 0 0 0 0 0 0 (47
81 0 0 0 0 ot €L 9 0 0 0 0 0 87
4} 0 0 0 0 0 1< 6€€ L1 0 0 0 0 j£4

8 0 0 0 0 0 [4 4! a81 0 0 0 0 [4!

[4 0 0 0 0 0 ! L1 44 s 0 0 0 S

[4 0 0 0 0 0 0 [4 0 0 4! ! 0 [4

0 0 0 0 0 0 6 [4 ¥ 0 0 EfE 0 L

[4 0 0 0 0 0 0 0 0 0 0 0 L9 0

oo 891 47! o<t 96 (44 87 jiz4 4! q C 1 0 1 a0

"JUSWIDINSEIW d} I9)Je SINOY OM}
0} U0 JO MOPUIM dUIN B UI PALINIIO A[[enjde aInjrej ayj Seatsym , Inoy 1xau ay} UIYrm Inddo [[IM aInfrej e, se pajorpaid sem
jeyy) soue)sul 9[3Urs e sAe[dSIp MOl PITY} S UL 3J9] 93} WOIJ [[90 PUOIIS S} ‘90UL)SUL 10 ‘Sadue)sul pajdrpaid A[)oa1100 aij)
sIy31ySny 10700 uaaxd A], s[aqe| ssep pajdrpaid pue paaIasqo Jo jas renonaed jey) 105 pajorpaid sedueisur Jo Jaqunu oy}
sajensn[[I anfea ay} ‘[[ad yoea uj 'sauo (1J) pasorpaxd a3 jussardar suwnod ay a[rym ‘sassepd ain[rej-o3-awry (qQO) paAIasqo
Arenioe a3 93edIpur smoi 3y, ‘yoeoidde uonedyIsse[d aInjrej-03}-awil} SSe[d-I}[N 9} 10§ XLIeW UOISNJuod aY [, €' L d[qeL

230

11.3 Failure Level Classification

within the next week. These cells contain 211 out of 19829 instances, which can
be explained by the fact that the S.M.A.R.T. parameters cannot cover all aspects
that can lead to a failure [Sea99]|, such as sudden electronic or physical impacts.
To summarize the time-to-failure prediction quality of the Random For-
est multi-class classification model, it achieved an average micro F1-score of
97.628%. The micro F1-score is the sum of the instances on the main diagonal
(highlighted in green) divided by the total number of instances in the confusion
matrix. Thus, the micro Fl-score is equivalent to the multi-class accuracy.
Due to the fact that the micro F1-score of this multi-class approach cannot be
directly compared to the F1-scores obtained in Section we scaled down
the multiple classes to the same two time-to-failure classes presented in Sec-
tion That is, we merge all classes except co into one large class, i.e., the
class indicating an impending failure within the next 168 hours. In this way, the
classes match those used in Section[11.2} allowing us to compare them. How-
ever, since ESPO scored the best among the binary classification alternatives,
Figure displays only the comparison of the ESPO approach with the down-
scaled multi-class approach in the form of box plots. Again, the evaluation
measures accuracy, precision, recall, and F1-score are shown on the horizontal
axis, while the achieved values of ESPO and the downscaled multi-class ap-

1.001
[]

0.984 —j—
[} $
S
‘—6 —(—
> | Approach
o ——
% 0.961 ‘ E3 ESPO
e | B3 Multi
[5}
<

0.944 ‘

0.924

ACCL'Jracy Precision Recall F1-Score

Figure 11.3: Box plots comparing the best binary classification approach (ESPO) with
the multi-class classification approach downscaled to the same two classes.

231

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

proach are depicted on the vertical axis. The blue and red boxes represent the
results of ESPO and the downscaled multi-class approach, respectively. The
figure shows that the downscaled multi-class approach produced even better
results with respect to accuracy (on average 98.885% vs. 97.642%), precision
(99.818% vs. 94.913%), and F1-score (98.019% vs. 95.928%). However, binary
classification with ESPO oversampling achieved a slightly higher recall (on
average 96.970% vs. 96.283%). This fact reveals that, on the one hand, the
binary ESPO approach detected more hard disk drives with impending failures.
On the other hand, it demonstrates that ESPO also predicted more good hard
disk drives as failing, i.e., ESPO had a higher false positive rate. In numbers,
the downscaled multi-class approach achieved an average false positive rate of
only 0.07%, while ESPO yielded an average false positive rate of 2.09%. The
false positive rates of the other two binary classification approaches were even
higher. Detecting more defective hard disk drives with a higher false positive
rate can be useful if the cost of false alarms are negligible. However, in cases
where false alarms result in high costs, the multi-class model is advantageous
as it detects almost as many defective hard disk drives and incurs fewer costs
for unnecessary hard disk drive replacements.

11.4 Time-to-Failure Regression

Similar to the evaluation of the multi-class time-to-failure classification ap-
proach, we set the number of decision trees for Random Forest to 500. Fig-
ure[I1.4] presents box plots of the achieved hit rate, mean absolute error (MAE),
and root mean square error (RMSE) for both regression approaches over the
25 experimental repetitions. By hit rate, we denote the ratio of correct time-to-
failure regressions to the number of total regressions. Furthermore, we define
a time-to-failure regression as correct if the actual time-to-failure falls within
an interval of the predicted time-to-failure & 10%. Thus, regarding the hit rate,
a higher value indicates a better prediction quality, while the opposite applies
for MAE and RMSE. The brown and green boxes represent the naive regression
and the proposed regression with pre-filtering, respectively.

The left subfigure of Figure illustrates the hit rates achieved. Here,
we can see that the approach of pre-filtering instances before model learning
resulted in a higher hit rate than the naive regression alternative. In terms of
numbers, the pre-filtering approach achieved an average hit rate of about 84.9%,
while the naive version predicted a correct time-to-failure in only about 80.2%
of all attempts. Opposite to the hit rate, for MAE and RMSE, a smaller value
indicates a better regression quality. With respect to MAE (middle subfigure

232

11.4 Time-to-Failure Regression

of Figure[11.4)), the pre-filtering approach yielded an average MAE of about
4.5 hours, whereas the naive regression approach, on the contrary, exhibited
an average MAE of about 10.0 hours. Moreover, the interquartile ranges for
both approaches were extremely narrow. The large difference between the
MAE:s of the two regression alternatives and the small interquartile ranges
suggest that the pre-filtering approach robustly predicted the time-to-failure
more accurately. The same conclusion can be drawn by examining the obtained
RMSE (right subfigure of Figure[11.4)). The proposed pre-filtering approach
showed an average RMSE of about 12.8 hours, while the RMSE of the naive
approach reached around 44.6 hours. Again, the interquartile ranges for both
approaches were extremely narrow. For all three evaluation measures, even
the best results of the naive approach over all 25 runs performed inferior to the
worst results of the pre-filtering-based regression approach.

0.88 12] 50-
J ——
0.86- 10 40-
8.
g 084 = % 301 Approach
x W 6) B3 Naive
T 082 > 22 E3 Pre-Filtering
4.
0.80- + N 101
0.78" 0] 0
o & o - o
& &) &
N BN \
N VA NS
Q¥ Q¥ ¥

Figure 11.4: Box plots of the achieved time-to-failure regression quality of the naive
and pre-filtering-based regression alternatives.

Taking into account all three evaluation measures, it is evident that the
proposed approach, which filters the instances before applying the regression
model, predicts the time-to-failure with a much higher accuracy compared to
the naive version. With an average hit rate of almost 85% and a mean absolute
error of only 4.5 hours, the time-to-failure regression is highly precise.

233

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

11.5 Runtime Comparison

After evaluating the prediction quality of the binary classification, multi-class
classification, and regression approaches, we also analyzed the runtimes. Here,
the runtime comprises both the time for model learning as well as for the
prediction of the novel instances that were unknown during training. However,
for all approaches, the time required for the prediction is negligible compared
to the training time. We conducted the experiments in our private cloud using
Apache CloudStack and a kernel-based virtual machine (KVM). The virtual
machine is deployed on a host with 32 cores at 2.6 GHz each and 64 GB of
memory, with hyperthreading enabled. The virtual machine runs Ubuntu
16.04 (64-bit) with 4 cores at 2.6 GHz each and 8 GB of memory. We have
implemented the approach in R version 3.4.4.

Figure visualizes the runtimes over the 25 experimental runs for all
classification and regression approaches by means of box plots. The horizontal
axis represents the approaches, while the vertical axis depicts the required
runtime. The boxes are colored according to the respective approach, with
the coloring corresponding to the previous figures in this chapter. With an
average runtime of approximately 27 seconds, the unmodified binary classi-
fication approach provided the shortest runtime, followed by our multi-class

2500-
2000-
Approach
T 1500 B3 Unmodified
) B3 ESPO
£ B3 SMOTE
5 B8 Muli
& 1000)
B3 Naive
E3 Pre—Filtering
>0 —
——— s
0.

Unmodified ESPO SMOTE Multi Naive Pre—F'iItering

Figure 11.5: The required training times for all of the presented approaches.

234

11.6 Feature Forecasting for Failure Prediction

classification approach with an average of about 174 seconds. Both oversam-
pled binary classification approaches required a significantly longer runtime,
averaging around 420 seconds for ESPO and 335 seconds for SMOTE. Thus, our
multi-class classification model not only achieved better overall time-to-failure
prediction quality, but also significantly shorter runtime than the best binary
classification approach, namely ESPO. Among the regression approaches, the
naive approach needed on average roughly 2175 seconds, whereas the approach
pre-filtering the data required only about 346 seconds on average. That is, our
pre-filtering approach was more than 6 times faster than the naive version and
even faster than the binary classification approach with ESPO oversampling,
while it significantly improved the hit ratio, MAE, and RMSE compared with
the naive regression version.

11.6 Feature Forecasting for Failure Prediction

In addition to using only the current S.M.A.R.T. features, we also assessed the
effect of one-step-ahead forecast features on the prediction of impending hard
disk drive failures. To this end, as described in Section[10.4} we applied ARIMA
if the time series of S.M.A.R.T. features consisted of at least ten observations.
Otherwise, we used the Naive forecast model. Note that we intentionally did
not apply Telescope and sNaive, because S.M.A.R.T. features do not exhibit
seasonal patterns. After deriving the forecasts, the Random Forest models were
trained without employing an oversampling strategy. Again, 25 experimental
runs were performed, with average prediction quality being reported below.
First, we compare the effect of adding forecasts as features to the binary
models for hard disk drive failure prediction. As using ESPO oversampling
performed best among the binary models, Figure shows box plots of
the achieved accuracy, precision, recall, and F1-score for ESPO in blue and
Random Forest without oversampling strategy, but instead using one-step-
ahead forecasts as additional features for hard disk failure prediction in yellow.
A first observation is that the boxes, i.e., the interquartile ranges, of the model
with forecast features are considerably smaller for accuracy, precision, and F1-
score. Only with respect to recall, the interquartile range is slightly increased,
although the interquartile range of the model incorporating forecasts also covers
only 0.14 percentage points. Considering the value range of the box plots, the
model using forecasts again substantially outperforms the ESPO model in terms
of accuracy, precision, and F1-score, as the maximum values of the latter model
are much smaller than the minimum values of the former model. The only
exception is recall, where the ranges of achieved values overlap considerably.

235

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

Nevertheless, the box plot shows that the median recall of the model using
forecasts is slightly higher. With respect to the average prediction quality, the
model with forecast features achieved a mean accuracy, precision, recall, and
F1-score of 98.821%, 98.856%, 97.005%, and 97.921%, respectively. In contrast,
the binary ESPO model only achieved a mean accuracy, precision, recall, and
F1-score of 97.642%, 94.913%, 96.970%, and 95.928%, respectively. Furthermore,
integrating forecast features also reduced the average false positive rate from
2.089% to 0.451%. Thus, employing one-step-ahead forecasts in addition to the
original features improved the prediction quality with respect to all evaluation
measures. The application of paired t-tests underlined this statement, as the
improvement of all evaluation measures except recall is significant with a
confidence level of more than 99.999%. The enhancement with respect to recall
is significant with a confidence level of 90% only.

1.004

° 0.98 EF

= $

S = i Approach
32 | Forecast
% Binary
= 0.96; ‘ E3 ESPO
<

0.944 ‘

Acctljracy Precision Recall F1-Score

Figure 11.6: Box plots of the achieved prediction quality for the best binary classifi-
cation approach (ESPO) and the binary model with one-step-ahead forecasts of the
S.M.ART. features in addition to the current SSM.A.R.T. features.

Next, we analyze whether forecasting S.M.A.R.T. features also improves
the prediction quality of the downscaled multi-class models. To this end,
Figure displays box plots of the obtained accuracy, precision, recall, and
Fl-score of the downscaled multi-class model already evaluated in Section|[11.3]
in red and those of the downscaled multi-class model with one-step-ahead

236

11.6 Feature Forecasting for Failure Prediction

S.M.A.R.T. feature forecasts as additional features in aquamarine. Compared
with the binary models, both downscaled multi-class models performed much
more homogeneously, which is evident from the fact that the boxes are very
close to each other for all four evaluation measures. This can also be explained
by the fact that the downscaled multi-class model has already achieved a very
high prediction quality, which is hard to improve further. However, a general
tendency can be observed that the model with the additional forecast features
achieved a slightly better prediction quality with respect to accuracy, recall,
and F1-score, while the achieved precisions of the two models are even closer
to each other. Considering only the medians of the box plots, it can be seen
that the model with the forecast features provides a slightly higher median
prediction quality regarding all four evaluation measures. However, this is
not the case for the average prediction quality. In terms of average prediction
quality, the downscaled multi-class model already evaluated in Section [11.3]
achieved a mean accuracy, precision, recall, and F1-score of 98.886%, 99.818%,
96.283%, and 98.019%, respectively. In contrast, the downscaled multi-class
model using additional one-step-ahead forecast features provided an average
accuracy, precision, recall, and F1-score of 98.921%, 99.813%, 96.412%, and

1.004
+ +

0.9Y
[}
=
g Approach
g 0.984 = = ’\FAOUrI(;:icast
[} ;
S Bl Mulii
<

0.971

0.964

AcctlJracy Precision Recall F1-Score

Figure 11.7: Box plots of the prediction quality of the downscaled multi-class classifi-
cation (cf. Section [11.3]) and the downscaled multi-class model using one-step-ahead
forecasts of the S.M.A.R.T. features in addition to the current S.M.A.R.T. features.

237

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

98.083%, respectively. Thus, the mean accuracy, recall, and Fl-score were
slightly improved by using additional one-step-ahead forecast features, while
the precision was marginally reduced. Therefore, we again applied paired t-
tests to assess the significance of the improvements and degradation. The t-tests
revealed that the enhancements by using the forecasts as additional features
with respect to accuracy and F1-score were significant with a confidence level
of 99.9%, whereas the improvement in terms of recall was significant with a
confidence level of even 99.99%. Yet, the degradation in precision was not
significant with a p-value of 0.5156. Finally, the average false positive rate of
the model with forecasts also increased from 0.07% to 0.073%, although the
variation was not significant with a p-value of 0.4975.

Lastly, Table presents the average multi-class confusion matrix of the
Random Forest model using both current S M.A.R.T. features and forecast
S.M.AR.T. features. Although it looks very similar to Table of the multi-
class model not using forecast features, several differences can still be observed.
First, both multi-class models achieved the same number of correctly predicted
instances for the time-to-failure classes 0, 12, 24, and oc. For the time-to-failure
classes 2, 48, and 96, however, the multi-class model without forecast features
yielded more correctly predicted instances, while the multi-class model with
additional forecast features produced more correctly predicted instances for
the time-to-failure classes 1, 5, 72, 120, 144, and 168. In total, the number of cor-
rectly predicted instances increased from 19357 to 19393 by adding the forecast
teatures. Thus, the number of true positives was improved by 0.186%. Second,
adding one-step-ahead forecast features of the S.M.A.R.T. measurements de-
creased the total number of instances that were not detected as failing in any of
the twelve time-to-failure windows, although they did fail, from 211 to 205, rep-
resenting a reduction of 2.844%. Another observation is that for the multi-class
model with additional forecast features, the incorrectly predicted instances
are more often close to the actual time-to-failure class. To put this statement
into numbers, we determined the proportion of mispredictions made directly
in an adjacent time-to-failure class. Graphically speaking, these instances are
those located one cell to the left or right of the green diagonal of the confu-
sion matrix in Table Regarding the multi-class model without forecast
features, 59.958% of all mispredictions were made in adjacent time-to-failure
classes. When adding forecast features to the prediction model, this propor-
tion increased to even 62.132%. In summary, the multi-class confusion matrix
emphasizes the results already observed in the evaluation of the downscaled
multi-class models, as extending the original feature set with one-step-ahead
forecasts made the hard disk drive failure prediction even more accurate.

238

11.7 Summary of Evaluation Findings and Threats to Validity

9454 9 0 0 1 0 1 1 0 [4 0 0 0 o0
65 8¢L ql 0 0 0 0 0 0 0 0 0 0 891
[44 6 892 61l 0 0 0 0 0 0 0 0 0 44"
[44 0 8 847/ 8 0 0 0 0 0 0 0 0 (i148
44 0 0 1Z €9/ 9 0 0 0 0 0 0 0 96
¥e 0 0 0 0¢ (474 4! 0 0 0 0 0 0 CL
61 0 0 0 0 IT S92 4! 0 0 0 0 0 87
4! 0 0 0 0 0 4! 6£C 61 0 0 0 ! 44
4! 0 0 0 0 0 0 0t a8l 1 0 0 ! [4!

[4 0 0 0 0 0 ! [4 1Z 0z 0 ! 0 S
[4 0 0 0 0 0 ! 0 1 1 €l 0 0 [4
0 0 0 0 0 0 [4 0 9 0 0 [44 4 L
[4 0 0 0 0 0 0 0 0 0 0 0 29 0
oo 891 474" ir4 8 96 CL 8% jiZ4 [4? q C 1 0 i a0

"JUSWSINSEIW]} 19}J€ SINOY dAY 0} OM] JO MOPUIM SWT} B UT PALINIO0 A[[enjde aInjrey s} Sealaym
/,,ANOY 13U Y} UNJIIM INdDO [[IM dIN[Te] e, se pajdrpaid sem jey) sduessur af3urs e sAefdsrp mox y3moy ayj ur 39 9y} Woij [0
PUO0D3Ss 31y} “‘@dUr)suUl 10, "Sadue)Sul pajdrpaid A[3091100 oy} sYSIYSIY 10[0d Uda13 Y[, "S[oqe] sse[d pajorpaid pue paaIasqo jo
19s renonred jey) 10§ pajorpaid sedurisUT JO IOqUINU S} SOJRIISN[[T dNTLA 3} “[[9d Yoea U 'sauo (1J) pajorpard oy jussardar
SUWN[0d J) JIYM ‘Sasse[d aan[rej-03-awin (qQ) PIAIISqo A[[enjoe sy} 9)edIpur SMOI Y], *SaINJed) "I Y'Y JA'S 1S8IDI0J Sk [[aMm Sk
saInyed) "Y'V IN'S Juaxmod Sursn yoeordde uonedyIssed aIn{rej-03-ouwn} SSe[-NNW 9} I0J XLIIeW UOISNJuod ay [LT d[qeL

239

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

11.7 Summary of Evaluation Findings and Threats to Validity

Based on the results of the experiments conducted, we derived the following
main findings:

(I) Oversampling of minority class instances can improve the prediction
quality of binary failure prediction models, although the prediction quality
strongly depends on the oversampling methods employed. While ESPO en-
hanced the prediction quality in our case study, SMOTE actually worsened the
prediction model. Moreover, the use of oversampling methods substantially
increases the training time.

(II) Learning multi-class failure prediction models and downscaling the
predictions to the same classes as when using a binary failure prediction model
improves the prediction quality considerably. This phenomenon can be ex-
plained by the fact that the multi-class models are forced to learn more explicit
patterns for the different time-to-failure windows.

(IIT) When using regression models, the prediction quality as well as the re-
quired runtime can be considerably improved by first employing a classification
model that passes instances to the regression model only if the corresponding
hard disk drive is expected to fail in the near future.

(IV) Adding one-step-ahead forecasts of features for model learning and
prediction significantly improves the failure prediction quality for both binary
as well as multi-class models.

Although we conducted an extensive evaluation, potential threats to valid-
ity are also apparent here. First, when comparing modeling alternatives, we
did not attempt to optimize the machine learning model itself. Thus, we did
not conduct an extensive hyperparameter optimization, nor did we employ
different machine learning models. Instead, we used Random Forest with a
fixed hyperparameter configuration. For more complex models, we manually
increased the number of decision trees to meet the requirements of the more
complex task. The results obtained from the conducted experiments should
also be verified using other machine learning models, such as Support Vector
Machine, XGBoost, or even neural networks.

Moreover, the oversampling strategies were only applied for binary classi-
fication models. Their effect on multi-class models has not been investigated
yet. Given that SMOTE did not improve the binary prediction models, it is
more likely that ESPO could also improve the prediction quality of multi-class
models. However, this should be explored in further studies.

Finally, it has been shown that using ARIMA and Naive forecast to estimate
future SM.A.R.T. features and using these one-step-ahead forecasts as addi-

240

11.8 Concluding Remarks

tional features for the prediction models significantly improves the prediction
quality. In the conducted experiments, however, the forecast models only fore-
cast a single value for each point in time. Future studies could also investigate
the effect of different forecasting horizons on the prediction quality.

11.8 Concluding Remarks

In this chapter, we evaluated the time-to-failure modeling alternatives described
in Chapter|10] Therefore, this chapter contributes to the overall research ques-
tion RQ B.2. On the one hand, the experimental results showed that over-
sampling is able to improve the predictive power of critical event prediction
models. On the other hand, the results also revealed that the effect of over-
sampling highly depends on the technique used, as SMOTE oversampling
actually degraded the quality of the binary prediction model. Second, we
examined the prediction quality of multi-class prediction models for time-to-
failure prediction. Here, the results demonstrated that these models could
not only predict twelve fine-grained time-to-failure windows highly accurately,
but that downscaling such a multi-class model to the same two classes used
in a binary prediction model considerably improves the prediction quality.
Regarding regression models for critical event prediction, we have shown that
pre-filtering data for model learning, compared to the naive approach of using
all available data for regression model learning, both increases the prediction
quality and reduces the training time.

Furthermore, we explicitly addressed research question RQ B.2.3 by compar-
ing the predictive power of time-to-failure prediction models with and without
additional forecast features. Regarding the binary prediction models, the re-
sults showed that integrating time series forecasting into the prediction pipeline
significantly improves the quality of time-to-failure predictions. Paired t-tests
revealed that the improvement in terms of recall was significant with a confi-
dence level of 90%, while for accuracy, precision, F1-score, and false positive
rate, the improvements were significant with a confidence level of even more
than 99.999%. For instance, with respect to the F1-score, the average prediction
quality was increased from 95.928% to 97.921%, while the false positive rate
was reduced from 2.089% to 0.451%. Considering the multi-class prediction
models, the model using forecast features was again superior to the model with-
out forecast features, although the models performed more homogeneously.
While the differences in precision and false positive rate were not significant,
the downscaled model using forecast features improved the average accuracy
and F1-score with a confidence level of 99.9% and the average recall with a

241

Chapter 11: Evaluation of Time-to-Failure Modeling Alternatives

confidence level of even 99.99%. The enhancement by using forecast features
was also evident from the multi-class confusion matrix, as it yielded 0.186%
more true positives, reduced the number of failing instances that were not
covered by any time-to-failure class by 2.844%, and increased the percentage
comparing the number of mispredictions in adjacent time-to-failure classes to
all mispredictions from 59.958% to 62.132%. In conclusion, integrating time
series forecasting into the feature engineering step significantly improved the
prediction quality of both binary and multi-class prediction models, although
the benefit was noticeably smaller for multi-class prediction models. However,
although the runtime of integrating forecast features has not been studied in
detail, it should be mentioned that it significantly increases the computational
complexity of the model during on-line application, since the time series fore-
casting model needs to be re-trained for each prediction step. Therefore, a
trade-off between computational complexity and prediction quality is required
for multi-class prediction models.

242

Chapter 12

Time-to-Failure Prediction Methodology for
Industrial Machines

The increasing digitalization and improvements in sensor-based data acquisi-
tion serve as drivers for many new applications in areas such as Industry 4.0
and Industrial IoT. Due to these developments, monitoring data of industrial
machines can be stored easily, resulting in huge data sets. These can then be
used to analyze the machines, with predictive maintenance being a typical
application in this context.

Nowadays, many companies still follow a periodic maintenance approach.
Accordingly, industrial machines are maintained at regular intervals to check
for failures and take possible countermeasures. However, this often results in a
waste of personnel and materials, since in many cases, maintenance is not nec-
essary and could be postponed. A study by R. Mobley identified that this waste
is responsible for about one-third of all maintenance-related costs [Mob02]].
Furthermore, despite regular maintenance, sudden machine failures can never-
theless occur due to unexpected severe deterioration. Therefore, several com-
panies have moved to condition-based maintenance. This maintenance strategy
involves defining thresholds for particular sensors on industrial machines,
which trigger maintenance actions when exceeded. However, defining such
thresholds requires a high level of expert knowledge. Moreover, the analysis of
threshold values is still a reactive maintenance approach. Due to these reactive
maintenance strategies, unplanned downtimes still occur frequently. Emerson
and the Wall Street Journal estimate the cost of these unplanned downtimes in
manufacturing to be approximately 50 billion USD per year [Wal,[Eme]].

Unlike reactive maintenance strategies, predictive maintenance aims at pre-
dicting deteriorating health by analyzing previous monitoring data and learn-
ing from past machine failures. A report by PricewaterhouseCoopers and
Mainnovation found that 95% of the 268 companies surveyed stated that us-
ing predictive maintenance improves one or more key maintenance value
drivers [MH18]]. The study also revealed that predictive maintenance increases

243

Chapter 12: Time-to-Failure Prediction Methodology for Industrial Machines

machine uptime by 9% and machine life by 20%. In addition, predictive main-
tenance reduces machine downtime by scheduling maintenance work on time,
while keeping the risk of fatal breakdowns lower than reactive maintenance
strategies. According to the report “Industrial Internet of Things: Unleashing
the Potential of Connected Products and Services” by the World Economic
Forum [Wor15]], predictive maintenance reduces the cost of planned repairs
by 12% and maintenance costs in general by 30%, while experiencing 70% less
breakdowns. For this reason, according to Statista, 53% of the 272 companies
surveyed in Germany attest that predictive maintenance has high or very high
relevance for their company [Stal8]]. In addition, the study by Pricewaterhouse-
Coopers and Mainnovation showed that 60% of the companies surveyed already
use predictive maintenance or plan to integrate it in the near future [MH18]].

Due to this high practical relevance of predictive maintenance, much research
has already been done in this field. In general, predictive maintenance can
be divided into two components: time-to-failure prediction and maintenance
scheduling based on predicted failures. Maintenance scheduling approaches
are typically based on models, rules, or utility functions [[YDNO0S8,LW13,YM12,
LVT16,VSSB13]]. However, in this thesis, we focus only on time-to-failure pre-
diction. Existing approaches in this area typically provide solutions developed
for a specific machine. Examples include approaches explicitly developed
for rotating machines, primarily bearings, based on Hidden Markov Mod-
els [TMMZT12,ZXK"05,[LFH" 18], Support Vector Machines [SM07,ZLZZ15,
HZSG19], Decision Tree-based models [[ASK13|/ZLJ19,[QLDL17]], or neural
networks [LCTHO0,|AFS™15| GCS16,LLT 17, HK19a]]. Another intensively
studied research area for time-to-failure prediction is the health state of lithium-
ion batteries. Typically used algorithms in this area include Bayesian meth-
ods [HWOP11NXT14,DHW21]], Support Vector Regression [DJLW14,ZQZF18)
XZCM20]], and neural networks [LSG™10,ZXHP18| QLMF19]].

In contrast to these highly specialized solutions, in this chapter, we propose
a generic, end-to-end predictive maintenance methodology for time-to-failure
prediction of industrial machines. The novel contribution compared to exist-
ing works is the end-to-end design, especially with respect to a universally
applicable feature extraction based on integral values, which does not rely on
profound expert knowledge. Furthermore, machine failures are predicted at
different time horizons while investigating the application of different class
labeling strategies. Nevertheless, the methodology proposed in this chapter
is specifically designed for industrial machines. Therefore, the availability of
data originating from sensors is assumed. Finally, we evaluate our proposed
end-to-end methodology using real-world production data from a large-scale

244

12.1 Feature Extraction from Raw Sensor Data

press in Chapter|13] This type of machine has not been studied in detail before
and differs significantly from the commonly studied machine types, namely
bearings, lithium-ion batteries, and hard disk drives.

The content of this chapter is based on our previous work, which was pub-
lished as a full paper as part of the 19th IEEE IES International Conference on
Industrial Informatics (INDIN) [[ZAG™21]]. The remainder of this chapter is
structured as follows: Section[12.1|presents the feature extraction from different
categories of sensor data covered by the proposed critical event prediction
methodology. Next, Section shows the feature selection included in the
methodology along with two possible feature normalization techniques. Sec-
tion explains three different target labeling methods, followed by model
learning in Section [12.4] Section [12.5|describes the aggregation of predictions
from multiple binary models. Finally, Section [12.6|summarizes the main contri-
bution of this chapter.

12.1 Feature Extraction from Raw Sensor Data

In the context of industrial machines, a sensor is any digital measuring instru-
ment that monitors either a particular component or the program executed
by the machine. We distinguish sensors into four different categories, han-
dling each of them in a different way: (I) physical units, (II) paired units,
(IIT) temporal information, and (IV) program information.

Sensors of the physical units category are sensors that measure the current
state or condition of a machine component, for instance, the position of an axis,
the pressure, or the oil temperature.

Sensors belonging to the paired units category are similar, but they also pro-
vide a specified target value for the measured state or condition. The difference
between the actual value and the target value can be used to measure the
machine’s quality when executing the implemented execution program.

In contrast, sensors of the category temporal information provide data that
can be used to compute the duration of various events in the manufacturing
process, typically the execution of specific manufacturing steps. Based on such
data, a change in the health state of the machine can be detected. For example,
in case of a leakage, the machine may need more time to build up a certain
target pressure, which may be reflected in a longer duration.

Finally, sensors assigned to the category program information provide data
that can be used as an indicator to split the measurement data of an entire
manufacturing process into several phases, for example, drilling, milling, tool
change. Note that in this time-to-failure prediction methodology for industrial

245

Chapter 12: Time-to-Failure Prediction Methodology for Industrial Machines

machines in general, we make the assumption that such program information
is available, while in Chapter|[8, which specifically targets rotating machines,
this was not the case. In rotating machines, this program information can be
extracted ex post due to the availability of meaningful vibration data, which is
not necessarily the case for other industrial machines.

As part of the feature extraction process, the proposed methodology first
utilizes this program information sensor data to partition all sensor measure-
ments into several separate parts, each representing a different phase or activity
in the manufacturing process. Subsequently, the first feature, namely duration,
is computed for each phase by subtracting the first timestamp from the last
timestamp. A different feature extraction approach is employed for the physical
and paired units to gain insight into the performed execution. Most machine
learning algorithms cannot utilize the monitored time series as input since
the different executions” duration varies, resulting in time series with variable
lengths. However, machine learning algorithms typically require the same
input feature dimension. Moreover, passing entire monitoring time series as
features leads to an explosion of the feature dimension, which slows down
model learning tremendously, making it hardly applicable. Finally, the mere
use of monitoring time series can lead to misclassifications if the recording
is slightly shifted in time since the related features are no longer considered
related by the machine learning model. Therefore, for physical and paired
units sensors, the integral of the measured values is computed. For paired units
sensors, the integral of the difference between the target values and the actual
values is also computed. The integral-based feature extraction is illustrated in
Figure[12.1, where a measured physical unit is plotted against the measurement
time and the integral for an exemplary phase in the manufacturing process is

[
»

Intensity

Physical Unit

Duration

" : j Time
Phase

Figure 12.1: Schematic illustration of integral-based feature extraction.

246

12.2 Feature Handling

shown in gray. The integral changes only when either the intensity (i.e., the
range of values) of the physical unit or the duration of the respective phase
increases or decreases, as indicated by the red arrows in Figure Such
changes usually indicate faulty machine behavior since the execution should
follow a strict sequence of instructions, although slight variations are normal.
The integral function provides a much more robust representation of these
natural variations than the direct use of monitoring data.

12.2 Feature Handling

When applied to typical industrial machine scenarios with multiple physical
unit sensors and multiple phases per manufacturing process, the described
feature extraction procedure would result in a high number of extracted features.
To avoid distortions during model learning and keep the model generation
time as short as possible, only the most relevant features should be selected.
For this purpose, the methodology includes a feature selection technique based
on the Pearson correlation coefficient, which measures the linear correlation
between two variables. The Pearson correlation coefficient p is defined as
the covariance of the two variables X and Y divided by the product of their
standard deviations ox and oy, respectively:

pXy = —————. (12.1)
ox 0y
Given that we can only consider samples of the actual distribution, we use
an approximation of the Pearson correlation coefficient r computed based on
the sample covariance and the sample standard deviations as

- 2ic1 (@i —T) - (yi — 7)) 7 (12.2)
VI -2 S - 9)?

where n is the length of X and Y, z; and y; are the i-th observation of X and Y,
and 7 and ¥ are the sample means of X and Y/, respectively. The correlation
coefficient is in the range of [—1, 1], where a value close to —1 indicates a strong
negative linear correlation between the variables X and Y, and a value close
to 1 indicates a strong positive linear correlation. A value around 0 indicates
that there is no distinct linear correlation between the two variables.

In the context of the proposed time-to-failure prediction methodology for
industrial machines, Y represents the target label to be predicted, while X
constitutes one of the possible features extracted by applying the described

247

Chapter 12: Time-to-Failure Prediction Methodology for Industrial Machines

feature extraction procedure. The Pearson correlation coefficient is computed
for each extracted feature and the target label to select the most relevant features.
For this purpose, the operator can set a threshold rmin for and specify whether
only features with a correlation coefficient larger than rmin should be considered
for model learning or also features with a correlation coefficient lower than
—rmin. In the latter case, strongly positively and strongly negatively correlated
features are included for model learning.

However, since the values of different physical units are typically defined at
different scales, the features must also be normalized prior to serving as input
for machine learning models. To this end, the methodology incorporates two
conventional feature normalization techniques: the min-max normalization
and the Z-score normalization. The min-max normalization scales all values v
of a particular feature into the range of [0, 1] by subtracting the minimum value
from each value v; and dividing it by the difference between maximum and
minimum values as
S e L (12.3)

maxv — minvuv

However, to compute the min-max normalized values v", the global mini-
mum and maximum of the feature must be known. In addition, the min-max
normalization is sensitive to outliers since they may distort the minimum and
maximum. The advantage of the second normalization method, namely Z-score
normalization, is that neither the global minimum nor the global maximum
of the feature needs to be known. Instead, this technique assumes that the
observed sample is representative of the actual distribution with respect to the
mean value and standard deviation. The Z-score normalization transforms all
values v of a feature so that their new distribution has a mean value of 0 and a
standard deviation of 1. To this end, it subtracts the mean value v from each
value v; and divides it by the standard deviation o, as

v = . (12.4)

Compared to the min-max normalization, the Z-score normalization is more
robust against outliers, but it does not transform the values into a fixed range.

12.3 Target Class Mapping

After the feature engineering process, the target labels must be created and
mapped to the monitoring data. To this end, the proposed methodology as-
sumes the availability of failure records with timestamps. The timestamps of

248

12.3 Target Class Mapping

those are matched to the timestamps in the sensor monitoring data, computing
the time-to-failure of each instance in the data set. Although the time-to-failure
can be used directly as a label to learn corresponding regression models, the
methodology discretizes the time-to-failure in terms of classes, aiming at learn-
ing classification models instead of regression models. This design decision
is based on the fact that most real-world scenarios for predictive maintenance
in Industry 4.0 do not require time-to-failure information at the granularity of
seconds or minutes, but rather hours or days. This time horizon lends itself
well to modeling using classes.

To obtain the classification labels, the proposed methodology applies three
different labeling techniques. These labeling techniques are illustrated by
examples in Figure In each case, the operator must first specify a fixed
number of prediction windows of interest, which are mapped to different time-
to-failure classes. For instance, if the operator specified the prediction windows
as 12 hours and 1 day, the resulting discretized time-to-failure classes would
represent failures in the three time horizons: [0, 12), [12,24), and [24, co) hours.

The first labeling technique is a simple binary classification per class. Accord-
ingly, for each class, a vector of labels is created that is set to 1 if the time-to-
failure of that particular instance is within the time-to-failure interval of the
class, otherwise it is set to 0. Only for the last class, no vector is created, since
this class is already covered by all other classes. More precisely, if all other
classes are 0, this implies a 1 for the last class. This labeling approach is shown
in Figure[12.2)in the middle. It requires a separate prediction model for each
class except for the last one.

The second labeling technique also models the classes separately, but in
contrast to the simple binary classification, the vector of class labels is set to 1 if
the time-to-failure of the respective instance is smaller than the upper bound
of the time-to-failure interval of the class. Thus, for a single instance, multiple
classes can have a label of 1, while in the simple binary case, only the highest
class would be set to 1. This is a valid labeling approach for predicting time-to-
failure since a failure that occurs after, for instance, 5 hours can be sorted into
the time window of up to 12 hours as well as the time window of up to 24 hours.
The labeling approach is presented at the bottom of Figure Similar to the
simple binary labeling technique, this results in a separate prediction model
for each class except the last one. Here, the last class would contain even less
information since it would be 1 for each instance. In the following, we refer to
this labeling technique as stacked binary model.

Finally, the third labeling technique is multi-class labeling, which creates a
single vector of class labels containing the name of the time-to-failure interval

249

Chapter 12: Time-to-Failure Prediction Methodology for Industrial Machines

Class Mapping Multi-Class Model

Time-to- Time-to- Time-to-Failure
Failure [hours] | Failure Class Class

5-12

12-24

24-48

48 -168

alu|s|lw|~

2168

Raw Time-to-Failure

Time-to-Failure
[hours]

Binary Model
240.1 M
Binary Model Binary Model Binary Model Binary Model Binary Model
Class 1 Class 2 Class 3 Class 4 Class 5
52.0 0 0 0 0 0
B \ 5 5 5 . ;
13 0 0 1 0 0
1 0 0 0 0
Stacked Binary Model
Binary Model Binary Model Binary Model Binary Model Binary Model
Class 1 Class 2 Class 3 Class 4 Class 5
0 0 0 0 0
0 0 0 0 1
0 0 1 1 1
1 1 1 1 1

Figure 12.2: The labeling techniques included in the methodology.

class into which the time-to-failure of the corresponding instance falls. The top
part of Figure depicts this labeling approach. Unlike the first two labeling
techniques, this technique requires only a single prediction model.

12.4 Model Learning

In order to learn a model for time-to-failure prediction, the methodology uses
four different machine and deep learning methods. However, similar to the
implemented feature selection and feature transformation techniques, other
algorithms would be possible and could be incorporated into the methodology

250

12.4 Model Learning

as well. The four methods currently included in the time-to-failure prediction
methodology are Random Forest (RF), eXtreme Gradient Boosting (XGBoost),
Feed-Forward Neural Network (FFNN), and AutoML [[HKV19]]. For more
details on the first three methods, we refer the reader to Sections [2.4|and
The latter model, namely AutoML, is a framework that automatically trains
multiple prediction models of different machine learning methods, optimizes
their hyperparameters, and creates stacked ensembles from the best of these
individual models [HKV19].

For each of these machine and deep learning methods, hyperparameter
tuning is carried out using the grid-search technique. The only exception
is AutoML, because AutoML already performs such tuning internally. For
hyperparameter tuning, the operator can specify a list of possible configurations
for each parameter. However, in the case study presented in this thesis (cf.
Table in Section [13.1]), we also provide parameter configurations that
have already achieved satisfactory results in practice and can therefore be
adopted if no dedicated expert knowledge is available. Regarding Random
Forest, the adjustable parameters are the number of decision trees ntree and the
number of predictors mtry to randomly choose from at each split. For XGBoost,
the parameters to be defined are the step size shrinkage eta, the maximum
tree depth max_depth, and the minimum loss reduction necessary to partition
another leaf node of the tree gamma. As the number of configurable parameters
of the FFNN is vast, a pre-defined architecture is implemented consisting of
five dense layers with an adjustable dropout after each layer. The rectified
linear unit (ReLU) is used as the activation function. For the final output, the
sixth layer employs the softmax activation function. Here, the number of nodes
corresponds to the number of classes defined by the operator. The design of
this pre-defined FENN architecture is based on F. Chollet and J. Allaire [[CA18]].
However, the resulting FFNN still provides a broad range of parameters, so
the methodology splits the grid-search into two successive iterations. The first
grid-search aims to estimate the required batch size and the overall complexity
of the model by varying the batch size, the number of nodes per layer, and the
dropout ratio. For this first iteration, the number of nodes and dropout are the
same for all layers to keep the number of permutations manageable. Based
on the top results of this first grid-search, a second grid-search is performed
considering only the parameter settings included in these top results. Here, the
number of nodes per layer and the dropout after each layer are set individually
per layer. Thus, in this second iteration, the pre-selected parameters are fine-
tuned. To learn the FFNN models, the adam optimizer is used with categorical
cross entropy as the loss function.

251

Chapter 12: Time-to-Failure Prediction Methodology for Industrial Machines

12.5 Prediction Aggregation

Regardless of the labeling method analyzed, each prediction method returns
only a single time-to-failure class when the models are applied. Thus, concern-
ing the multi-class model, the output is simply the predicted class. However, for
the binary and stacked binary labeling methods, during the prediction process,
several of the binary models may predict 1, that is, an impending failure within
their respective time window. In this case, only the time-to-failure class with
the shortest lead time is returned as the final prediction.

12.6 Summary and Discussion

We conclude this chapter by providing an answer to research question RQ B.3,
thus summarizing the main contribution of this chapter. As research question
RQ B.3 aims at designing a generic, end-to-end workflow for critical event pre-
diction of industrial machines while keeping the required domain and expert
knowledge low, this chapter presented a methodology for precisely this pur-
pose. To this end, the methodology assumes a database of sensor monitoring
records as well as failure reports. The methodology distinguishes between
four different sensor types, all of which are treated differently. While program
information sensor data are used to partition the monitoring records into in-
dividual processing phases, timestamps are utilized to derive the duration of
each processing step, and integral features are computed on both physical units
sensors and paired units sensors. The advantage of integral features is that
they do not require domain knowledge about the executions performed or the
machine under consideration. Moreover, integral features cover variations in
both the intensity of the monitored signal and its duration. Subsequently, a
feature handling task offers the capability of correlation-based feature selec-
tion and feature normalization. To predict the time-to-failure in multiple time
windows, the methodology provides three labeling procedures, namely simple
binary classification, stacked binary classification, and multi-class classification.
For this purpose, the operator can specify multiple time-to-failure windows.
Currently, the methodology includes four prediction methods, namely Random
Forest, XGBoost, Feed-Forward Neural Network, and AutoML. However, more
prediction methods can be easily integrated in the future. For model learning,
the methodology incorporates a grid-search-based hyperparameter tuning.
Finally, in the case of the two binary classification alternatives, a prediction
aggregation step is included in the time-to-failure prediction methodology to
merge the predictions of the different binary models. Thus, the only domain

252

12.6 Summary and Discussion

knowledge required to apply this time-to-failure prediction methodology is
the database along with the sensor type mapping. With respect to machine
learning expert knowledge, the only inputs required are a threshold for the
correlation-based feature selection and possible hyperparameter configurations
for the prediction models. Although this seems to be a substantial limitation,
we provide a list of hyperparameter settings for the considered prediction
methods that have proven to be effective in a real-world case study.

253

Chapter 13

Evaluation of the Time-to-Failure
Prediction Methodology in a Real-World
Case Study

As mentioned in Chapter[12) we assessed the prediction quality of the proposed
generic, end-to-end time-to-failure prediction methodology for industrial ma-
chines employing a real-world case study. In the context of this case study, we
investigated impending failures of a large-scale industrial press in six time-to-
failure prediction windows. This type of machine differs considerably from
the types of machines already studied in depth, such as bearings, lithium-ion
batteries, and hard disk drives. First, Section [13.1] provides further insights into
the case study, including a description of the monitored data and the evaluation
design. Next, Section[13.2] presents the results of the case study in the form of a
macro view, where the obtained prediction qualities are averaged across the
multiple time-to-failure windows. Subsequently, Section[13.3|provides a more
in-depth analysis of the prediction quality by reporting the prediction quali-
ties per time-to-failure class. Section [13.4] focuses only on the best prediction
method as well as the best labeling technique to present even more details on
the prediction provided by this configuration. Next, Section[I3.5 discusses the
evaluation results and potential threats to validity. Finally, we conclude this
chapter in Section with a summary of the main contribution.

The contents of this chapter are based on our earlier work, which was pub-
lished as full paper as part of the 19th IEEE IES International Conference on
Industrial Informatics (INDIN) [ZAG™21]].

13.1 Case Study Details

This case study analyzes data collected from a large-scale industrial press that
was monitored for several years. During this time, every 100th stroke was
recorded with a resolution of 1 millisecond. A stroke takes approximately four

255

Chapter 13: Evaluation of the Time-to-Failure Prediction Methodology

seconds, during which the press processes 8 different phases. The phases are
identified in the sensor recordings by the logged command, which can be con-
sidered as sensor data with program information. Subsequently, the timestamps
of the sensor measurements are used as temporal information to compute the
duration of each processing phase and the entire stroke, resulting in 9 duration
features. In addition to the timestamps and program command, 118 sensor
measurements are available for each recording entry. This results in 118 physi-
cal unit sensors, of which 32 are paired units. That is, there are 16 pairs of target
and actual values. For these pairs, the deviation is computed and utilized as
physical unit sensor data. In total, this yields 9 + (118 + 16) x 8 = 1081 features
per stroke in a data set of 47,152 strokes.

For training the Feed-Forward Neural Network (FFNN), the features were
transformed using Z-score normalization. Both normalization techniques were
tested for the other prediction methods, but the best predictions were obtained
without any normalization. In addition, correlation-based feature selection
was employed to reduce the number of features. However, since the reduced
feature set did not improve the prediction quality, in the following, we present
the results of using all features for model learning.

In order to predict the time-to-failure in several time windows, 5 hours,
12 hours, 1 day, 2 days, and 1 week were chosen as class boundaries, resulting
in classes 1 to 6, where the time-to-failure ranges from [0, 5), [5,12), [12,24),
[24,48), [48,168), and [168, co) hours, respectively. These limits were selected
because predictions in these time windows allow technicians sufficient lead
time to take countermeasures.

Table lists the parameter settings for the applied grid-search-based
hyperparameter tuning. Note that the default for mtry for Random Forest (RF)
is set to | \/#features| for classification, resulting in 32. The other two settings
for mtry are obtained by multiplying the square root of the number of features
by factors of 2 and 4, respectively, with subsequent rounding. The XGBoost
parameter specification is based on the recommendations of A. Jain [[Jail6]].
Although AutoML carries out hyperparameter tuning internally, one parameter,
namely the maximum runtime, must be specified. We set the maximum runtime
to 6 hours per binary class for the binary and stacked binary models, resulting in
a maximum total runtime of 30 hours. For the multi-class model, the maximum
runtime was set to 22 hours. Although this seems like a bias, it does not affect
the final prediction results because the maximum runtime was not reached due
to the early stopping.

In order to assess the prediction quality of the time-to-failure prediction
methods, we compute accuracy, recall, precision, F1-score, and Cohen’s kappa

256

13.1 Case Study Details

Table 13.1: Parameter settings of the prediction methods for the grid-search-based
hyperparameter tuning.

Method Parameter Settings
ntree 500, 1000, 2000
Random Forest ntry 32, 65,131
eta 0.05,0.10, 0.30
XGBoost max_depth 6, 8,10, 15
gamma 0,2,10
batch size 100, 500, 1000

Feed-Forward Neural Network number of nodes 64, 128, 256, 512
dropout ratio 0.0,0.2,04

coefficient as evaluation measures. For more details on the evaluation
measures, we refer to Section[2.6.2 However, note that Cohen’s kappa coeffi-
cient is more expressive than ordinary accuracy for imbalanced data sets since
it incorporates class frequencies. To this end, Figure[I3.1|shows the distribution
of classes in the data set used in this case study. It is evident that the classes are

12000
10977
10411
9000 8762
7978 7906

5
3 6000
@)

3000

1118
0]]
1 2 3 4 5 6
Class

Figure 13.1: The distribution of time-to-failure classes.

257

Chapter 13: Evaluation of the Time-to-Failure Prediction Methodology

highly imbalanced. For instance, the time-to-failure class 6 (i.e., the machine
will not fail within the next week) occurs 1118 times in the data set, while all
other classes are in the range of 7900 to 11000 instances.

Finally, 5-fold cross-validation [HTF09]] was used for the overall evaluation.
Accordingly, randomly selected 80% of the entire data set were used to learn
the model, while the remaining 20% of the data set were used as a test set to
evaluate the obtained prediction quality. This procedure was repeated five
times, such that each instance in the data set was included in the test set exactly
once. Note that the models were completely rebuilt from scratch between the
five repetitions. Consequently, the models could not remember an instance
from the training set for a subsequent repetition where that particular instance
might be part of the test set.

13.2 Macro Results

This section compares the best models for the three different labeling techniques
throughout all classes. Thus, the measures recall, precision, and Fl-score
are computed for each class and, then, combined using the arithmetic mean,
resulting in macro recall, macro precision, and macro Fl-score. The class-wise
results are presented subsequently in Section[13.3]

Note that for the binary or stacked binary labeling, the best model may actu-
ally consist of five different prediction methods and hyperparameter settings
corresponding to the time-to-failure classes 1 to 5 (cf. Section[12.3)), while for the
multi-class labeling, the best model involves only a single prediction method
with its best hyperparameter configuration. Table presents the accuracy,
kappa, macro Fl-score, macro recall, and macro precision obtained by the best
models for each combination of labeling and prediction method. In addition,
for the binary and stacked binary labeling methods, the best results obtained
by combining different prediction methods are also reported.

Regarding the binary models, it can be observed that Random Forest pro-
vided by far the worst result with respect to accuracy, kappa, macro Fl-score,
and macro recall. However, it achieved the second highest macro precision.
XGBoost and FFNN performed fairly similarly with respect to all measures
except macro precision, where XGBoost yielded the best result and FFNN the
worst. Finally, AutoML exhibited the best overall prediction quality when using
binary labeling. With respect to all evaluation measures except macro precision,
it considerably outperformed the other prediction methods. For this reason, the
overall best combination of binary models contains only AutoML models, all of
which were based on boosting, i.e., mainly XGBoost models and some Gradient

258

13.2 Macro Results

1£98°0 8¥8°0 61580 12080 80¥8°0 TINOMY 1s9g
1968°0 1#06°0 0006°0 /80 TL680 NNHA 199 DN
9¥68°0 £068°0 02680 g868'0 179880 1500gDX 1s9d
a¥88'0 04480 £6/8°0 978°0 €9/8°0 IS9I04 WOpuey 3s9g
06580 ¢6¥8°0 €€98°0 €208°0 60780 uoreurquio)) jsog
L¥80 1£€8°0 L1¥8°0 €984°0 08780 TINOMY 1s9g
ge8s’0 01940 €04L0 €869'0 89940 NNHA 199 Areurq paspess
1298°0 TTes0 97S8°0 96640 8/£8°0 1500gDX 1s9d
€508°0 86940 6v2L0 60020 94640 31S9104 wopuey 1S9g
Al 9€08°0 cLEL’0 SLVL0 €640 uorjeurquio)) jsog
I VAl) 9€08°0 cLEL’0 QLvL’0 €640 TINOIMY 1s9g
1€69°0 0zTeL0 £599°0 61990 6C1Z0 NNHA 199 Areurg
0£08°0 9L¥L0 €€69°0 ¢L99°0 €8IL0 3500gDX Is9d
G908°0 0¥19°0 9650 r0S'0 04950 31S9I04 wopuey] 3s9g
UOTSIDDIJ OIDBJA [[€D9Y OIdBJN 9100G-TJ omejN eddey Ademmddy POYdIA UOLDIPaI] POYRA Sureqe]

"SOI[E} UT USPILIM pue poq ur pajy3iySny a1e sanjea 3saq [[eI9A0 3} [IYM “proq ut payySiySiy axe poyzow Jurppqer 1od
sanyea 3s9q YT, “yoroidde Suroqe| yoes 10§ UOLUIGUIOD 3S3q [[BISAO IS} SE [[9M St POYIdU UOdIpaid [enprarpur yoes jo
s3umes 193ourered 3saq a3 10§ uoisaId oreW pue ‘J[edal oIdew ‘102s-T,] oreuw ‘eddey “Aoemode passryoe oy, g €T d[qeL

259

Chapter 13: Evaluation of the Time-to-Failure Prediction Methodology

Boosting Machine models. Given that the best combination is equal to the
application of the five best binary models of AutoML, both rows in Table[13.2]
display the same values.

Concerning the stacked binary models, the first finding is that the prediction
quality of all methods increased greatly. Here, Random Forest and FFNN pro-
vided comparable results with respect to all measures, although the achieved
values of Random Forest were nevertheless slightly higher. Moreover, XGBoost
outperformed AutoML with respect to all measures, although all models
learned by AutoML were still based on boosting methods only. However,
a mixture of XGBoost and AutoML models was the best combination of models.
The best combination model utilized XGBoost with eta = 0.05, max_depth = 15,
and gamma = 0 for the time-to-failure classes 2 and 3, while AutoML models
were used for the time-to-failure classes 1, 4, and 5.

In contrast to this dominance of AutoML and XGBoost for the binary and
stacked binary models, FFNN significantly outperformed AutoML in the case
of multi-class labeling, even though AutoML learned a complex ensemble
model consisting of eight Gradient Boosting Machine models, seven XGBoost
models, one linear model, two Random Forest models, and seven deep neural
networks. Yet, XGBoost provided the second best results on all evaluation
measures. Moreover, even Random Forest clearly outperformed AutoML. The
results obtained by the multi-class FFNN were the best among all labeling
techniques and prediction methods with an accuracy, kappa, macro F1-score,
macro recall, and macro precision of 89.72%, 87.25%, 90.00%, 90.41%, and
89.51%, respectively. The configuration of this optimized FFNN was as follows:

e batch size = 500
e number of nodes per layer = [256, 256, 512, 512, 256 |
e dropout per layer = [0.2, 0.2, 0.0, 0.0, 0.2]

Finally, when comparing the kappa values of the best prediction methods
per labeling strategy, only the multi-class labeling approach reached a value
greater than 0.81. According to J. Landis and G. Koch [LK77], this value is
considered the lower bound of a near-perfect match. In terms of numbers, the
best multi-class labeling model exceeded this limit considerably, showing a
kappa value of 0.8724, while the best stacked binary labeling model almost
reached this limit with a kappa value of 0.8023, and the best simple binary
labeling model remained far from it with a kappa value of only 0.7545. These
results might be explained by relationships between the time-to-failure classes.
When modeling all six classes with a single prediction model, subtle differences

260

13.3 Results by Class

between the classes can be learned that are likely to be missed when analyzing
each class individually. Therefore, the prediction results for the individual
classes are presented in the next section.

13.3 Results by Class

In this section, the achieved prediction quality per class is evaluated in detail.
For this purpose, Table reports the Fl-score, recall, and precision for the
binary (B), stacked binary (S), and multi-class (M) labeling for each of the
six time-to-failure classes. The best values per evaluation measure and time-
to-failure class are highlighted in bold, while the worst values are underlined.
Regarding the Fl-score, it is apparent that the multi-class labeling performed
best, as it achieved the highest value for five of the six classes. Only for the last
class (i.e., no machine failure within the next week), the stacked binary labeling
approach performed better by 0.0081 percentage points. The binary labeling
approach yielded the worst F1-scores for all time-to-failure classes. Neverthe-
less, it achieved the same Fl-score as the stacked binary labeling approach for
time-to-failure class 1. This is due to the fact that the labeling procedure is the
same for the first class in both labeling strategies and both use the same AutoML
model for class 1. This also applies to recall and precision in the following.
Moreover, the Fl-score of binary labeling for classes 1 to 5 was close to the
F1-score of stacked binary labeling, while it dropped significantly for class 6.

Table 13.3: The achieved F1-score, recall and precision per class for the best models of
each labeling method (LM), i.e., binary (B), stacked binary (S) and multi-class (M).
The best values are written in bold, while the worst values are underlined.

Measure LM Class1 Class2 Class3 Class4 Class5 Class6
B 0.8155 0.6935 0.7955 0.8595 0.9356 0.3234

F1-Score S 0.8155 0.7273 0.8142 0.8765 0.9403 0.9460
M 0.8807 0.8353 0.8772 0.9111 0.9589 0.9379
B 0.8356 0.6161 0.7319 0.8129 0.9085 0.9168
Recall S 0.8356 0.6980 0.8538 0.8679 0.9158 0.9240
M 0.8913 0.8420 0.8495 0.9161 0.9587 0.9669
B 0.7964 0.7933 0.8712 09116 09643 0.1964
Precision S 0.7964 0.7591 0.7781 0.8853 0.9662 0.9690
M 0.8703 0.8206 0.9068 0.9062 0.9561 0.9105

261

Chapter 13: Evaluation of the Time-to-Failure Prediction Methodology

While the stacked binary labeling and the multi-class labeling achieved an
F1-score of 0.9460 and 0.9379, respectively, the simple binary labeling obtained
an Fl-score of just 0.3234 for time-to-failure class 6.

When analyzing the achieved recall, the multi-class labeling approach again
performed best for five of the six time-to-failure classes. This time, however, the
stacked binary labeling surpassed the multi-class labeling for time-to-failure
class 3. Similar to the F1-score results, the difference is relatively small, with
only 0.0043 percentage points. Again, the binary labeling performed worst for
all six time-to-failure classes, while it yielded the same results as the stacked
binary labeling approach for class 1. Nevertheless, the binary labeling did
not provide as significantly poor results as for the Fl-score of class 6. The
most considerable difference between the binary labeling and the second best
labeling method is for class 3, where the binary labeling provided a recall of
0.7319 and the multi-class labeling resulted in a recall of 0.8495. As recall is the
number of instances correctly predicted as positive relative to the total number
of actual positive instances, these results suggest that all three labeling methods
predict imminent machine failures fairly well while keeping the number of
missed imminent failures low.

Finally, the multi-class labeling approach obtained the highest precision
for three time-to-failure classes (i.e., classes 1 to 3), while the stacked binary
labeling approach performed best for two time-to-failure classes (i.e., classes 5
and 6), and the simple binary labeling approach performed best for time-to-
failure class 4. In contrast, the stacked binary labeling performed worst for four
time-to-failure classes, i.e., classes 1 to 4, while the binary labeling provided
the same precision for class 1. Remember that the precision is the number of
instances correctly predicted as positive relative to the total number of instances
predicted as positive. Thus, the stacked binary labeling approach provided
comparatively many false positives for classes with a short time-to-failure, while
it provided the lowest number of false positives for the two classes with the
highest time-to-failure. Similarly, the binary labeling approach resulted in the
fewest false alarms for the classes indicating failures within the next 24 to 48
hours. However, the precision of binary labeling for class 6 is by far the worst
with only 0.1964, resulting in the low Fl-score of binary labeling. Accordingly,
the binary labeling approach predicted many instances as not failing within
the next week, even though the actual time-to-failure was much shorter. This
demonstrates the necessity of comparing different labeling strategies, as their
performance varies considerably between classes as well as in the aggregate.
Finally, the multi-class labeling produced the fewest false alarms for the most
urgent, and thus, most relevant time-to-failure classes.

262

13.4 Details on the Best Predictions

13.4 Details on the Best Predictions

This section provides more detailed insights into the overall best predictions,
which were obtained by the Feed-Forward Neural Network using multi-class
labeling. Therefore, Table reports the accumulated confusion matrix over
all five folds, such that each instance in the data set is used exactly once in
the test set. While the columns of the confusion matrix show the actually
observed (Ob) time-to-failure classes, the rows represent the predicted (Pr)
classes. The value in each cell displays the number of instances predicted for
that particular combination of observed and predicted class labels. Finally, the
cells highlighted in green indicate the correctly predicted instances.

The confusion matrix demonstrates that most instances were predicted cor-
rectly. In particular, only a few mispredictions were made for the higher time-
to-failure classes. In contrast, most of the mispredictions were for the shorter
time-to-failure classes, where the temporal distance between classes is also
shorter. Moreover, the majority of the mispredictions are located directly in
adjacent classes. Thus, the time-to-failure mispredictions mostly fall in the
closest time-to-failure windows, which leads to only minor discrepancies dur-
ing practical applications. Only relatively few failure instances show a higher
prediction error (i.e., several cells apart in the confusion matrix).

Furthermore, for many practical applications, such a fine-grained time-to-
failure prediction might not be necessary, allowing a binary prediction instead
with a prediction horizon of two days to be sufficient. To evaluate our time-
to-failure prediction methodology for such a scenario, we ex post reduced the
confusion matrix with six classes to the binary prediction of whether or not
the machine failure will occur within the next two days. Consequently, the

Table 13.4: The accumulated confusion matrix over all five folds for the Feed-Forward
Neural Network with multi-class labeling. The green color highlights the correctly
predicted instances.

Pr Ob Class 1 | Class2 | Class 3 | Class 4 | Class 5 | Class 6
Class 1 9719 755 243 131 144 20
Class 2 654 6635 462 86 78 12
Class 3 262 398 7671 235 42 18
Class 4 132 109 297 7283 166 11
Class 5 190 69 74 163 9959 18
Class 6 20 12 15 8 22 1039

263

Chapter 13: Evaluation of the Time-to-Failure Prediction Methodology

time-to-failure classes 1 to 4 represent the “failure class”, whereas the time-to-
failure classes 5 and 6 are merged to form the “no failure class”. For this binary
prediction, our predictive maintenance methodology predicted impending
failures with an even substantially higher accuracy, F1-score, and kappa of
97.79%, 98.54%, and 94.03%, respectively.

13.5 Discussion and Threats to Validity

This section first summarizes the main evaluation findings, followed by a
discussion of potential threats to validity.

13.5.1 Summary of Evaluation Findings

Drawing on the results of the real-world case study conducted, we derived the
following main findings:

(I) The integral features allow for high prediction quality in the context of
critical event prediction for industrial machines while requiring little to no
domain knowledge.

(II) Given the prediction of six time-to-failure classes, all labeling strategies
provided satisfactory results, although there were substantial differences in the
obtained prediction quality. While the simple binary classification provided the
worst results, the stacked binary classification clearly enhanced the prediction
quality. However, both versions of the binary models were considerably out-
performed by the multi-class model. The differences in the achieved prediction
quality are particularly evident when considering the prediction quality per
time-to-failure class.

(IIT) While boosting methods were superior for the binary and stacked binary
labeling strategies, the Feed-Forward Neural Network surpassed the other
models with respect to the multi-class model, which eventually achieved the
highest prediction quality.

(IV) By downscaling the six fine-grained time-to-failure classes to the binary
prediction of whether or not the machine is likely to fail within the next two
days, the obtained accuracy, F1-score, and kappa increased even further from
89.82%, 90.00%, and 87.24% to 97.79%, 98.54%, and 94.03%, respectively.

13.5.2 Threats to Validity

Although it is common practice to apply multiple binary prediction models to
predict impending failures with different lead times (e.g., J. Li et al. [L]]"14]),
the results of our case study revealed that such an approach does not necessarily

264

13.5 Discussion and Threats to Validity

yield good results. In fact, the simple binary models performed the worst in our
case study. However, this result only represents our conducted case study, while
the ranking of best labeling methods and best machine learning algorithms
for another use case might be completely different. Nevertheless, the results
emphasize the importance of testing different class labeling strategies, as their
influence can be even more significant than the choice of the machine learning
method itself, as it was the case in our case study.

As only integral features and duration features were used, the methodology
does not require in-depth domain knowledge, which makes it easily applicable
to other application scenarios as well. In addition, the case study considered
failures of a large-scale industrial press, which has hardly been analyzed in
the literature so far. However, we evaluated the prediction quality of the
methodology only on one use case. Further investigations of other use cases
should be conducted in this respect.

Regarding prediction aggregation for the stacked binary model, we also
compared using a strategy that analyzes the consistency of class labels ones
across the binary models” predictions. However, using the time-to-failure class
with the shortest lead time provided the best results. Nevertheless, there exist
many other ways to aggregate the predictions of the binary models, such as
incorporating class probabilities. Therefore, future research should develop
different methods for prediction aggregation and investigate their effects on
the overall prediction quality.

Finally, we also employed Recurrent Neural Networks, or more specifically
Gated Recurrent Units and Long Short-Term Memory networks, to predict
the time-to-failure. However, their prediction quality was unsatisfactory. The
LSTM network achieved a maximum macro Fl-score of 75%, while the GRU
network provided an even lower maximum macro F1-score of only 66%. This
can be explained by the nature of the data set used in this case study. First, the
sensor readings of individual strokes could not be used as time series for the
Recurrent Neural Networks, as they varied greatly in length. Consequently,
the derived integral features were used as time series spanning across multiple
strokes. However, the temporal difference between successive strokes is far
from equidistant. Therefore, modeling the integral features of a stroke as an
observation in a time series covering multiple consecutive strokes resulted in
an inferior prediction quality compared with Feed-Forward Neural Network,
XGBoost, Random Forest, and AutoML. Nevertheless, Recurrent Neural Net-
works should also be considered for the prediction of time-to-failure due to
their ability of modeling temporal dependencies. However, the varying time
differences between successive strokes should be explicitly taken into account.

265

Chapter 13: Evaluation of the Time-to-Failure Prediction Methodology

13.6 Concluding Remarks

To conclude this chapter, we summarize its main contribution in the context of
this thesis. Given that this chapter provides experimental results of the pro-
posed generic, end-to-end time-to-failure prediction methodology of industrial
machines on the basis of real-world monitoring data from a large-scale indus-
trial press, this chapter contributes to research question RQ B.3. To demonstrate
the effectiveness of the proposed methodology, we performed a five-fold cross-
validation, assessing the prediction quality both at macro level as well as by
class. For this purpose, six time-to-failure classes were defined, each repre-
senting a different lead time for impending machine failures. The macro level
examination already showed that the multi-class model performed consider-
ably better compared with the two binary labeling strategies. This insight was
amplified when examining the prediction results on a per class basis. Here,
the results revealed that the multi-class labeling consistently provided high
quality for all time-to-failure classes. The multi-class labeling outperformed the
other two labeling alternatives especially for the classes representing a short
time-to-failure, which are the most critical from a practical point of view. When
comparing the prediction methods, the boosting methods achieved the best
prediction quality for both binary labeling alternatives, while the Feed-Forward
Neural Network significantly surpassed the other prediction methods for the
multi-class model. Thus, the Feed-Forward Neural Network provided the best
overall predictions with an average accuracy, macro F1-score, and kappa value
of 89.82%, 90.00%, and 87.24%, respectively. Downscaling the six time-to-failure
classes to a binary prediction of whether or not the machine will fail within the
next two days enhanced these numbers even further to 97.79%, 98.54%, and
94.03% in terms of accuracy, F1-score, and kappa, respectively. In addition, we
have provided a set of potential hyperparameter configurations for hyperpa-
rameter tuning that have been proven to provide well-performing prediction
models. Thus, practitioners can adopt these configurations for hyperparameter
tuning in case of a lack of expert knowledge when applying the proposed
methodology to other machines.

Although the presented results are auspicious, some limitations should still
be mentioned. First, the prediction methodology was investigated only with
respect to one type of machine, namely a large-scale industrial press. How-
ever, since we did not include any domain knowledge about presses in the
proposed methodology, the methodology should be applicable to other indus-
trial machines as well. In Chapter (12} we also discussed why integral features
are universally applicable to industrial machines. Second, other techniques
regarding prediction aggregation for the binary labeling procedures could lead

266

13.6 Concluding Remarks

to different results. However, we have already tested another approach that
considers the consistency of class label ones in the predictions of the binary
models. Still, this approach performed inferior to using only the predicted
time-to-failure class with the shortest time-to-failure. Nevertheless, future
research should consider other aggregations and investigate their effects on
the prediction quality. Finally, other prediction methods, such as Recurrent
Neural Networks, could also be incorporated. However, the applicability of
such methods is highly dependent on the data quality, making the applicability
of the methodology less universal.

267

Chapter 14

On-line Update Strategies for Critical Event
Prediction Models

Although the models presented so far have proven to predict critical events for
real-world data with high accuracy, they lack a mechanism for updating the pre-
diction models during runtime. However, such on-line updating mechanisms
are required for the application of the proposed system model in real-world
applications. The main reason for prediction models requiring such on-line
updates is concept drift [WK96]. In machine learning, concept drift describes
a shift in feature distribution over time due to a change in the underlying data
generation process. This drift means that the mapping between features and the
target value learned on old data no longer fits new incoming data. Therefore,
prediction models should be updated according to an appropriate strategy to
counter such concept drift. In general, there are two approaches to implement
such updates. First, the model can be learned incrementally. However, such
incremental learning procedures must be developed individually for each ma-
chine learning method, as they require modifications to the machine learning
methods themselves. Second, the model can be completely re-trained. Here,
the machine learning methods do not need to be adapted, but a trigger defining
when the particular model should be re-trained is necessary.

In this chapter, we present on-line update strategies for prediction models
using model re-training. Due to the availability of huge data sets for monitoring
hard disk drives, in the following, we focus on predicting critical events for
hard disk drives based on S.M.A R.T. monitoring data.

To achieve proactivity based on S.M.A.R.T. monitoring data, several ap-
proaches have been proposed that apply machine learning algorithms with
S.M.AR.T. features as input to either predict the time-to-failure in the form of
regression [[CAPL™18,[YHL™15/XWL™16]] or to classify whether or not the hard
disk drives will fail within a given prediction window [[BGBW16,MHKDO05)
AJG™17]]. However, most of these approaches do not reflect real-world ap-
plications in data centers, as they consider hard disk failure prediction only

269

Chapter 14: On-line Update Strategies for Critical Event Prediction Models

as a static task where the prediction model is learned on a random subset of
the available data, while the remaining subset of the data is used for testing.
However, in real-world applications, temporal partitioning is required, as the
prediction model must be learned on data that lies in the past. However, in
the case of a random split between training and testing, this is not guaranteed.
Furthermore, it is also not realistic to assess the prediction quality of a hard disk
drive failure prediction model on the entire test set at once, as it should rather
be analyzed on a regular basis. Moreover, model updates would be required if
the observed prediction quality is not sufficient. Therefore, we address these
requirements for the realistic application of hard disk drive failure prediction
models by developing hard disk drive failure prediction models and presenting
as well as comparing different update strategies.

The content of this chapter is based on our previous work, which was pub-
lished as a full paper at the 20th IEEE International Conference on Machine
Learning and Applications (ICMLA) [[ZEK21]]. The remainder of this chap-
ter is organized as follows: Section describes the models for hard disk
drive failure prediction in general. Next, Section introduces the update
triggers, which determine when an update is required. Finally, Section [14.3]
briefly summarizes this chapter and answers the associated research question.

14.1 Hard Disk Drive Failure Prediction

This section describes the design of the general hard disk drive failure prediction
model. Therefore, we first outline the data preprocessing, then present the
target label assignment, and finally describe the model learning workflow.

14.1.1 Data Set Generation

First, to learn a time-to-failure prediction model for hard disk drives, we built a
data set comprising only S.M.A.R.T. measurements of a single hard disk drive
model. This is due to the fact that different manufacturers may still define
certain S.M.A.R.T. features differently. In addition, the patterns of degrading
hard disk drives may vary from hard disk drive model to hard disk drive model,
depending on their manufacturing characteristics. As M. Botezatu et al. have
shown, prediction models learned on one hard disk drive model cannot be
directly applied to other hard disk drive models [BGBW16]].

After selecting a hard disk drive model (cf. Section[I5.1]), we narrowed the
set of hard disk drives to the subset of hard disk drives exhibiting at least

270

14.1 Hard Disk Drive Failure Prediction

five measurement samples. Hard disk drives with fewer than five SM.A.R.T.
measurements can be assumed to have behaved anomalously anyway.

Subsequently, we divided the data set into a training set and a testing set. Due
to the fact that we are analyzing the effects of different update strategies, we
split the initial data set according to the measurement time point. Accordingly,
an initial time period is used for training, while all S.M.A R.T. measurements
thereafter are dedicated to on-line testing, thus also verifying whether or not
the update trigger fires.

Existing research on hard disk drive failure prediction has already shown the
favorable effects of S.M.A.R.T. feature selection [[LSWT17,XXW™18]. Therefore,
we employed the same feature selection as J. Xiao et al. [XXW 18], resulting
in the feature set shown in Table Here, normalized represents the normal-
ization of the S.M.A R.T. measurements performed by Backblaze, while raw
illustrates the raw S.M.A.R.T. measurements. Upon defining these relevant
S.M.ART. features, we removed all daily measurement instances containing
NaN values for any of the remaining S.M.A.R.T. features.

Table 14.1: The set of SM.A.R.T. features selected for model learning following J.
Xiao et al. [XXWT18].

S.M.A.R.T. Feature Normalized Raw

Read Error Rate v
Reallocated Sectors Count v
Seek Error Rate v
Power-On Hours

Power Cycle Count

Runtime Bad Block
End-to-End Error

Reported Uncorrectable Errors
High Fly Writes

Load Cycle Count

Current Pending Sector Count
Uncorrectable Sector Count
UltraDMA CRC Error Count

ESRNENENENEREN

NENENENENEN
ASENENEN

Furthermore, since the recorded values of the various S.M.A.R.T. features
show highly varying ranges, they are transformed using min-max normaliza-
tion (cf. Section [12.2]). Despite Backblaze having already applied a form of
normalization, min-max normalization is required for both the normalized and

271

Chapter 14: On-line Update Strategies for Critical Event Prediction Models

raw SM.AR.T. features. For this purpose, the maximum and minimum values
only are determined on the training set to normalize all feature values in the
training set. The same minimum and maximum values are also employed to
normalize S.M.A.R.T. features in the test sets, since updating the minimum
and maximum values would distort the patterns already learned. However,
this may result in normalized values outside the range of [0, 1] if the test sets
include values lower than the minimum value of the training set or higher than
the maximum value of the training set.

14.1.2 Time-to-Failure Prediction Window

In order to proactively predict impending hard disk drive failures, we model
this task as a binary classification problem. A prediction window of ten days
was chosen as this provides sufficient lead time for operators to back up the
data stored on the hard disk drives and replace the hard disk drive in a timely
manner. A prediction window of ten days refers to the classification task of
predicting whether a particular hard disk drive will fail within the next ten
days, considering the daily S.M.A.R.T. measurements. Therefore, we label all
instances within ten days prior to the failure as “failed” (positive class), while
all other instances are labeled as “good” (negative class). Note that this results
in a highly imbalanced data set, with many more “good” instances than “failed”
instances in the data set.

14.1.3 Model Learning

After selecting and normalizing the relevant S.M.A.R.T. features, the training
set must be sampled. This sampling step is necessary since the original training
set contains many more “good” instances than “failed” instances, which in turn
leads to an inferior classification quality for the minority class, i.e., to a poor
prediction of impending failures. Therefore, we limit the number of “good”
instances in the training set with respect to the number of “failed” instances
in the training set. More specifically, we define a parameter v that specifies
the maximum imbalance ratio. Given that 7" denotes the entire training set,
with T}, being the subset of “good” instances and T’y being the subset of “failed”
instances, the imbalance ratio p of the original training set is defined to be

_ [Tl

p =9 (14.1)
|Ty|

For the purpose of controlling the imbalance ratio, -y specifies the upper bound
of p. If p is larger than ~, we randomly sample v x |T;| “good” instances from

272

14.1 Hard Disk Drive Failure Prediction

the training set and create a new training set 7* that consists of this set of
randomly sampled “good” instances T, and the entire set of “failed” instances
T}. In this way, we ensure that the maximum imbalance ratio is

_ |7

il (14.2)

p<7

Using the sampled training set 7°%, the different machine learning models
are trained in the form of binary classification models. Here, the machine
learning methods considered include logistic regression (LogReg), Support
Vector Machine (SVM), Random Forest (RF) and XGBoost (XGB). Given that
the main focus of this chapter is to analyze the effects of different update strate-
gies, a fixed parametrization is used for each method instead of performing a
time-consuming hyperparameter tuning. The hyperparameter settings for the
different machine learning methods as well as the Python libraries used are
presented in Table[14.2]

Table 14.2: The Python libraries used along with the parametrization of the machine
learning methods.

Method Library Parameters

LogReg sklearn penalty ="12", solver = "Ibfgs"

SVM sklearn loss = "squared_hinge", penalty = "12", tol = 1e-4,
max_iter = 1000

RF sklearn criterion = "gini", num_estimators = 30,
max_features = 4/ #features
XGB xgboost num_estimators = 30, objective = "binary:logistic",

eval_metric = "logloss"

14.1.4 Prediction

Unlike typical, static machine learning applications, which learn the model on
a given training set and evaluate it on a dedicated test set, here, the test set
has to be partitioned into a number of batches to evaluate the impact of model
update strategies at runtime. Therefore, the test set is divided into batches
of equal size in time. Then, the model learned on the training set is applied
to the first test batch. Once all instances in the test batch are predicted, the
prediction quality obtained by the machine learning models is evaluated and

273

Chapter 14: On-line Update Strategies for Critical Event Prediction Models

the update strategies are applied to determine whether or not the triggers fire.
In case a trigger indicates the necessity of an update, the training set 7°° is
expanded to include the new “failed” instances as well as the undersampled
“good” instances of the test batch. Note that the same used for the original
training set is employed for adding the test batch to the subsequent training
set. However, if the trigger does not signal the need for an update, the same
model will be used for the next test batch until a trigger is fired.

14.2 Update Strategies

In order to adjust the machine learning models to changes in the data and drift-
ing failure patterns, the models are re-trained if an update strategy triggers. For
this purpose, this section describes the considered prediction quality measures
as well as the different update triggers.

14.2.1 Prediction Quality Measures

While some update triggers do not depend on the achieved prediction quality
of the critical event prediction models, analyzing the current predictive power
and comparing it with previous test batches provides the most insight into the
prediction quality of the models as well as potential concept drifts. Therefore,
we compute two commonly used measures to evaluate hard disk drive failure
prediction quality, namely the failure detection rate (FDR) and the false alarm
rate (FAR). The false alarm rate compares the number of instances incorrectly
predicted as “failed” with the number of instances correctly predicted as “good”
plus the number of instances incorrectly predicted as “failed”. Formally, this
can be expressed as
FP

~ TN + FP’

where FP denotes the number of instances that were incorrectly predicted
as “failed” and TN exemplifies the number of instances that were correctly
predicted as “good”.

On the contrary, the failure detection rate takes into account the number of
instances correctly predicted as “failed” and puts it into relation to the sum
of the number of instances correctly predicted as “failed” and the number of
instances incorrectly predicted as “good”. Consequently, the failure detection
rate is defined as

FAR (14.3)

P

FDR = ———
TP + FN’

(14.4)

274

14.2 Update Strategies

where TP represents the number of instances that were correctly predicted as
“failed” and FN reflects the number of instances that were predicted as “good”,
although “failed” would have been correct.

14.2.2 Update Triggers

In this section, we present four distinct triggers for updating machine learning
models based on either temporal constraints or the achieved prediction quality.

14.2.2.1 Periodic

The first and most intuitive update trigger merely observes the time At elapsed
since the last update and triggers as soon as it exceeds a specified temporal
threshold A;. The periodic update trigger criterion is therefore defined as

At > A (14.5)

When the temporal threshold is hit, the data gathered since the last update is
added to the training set 7 and the “good” instances are undersampled as
described in Section Hence, the machine learning models are re-trained
based on a periodic schedule.

14.2.2.2 Absolute Prediction Quality

In contrast to the periodic update trigger, this update trigger considers the
achieved prediction quality of the current test batch. Based on a pre-defined
absolute threshold), for the evaluation measures, such as FDR or FAR, the
trigger is fired in case the achieved measure 7; of the current test batch ¢ drops
below the threshold. Thus, the trigger criterion is defined by

i < Aa- (14.6)

Analogous to the periodic update trigger, the new training set is updated to
re-train the model based on the new data received since the last update.

14.2.2.3 Relative Prediction Quality

Whereas the prior update trigger only considers the prediction quality of the
current test batch, this update trigger also accounts for the prediction quality
of the previous test batch. To this end, the achieved prediction quality of the
current test batch 7; is compared with the prediction quality of the previous

275

Chapter 14: On-line Update Strategies for Critical Event Prediction Models

test batch 7;_; multiplied by a pre-defined threshold A,. Formally, the relative
prediction quality update trigger criterion is defined by

i < A Tiz1, withO< A, <1. (147)

The procedure for updating the training set as soon as the trigger fires is the
same as for the other update triggers.

14.2.2.4 Hoeffding Bound

This update trigger is related to the relative prediction quality update trigger,
except that the Hoeffding bound trigger relies on statistics tailored to detect
concept drift rather than expert knowledge for threshold determination. The
Hoeffding bound is widely used to detect such concept drifts when applying
machine learning models to streaming data [[DH00,RPDJ12, XW16]]. For the
purpose of applying the Hoeffding bound to estimate the update requirement
of machine learning models, the monitored prediction quality measure, such
as FDR or FAR, is considered as the random variable r to be observed, with 7
denoting the sample mean of and R representing the range of , which is 1
in the case of a probability distribution and log ¢ for information gain with ¢
classes [[DHO0]]. As only samples of the random variable r can be observed,
a confidence interval based on the sample mean 7 is formed to determine
statistically significant outliers. More specifically, the Hoeffding bound states
that with a confidence level of 1 — «, the true mean of the observed random
variable 7 is at least 7 — ¢, where € is defined by

/R?-Inl/«
€ = W, (14.8)

with n denoting the number of independent observations of . In order to
convert the Hoeffding bound into a trigger criterion, two successive test batches
must be compared. If the prediction quality of the more recent test batch is
lower than the prediction quality of the previous test batch by more than ¢, a
change in the data generation process is assumed, which in turn requires a
model update. Otherwise, i.e., if the difference between the two test batches is
less than or equal to € or if the more recent test batch exhibits better prediction
quality, no update is required. Therefore, the trigger criterion based on the
Hoeffding barrier is defined as

T <Ti-1 — € (14.9)

where 7; indicates the prediction quality of the current test batch and 7;_;
denotes the prediction quality of the previous test batch.

276

14.3 Summary and Discussion

14.3 Summary and Discussion

The main contribution of this chapter is the introduction of four update strate-
gies for on-line application of critical event prediction models. Thus, the con-
tribution of this chapter addresses research question RQ B.4. To this end, we
first discussed the necessity of model updates during runtime. Subsequently,
we focused on the domain of hard disk drive failure prediction, which has also
been studied previously in Chapters|10|and (11l However, since the focus of this
chapter is on the on-line update of critical event prediction models, we only
used a binary model to predict hard disk drive failures in this chapter. In terms
of update strategies, we described the extent to which the data set needs to be
treated differently compared to typical, static machine learning applications in
order to reflect the real-world application more realistically. First and foremost,
the data set must be partitioned with respect to the monitoring time, rather than
randomly. Furthermore, the test set needs to span a long time horizon so that
it can be divided into multiple consecutive test batches, each covering the same
time span. Regarding model learning based on highly imbalanced data, we also
included a parameter to limit the maximum imbalance ratio in the training set.
The four update triggers proposed in this chapter are based either on temporal
limits or on the prediction quality achieved by the prediction models. While
the first update trigger considers only the time elapsed since the last update,
the second update trigger solely observes the prediction quality achieved on
the current test batch. In contrast, the third update trigger compares the pre-
diction quality of the current test batch with that of the previous test batch.
Finally, the fourth update trigger again compares the prediction qualities of
the current and previous test batches. However, instead of a fixed threshold, it
employs the Hoeffding bound to determine whether the difference between
the prediction qualities of the two test batches is statistically significant. Once
an update trigger indicates the need for a model update, the new monitoring
data collected since the last update is added to the old training set and used to
re-train the prediction model. However, the same parameter for regulating the
maximum imbalance ratio is applied as for the initial training set.

Although the update strategies were presented in the context of hard disk
drive failure prediction and use prediction quality measures tailored to hard
disk drive failure prediction, the general design can nevertheless be applied
to other critical event prediction scenarios as well. For this purpose, only the
observed evaluation measures within the update triggers need to be changed.

277

Chapter 15
Evaluation of Model Update Strategies

In this chapter, we evaluate the prediction quality of deploying on-line update
strategies for critical event prediction models. To this end, we use a real-world
data set from Backblaze [[Bac20]] that includes monitoring data of a large number
of hard disk drives over several years. The particular subset of hard disk
drive monitoring data provided by Backblaze used in these experiments is
described in more detail in Section[15.1} Subsequently, Section [15.2 compares
the prediction qualities achieved by the four model update strategies with each
other and with the baseline that uses no update mechanisms at all. For this
purpose, the update strategies are applied to four machine learning algorithms.
In addition, we propose a novel evaluation measure, namely the (-value, to
combine the failure detection rate and the false alarm rate into a single measure
of prediction quality. In Section [15.3) we compare the prediction qualities of the
different machine learning methods using only the best update strategy. Next,
we summarize the main findings and discuss threats to validity in Section[15.4]
Finally, we conclude this chapter in Section

The contents of this chapter are based on our previous work, which was
published as a full paper at the 20th IEEE International Conference on Machine
Learning and Applications (ICMLA) [[ZEK21]].

15.1 Data Set

For the experiments conducted in this case study, we made use of the well-
known data set from Backblaze [Bac20]], which comprises a large number of
different hard disk models and S.M.A.R.T. features monitored over a period
of several years. However, since different manufacturers may define certain
S.M.AR.T. features differently and M. Botezatu et al. have shown that models
learned on one hard disk drive model cannot be directly applied to other hard
disk models [BGBW16]|, we utilized only one hard disk drive model, namely
STM4000DMO000. We chose this hard disk drive model due to the fact that
hard disk drives of this model have been used for a comparatively long period

279

Chapter 15: Evaluation of Model Update Strategies

of time and it includes a large number of individual hard disk drives (i.e., a
large number of unique serial numbers). More specifically, the monitoring
data spans from February 1, 2017 to December 31, 2020. While we used the
first six months of this data for model training, we evaluated the prediction
quality for the remaining 41 months on a monthly basis. In total, the data set
includes 35,170 unique hard disk drive serial numbers, out of which 2,246 hard
disk drives failed during the monitoring period.

Yet, by analyzing the data set by measurement instance rather than hard disk
drive serial number, the imbalance is even more pronounced. For model learn-
ing and evaluation, we labeled all instances of each hard disk drive that failed
within the next ten days as positive, while we discarded all earlier instances of
those hard disk drives. All other instances were labeled as negative. After this
labeling procedure, the test set exhibits a prevalence, i.e., the ratio of positive
instances compared to the total number of instances, of only 0.0639%.

Finally, we omitted the instances from the last ten days since we cannot guar-
antee that the hard disk drives in this last data period did not fail shortly after
the monitoring period. Therefore, we cannot ensure the ground truth labels
of these last measurement instances. As evaluation measures for prediction
quality, we chose failure detection rate and false alarm rate (cf. Section[14.2.)).

15.2 Comparison of Update Strategies

As described in Section the hard disk drive failure prediction models were
initially trained on the first six months of data. The remaining data, namely the
test set, were also sorted by time and separated into test batches, which each
contained a single month. This means that after training the prediction models
on the first six months, the seventh month was used to assess the prediction
quality and to determine whether or not the update trigger fires. Depending
on the decision of the particular update trigger, the old prediction model was
either used again for the next month, or the prediction model was re-trained for
the next test batch. This procedure was repeated for the entire test set, which
comprised a total of 41 months.

In order to deploy the four update triggers introduced in Section [14.2.2} their
thresholds needed to be defined. Thus, we set the temporal threshold of the
periodic update trigger to \; = 1 month, which corresponds to the duration
of individual test batches. With respect to the update trigger based on the
absolute prediction quality, we set two different thresholds for FAR and FDR
as the machine learning algorithms yielded two different prediction quality
patterns, as shown in the following. Therefore, we defined /\EAR =0.015and

280

15.2 Comparison of Update Strategies
MPR — (.35 for logistic regression and SVM, whereas we specified \FAR = 0.03
and AIPR = 0.45 for Random Forest and XGBoost. Regarding the relative
prediction quality update trigger, we set the relative threshold, which also
considers the prediction quality of the previous test batch, to A\, = 0.95. Finally,
the confidence level of the Hoeffding bound was also specified to be 0.95. In
other words, we set o = 0.05 for the fourth update trigger.

Figure shows the prediction quality obtained by the four machine learn-
ing algorithms using no updates, the periodic update trigger, the absolute
prediction quality update trigger, the relative prediction quality update trigger,
and the Hoeffding bound update trigger represented as black (solid), orange
(dashed), green (dot-dash), red (long dash), and purple (dash-dash) lines,
respectively. The subfigures display the test batches on the horizontal axes,
while the achieved predictive qualities, i.e., either with respect to FDR or FAR,
are depicted on the vertical axes. Each row of subfigures illustrates the same
machine learning algorithm, where the obtained FDR is always shown in the
left column and the obtained FAR is always shown in the right column. In the
interest of space, Figure only depicts the achieved prediction quality using
FDR as decision measure for the update triggers. However, Table[15.1|reports
the overall achieved prediction quality over the entire test set of 41 months for
both decision measures of the update triggers.

First, it is generally evident that the prediction quality of the static model
exhibited a similar shape for all machine learning algorithms, even though
shifted along the vertical axis. Concerning the FDR, the prediction quality is
highly jagged. With respect to the FAR, the prediction quality is fairly constant
for about the first half of the test period, while it increases drastically thereafter.

With respect to logistic regression, it is observable in Figure that the
achieved FDR improved for numerous test batches when using update strategies
compared to using only the static prediction model without updates. However,
the gain was rather small. A similar inference can be drawn when analyzing
the achieved FAR of logistic regression (Figure[15.1b]), as the update strategies
showed the same pattern as the static model, but slightly improved. By contrast,
considering the achieved FDR of the SVM (Figure[15.1d), the update strategies
often yielded even worse prediction quality than the static model, while the
FAR improved slightly by applying the update strategies, although it still
followed the same pattern as without any update strategy over the entire test
set (Figure[15.1d)). Moreover, all update strategies performed almost equally
for the SVM. A considerably different result was obtained by employing the
update strategies in combination with Random Forest as prediction method.
In this case, the different update strategies reached noticeably different FDRs,

281

Chapter 15: Evaluation of Model Update Strategies

0 10 20 30 40 0 10 20 30 40
Month Month

(a) FDR achieved using logistic regression. (b) FAR achieved using logistic regression.

FAR

20
Month

(c) FDR achieved using SVM.

(f) FAR achieved using Random Forest.

FAR

(g) FDR achieved using XGBoost. (h) FAR achieved using XGBoost.

Figure 15.1: The comparison of the achieved FDR and FAR of the four update strategies

using FDR as decision measure for each machine learning algorithm considered. The
static machine learning model without any updates is displayed in black (solid), while
the periodic, absolute prediction quality, relative prediction quality, and Hoeffding

bound update strategies are presented as orange (dashed), green (dot-dash), red (long

dash), and purple (dash-dash) lines, respectively.

282

15.2 Comparison of Update Strategies

though it is hard to determine which performed best due to the jagged shape
(Figure[15.1¢). However, it is evident that all update strategies outperformed
the static prediction model for almost all test batches. The favorable effects of
employing update strategies were even more significant with respect to the
obtained FAR (Figure[I5.1f), as the FAR rose only slightly toward the final test
batches, while it rose manyfold in the case of no update strategy being employed.
A similar pattern appears when using XGBoost as prediction algorithm, as the
deployment of update strategies significantly improved the FDR of most test
batches (Figure [15.1g)), although an overall best update strategy could hardly
be determined. Only for the last test batches, the static XGBoost model achieved
a slightly higher FDR, although at the cost of a significantly worse FAR. On the
contrary, the XGBoost models using update strategies could almost maintain
their FAR (Figure[15.1h]), while still achieving a competitive FDR.

In summary, the analysis of Figure demonstrates that the application
of update strategies significantly enhanced the FAR for all machine learning
algorithms considered. In particular, the beneficial effect was considerably
amplified for Random Forest and XGBoost. On the contrary, updating SVM
models during runtime did not increase the achieved FDR and only marginally
improved the obtained FDR for logistic regression. However, these two machine
learning algorithms only achieved a lower FDR compared to Random Forest
and XGBoost anyway. Using on-line update strategies for Random Forest and
XGBoost not only reduced the FAR but also considerably increased the FDR.

Given the jagged nature of the achieved FDR for all prediction models and
the close FAR of the prediction models using update strategies, we also assessed
the overall prediction quality over the entire 41 months test set. To this end,
Table reports the obtained FDR as well as FAR for each combination of
decision measure (either FDR or FAR), machine learning algorithm, and update
strategy. On top of the achieved FDR and FAR, we also computed an aggregate
measure that indicates the overall prediction quality for the prediction of hard
disk drive failures, namely the (-value. Following the idea of the Fl-score,
which utilizes the harmonic mean to average precision and recall, we define
the (-value as the harmonic mean of FDR and 1 — FAR. The latter subtraction
is necessary to transform the FAR into a measure indicating the best prediction
quality for a value of 1 and the worst prediction quality for a value of 0. Formally,
we define the (-value as

FDR - (1 — FAR)
FDR + (1 — FAR)"

Moreover, Table presents not only the obtained prediction quality, but also
the number of model updates performed to achieve the respective prediction

(=2

(15.1)

283

Chapter 15: Evaluation of Model Update Strategies

quality. In this way, a trade-off between prediction quality and update cycles,
which can be considered as update costs, can be made. Note that to determine
the number of updates required, the update triggers were also applied after
the last test batch to assess whether or not an update would be required to
continue using the models. Hence, the maximum number of updates equals
the number of test batches, which is 41.

At first, Table demonstrates that the static machine learning models
mostly performed worst with respect to the prediction quality measures FDR,
FAR, and ¢-value, meanwhile naturally exhibiting the lowest number of updates.
Only in the case of SVM as prediction method, the static model actually reached
the highest FDR and (-value. Yet, as mentioned above, the prediction quality
obtained by SVM can by no means keep up with Random Forest and XGBoost.
A further observation is that for all machine learning algorithms, no updates
were carried out when the Hoeffding bound was employed as update strategy
in combination with FAR as decision measure, resulting in the same prediction
quality as for the static model. The reason for this behavior is that the FAR
changed slowly, so that the FAR of two successive test batches never exceeded
an increase of e. Apart from using SVM, the best FDR and ¢-values were always
obtained by the periodic update strategy, as this performs a model update after
each test batch and, thus, offers the highest potential for capturing relevant
changes in the data. However, this update strategy also results in the highest
number of required updates by far. While the maximum number of updates
among all other settings was 21, the periodic update required 41 update cycles,
constituting a costly update strategy.

Among the three update strategies relying on the prediction quality obtained,
the application of FDR as decision measure seems to yield a higher (-value
and, consequently, a higher prediction quality than the application of FAR
as decision measure. Only for the absolute prediction quality trigger and
the Hoeffding bound trigger or the relative prediction quality trigger and the
Hoeffding bound trigger of the two inferior machine learning algorithms, i.e.,
logistic regression and SVM, respectively, using FAR delivered more accurate
predictions than using FDR as decision measure. However, for the two superior
prediction algorithms, namely Random Forest and XGBoost, employing the
FDR as decision measure consistently provided a higher ¢-value.

Lastly, when comparing the (-values of the different update strategies for
each machine learning method individually, it appears that they performed very
similarly, despite varying considerably among the different machine learning
algorithms. Whereas the update trigger based on the absolute prediction
quality scored best for logistic regression and SVM, the update trigger based

284

15.2 Comparison of Update Strategies

Table 15.1: The overall prediction quality achieved across the entire 41 months test set
and the number of updates performed (#U) for each combination of machine learning
algorithm (ML), update strategy (US), and decision measure (DM). The best values

per machine learning algorithm are highlighted in bold.

ML Us | DM | FDR [%] | FAR [%] | ¢ [%] |#U
Static - 29.823 1.431 | 45.791 0
Periodic Time 31.855 1.155 | 48.182 | 41
Absolute FDR 31.545 1.184 | 47.823 | 21

LogReg FAR 31.334 1.269 | 47.571 | 12
Relative FDR 31.462 1.215 | 47.724 | 19

FAR 31.573 1.115 | 47.863 | 18

Hoeffding FDR 31.501 1.229 | 47.767 | 10

FAR 29.823 1.431 | 45.791 0

Static - 35.687 1.734 | 52.359 0

Periodic Time 34.535 1.175 | 51.183 | 41
Absolute FDR 34.513 1.193 | 51.157 | 19

SVM FAR 34.374 1.308 | 50.989 | 12
Relative FDR 34.480 1.195 | 51.120 | 19

FAR 34.496 1.189 | 51.139 | 17

Hoeffding FDR 34.463 1.211 | 51.100 | 13

FAR 35.687 1.734 | 52.359 0

Static - 44175 2.627 | 60.777 0

Periodic Time 50.991 1.344 | 67.233 | 41
Absolute FDR 46.628 1.330 | 63.329 | 17

RE FAR 43.228 1.475 | 60.091 1

Relative FDR 46.860 1.359 | 63.537 | 19
FAR 46.168 1.336 | 62.902 | 13

Hoeffding FDR 46.661 1.390 | 63.347 | 14
FAR 44.175 2.627 | 60.777 0

Static - 45.952 6.665 | 61.584 0
Periodic Time 49.347 2.147 | 65.608 | 41
Absolute FDR 48.372 2.162 | 64.737 | 15
XCB FAR 45.670 2.300 | 62.244 3
Relative FDR 48.544 2.183 | 64.886 | 18
FAR 46.611 2.022 | 63.170 9

Hoeffding FDR 48.538 2.275 | 64.861 | 13
FAR 45.952 6.665 | 61.584 0

285

Chapter 15: Evaluation of Model Update Strategies

on the relative prediction quality reached the highest (-values for the two well-
performing machine learning algorithms, namely Random Forest and XGBoost.
However, the (-values obtained by the Hoeffding bound update trigger were
only marginally lower compared with the update trigger based on the relative
prediction quality. By contrast, the relative prediction quality update trigger
required substantially more updates for all machine learning algorithms.

For this reason, we determined the Pareto-optimal configurations by aiming
for a high ¢-value together with a low number of updates required. As a result,
we came up with a set of seven configurations, from which we removed the edge
cases, i.e., the configurations that resulted in a very low number of updates,
but also a poor (-value, or requiring an update after each test batch, as those
configurations result in too many updates and, hence, in high costs. This left
only three configurations, namely the relative prediction quality update trigger
using either FAR or FDR as decision measure, and the Hoeffding bound update
trigger using FDR as decision measure. All three configurations employed
XGBoost as prediction method. Despite using FAR as decision measure for the
relative prediction quality update trigger required only 9 updates, its ¢-value
was too low to be competitive to the other two solutions. In contrast, using the
Hoeffding bound update trigger with FDR as decision measure required 13
updates and resulted in a (-value of 64.861%, whereas employing the relative
prediction quality update trigger with FDR as decision measure required 18
updates and yielded a (-value of 64.886%. Consequently, the improvement
in the (-value was only 0.025 percentage points, while 38.5% more updates
were required. Thus, we conclude that the update strategies based on both the
prediction quality of the current test batch as well as the prediction quality of
the previous test batch performed best, with the Hoeffding bound achieving the
better trade-off between prediction quality and number of updates required.

15.3 Comparison of Machine Learning Algorithms

In order to compare the prediction qualities of the different machine learning
algorithms for each test batch, Figure illustrates the (-values obtained
using the Hoeffding bound update trigger with FDR as decision measure. The
test batches are displayed on the horizontal axis, while the (-values achieved
are depicted on the vertical axis. The prediction qualities of logistic regression,
SVM, Random Forest and XGBoost are represented by orange (dashed), green
(dot-dash), red (long dash), and purple (dash-dash) lines, respectively.
Figure again illustrates the two different prediction quality patterns.
Whereas Random Forest and XGBoost exhibited a similar pattern of prediction

286

15.4 Discussion

0.8) . A
) A YA/ i
) N \ A A ! . N
\ EAN - / i r
\ RN A A \ LA WA AN \ N
\ i 4 ,‘\ ,'//"\\‘j/\\-\ I /,“\\ /;l !*,‘\ IR 244 ,///\\ \ Ik 3 /\i\
Iy & 5 SvemoN S : i .
) R \ il & \‘// AR i SVALEFAY A i
3 0.6 v [Iy \ V! /R RN NS
\ \ K A PERY ooV AN A 1]
= Il [[/ Powroo [\ o\ AN [NAW,
g \1 [\ AFIN LN SRARRY B VAL SR
| \,) V) \ RS g NP \ \[i’ ‘.‘V AN ~\:7
g i § ! // i \\I . Vo V/ ks
i K “i) Vo \ \/’
] SRR BAY /
0.4 ‘I_’ v _\I_, v
. LR
0 10 20 30 40

Month

Machine Learning Methoo— Logistic Regressionr— SVM — Random Forest— XGBoost

Figure 15.2: The comparison of machine learning algorithms using the Hoeffding
bound update trigger relying on FDR as decision measure.

quality, logistic regression and SVM also performed fairly similarly, but consid-
erably inferior to Random Forest and XGBoost. This is especially evident for
about the first half of all test batches. Nevertheless, SVM appears to have per-
formed slightly better than logistic regression. For the first few months of the
test set, the (-values reached by Random Forest and XGBoost were about twice
as high as those obtained by logistic regression and SVM. As time progressed,
however, the (-values of the four methods converged against each other and
fluctuated around a ¢-value of approximately 60%. More specifically, Random
Forest and XGBoost always outperformed the other two prediction methods
on the first 30 test batches, whereas logistic regression and SVM outperformed
Random Forest and XGBoost on six and five of the last eleven test batches,
respectively. Moreover, although the difference was rather small, XGBoost
obtained a higher (-value than Random Forest for more than 60% of the test
batches. Consequently, the time-dependent comparison of the machine learn-
ing algorithms supports the findings from Table since XGBoost reached
the best overall prediction quality, closely followed by Random Forest, with
logistic regression and SVM far behind.

15.4 Discussion

This section briefly summarizes the main evaluation findings derived from the
experimental results and discusses potential threats to validity.

287

Chapter 15: Evaluation of Model Update Strategies

15.4.1 Summary of Evaluation Findings

Relying on the results of the conducted experiments, we have extracted the
following main findings:

(I) The application of update strategies substantially improved the prediction
quality of Random Forest and XGBoost for on-line application.

(II) While the periodic update trigger typically yielded the highest prediction
quality, it also required the most updates and, thus, resulted in the highest
update costs. In contrast, the update triggers considering both current and pre-
vious prediction quality achieved a better trade-off between prediction quality
and number of updates required. Overall, in our case study, the Hoeffding
bound emerged as the best update strategy with respect to the trade-off between
prediction quality and number of updates required.

(IIT) The higher the FDR achieved, the higher the FAR. Accordingly, more
aggressive models correctly detected more hard disk drives with impending
failures, but also more often falsely raised alarms for hard disk drives that
actually did not fail within the defined prediction window.

(IV) XGBoost provided the most accurate hard disk drive failure prediction,
followed closely by Random Forest. In contrast, logistic regression and SVM
could not keep up with the other two machine learning algorithms.

15.4.2 Threats to Validity

The main contribution of this chapter is the comparison of the update strategies
for critical event prediction models introduced in Chapter (14} Therefore, our
goal was not to optimize individual machine learning algorithms and their
parametrizations. Instead, we examined the effect of the presented update trig-
gers on the prediction quality of the considered machine learning algorithms,
using only a fixed set of hyperparameters. In future research, the update trig-
gers could also consider adapting the hyperparameters of the machine learning
algorithms. However, this was beyond the scope of this thesis.

Moreover, we did not conduct a comprehensive feature examination, but re-
lied on the feature selection of J. Xiao ef al. [XXWT18]]. Although they analyzed
the same hard disk drive model type of the same data set and, therefore, their
feature selection should be adoptable, other feature selection methods could
suggest another feature subset and, consequently, yield different results.

Despite the achieved FDR appearing relatively low for all prediction methods,
it should be noted that the prevalence in the test set is only 0.0639%. Thus,
the test set is highly imbalanced. In addition, the SM.A.R.T. features were

288

15.5 Concluding Remarks

monitored only on a daily basis, resulting in a low feature resolution. Taking
these facts into account, the achieved prediction quality is satisfactory.

Furthermore, we used only one hard disk drive model in this case study. The
ranking of update strategies and the ranking of Random Forest and XGBoost
were very close. When using a different hard disk drive model or data from a
completely different domain, these rankings might turn out to be different.

The thresholds for the update triggers were determined based on a small
experiment using only a subset of the data and expert knowledge. A broad
parameter study, however, could provide different insights in terms of the
ranking of update triggers and machine learning algorithms.

Finally, the update triggers based on prediction quality currently only con-
sider the achieved FDR or FAR. Future research might also consider combining
them by, for instance, using the proposed (-value as decision measure for the
update triggers. In addition, the update triggers including previous predic-
tion qualities could be extended to consider not only the directly preceding
prediction quality, but several, e.g., to identify a trend pattern therein.

15.5 Concluding Remarks

In this chapter, we evaluated the prediction quality obtained by applying the
proposed update strategies using four different machine learning algorithms
and compared their prediction qualities with each other and with the static
baseline that used no updates at all. Thus, this chapter contributes to answering
research question RQ B.4. To demonstrate the necessity of on-line update
strategies for critical event prediction models, we used a large real-world data
set of hard disk drive monitoring data. While we used the first six months of
data for initial learning of the prediction models, we evaluated the prediction
quality for each month in the test set, which spans a total of 41 months. To
evaluate the prediction quality for hard disk drive failure prediction with a
single measure, we introduced the (-value as the harmonic mean of the failure
detection rate and the false alarm rate. Furthermore, we reported the achieved
prediction quality both on a monthly basis and aggregated over the entire
test set. Although the application of update strategies could not improve the
prediction quality for SVM, on-line model updating considerably enhanced
the prediction quality of logistic regression, Random Forest, and XGBoost.
Moreover, the prediction quality of SVM could not keep up with Random Forest
and XGBoost anyway. Regarding update strategies, the periodic update trigger
provided the highest overall prediction quality, but at the cost of requiring by
far the most updates. Thus, in practice, the periodic update trigger results in

289

Chapter 15: Evaluation of Model Update Strategies

the highest application costs. Therefore, we determined the Pareto-optimal
configurations, aiming for a high (-value and a low number of required updates.
Here, we found that the overall best trade-off between prediction quality and
update cycles was the deployment of XGBoost using the Hoeffding bound
as update trigger with the failure detection rate as decision measure. This
configuration performed 13 model re-trainings, whereas the maximum number
of updates would have been 41, and reached a (-value of 64.861%, compared to
61.584% obtained by the static baseline model, improving the (-value achieved
by almost 3.3 percentage points.

290

Part IV

Conclusions

Chapter 16

Conclusion and Outlook

This chapter concludes this thesis by briefly summarizing its contributions in
Section Furthermore, in Section it provides an outlook on potential
future work that could build upon the contributions of this thesis.

16.1 Thesis Summary

The contributions of this thesis address two main research goals, both dealing
with the prediction of critical events. First, we approach Goal A, namely im-
proving the accuracy of automated time series forecasting over state-of-the-art
methods through novel hybrid forecasting methods, in Part [lIl by introduc-
ing a novel hybrid, component-based forecasting method and two forecasting
method recommendation systems. In Part of this thesis, we address Goal B,
namely the development of generalizable end-to-end workflows for model-
ing, detecting, and predicting failures of technical systems with minimized
expert knowledge required, by proposing an end-to-end workflow for detecting
machine tool anomalies in rotating machines, presenting different modeling
alternatives for time-to-failure prediction, introducing a generalizable work-
tflow for predicting failures of industrial machines in multiple time-to-failure
windows, and examining the effects of different update strategies for critical
event prediction models for on-line application. To provide more details on
each of the presented contributions related to the two major research goals, we
briefly summarize them here.

Contribution 1: System Model for Critical Event Prediction
As a first contribution, this thesis presents a generic system model for
critical event prediction to overcome the shortcoming of most approaches
in the literature, namely the highly problem-tailored solutions. The de-
sign of this system model is based on the LRA-M loop of Self-Aware
Computing Systems. To process data for critical event prediction, the
system model distinguishes between two types of input data: univariate

293

Chapter 16: Conclusion and Outlook

and multivariate. For univariate input data, time series forecasting is
applied in combination with meta-learning to provide threshold-based
prediction of critical events. In the case of multivariate input data, a
more complex model learning is performed, which may also include time
series forecasting to estimate future sensor readings as features for critical
event prediction by means of classification or regression models. Finally,
a feedback loop is incorporated to update the model during runtime.

Contribution 2: Component-based Forecasting Method

This contribution addresses research questions RQ A.1and RQ A.2 by in-
troducing a novel hybrid time series forecasting method for seasonal time
series based on time series decomposition, called Telescope (cf. Chap-
ter[]). To this end, we present a method to automatically determine the
frequency of seasonal time series. After decomposing the time series
according to the structural time series model, the trend and seasonal
components are forecast using different methods that show their strength
for this particular type of time series. In order to obtain additional infor-
mation for remainder learning, Telescope derives additional categorical
information, which is predicted using a neural network-based method.
Finally, XGBoost is employed to combine the forecasts of each component
and learn the remainder component. Chapter 5| presents experimental
results on Telescope and compares its forecasting quality and the time
required for model learning and forecasting with eight state-of-the-art
forecasting methods. The results demonstrate Telescope’s superiority in
terms of both forecast accuracy and required runtime. Moreover, Tele-
scope also achieved an improved robustness when analyzing the variation
in forecast accuracy and runtime across the different time series in the
data set. Finally, we deployed Telescope in the task of virtual machine
auto-scaling and showed its substantial improvement with respect to
average response time and percentage of service level objective violations.

Contribution 3: Forecasting Method Recommendation Frameworks

294

In addition to Telescope, this thesis also proposes two recommendation
systems for time series forecasting methods (cf. Chapter [f]), addressing
research questions RQ A.3 and RQ A.4. While one of these recommenda-
tion frameworks merely uses the historical observations of the time series
to be forecast and divides them into an internal training and validation
part to estimate which forecasting method performs best for that particu-
lar time series, the other relies on a large and diverse data set of time series.

16.1 Thesis Summary

More specifically, the second framework for recommending forecasting
methods trains a machine learning model for each considered forecasting
method to learn the dependency between the time series characteristics
and the suitability of the particular forecasting method. Lastly, we pro-
pose the combination of ensemble forecasting and forecasting method
recommendation. That is, multiple forecasting methods are applied and
combined, but only if their respective weights satisfy a certain activation
function. In Chapter|7| we demonstrate the effectiveness and superiority
of the proposed approaches by comparing them with state-of-the-art
individual forecasting methods as well as the state-of-the-art time series
forecasting method recommendation system.

Contribution 4: Critical Event Detection for Machine Tools

Apart from time series forecasting-based critical event prediction, this the-
sis further contributes to the field of critical event prediction by proposing
end-to-end workflows for detecting and predicting such events using
classification and regression models. This contribution tackles research
question RQ B.1 by introducing a generalizable end-to-end workflow
for anomaly detection of rotary machine tools. To this end, Chapter
presents the automated five-step workflow starting with raw data process-
ing, through phase segmentation, data sampling, and feature extraction,
to machine learning-based anomaly detection. This workflow requires
only the number of different production steps performed by the machine
as input and is highly generalizable because it is based only on standard
machine monitoring data. To evaluate the critical event detection quality
of this workflow, we built a real-world setup using an industrial CNC
machine and emulated an anomalous machine tool condition by attach-
ing an unbalance to the spindle (cf. Chapter[J). The results demonstrate
the effectiveness of the proposed end-to-end workflow, even though con-
ventional frequency analysis techniques were not able to distinguish very
well between normal and anomalous machine tool behavior.

Contribution 5: Critical Event Prediction Modeling Alternatives

In order to not only detect critical events, but to predict them at an early
stage, Chapter[I0]presents several alternatives for modeling critical events
for proactive prediction, thus providing an answer to research question
RQ B.2. A major challenge in critical event prediction is class imbal-
ance, as critical events typically occur much less frequently than normal
conditions. To this end, we compare the impact of different oversam-

295

Chapter 16: Conclusion and Outlook

pling strategies on the overall critical event prediction quality in the use
case of hard disk drive failure prediction. In addition, we assess the
prediction quality of multi-class models and compare them as well as
their downscaled version with the binary prediction models. Besides the
classification models, we train regression models to estimate the time-to-
failure as a continuous variable rather than in discretized time-to-failure
windows. Finally, we employ univariate time series forecasting to fore-
cast each feature in the data set and examine the effect of using such
forecast features compared with using only the current features. Chap-
ter[IT|presents the results of the experiments conducted, which show that
multi-class labeling achieves superior prediction quality for critical events
compared with oversampled binary models, both in terms of granularity
and prediction quality. Furthermore, the results prove that integrating
forecasting to estimate future feature observations significantly enhances
the critical event prediction quality.

Contribution 6: Critical Event Prediction for Industrial Machines

296

This contribution addresses research question RQ B.3 by proposing a
novel generalizable end-to-end workflow for critical event prediction of in-
dustrial machines based on sensor monitoring data (cf. Chapter[12)). Due
to the end-to-end design of the workflow, it does not rely on any domain
knowledge, except for the grouping of sensors into four categories. There-
fore, the workflow is also highly generalizable. Specifically, the workflow
follows an automated four-step process, starting with the extraction of
general-purpose features from the sensor monitoring data, continuing
with the processing of the extracted features and the assignment of the
target classes to their respective training instances, and ending with the
model learning for critical event prediction including grid-search-based
hyperparameter tuning. To predict impending critical events in multiple
time windows, the workflow employs multiple time-to-failure classes.
For this purpose, three different labeling and, hence, modeling alterna-
tives and four different machine learning algorithms are deployed. In
order to evaluate the proposed critical event prediction workflow for
industrial machines, we conducted experiments using a real-world data
set of operational monitoring data from a large-scale industrial press.
The results of this case study are reported in Chapter|13|and show the
effectiveness of the proposed workflow for both multi-class prediction of
critical events in multiple time windows and downscaled binary predic-
tion of impending critical events.

16.1 Thesis Summary

Contribution 7: Update Strategies for Critical Event Prediction Models

The last contribution of this thesis addresses research question RQ B.4 by
introducing four different update triggers for on-line re-training of critical
event prediction models (cf. Chapter[14]). These update triggers take into
account either the time elapsed since the last update or the prediction
quality achieved on the current or current as well as previous test batches.
In Chapter (15, we compare the prediction qualities achieved by the four
update triggers as well as that obtained by a static model without updates
using four different machine learning models for predicting impending
hard disk drive failures. To assess the overall prediction quality, we
introduce a novel measure for hard disk drive failure prediction that
combines the two most commonly used measures in this area into a
single measure. The results clearly demonstrate the necessity of model
updates during on-line application, with update triggers that take into
account the prediction qualities obtained on the current and previous test
batches resulting in the overall best trade-off between prediction quality
and number of updates required.

We strongly believe that the contributions provided by this thesis are major
impetus for both the academic research community as well as practitioners.
First, to the best of our knowledge, we are the first to propose a fully automated,
end-to-end, hybrid, component-based forecasting method for seasonal time
series that also incorporates time series preprocessing, such as frequency es-
timation, anomaly removal, and transformation. By combining reliably high
forecast accuracy and reliably low time-to-result, it offers many new oppor-
tunities in tasks that require accurate forecasts within a fixed period of time
in order to take timely countermeasures. Moreover, the promising results of
the recommendation systems for forecasting methods offer new opportunities
to advance forecasting performance for all types of time series, not only for
seasonal ones. Furthermore, we were the first to highlight the shortcomings of
the up to then state-of-the-art recommendation system for forecasting methods.

Regarding the contributions of Goal B, we have already worked closely with
industrial partners, which supports the practical relevance of the contributions
of this thesis. The automated end-to-end design of the proposed workflows
that do not require distinct domain or expert knowledge constitutes a milestone
in bridging the gap between academic theory and industrial application. To
emphasize the practical relevance of this thesis, the workflow for the prediction
of critical events in industrial machines is currently being operationalized in a
real-world production system.

297

Chapter 16: Conclusion and Outlook

16.2 Outlook

This section discusses future work that can draw on the contributions of this
thesis. Although this thesis addresses several aspects of data processing and
modeling related to critical event prediction, we still identify open challenges
that could further improve the proposed system model. In addition, we present
future use cases where the proposed system model could be applied.

16.2.1 Future Work

Here, we present future work that can build upon this thesis to further extend
the presented system model and its applicability.

Time Series Imputation: A typical challenge when dealing with real-world time
series are missing data. Such gaps can occur, for instance, due to transmis-
sion errors, measurement failures, or monitored values outside the considered
range. However, most time series analysis and forecasting methods require
complete time series as input and cannot handle missing values. Therefore,
such missing values must be imputed. For this purpose, we have introduced
an intuitive imputation algorithm that considers both the seasonal pattern and
the local trend of the time series around the missing value (cf. Section [6.2)).
However, deep learning architectures have recently proven beneficial for time
series imputation [MC]20,CKPW20,ZZC"21]]. Therefore, future work should
consider deep bidirectional Recurrent Neural Networks or Generative Adver-
sarial Networks for this task.

Recurrent Neural Networks: Recurrent Neural Networks could also be used
for time series forecasting in general as well as for classification-based critical
event prediction. Although initial experiments with Long Short-Term Memory
networks and Gated Recurrent Units did not improve the prediction quality
of the proposed system model (cf. Section [13.5), we are confident that the
integration of such neural networks may enhance the overall system model and
its predictive power. We assume that the issue in applying Recurrent Neural
Networks in the use case of Chapter [13|is the irregularity of the recordings,
whereby the time intervals between two measurements are arbitrarily large
or small. In the case of uniform time intervals between measurements, or the
integration of appropriate mechanisms to cope with these irregularities, we
strongly expect that this type of neural networks will be beneficial, as they are
specifically designed to process data with temporal dependencies.

298

16.2 Outlook

Meta-Learning for Prediction Method Selection: In Chapters |§I and m we have
proposed meta-learning frameworks for the recommendation of time series
forecasting methods and demonstrated their superiority over the applica-
tion of state-of-the-art individual forecasting methods, respectively. How-
ever, regarding the application of machine learning methods for classification-
based prediction of critical events, we have built models for each considered
method and evaluated their prediction quality. Here, the knowledge acquisi-
tion mode [[VGCBS04]] could also be adopted to learn a dependency between
the prediction quality obtained by a particular machine learning method and
the characteristics of the training data and their correlation with the target
variable. This would reduce the overall runtime of the system model, since
only the presumably most suitable machine learning method would be applied.
In case the considered task is not time-critical, this time saving could also be
exploited to further tune the hyperparameters of the machine learning model.

Updating Training Data: The update strategies presented in Chapter|14{only
consider the point in time when the critical event prediction models need to be
re-trained. With respect to neural networks, future research could also investi-
gate mechanisms to distinguish when the weights of the network only need to
be updated and when it is necessary to completely re-train the neural network.
Furthermore, future work on update strategies should also consider the train-
ing data used to update the critical event prediction models. In this thesis, the
training data set was increased over time, as the new data was merely added to
the previous training data set, while maintaining a maximum imbalance ratio.
However, new updating strategies can also explore what part of the previous
training data set should be omitted or when it is beneficial to even completely
discard the previous training data set and use only the newly acquired data. By
selecting only the most representative data for model updating, model training
time should decrease and predictive power should increase as old patterns that
are no longer present in the new incoming data are forgotten.

Root Cause Analysis: The current version of the system model predicts im-
pending critical events using threshold-based time series forecasting or classifi-
cation as well as regression models. This already provides helpful information
for service or machine operators, but does not point to the specific component
that will cause the critical event. For this purpose, future research could fo-
cus on root cause analysis methods as an extension of the proposed system
model to additionally identify the reason for the impending critical event. This
would further assist the operator in practice, as the time-consuming process of

299

Chapter 16: Conclusion and Outlook

troubleshooting would be handled directly by the system model and would no
longer need to be performed manually.

Planning of Countermeasures: After predicting critical events and potentially
also their cause, planning and scheduling appropriate countermeasures would
also constitute an interesting research topic. Such a mechanism represents
the next step in the LRA-M loop of Self-Aware Computing Systems, namely
reasoning. The planning and scheduling of countermeasures for critical events
can be considered as an optimization problem with many different sources of
costs, such as acquisition costs, personnel costs, and downtime costs. Possible
approaches to tackle this challenge could rely on rules (e.g., [KDM*18]), mod-
els (e.g., [PKWB17]), goals (e.g., [KMO7]]), or utility functions (e.g., [VSSB13]).

16.2.2 Future Application Scenarios

Although the proposed meta self-aware system model for critical event predic-
tion was mainly applied to technical systems, it is not limited to this domain.
For instance, it could also be applied to predict impending critical events of
natural systems. One such application scenario is the prediction of winter
mortality of bee colonies. To this end, colony weight would be monitored
along with weather information. These data could be processed by the system
model to derive early indicators of increased risk of winter mortality. Another
application scenario in the field of nature and biology is the early prediction of
human heart failures. For this purpose, we have already conducted prelimi-
nary experiments, in which we analyzed electrocardiogram data to detect and
predict different types of arrhythmias. To this end, various features need to be
computed in the preprocessing step of the system model in order to obtain a
representative insight into the human heart. Although these experiments are
beyond the scope of this thesis, we can state that our experiments were not only
able to detect arrhythmias, but were also able to predict them several heartbeats
in advance. Thus, employing the proposed meta self-aware system model to
predict critical events for such application scenarios seems promising.

300

List of Figures

(I.1 Meta selt-aware system model for critical event prediction| . . . 7
2.1 LRA-M loop of Self-Aware Computing Systems.| 19

2.2 Number of international airline passengers from 1949 to 1960, . 21

|Z.f§ Electricity demand of Victoria, Australia, in 2014]. 25

2.4 Annual number of Iynx trappings in Canada] 26
2.5 Periodogram of the airline passengers time series| 28
2.6 STL decomposition of the logarithmized airline passengers time |
[series. 31
2.7 Two-dimensional feature space of anSVM| 39
iC i ion of Random Forest. 41

2.9 Simplified architectureofan FFNN,| 43
ionof an unfolded RNN. 45

4.1 Simplified illustration of the Telescope approach,. 98
4.2 Gas production in Australia from 1956 t0 2010 111
P.1 Detailed forecasts for Taylor’s Electricity Demand time series| . 126
5.2 Detailed forecasts for the Airline Passengers time series]. 128
5.3 Violin plot of the achieved MRAE] 132
b.4 Violin plot of the achieved MASE] 133
b.5 Violin plot of the achieved MAPE] 134
5.6 Violin plot of the required time-to-result] 135
5.7 Auto-scaling on the BibSonomy trace using TBATS] 138
(.8 Auto-scaling on the BibSonomy trace using Telescope]. 139
6.1 Knowledge acquisitionmode.| 145
6.2 Schematic illustration of the rule generation approach] 147
6. istory-based forecasting method recommendation worktlow, . 153
|7.1 Histogram of ranks for the rules by X. Wangetal|. 164
[7.2 Box plots of ranks and accuracy degradation for the binary clas- |
[sification] 169
[7.3 Histogram of ranks for the binary classification.| 170

301

List of Figures

|74 Imputed example time series of the FedCSIS 2020 Challenge.| . . 174
[75 Anomalous example time series of the FedCSIS 2020 Challenge] 175

[7.6 Distribution of selected forecasting methods] 179
8.1 Data flow of a CNC machine) 187
8.2 CNC milling machine with highlighted sensor mounting position.[188
8.3 End-to-end workflow for machine tool anomaly detection] . . . 189
8.4 On and Of cluster labels of a manufacturing process] 191
B.5 Simplified production step identification and mapping| 193
.6 Exemplary three-axis vibration signals] 194
9.1 Order spectra of all measurements, 203
9.2 Achieved detection quality for the first unbalance phase] 206

9.3 Achieved detection quality for the second unbalance phase] . . 208

[10.1 Schematic illustration of the three binary classification alternatives.218

[10.2 Example of the re-labeling technique| 221
[11.1 Histogram of the distribution of time-to-failure classes,| 226
[11.2 Prediction qualities of the binary classification alternatives]. . . 228
[11.3 Comparison of binary and multi-class classification] 231
11.4 Box plots of time-to-failure regression quality,|. 233
11.5 The required training times for all of the presented approaches] 234
11.6 Binary classification with and without forecast features,|. 236
7D Tod muliic] ossificat T and without T : l
[features) 237
[12.1 Schematic illustration of integral-based feature extraction,| . . . 246
[12.2" The labeling techniques included in the methodology] 250
[13.1 The distribution of time-to-failure classes| 257
[15.1 Comparison of the proposed update strategies|. 282
[15.2 Comparison of machine learning algorithms using the Hoeffding |
| bound update trigger.|. oo o0 Lo 287

302

List of Tables

2.1 Activation functions in neural networks) 44
2.2 Notations for forecast error measures. 47
2.3 Notations for classification quality measures| 50
2.4 An example confusion matrix for binary classification]. 50
2.5 Interpretation of Cohen’skappa], 52
2.6 Schematic multi-class confusion matrix] 52
4.1 Parameter settings of XGBoost| 118
P.1 List of all seasonal time series used for the evaluation of Telescope.[122
5.2 Forecasting results for Taylor’s Electricity Demand] 127
5.3 Forecasting results for the Airline Passengers time series] 129
b.4 Average forecasting performances| 130
b.5 Standard deviation of forecasting performances| 131
5.6 Average rank for each evaluation measure| 136
(.7 Multi-tier auto-scaling using Telescope and TBATS| 139
6.1 Parameter settings of Random Forest for binary classitication.| . 149
6.2 Parametrization of Random Forest and XGBoost) 158
[7.1 Average ranks for the rules by X. Wang etal|. 163
[72 Missing recommendations for the rules of X. Wang et al]. 165
[73 Accuracy degradation for the rules by X. Wangetal] 165
[74 Average ranks for different approaches| 167
[75 Average degradation for different approaches| 168
[7.6 Share of missing recommendations for different approaches] . . 168
[77 Degradation in accuracy for all approaches] 171
[7.8" Evaluation of the history-based recommendation framework]. . 177
9.1 Overview over the phases in the recorded NC program,. 200
0.2 Obtained phase detection quality]. 201
9.3 Parametrization of the machine learning methods] 205
9.4 Average detection quality for the first unbalance phase] 207
0.5 Variation in detection quality for the first unbalance phase] . . . 207

303

List of Tables

9.6 Average detection quality for the second unbalance phase| . . . 209
9.7 Variation in detection quality for the second unbalance phase] . 210
[11.1 Parametrization of the binary classification models| 227
[11.2 Prediction qualities of the binary classification alternatives|. . . 228
| approach.. Lo 230
T4 Confusi T Tord Ti-class fime-tofail [assificat l
| approach with forecast features.. 239

[13.1 Parameter settings for grid-search-based hyperparameter tuning.[257

[13.2 Prediction qualities of the best configurations per setting] 259
[13.3 Class-wise prediction qualities for each labeling method] 261
[13.4 Confusion matrix of the FFNN with multi-class labeling] 263
14.1 S.M.AR.T. feature selection) 271
(14.2 Parametrization of the machine learning methods.| 273
(15.1 Overall prediction qualities of the update strategies| 285

304

Bibliography

[AA14]

[ACAKO1]

[AFST15]

[AJG*17]

[AKA97]

[ANO00]

[Ari94]

Ratnadip Adhikari and RK Agrawal. A Combination of Artifi-
cial Neural Network and Random Walk Models for Financial

Time Series Forecasting. Neural Computing and Applications,
24(6):1441-1449, 2014. [see page[64]

Monica Adya, Fred Collopy, J Scott Armstrong, and Miles
Kennedy. Automatic Identification of Time Series Features
for Rule-based Forecasting. International Journal of Forecasting,
17(2):143-157,2001. [see page[59]

Jaouher Ben Ali, Nader Fnaiech, Lotfi Saidi, Brigitte Chebel-
Morello, and Farhat Fnaiech. Application of Empirical Mode
Decomposition and Artificial Neural Network for Automatic
Bearing Fault Diagnosis based on Vibration Signals. Applied
Acoustics, 89:16-27, 2015. [see page[244]]

Nicolas Aussel, Samuel Jaulin, Guillaume Gandon, Yohan Pe-
tetin, Eriza Fazli, and Sophie Chabridon. Predictive Models of
Hard Drive Failures based on Operational Data. In 2017 16th
IEEE International Conference on Machine Learning and Applica-
tions (ICMLA), pages 619-625. IEEE, 2017. [see page

Bay Arinze, Seung-Lae Kim, and Murugan Anandarajan. Com-
bining and Selecting Forecasting Models using Rule based In-
duction. Computers and Operations Research, 24(5):423-433, 1997.

[see pages[60]and [T42]]

Vassilis Assimakopoulos and Konstantinos Nikolopoulos. The
Theta Model: A Decomposition Approach to Forecasting. Inter-
national Journal of Forecasting, 16(4):521-530, 2000. [see page[5Y]]

Bay Arinze. Selecting Appropriate Forecasting Models using
Rule Induction. Omega, 22(6):647-658, 1994. [see page

305

Bibliography

[ASK13]

[AVK15]

[Bac20]

[Baul6]

[Bau20]

[BC64]

[BCLW18]

[BG69]

[BGBW16]

306

M Amarnath, V Sugumaran, and Hemantha Kumar. Exploiting
Sound Signals for Fault Diagnosis of Bearings using Decision
Tree. Measurement, 46(3):1250-1256, 2013. [see page [244]]

Ratnadip Adhikari, Ghanshyam Verma, and Ina Khandelwal.
A Model Ranking based Selective Ensemble Approach for Time
Series Forecasting. Procedia Computer Science, 48:14-21, 2015.

[see page

Backblaze. Hard Drive Data and Stats. https://www.
backblaze.com/b2/hard-drive-test-data.html, 2020. Ac-
cessed: 2021-07-15. [see page[279]]

André Bauer. Design and Evaluation of a Proactive,
Application-Aware Elasticity Mechanism. Master Thesis, Julius-
Maximilians-Universitdt Wiirzburg, 2016. [see page [137]]

André Bauer. Automated Hybrid Time Series Forecasting: De-
sign, Benchmarking, and Use Cases. Phd thesis, University of
Wiirzburg, Germany, 2020. [see page 07]]

George EP Box and David R Cox. An analysis of transforma-
tions. Journal of the Royal Statistical Society: Series B (Methodolog-
ical), 26(2):211-243, 1964. [see page35]]

Leo Breiman, Adele Cutler, Andy Liaw, and Matthew Wiener.
Breiman and Cutler’s Random Forests for Classification and Re-
gression, 2018. R package: https://cran.r-project.org/web/
packages/randomForest/randomForest.pdf. Accessed: 2021-

07-15. [see pages[205/and 227]]

John M Bates and Clive W] Granger. The Combination of
Forecasts. Journal of the Operational Research Society, 20(4):451—

468, 1969. [see pages[p6|and [142]]

Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bogojeska,
and Dorothea Wiesmann. Predicting Disk Replacement To-
wards Reliable Data Centers. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 39-48. ACM, 2016. [see pages
and

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf

[BHB16]

[BJ70]

[BP70]

[Bre96]

[Bre01]

[Bro56]

[Brol7]

[BSAM+18]

[BSNA21]

[Bun75]

Bibliography

Christoph Bergmeir, Rob] Hyndman, and José M Benitez. Bag-
ging Exponential Smoothing Methods using STL Decompo-
sition and Box—Cox Transformation. International Journal of
Forecasting, 32(2):303-312, 2016. [see page[67]]

George EP Box and Gwilym M Jenkins. Time Series Analysis:
Forecasting and Control. Holden-Day, 1970. [see pages[34/and35]]

George EP Box and David A Pierce. Distribution of Residual
Autocorrelations in Autoregressive-integrated Moving Average

Time Series Models. Journal of the American Statistical Association,
65(332):1509-1526, 1970. [see page 23]

Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123—-
140, 1996. [see page [|0]]

Leo Breiman. Random Forests. Machine learning, 45(1):5-32,

2001. [see pages[40/and [196]]

Robert G Brown. Exponential Smoothing for Predicting De-
mand. Operations Research, 5(1):145-145, 1956. [see page

Jason Brownlee. Feature Selection for Time Series Forecast-
ing with Python. http://machinelearningmastery.com/
feature-selection-time-series-forecasting-python/,

2017. Accessed: 2021-07-15. [see page[122]]

Marcia Baptista, Shankar Sankararaman, Ivo P de Medeiros,
Cairo Nascimento Jr, Helmut Prendinger, and Elsa MP Hen-
riques. Forecasting Fault Events for Predictive Maintenance
using Data-driven Techniques and ARMA Modeling. Computers
& Industrial Engineering, 115:41-53, 2018. [see page[71]]

Xanthi Bampoula, Georgios Siaterlis, Nikolaos Nikolakis, and
Kosmas Alexopoulos. A Deep Learning Model for Predic-
tive Maintenance in Cyber-Physical Production Systems using
LSTM Autoencoders. Sensors, 21(3):972,2021. [see page

Derek W Bunn. A Bayesian Approach to the Linear Combi-

nation of Forecasts. Journal of the Operational Research Society,
26(2):325-329, 1975. [see page[56]]

307

http://machinelearningmastery.com/feature-selection-time-series-forecasting-python/
http://machinelearningmastery.com/feature-selection-time-series-forecasting-python/

Bibliography

[BZE+21]

[BZG20]

[BZH*20a]

[BZH20b |

[BZHK19]

[CA92]

[CA18]

[CAS12]

308

André Bauer, Marwin Ziifle, Simon Eismann, Johannes
Grohmann, Nikolas Herbst, and Samuel Kounev. Libra: A
Benchmark for Time Series Forecasting Methods. In Proceedings
of the 12th ACM/SPEC International Conference on Performance
Engineering (ICPE), pages 189-200. ACM, 2021. [see page[xxV]]

André Bauer, Marwin Ziifle, Johannes Grohmann, Norbert
Schmitt, Nikolas Herbst, and Samuel Kounev. An Automated
Forecasting Framework based on Method Recommendation for
Seasonal Time Series. In Proceedings of the 11th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE), pages

48-55. ACM, 2020. [see pages and [143]]

André Bauer, Marwin Ziifle, Nikolas Herbst, Samuel Kounev,
and Valentin Curtef. Telescope: An Automatic Feature Extrac-
tion and Transformation Approach for Time Series Forecasting
on a Level-Playing Field. In Proceedings of the 36th International
Conference on Data Engineering (ICDE), pages 1902-1905. IEEE,

2020. [see pages and [97]]

André Bauer, Marwin Ziifle, Nikolas Herbst, Albin Zehe, An-
dreas Hotho, and Samuel Kounev. Time Series Forecasting for
Self-Aware Systems. Proceedings of the IEEE, 108(7):1068-1093,

2020. [see pages[xxv]and [97]]

André Bauer, Marwin Ziifle, Nikolas Herbst, and Samuel
Kounev. Best Practices for Time Series Forecasting. In 2019 IEEE
4th International Workshops on Foundations and Applications of Self*
Systems (FAS*W), pages 255-256. IEEE, 2019. [see page [xxviil]

Fred Collopy and] Scott Armstrong. Rule-based Forecasting;:
Development and Validation of an Expert Systems Approach
to Combining Time Series Extrapolations. Management Science,

38(10):1394-1414, 1992. [see pages[59, and [152]]

Frangois Chollet and Joseph] Allaire. Deep Learning mit R und
Keras: Das Praxis-Handbuch von den Entwicklern von Keras und
RStudio. MITP-Verlags GmbH & Co. KG, 2018. [see page [251]]

Thanyalak Chalermarrewong, Tiranee Achalakul, and Simon
Chong Wee See. Failure Prediction of Data Centers using Time
Series and Fault Tree Analysis. In 2012 IEEE 18th International

[CBHKO02]

[CCO8]

[CC20]

[CCMT90]

[CAPL*18]

[Cen20]

[CG16]

[CH19]

Bibliography

Conference on Parallel and Distributed Systems, pages 794-799.
IEEE, 2012. [see page[70]]

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence Research,
16:321-357, 2002. [see page[219]]

Jonathan D Cryer and Kung-Sik Chan. Time Series Analysis:
With Applications in R. Springer, 2008. [see page

Jodo R Campos and Ernesto Costa. Fault Injection to Generate
Failure Data for Failure Prediction: A Case Study. In 2020 IEEE
31st International Symposium on Software Reliability Engineering
(ISSRE), pages 115-126. IEEE, 2020. [see page

Robert B Cleveland, William S Cleveland, Jean E McRae, and
Irma Terpenning. STL: A Seasonal-trend Decomposition Pro-
cedure based on Loess. Journal of Official Statistics, 6(1):3-73,

1990. [see pages[29and [113]]

Iago C Chaves, Manoel Rui P de Paula, Lucas GM Leite, Joao
Paulo P Gomes, and Javam C Machado. Hard Disk Drive Failure
Prediction Method Based On A Bayesian Network. In 2018
International Joint Conference on Neural Networks (I[CNN), pages

1-7.IEEE, 2018. [see pages[79and 269]]

Centre for Aviation. European Airline Capacity Planning:
Uncertainty is Increasing. https://centreforaviation.com/
analysis/reports/european-airline-capacity-planning-
uncertainty-is-increasing-533951, 2020. Accessed:
2021-06-20. [see page[2]]

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd ACM SIGKIDD
International Conference on Knowledge Discovery and Data Mining,
pages 785-794. ACM, 2016. [see pages[I]and [196]]

Tiangi Chen and Tong He. Extreme Gradient Boosting, 2019.

R package: https://cran.r-project.org/web/packages/
xgboost/xgboost . pdf. Accessed: 2021-07-15. [see page [205]

309

https://centreforaviation.com/analysis/reports/european-airline-capacity-planning-uncertainty-is-increasing-533951
https://centreforaviation.com/analysis/reports/european-airline-capacity-planning-uncertainty-is-increasing-533951
https://centreforaviation.com/analysis/reports/european-airline-capacity-planning-uncertainty-is-increasing-533951
https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
https://cran.r-project.org/web/packages/xgboost/xgboost.pdf

Bibliography

[Chel9]

[CJF+20]

[CKHT15]

[CKPW20]

[Cle89]

[CLWN13]

[CMJG+18]

[CPEMO5]

310

Tao Chen. All Versus One: An Empirical Comparison on Re-
trained and Incremental Machine Learning for Modeling Per-
formance of Adaptable Software. In 2019 IEEE/ACM 14th In-
ternational Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 157-168. IEEE, 2019.

[see page

Haoshu Cai, Xiaodong Jia, Jianshe Feng, Wenzhe Li, Laura
Pahren, and Jay Lee. A Similarity based Methodology for Ma-
chine Prognostics by using Kernel Two Sample Test. ISA Tans-
actions, 103:112-121, 2020. [see page

Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, An-
thony Bagnall, Abdullah Mueen, and Gustavo Batista. The ucr
time series classification archive. www.cs.ucr.edu/ eamonn/
time_series_data/, 2015. Accessed: 2021-07-15. [see

page[162]

Zhiyong Cui, Ruimin Ke, Ziyuan Pu, and Yinhai Wang. Stacked
Bidirectional and Unidirectional LSTM Recurrent Neural Net-
work for Forecasting Network-wide Traffic State with Missing
Values. Transportation Research Part C: Emerging Technologies,
118:102674, 2020. [see page[298]]

Robert T Clemen. Combining Forecasts: A Review and Anno-
tated Bibliography. International Journal of Forecasting, 5(4):559—

583, 1989. [see pages[56|and [142]]

Hong Cao, Xiao-Li Li, David Yew-Kwong Woon, and See-Kiong
Ng. Integrated Oversampling for Imbalanced Time Series Clas-
sification. IEEE Transactions on Knowledge and Data Engineering,

25(12):2809-2822, 2013. [see pages[218and 219]]

Francisco M Castro, Manuel] Marin-Jiménez, Nicolas Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incremental
learning. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 233-248. Springer, 2018. [see pages
and

Antonio] Conejo, Miguel A Plazas, Rosa Espinola, and Ana B
Molina. Day-ahead Electricity Price Forecasting using the
Wavelet Transform and ARIMA Models. IEEE Transactions on
Power Systems, 20(2):1035-1042, 2005. [see pages[64]and

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

[CSGK19]

[CV95]

[DBK*97]

[DCO03]

[DHO0]

[DHW21]

[DJLW14]

[DKW17]

[DLHS11]

Bibliography

Christos Constantinides, Stavros Shiaeles, Bogdan Ghita, and
Nicholas Kolokotronis. A Novel Online Incremental Learning
Intrusion Prevention System. In 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS),
pages 1-6. IEEE, 2019. [see page [90]]

Corinna Cortes and Vladimir Vapnik. Support-Vector Net-
works. Machine Learning, 20(3):273-297,1995. [see pages

and [196]

Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola,
and Vladimir Vapnik. Support Vector Regression Machines.
Advances in Neural Information Processing Systems, 9:155-161,

1997. [see page[40]]

Christopher P Diehl and Gert Cauwenberghs. SVM Incremental
Learning, Adaptation and Optimization. In Proceedings of the

International Joint Conference on Neural Networks, pages 2685—
2690. IEEE, 2003. [see page [86]]

Pedro Domingos and Geoff Hulten. Mining High-Speed Data
Streams. In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 71-80.

ACM, 2000. [see pages[§and276]]

Guangzhong Dong, Weiji Han, and Yujie Wang. Dynamic
Bayesian Network based Lithium-ion Battery Health Prognosis
for Electric Vehicles. IEEE Transactions on Industrial Electronics,
68(11):10949-10958, 2021. [see page [244]]

Hancheng Dong, Xiaoning Jin, Yangbing Lou, and Changhong
Wang. Lithium-ion Battery State of Health Monitoring and
Remaining Useful Life Prediction based on Support Vector
Regression-particle Filter. Journal of Power Sources, 271:114-123,

2014. [see page[244]]

Matthew Dixon, Diego Klabjan, and Lan Wei. OSTSC, 2017.
R package: https://cran.r-project.org/web/packages/
0STSC/0STSC. pdf. Accessed: 2020-01-28. [see page [227]]

Alysha M De Livera, Rob] Hyndman, and Ralph D Snyder.
Forecasting Time Series with Complex Seasonal Patterns us-

311

https://cran.r-project.org/web/packages/OSTSC/OSTSC.pdf
https://cran.r-project.org/web/packages/OSTSC/OSTSC.pdf

Bibliography

[DMBTO00]

[DPCB15]

[DSJ20]

[DYW14]

[Eme]

[Emel6]

[EW74]

[FML*21]

312

ing Exponential Smoothing. Journal of the American Statistical
Association, 106(496):1513-1527, 2011. [see pages [35|and [122]]

Lilian M De Menezes, Derek W Bunn, and James W Taylor.
Review of Guidelines for the Use of Combined Forecasts. Euro-
pean Journal of Operational Research, 120(1):190-204, 2000. [see

pages[56/and

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi.
unbalanced, 2015. R package: https://cran.r-project.org/
web/packages/unbalanced/unbalanced.pdf. Accessed: 2020-

01-28. [see page[227]]

Maren David Dangut, Zakwan Skaf, and Ian K Jennions. Rare
Failure Prediction using an Integrated Auto-encoder and Bidi-
rectional Gated Recurrent Unit Network. IFAC-PapersOnlLine,
53(3):276-282, 2020. [see page[83]]

Chongli Di, Xiaohua Yang, and Xiaochao Wang. A Four-stage
Hybrid Model for Hydrological Time Series Forecasting. PloS
one, 9(8):104663, 2014. [see page [66]]

Emerson. Emerson Tackles Costly Downtime Losses in In-
dustrial Process Facilities, Launches Reliability Management
Consulting Service. https://www.emerson.com/en-us/news/
corporate/reliability-consulting. Accessed: 2020-12-01.

[see page[243]

Emerson. 2016 Cost of Data Center Outages. Techni-
cal report, Emerson Network Power & Ponemon Institute,
2016. https://www.emerson.com/en-us/news/corporate/

network-power-study. Accessed: 2021-07-15. [see page|l]]

AG Evans and SM Wiederhorn. Proof Testing of Ceramic
Materials—An Analytical Basis for Failure Prediction. Inter-
national Journal of Fracture, 10(3):379-392, 1974. [see page[d]]

Nils Finke, Marisa Mohr, Alexander Lontke, Marwin Ziifle,
Samuel Kounev, and Ralf Moller. Recommendations for Data-
Driven Degradation Estimation with Case Studies from Man-
ufacturing and Dry-Bulk Shipping. In Proceeedings of the 15th
International Conference on Research Challenges in Information Sci-
ence (RCIS), pages 189-204. Springer, 2021. [see page [xxv]

https://cran.r-project.org/web/packages/unbalanced/unbalanced.pdf
https://cran.r-project.org/web/packages/unbalanced/unbalanced.pdf
https://www.emerson.com/en-us/news/corporate/reliability-consulting
https://www.emerson.com/en-us/news/corporate/reliability-consulting
https://www.emerson.com/en-us/news/corporate/network-power-study
https://www.emerson.com/en-us/news/corporate/network-power-study

[For65]

[FS97]

[Fuc20]

[GBCB16]

[GCS16]

[Geb06]

[GEB*19]

[GJ85]

[GLJ*17]

Bibliography

Edward W Forgy. Cluster Analysis of Multivariate Data: Ef-
ficiency Versus Interpretability of Classifications. Biometrics,
21:768-769, 1965. [see page

Yoav Freund and Robert E Schapire. A Decision-theoretic Gen-
eralization of On-line Learning and an Application to Boosting.
Journal of Computer and System Sciences, 55(1):119-139, 1997.

[see page

Hannah Fuchs. Making Sense of Coronavirus Infection Statis-
tics. Deutsche Welle, 2020. https://www.dw.com/en/making-
sense-of-coronavirus-infection-statistics/a-

55274839, Accessed: 2021-07-15. [see page[Z]

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. Deep Learning. MIT Press, 2016. [see pages[I7]and

Xiaojie Guo, Liang Chen, and Changqing Shen. Hierarchical
Adaptive Deep Convolution Neural Network and its Applica-
tion to Bearing Fault Diagnosis. Measurement, 93:490-502, 2016.

[see page

Nagi Gebraeel. Sensory-Updated Residual Life Distributions
for Components with Exponential Degradation Patterns. Trans-
actions on Automation Science and Engineering, 3(4):382-393, 2006.

[see page

Johannes Grohmann, Simon Eismann, Andre Bauer, Marwin
Ziifle, Nikolas Herbst, and Samuel Kounev. Utilizing Cluster-
ing to Optimize Resource Demand Estimation Approaches. In
2019 IEEE 4th International Workshops on Foundations and Appli-
cations of Self* Systems (FAS*W), page 134-139. IEEE, 2019. [see

page pocvii]

Everette S Gardner Jr. Exponential Smoothing: The State of the
Art. Journal of Forecasting, 4(1):1-28, 1985. [see page[33]]

Liang Guo, Naipeng Li, Feng Jia, Yaguo Lei, and Jing Lin. A
recurrent neural network based health indicator for remaining
useful life prediction of bearings. Neurocomputing, 240:98-109,

2017. [see page

313

https://www.dw.com/en/making-sense-of-coronavirus-infection-statistics/a-55274839
https://www.dw.com/en/making-sense-of-coronavirus-infection-statistics/a-55274839
https://www.dw.com/en/making-sense-of-coronavirus-infection-statistics/a-55274839

Bibliography

[GPR10]

[GTLT+19]

[GWM10]

[HA18]

[HAB*18]

[HCLX11]

[HHKA14]

[Hil00]

[HKO6]

314

Fausto P Garcia, Diego] Pedregal, and Clive Roberts. Time
Series Methods Applied to Failure Prediction and Detection.
Reliability Engineering & System Safety, 95(6):698-703, 2010. [see
page

Antonio Galicia, R Talavera-Llames, A Troncoso, Irena Koprin-
ska, and Francisco Martinez-Alvarez. Multi-step Forecasting for
Big Data Time Series based on Ensemble Learning. Knowledge-
Based Systems, 163:830-841, 2019. [see page [5§]]

Jose A Guajardo, Richard Weber, and Jaime Miranda. A Model
Updating Strategy for Predicting Time Series with Seasonal
Patterns. Applied Soft Computing, 10(1):276-283, 2010. [see

page[87]

Rob] Hyndman and George Athanasopoulos. Forecasting: Prin-
ciples and Practice. OTexts, 2018. [see pages and

Rob] Hyndman, George Athanasopoulos, Christoph Bergmedir,
Gabriel Caceres, Leanne Chhay, Mitchell O’Hara-Wild, Fotios
Petropoulos, Slava Razbash, Earo Wang, and Farah Yasmeen.
forecast: Forecasting Functions for Time Series and Linear Mod-
els,2018. R package: http://pkg.robjhyndman.com/forecast.

Accessed: 2021-07-15. [see pages and (162]]

Haibo He, Sheng Chen, Kang Li, and Xin Xu. Incremental
Learning from Stream Data. IEEE Transactions on Neural Net-
works, 22(12):1901-1914, 2011. [see page[88]]

Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and
Erich Amrehn. Self-adaptive Workload Classification and Fore-
casting for Proactive Resource Provisioning. Concurrency and
Computation: Practice and Experience, 26(12):2053-2078, 2014.

[see page

Robert C Hilborn. Chaos and Nonlinear Dynamics: An Introduc-
tion for Scientists and Engineers. Oxford University Press on
Demand, 2000. [see page [24]]

Rob] Hyndman and Anne B Koehler. Another Look at Mea-
sures of Forecast Accuracy. International Journal of Forecasting,
22(4):679-688, 2006. [see page [A6]]

http://pkg.robjhyndman.com/forecast

[HK19a]

[HK19b]

[HKOS08]

[HKV19]

[HLYJ19]

[HMSZ20]

[Ho95]

[Hol57]

[HRBA*18]

[HS97]

Bibliography

Duy-Tang Hoang and Hee-Jun Kang. A Survey on Deep Learn-
ing based Bearing Fault Diagnosis. Neurocomputing, 335:327—

335, 2019. [see page 244]]

Duy-Tang Hoang and Hee-Jun Kang. Rolling Element Bearing
Fault Diagnosis using Convolutional Neural Network and Vi-
bration Image. Cognitive Systems Research, 53:42-50, 2019. [see

page[82]

Rob] Hyndman, Anne B Koehler,] Keith Ord, and Ralph D
Snyder. Forecasting with Exponential Smoothing: The State Space
Approach. Springer, 2008. [see page[33]]

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Auto-
mated Machine Learning: Methods, Systems, Challenges. Springer

Nature, 2019. [see page 251]]

Te Han, Chao Liu, Wenguang Yang, and Dongxiang Jiang.
Learning Transferable Features in Deep Convolutional Neural
Networks for Diagnosing Unseen Machine Conditions. ISA
Transactions, 93:341-353, 2019. [see page

Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu.
Incremental Learning in Online Scenario. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13926-13935. IEEE, 2020. [see page [91]]

Tin Kam Ho. Random Decision Forests. In Proceedings of 3rd
International Conference on Document Analysis and Recognition,
pages 278-282. IEEE, 1995. [see page [4(]]

Charles C Holt. Forecasting Seasonals and Trends by Exponen-
tially Weighted Moving Averages. ONR Memorandum, 52, 1957.

[see page

Jiirgen Herp, Mohammad H Ramezani, Martin Bach-Andersen,
Niels L Pedersen, and Esmaeil S Nadimi. Bayesian State Pre-
diction of Wind Turbine Bearing Failure. Renewable Energy,
116:164-172, 2018. [see pages[d]and [9]]

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-term
Memory. Neural Computation, 9(8):1735-1780, 1997. [see

page [46]]

315

Bibliography

[HTF09]

[HVK17]

[HWOP11]

[HY18]

[Hyn11]

[Hyn18]

[HZJH20]

[HZS99]

[HZSG19]

316

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning: Data Mining, Inference, and Pre-

diction. Springer, 2009. [see pages and 258]]

Jordan Hochenbaum, Owen S Vallis, and Arun Kejariwal. Auto-
matic Anomaly Detection in the Cloud Via Statistical Learning.
arXiv preprint arXiv:1704.07706, 2017. [see page[105]]

Wei He, Nicholas Williard, Michael Osterman, and Michael
Pecht. Prognostics of Lithium-ion Batteries based on Dempster-
Shafer Theory and the Bayesian Monte Carlo Method. Journal
of Power Sources, 196(23):10314-10321, 2011. [see page[244]]

Rob J Hyndman and Yangzhuoran Yang. tsdl: Time Series
Data Library, 2018. v0.1.0. https://pkg.yangzhuoranyang.
com/tsdl/. Accessed: 2021-07-15. [see page[122]

Rob] Hyndman. Cyclic and Seasonal Time Series. https:
//robjhyndman.com/hyndsight/cyclicts/, 2011. Accessed:
2021-07-15. [see page [24]]

Rob J Hyndman. Data for “Forecasting: Principles and Prac-
tice”, 2018. R package: https://pkg.robjhyndman.com/fpp2-
packagel. Accessed: 2021-07-15. [see page[122]]

Shao Haidong, Ding Ziyang, Cheng Junsheng, and Jiang
Hongkai. Intelligent Fault Diagnosis Among Different Ro-
tating Machines using Novel Stacked Transfer Auto-encoder
Optimized by PSO. ISA Transactions, 105:308-319, 2020. [see

page[84]]

Joseph L Hellerstein, Fan Zhang, and Perwez Shahabuddin.
An Approach to Predictive Detection for Service Management.
In Proceedings of the Sixth IFIP/IEEE International Symposium on
Integrated Network Management, pages 309-322. IEEE, 1999. [see

pages[3land

Zhigiang Huo, Yu Zhang, Lei Shu, and Michael Gallimore. A
New Bearing Fault Diagnosis Method based on Fine-to-coarse

Multiscale Permutation Entropy, Laplacian Score and SVM.
IEEE Access, 7:17050-17066, 2019. [see page [244]

https://pkg.yangzhuoranyang.com/tsdl/
https://pkg.yangzhuoranyang.com/tsdl/
https://robjhyndman.com/hyndsight/cyclicts/
https://robjhyndman.com/hyndsight/cyclicts/
https://pkg.robjhyndman.com/fpp2-package
https://pkg.robjhyndman.com/fpp2-package

[HZZ+20]

[IBM16]

[THL18]

[Jail6]

[JPBS20]

[JYJ13]

[KCO3]

[KCF16]

Bibliography

Stefan Herrnleben, Bernd Zeidler, Marwin Ziifle, Christian
Krupitzer, and Samuel Kounev. A Concept for Crowd-sensed
Prediction of Mobile Network Connectivity. In GI/ITG Workshop
on Machine Learning in the Context of Communication Networks

2020, 2020. [see page [xxvii]]

IBM Research Editorial Staff. Predicting Disk Failures for Re-
liable Clouds. https://www.ibm.com/blogs/research/2016/
08/predicting-disk-failures-reliable-clouds/,2016. Ac-
cessed: 2021-07-15. [see page|l]]

Md Mojahidul Islam, Guoqing Hu, and Qianbo Liu. Online
Model Updating and Dynamic Learning Rate-based Robust
Object Tracking. Sensors, 18(7):2046, 2018. [see page

Aarshay Jain. Complete guide to parameter tuning in xgboost
with codes in python. https://www.analyticsvidhya.
com/blog/2016/03/complete-guide-parameter-tuning-

xgboost-with-codes-python/, 2016. Accessed: 2021-07-15.

[see page

Andrzej Janusz, Mateusz Przyborowski, Piotr Biczyk, and Do-
minik Slezak. Network Device Workload Prediction: A Data
Mining Challenge at Knowledge Pit. In 15th Conference on Com-
puter Science and Information Systems (FedCSIS), pages 77-80.

IEEE, 2020. [see page([173]]

Daniel Jacobson, Danny Yuan, and Neeraj Joshi. Scryer:

Netflix’s Predictive Auto Scaling Engine. https:
//netflixtechblog.com/scryer-netflixs-predictive-
auto-scaling-engine-a3£8fc922270, 2013. Accessed:

2021-06-20. [see page[2]

Jeffrey O Kephart and David M Chess. The Vision of Autonomic
Computing. Computer, 36(1):41-50, 2003. [see page[17]]

Mirko Kiick, Sven F Crone, and Michael Freitag. Meta-learning
with Neural Networks and Landmarking for Forecasting Model
Selection an Empirical Evaluation of Different Feature Sets
Applied to Industry Data. In International Joint Conference on
Neural Networks (I[CNN), pages 1499-1506. IEEE, 2016. [see

page|[62]

317

https://www.ibm.com/blogs/research/2016/08/predicting-disk-failures-reliable-clouds/
https://www.ibm.com/blogs/research/2016/08/predicting-disk-failures-reliable-clouds/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270

Bibliography

[KDM*18]

[KKO1]

[KKZ*00]

[KLB+17]

[Kle20]

[KMO7]

[KML*20]

318

Christian Krupitzer, Guido Drechsel, Deborah Mateja, Alina
Pollkdsener, Florian Schrage, Timo Sturm, Aleksandar Tomaso-
vic, and Christian Becker. Using Spreadsheet-defined Rules for
Reasoning in Self-adaptive Systems. In Proceedings of the IEEE
International Conference on Pervasive Computing and Communica-
tions Workshops, pages 289-294. IEEE, 2018. [see pages

and 300]

John F Kolen and Stefan C Kremer. A Field Guide to Dynamical
Recurrent Networks. John Wiley & Sons, 2001. [see page

Tiruvalam Natarajan Krishnamurti, CM Kishtawal, Zhan
Zhang, Timothy LaRow, David Bachiochi, Eric Williford, Su-
lochana Gadgil, and Sajani Surendran. Multimodel Ensemble
Forecasts for Weather and Seasonal Climate. Journal of Climate,
13(23):4196-4216, 2000. [see page

Samuel Kounev, Peter Lewis, Kirstie Bellman, Nelly Bencomo,
Javier Camara, Ada Diaconescu, Lukas Esterle, Kurt Geihs,
Holger Giese, Sebastian Gétz, Paola Inverardi, Jeffrey Kephart,
and Andrea Zisman. The Notion of Self-Aware Computing.
In Samuel Kounev, Jeffrey O Kephart, Aleksandar Milenkoski,
and Xiaoyun Zhu, editors, Self-Aware Computing Systems, pages

3-16. Springer, 2017. [see pages|6) and

Klein, Andy (Backblaze). Backblaze Hard Drive Stats
for 2019. https://www.backblaze.com/blog/hard-drive-
stats-for-2019/, 2020. Accessed: 2021-07-15. [see page[I3]]

Jeff Kramer and Jeff Magee. Self-Managed Systems: An Ar-
chitectural Challenge. In Proceedings of the Future of Software
Engineering (FOSE), pages 259-268. IEEE, 2007. [see pages

and BO0]

Christian Krupitzer, Sebastian Miiller, Veronika Lesch, Marwin
Ziifle, Janick Edinger, Alexander Lemken, Dominik Schéfer,
Samuel Kounev, and Christian Becker. A Survey on Human
Machine Interaction in Industry 4.0. Technical report, Univer-
sity of Wiirzburg and University of Mannheim and ioxp GmbH
and Syntax Systems GmbH, 2020. arXiv:2002.01025v1. [see

page poxvi]

https://www.backblaze.com/blog/hard-drive-stats-for-2019/
https://www.backblaze.com/blog/hard-drive-stats-for-2019/

[KMN19]

[KRV*15]

[KT99]

[Kul7]

[KWZ+20]

[KYO]

[LCTHO0]

[Les17]

[LFH*18]

Bibliography

Dominique Knittel, Hamid Makich, and Mohammed Nouari.
Milling Diagnosis using Artificial Intelligence Approaches. Me-
chanics & Industry, 20(8):809, 2019. [see page[81]]

Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSy-
ckel, Gregor Schiele, and Christian Becker. A Survey on Engi-
neering Approaches for Self-adaptive Systems. Pervasive and
Mobile Computing, 17:184-206, 2015. [see pages[2|and

Alexandros Kalousis and Theoharis Theoharis. Noemon: De-
sign, Implementation and Performance Results of an Intelli-
gent Assistant for Classifier Selection. Intelligent Data Analysis,
3(5):319-337,1999. [see page[60]]

Jin-Hee Ku. A Study on the Machine Learning Model for Prod-
uct Faulty Prediction in Internet of Things Environment. Journal
of Convergence for Information Technology, 7(1):55-60, 2017. [see

page[d]

Christian Krupitzer, Tim Wagenhals, Marwin Ziifle, Veronika
Lesch, Dominik Schéifer, Amin Mozaffarin, Janick Edinger,
Christian Becker, and Samuel Kounev. A Survey on Pre-
dictive Maintenance for Industry 4.0. Technical report, Uni-
versity of Wiirzburg and University of Mannheim and Syn-
tax Systems GmbH and MOZYS Engineering GmbH, 2020.

arXiv:2002.08224. [see page [xxviil]

KYOS Energy Consulting. Auto Scaling Production Ser-
vices on Titus. https://www.kyos.com/faq/what-is-power-
scheduling/. Accessed: 2021-07-15. [see page/I]]

Bo Li, M-Y Chow, Yodyium Tipsuwan, and James C Hung.
Neural-network-based Motor Rolling Bearing Fault Diagnosis.
IEEE Transactions on Industrial Electronics, 47(5):1060-1069, 2000.

[see page

Veronika Lesch. Self-Aware Multidimensional Auto-Scaling.
Master Thesis, Julius-Maximilians-Universitat Wiirzburg, 2017.

[see page([137]

Zefang Li, Huajing Fang, Ming Huang, Ying Wei, and Lin-
lan Zhang. Data-driven Bearing Fault Identification using Im-

319

https://www.kyos.com/faq/what-is-power-scheduling/
https://www.kyos.com/faq/what-is-power-scheduling/

Bibliography

[LG10]

[LHS*17]

[LHY*20]

[LJ*18]

[LyJ*+14]

[LK77]

[LLG'16]

[L1o82]

320

proved Hidden Markov Model and Self-organizing Map. Com-
puters & Industrial Engineering, 116:37-46, 2018. [see page [244]

Christiane Lemke and Bogdan Gabrys. Meta-learning for Time
Series Forecasting and Forecast Combination. Neurocomputing,

73(10-12):2006-2016, 2010. [see pages and [142]]

Eric Gordon Lamb, Caspar A Hallmann, Martin Sorg, Eelke
Jongejans, Henk Siepel, Nick Hofland, Heinz Schwan, Werner
Stenmans, Andreas Miiller, Hubert Sumser, Thomas Horren,
Dave Goulson, and Hans de Kroon. More than 75 Percent
Decline over 27 Years in Total Flying Insect Biomass in Protected
Areas. PLoS ONE, 12(10):e0185809, 2017. [see page

Weichao Luo, Tianliang Hu, Yingxin Ye, Chengrui Zhang,
and Yongli Wei. A Hybrid Predictive Maintenance Approach
for CNC Machine Tool Driven by Digital Twin. Robotics and
Computer-Integrated Manufacturing, 65:101974, 2020. [see

page [84]]

Andrew Leung, Amit Joshi, et al. Auto Scaling Production
Services on Titus. https://netflixtechblog.com/auto-
scaling-production-services-on-titus-1£3cd49f5cd7,

2018. Accessed: 2021-07-15. [see page[Z]]

Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, Gang Wang, Zhong-
wei Li, and Xiaoguang Liu. Hard Drive Failure Prediction using
Classification and Regression Trees. In 44th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks,
pages 383-394. IEEE, 2014. [see page

J Richard Landis and Gary G Koch. The Measurement of Ob-
server Agreement for Categorical Data. Biometrics, 33(1):159—

174,1977. [see pages and [260]]

Yaguo Lei, Naipeng Li, Szymon Gontarz, Jing Lin, Stanislaw
Radkowski, and Jacek Dybala. A Model-based Method for Re-
maining Useful Life Prediction of Machinery. IEEE Transactions
on Reliability, 65(3):1314-1326, 2016. [see page[77]]

Stuart Lloyd. Least Squares Quantization in PCM. IEEE Trans-
actions on Information Theory, 28(2):129-137, 1982. [see pages[37]

and [190]

https://netflixtechblog.com/auto-scaling-production-services-on-titus-1f3cd49f5cd7
https://netflixtechblog.com/auto-scaling-production-services-on-titus-1f3cd49f5cd7

[LLT+17]

[LMC12]

[LSG*10]

[LSWT17]

[LTZ"14]

[LVT16]

[LW13]

[LWP12]

Bibliography

Shaobo Li, Guokai Liu, Xianghong Tang, Jianguang Lu, and
Jianjun Hu. An Ensemble Deep Convolutional Neural Network
Model with Improved DS Evidence Fusion for Bearing Fault
Diagnosis. Sensors, 17(8):1729, 2017. [see page[244]]

Imene Lahyani, Wafa Makki, and Christophe Chassot. Failure
Prediction for Publish/subscribe System on MANET. In IEEE
21st International Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pages 98-100. IEEE, 2012. [see

page[70]]

Jie Liu, Abhinav Saxena, Kai Goebel, Bhaskar Saha, and Wilson
Wang. An Adaptive Recurrent Neural Network for Remaining
Useful Life Prediction of Lithium-ion Batteries. In Annual Con-
ference of the Prognostics and Health Management Society, pages
1-9. PHM Society, 2010. [see page

Jing Li, Rebecca] Stones, Gang Wang, Xiaoguang Liu, Zhong-
wei Li, and Ming Xu. Hard Drive Failure Prediction using
Decision Trees. Reliability Engineering & System Safety, 164:55—

65,2017. [see pages[78 and [271]]

Nian Liu, Qingfeng Tang, Jianhua Zhang, Wei Fan, and Jie Liu.
A Hybrid Forecasting Model with Parameter Optimization for
Short-term Load Forecasting of Micro-grids. Applied Energy,

129:336-345, 2014. [see pages|66|and [142]]

Asma Ladj, Christophe Varnier, and Fatima Benbouzid-Si Tayeb.
IPro-GA: An Integrated Prognostic based GA for Scheduling
Jobs and Predictive Maintenance in a Single Multifunctional
Machine. IFAC-PapersOnLine, 49(12):1821-1826, 2016. [see

page244]

Wenzhu Liao and Ying Wang. Data-driven Machinery Prog-
nostics Approach using in a Predictive Maintenance Model.
Journal of Computers, 8(1):225-231, 2013. [see page [244]]

Wenzhu Liao, Ying Wang, and Ershun Pan. Single-machine-
based Predictive Maintenance Model Considering Intelligent
Machinery Prognostics. The International Journal of Advanced
Manufacturing Technology, 63(1-4):51-63, 2012. [see pages
and

321

Bibliography

[LWZ+14]

[LZXS07]

[Mat75]

[McH12]

[MCJ+20]

[MDH*19]

[Med21]

[MHO0]

[MH18]

322

Jay Lee, Fangji Wu, Wenyu Zhao, Masoud Ghaffari, Linxia
Liao, and David Siegel. Prognostics and Health Management
Design for Rotary Machinery Systems—-Reviews, Methodology
and Applications. Mechanical Systems and Signal Processing,
42(1-2):314-334, 2014. [see pages[d]and[J]]

Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra
Sahoo. Failure Prediction in IBM Bluegene/L Event Logs. In
Seventh IEEE International Conference on Data Mining (ICDM),
pages 583-588. IEEE, 2007. [see page

Brian W Matthews. Comparison of the Predicted and Observed
Secondary Structure of T4 Phage Lysozyme. Biochimica et Bio-
physica Acta (BBA)-Protein Structure, 405(2):442-451, 1975. [see

page[5T]|

Mary L McHugh. Interrater Reliability: The Kappa Statistic.
Biochemia Medica, 22(3):276-282, 2012. [see page 257]]

Jun Ma, Jack CP Cheng, Feifeng Jiang, Weiwei Chen, Mingzhu
Wang, and Chong Zhai. A Bi-directional Missing Data Im-
putation Scheme based on LSTM and Transfer Learning for
Building Energy Data. Energy and Buildings, 216:109941, 2020.

[see page 298]

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas
Weingessel, Friedrich Leisch, Chih-Chung Chang, and Chih-
Chen Lin. Misc Functions of the Department of Statistics, Probabil-
ity Theory Group, 2019. R package: https://cran.r-project.
org/web//packages/e1071/e1071.pdf. Accessed: 2021-07-16.

[see page[205]

Valerie Medleva. GameStop Stock Forecast: Will the Mar-
ket Bonanza Last? https://capital.com/gamestop-stock-
forecast-will-the-market-bonanza-last, 2021. Accessed:

2021-07-16. [see page[2]]

Spyros Makridakis and Michele Hibon. The M3-Competition:
Results, Conclusions and Implications. International Journal of
Forecasting, 16(4):451-476, 2000. [see pages|67|and [162]]

Michael Mulders and Mark Haarman. Predictive Maintenance
4.0 - Beyond the Hype: PdM 4.0 Delivers Results. Technical

https://cran.r-project.org/web//packages/e1071/e1071.pdf
https://cran.r-project.org/web//packages/e1071/e1071.pdf
https://capital.com/gamestop-stock-forecast-will-the-market-bonanza-last
https://capital.com/gamestop-stock-forecast-will-the-market-bonanza-last

[MHKDO5]

[MMAHT20]

[Mob02]

[MSR16]

[MSvdMWO04]

[MXC*13]

[NAL17]

[NF20]

Bibliography

report, PricewaterhouseCoopers and Mainnovation, 2018. [see

pages and

Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-
Delgado. Machine Learning Methods for Predicting Failures
in Hard Drives: A Multiple-instance Application. Journal of
Machine Learning Research, 6(5):783-816, 2005. [see pages

and 6]

Pablo Montero-Manso, George Athanasopoulos, Rob] Hyn-
dman, and Thiyanga S Talagala. FFORMA: Feature-based
Forecast Model Averaging. International Journal of Forecasting,
36(1):86-92, 2020. [see page[59]]

R Keith Mobley. An Introduction to Predictive Maintenance. Else-
vier, 2002. [see page [243]]

Ganapathy Mahalakshmi, S Sridevi, and Shyamsundar Ra-
jaram. A Survey on Forecasting of Time Series Data. In Interna-
tional Conference on Computing Technologies and Intelligent Data
Engineering (ICCTIDE), pages 1-8. IEEE, 2016. [see page[95]]

Christian Miiller-Schloer, Christoph von der Malsburg, and
Rolf P Wiirt. Organic computing. Informatik-Spektrum,
27(4):332-336, 2004. [see page[l7]]

Qiang Miao, Lei Xie, Hengjuan Cui, Wei Liang, and Michael
Pecht. Remaining Useful Life Prediction of Lithium-ion Bat-
tery with Unscented Particle Filter Technique. Microelectronics
Reliability, 53(6):805-810, 2013. [see pages[dand

Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng
Lung. An Autonomic Prediction Suite for Cloud Resource
Provisioning. Journal of Cloud Computing, 6(1):1-20, 2017. [see

page|[142]

Meenakshi Narayan and Ann Majewicz Fey. Developing a
Novel Force Forecasting Technique for Early Prediction of Crit-
ical Events in Robotics. PloS one, 15(5):€0230009, 2020. [see

page[72]]

323

Bibliography

[NG74]

[NXT14]

[OP95]

[OSN80]

[PAAL13]

[PDSA15]

[Peg69]

[PKWB17]

[PL04]

324

Paul Newbold and Clive W] Granger. Experience with Fore-
casting Univariate Time Series and the Combination of Fore-
casts. Journal of the Royal Statistical Society. Series A (General),
137(2):131-146, 1974. [see page[142]]

Selina SY Ng, Yinjiao Xing, and Kwok L Tsui. A Naive Bayes
Model for Robust Remaining Useful Life Prediction of Lithium-
ion Battery. Applied Energy, 118:114-123, 2014. [see page [244]]

Erik Ottem and Judy Plummer. Playing it SMART: The Emer-
gence of Reliability Prediction Technology. Technical report,
Seagate Technology Paper, 1995. [see page[216]

Shunichiro Oe, Takashi Soeda, and Takayoshi Nakamizo. A
Method of Predicting Failure or Life for Stochastic Systems by
using Autoregressive Models. International Journal of Systems

Science, 11(10):1177-1188, 1980. [see page [6§]]

Mahardhika Pratama, Sreenatha G Anavatti, Plamen P Angelov,
and Edwin Lughofer. PANFIS: A Novel Incremental Learning
Machine. IEEE Transactions on Neural Networks and Learning
Systems, 25(1):55-68, 2013. [see page [8§]]

Alessandro Pellegrini, Pierangelo Di Sanzo, and Dimiter R
Avresky. A Machine Learning-based Framework for Building
Application Failure Prediction Models. In IEEE International
Parallel and Distributed Processing Symposium Workshop, pages
1072-1081. IEEE, 2015. [see page|[76]]

C Carl Pegels. Exponential Forecasting: Some New Variations.
Management Science, 15(5):311-315, 1969. [see page

Martin Pfannemiiller, Christian Krupitzer, Markus Weckesser,
and Christian Becker. A Dynamic Software Product Line Ap-
proach for Adaptation Planning in Autonomic Computing Sys-
tems. In Proceedings of the IEEE International Conference on Au-
tonomic Computing (ICAC), pages 247-254. IEEE, 2017. [see

pages) 20} and B00]

Ricardo BC Prudéncio and Teresa B Ludermir. Meta-learning
Approaches to Selecting Time Series Models. Neurocomputing,
61:121-137, 2004. [see page

[PLO5]

[PL21]

[PVHG13]

[PWB07]

[QLDL17]

[QLLY03]

[QLMF19]

[R C18]

Bibliography

Ping-Feng Pai and Chih-Sheng Lin. A Hybrid ARIMA and
Support Vector Machines Model in Stock Price Forecasting.
Omega, 33(6):497-505, 2005. [see page

Matt Phillips and Taylor Lorenz. ‘Dumb Money’ Is on
GameStop, and It’s Beating Wall Street at Its Own Game.
New York Times, 2021. https://www.nytimes.com/2021/01/
27/business/gamestop-wall-street-bets.html. Accessed:
2021-07-16. [see page[2]

Teerat Pitakrat, Andre Van Hoorn, and Lars Grunske. A Com-
parison of Machine Learning Algorithms for Proactive Hard
Disk Drive Failure Detection. In Proceedings of the 4th inter-
national ACM Sigsoft symposium on Architecting critical systems,

pages 1-10. ACM, 2013. [see pages[75} and 226

Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Bar-
roso. Failure Trends in a Large Disk Drive Population. In 5th
USENIX Conference on File and Storage Technologies (FAST), pages
17-29. USENIX, 2007. [see page

Xiwen Qin, Qiaoling Li, Xiaogang Dong, and Siqi Lv. The Fault
Diagnosis of Rolling Bearing based on Ensemble Empirical
Mode Decomposition and Random Forest. Shock and Vibration,
2017:1-9, 2017. [see page[244]]

Hai Qiu, Jay Lee, Jing Lin, and Gang Yu. Robust Performance
Degradation Assessment Methods for Enhanced Rolling Ele-
ment Bearing Prognostics. Advanced Engineering Informatics,
17(3-4):127-140, 2003. [see page[77]]

Jiantao Qu, Feng Liu, Yuxiang Ma, and Jiaming Fan. A Neural-
network-based Method for RUL Prediction and SOH Monitor-
ing of Lithium-ion Battery. IEEE Access, 7:87178-87191, 2019.

[see page[244]

R Core Team. The R Datasets Package, 2018. R pack-
age: https://stat.ethz.ch/R-manual/R-devel/library/
datasets/html/00Index.html. Accessed: 2021-07-16. [see

pages[122|and

325

https://www.nytimes.com/2021/01/27/business/gamestop-wall-street-bets.html
https://www.nytimes.com/2021/01/27/business/gamestop-wall-street-bets.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

Bibliography

[Rei21]

[REL20]

[RHWS6]

[RMO5]

[Ros96]

[RPDJ12]

[RYC*20]

[Scho8]

[SCH*+19]

326

Andrej Reisin. Modelle mit Unsicherheiten. tagesschau,
2021. https://www.tagesschau.de/faktenfinder/covid-
prognose-rki-101.html. Accessed 2021-07-16. [see page[2]]

RELEX Solutions. Planning for Every Future in Grocery
Retail. Technical report, RELEX Solutions & EnsemblelQ,
2020. https://hub.relexsolutions.com/grocery-retail-
report-2020. Accessed: 2021-07-16. [see page[2]]

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams.
Learning Representations by Back-propagating Errors. Nature,
323(6088):533-536, 1986. [see page

Lior Rokach and Oded Maimon. Clustering Methods. In
Data Mining and Knowledge Discovery Handbook, pages 321-352.

Springer, 2005. [see pages and [192]]

Oliver Rose. Estimation of the Hurst Parameter of Long-
range Dependent Time Series. Technical report, University of
Wiirzburg, Institute of Computer Science, 1996. [see page

Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Maciej
Jaworski. Decision Trees for Mining Data Streams based on the
McDiarmid’s Bound. IEEE Transactions on Knowledge and Data
Engineering, 25(6):1272-1279, 2012. [see page

Wei Rang, Donglin Yang, Dazhao Cheng, Kun Suo, and Wei
Chen. Data Life Aware Model Updating Strategy for Stream-
based Online Deep Learning. In IEEE International Conference
on Cluster Computing (CLUSTER), pages 392-398. IEEE, 2020.

[see page

Arthur Schuster. On the Investigation of Hidden Periodicities
with Application to a Supposed 26 Day Period of Meteorologi-
cal Phenomena. Terrestrial Magnetism, 3(1):13-41, 1898. [see

page[26]]

Xiaoyi Sun, Krishnendu Chakrabarty, Ruirui Huang, Yiquan
Chen, Bing Zhao, Hai Cao, Yinhe Han, Xiaoyao Liang, and
Li Jiang. System-level Hardware Failure Prediction using Deep
Learning. In 2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1-6. IEEE, 2019. [see page [81]]

https://www.tagesschau.de/faktenfinder/covid-prognose-rki-101.html
https://www.tagesschau.de/faktenfinder/covid-prognose-rki-101.html
https://hub.relexsolutions.com/grocery-retail-report-2020
https://hub.relexsolutions.com/grocery-retail-report-2020

[SD10]

[Sea%9]

[SFN18]

[SG86]

[SHM11]

[S)21]

[SLM10]

[SLS99]

[SM07]

[Sm421]

Bibliography

Stephan Schliiter and Carola Deuschle. Using Wavelets for
Time Series Forecasting: Does it Pay Off? Technical report,
IWQW discussion paper series, 2010. [see pages[65/and [142]]

Seagate Product Marketing. Get S.M.A R.T. for Reliability. Tech-
nical report, Technical report, Seagate Technology Paper, 1999.

[see pages[216|and 231]]

Cameron Sobie, Carina Freitas, and Mike Nicolai. Simulation-
driven Machine Learning: Bearing Fault Classification. Me-
chanical Systems and Signal Processing, 99:403—-419, 2018. [see

page[80]]

Jeffrey C Schlimmer and Richard H Granger. Incremental Learn-
ing from Noisy Data. Machine Learning, 1(3):317-354, 1986. [see

pages[85|and

Joanna Z Sikorska, Melinda Hodkiewicz, and Lin Ma. Prognos-
tic Modelling Options for Remaining Useful Life Estimation by
Industry. Mechanical systems and signal processing, 25(5):1803—
1836, 2011. [see page[74]

Daoming She and Minping Jia. A BiIGRU Method for Remaining
Useful Life Prediction of Machinery. Measurement, 167:108277,

2021. [see page [84]]

Felix Salfner, Maren Lenk, and Miroslaw Malek. A Survey of
Online Failure Prediction Methods. ACM Computing Surveys,
42(3):1-42,2010. [see page[67]]

Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling
Concept Drifts in Incremental Learning with Support Vector
Machines. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 317—
321. ACM, 1999. [see page[86]]

Lu Shuang and Li Meng. Bearing Fault Diagnosis based on
PCA and SVM. In International Conference on Mechatronics and
Automation, pages 3503-3507. IEEE, 2007. [see page [244]]

Johanna Smaéros. Winning the Food Fight: Best Prac-
tices for Managing Grocery Retail Supply Chains.
https://www.relexsolutions.com/resources/managing-

327

https://www.relexsolutions.com/resources/managing-grocery-retail-supply-chains/
https://www.relexsolutions.com/resources/managing-grocery-retail-supply-chains/

Bibliography

[Sol89]

[SORT03]

[SSH16]

[SSP+14]

[Stal8]

[SWH20]

[SWLY18]

328

grocery-retail-supply-chains/, 2021. Accessed: 2021-07-
16. [see page[Z]

Ray] Solomonoff. A System for Incremental Learning based
on Algorithmic Probability. In Proceedings of the Sixth Israeli
Conference on Artificial Intelligence, Computer Vision and Pattern
Recognition, pages 515-527. Citeseer, 1989. [see page[8€]]

Ramendra K Sahoo, Adam] Oliner, Irina Rish, Manish Gupta,
José E Moreira, Sheng Ma, Ricardo Vilalta, and Anand Sivasub-
ramaniam. Critical Event Prediction for Proactive Management
in Large-scale Computer Clusters. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 426-435. ACM, 2003. [see page

Matthias Sommer, Anthony Stein, and Jérg Hahner. Local En-
semble Weighting in the Context of Time Series Forecasting
using XCSF. In IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 1-8. IEEE, 2016. [see pages[57|and

Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Sean
McLoone, and Alessandro Beghi. Machine learning for pre-
dictive maintenance: A multiple classifier approach. IEEE
Transactions on Industrial Informatics, 11(3):812-820, 2014. [see

page[76]]

Statista. Wie Bewerten Sie Die Relevanz Von Vorhersage
Von Wartungsaufgaben (Predictive Maintenance) Fiir Ihr
Unternehmen? https://de.statista.com/prognosen/
943287 /expertenbefragung-zu-predictive-maintenance-

in-der-logistikbranche, 2018. Accessed: 2021-07-16. [see

pages|[ljand

Devarshi Shah, Jin Wang, and Q Peter He. Feature Engineering
in Big Data Analytics for IoI-Enabled Smart Manufacturing—
Comparison between Deep Learning and Statistical Learning.
Computers & Chemical Engineering, 141:106970, 2020. [see

page[84]]

Jing Shen, Jian Wan, Se-Jung Lim, and Lifeng Yu.
Random-forest-based Failure Prediction for Hard Disk
Drives. International Journal of Distributed Sensor Networks,
14(11):1550147718806480, 2018. [see page [80]]

https://www.relexsolutions.com/resources/managing-grocery-retail-supply-chains/
https://www.relexsolutions.com/resources/managing-grocery-retail-supply-chains/
https://de.statista.com/prognosen/943287/expertenbefragung-zu-predictive-maintenance-in-der-logistikbranche
https://de.statista.com/prognosen/943287/expertenbefragung-zu-predictive-maintenance-in-der-logistikbranche
https://de.statista.com/prognosen/943287/expertenbefragung-zu-predictive-maintenance-in-der-logistikbranche

[Tay03]

[THA18]

[Tial2]

[TK92]

[TLG93]

[TMMZT12]

[UW99]

[VAHT02]

[VGCBS04]

Bibliography

James W Taylor. Short-term Electricity Demand Forecasting
using Double Seasonal Exponential Smoothing. Journal of the
Operational Research Society, 54(8):799-805, 2003. [see page|[]]

Thiyanga S Talagala, Rob] Hyndman, and George Athana-
sopoulos. Meta-Learning How to Forecast Time Series. Tech-
nical report, Monash University, Department of Econometrics
and Business Statistics, 2018. [see page

Zhigang Tian. An Artificial Neural Network Method for Re-
maining Useful Life Prediction of Equipment Subject to Condi-
tion Monitoring. Journal of Intelligent Manufacturing, 23(2):227-
237,2012. [see page[74]

Kar Yan Tam and Melody Y Kiang. Managerial Applications
of Neural Networks: The Case of Bank Failure Predictions.
Management Science, 38(7):926-947,1992. [see page[d]]

Timo Terésvirta, Chien-Fu Lin, and Clive W] Granger. Power
of the Neural Network Linearity Test. Journal of Time Series
Analysis, 14(2):209-220, 1993. [see page[23]]

Diego Alejandro Tobon-Mejia, Kamal Medjaher, Noureddine
Zerhouni, and Gerard Tripot. A data-driven failure prognostics
method based on mixture of gaussians hidden markov mod-
els. IEEE Transactions on reliability, 61(2):491-503, 2012. [see

page[244]

Kai Uchtmann and Rainer Wirth. Maschinendiagnose an
drehzahlverdnderlichen Antrieben mittels Ordnungsanalyse.
Antriebstechnik, 38(5):44-49, 1999. [Available in German only].

[see pages[194]and 202]]

Ricardo Vilalta, Chidanand V Apte, Joseph L Hellerstein, Sheng
Ma, and Sholom M Weiss. Predictive Algorithms in the Manage-
ment of Computer Systems. IBM Systems Journal, 41(3):461-474,

2002. [see page

Ricardo Vilalta, Christophe G Giraud-Carrier, Pavel Brazdil,
and Carlos Soares. Using Meta-learning to Support Data Min-

ing. International Journal of Computer Science & Applications,
1(1):31-45, 2004. [see pages[144] [145] and 299

329

Bibliography

[VHHI16]

[VSI21]

[VSSB13]

[Wal]

[Wel67]

[Wer88]

[Wey17]

[WHZ07]

[Win60]

330

Birgit Vogel-Heuser and Dieter Hess. Guest editorial industry
4.0-prerequisites and visions. IEEE Transactions on Automation
Science and Engineering, 13(2):411-413, 2016. [see page[185]]

Kevin Villalobos, Johan Suykens, and Arantza Illarramendi. A
Flexible Alarm Prediction System for Smart Manufacturing Sce-
narios Following a Forecaster-Analyzer Approach. Journal of
Intelligent Manufacturing, 32(5):1323-1344, 2021. [see page[72]]

Sebastian Vansyckel, Dominik Schéfer, Gregor Schiele, and
Christian Becker. Configuration Management for Proactive
Adaptation in Pervasive Environments. In Proceedings of
the IEEE 7th International Conference on Self-Adaptive and Self-
Organizing Systems, pages 131-140. IEEE, 2013. [see pages
and

Wall Street Journal Custom Studios. How Manufacturers can
Achieve Top Quartile Performance. https://partners.wsj.
com/emerson/unlocking-performance/how-manufacturers-

can-achieve-top-quartile-performance/. Accessed:

2021-07-16. [see page[243]]

Peter Welch. The Use of Fast Fourier Transform for the Esti-
mation of Power Spectra: A Method Based on Time Averaging
Over Short, Modified Periodograms. IEEE Transactions on Audio
and Electroacoustics, 15(2):70-73, 1967. [see page[203]]

Paul] Werbos. Generalization of Backpropagation with Ap-
plication to a Recurrent Gas Market Model. Neural Networks,
1(4):339-356, 1988. [see page [6]]

Danny Weyns. Software Engineering of Self-adaptive Systems:
An Organised Tour and Future Challenges. Chapter in Handbook

of Software Engineering, 2017. [see pages[2|and [141]]

Wei Wu, Jingtao Hu, and Jilong Zhang. Prognostics of Machine
Health Condition using an Improved ARIMA-based Prediction
Method. In 2nd IEEE Conference on Industrial Electronics and
Applications, pages 1062-1067. IEEE, 2007. [see page

Peter R Winters. Forecasting Sales by Exponentially Weighted
Moving Averages. Management science, 6(3):324-342, 1960. [see

page33]

https://partners.wsj.com/emerson/unlocking-performance/how-manufacturers-can-achieve-top-quartile-performance/
https://partners.wsj.com/emerson/unlocking-performance/how-manufacturers-can-achieve-top-quartile-performance/
https://partners.wsj.com/emerson/unlocking-performance/how-manufacturers-can-achieve-top-quartile-performance/

[Wir98]

[WK96]

[WM95]

[WMY7]

[WM18]

[Worl5]

[WPT98]

[WSMHO09]

[WWCLO09]

Bibliography

Rainer Wirth. Maschinendiagnose an Industriegetrieben Teil II:
Signalidentifikation in der Praxis. Antriebstechnik, 37(11):77-81,
1998. [Available in German only]. [see page[203]]

Gerhard Widmer and Miroslav Kubat. Learning in the Pres-
ence of Concept Drift and Hidden Contexts. Machine Learning,
23(1):69-101, 1996. [see page[269]]

David H Wolpert and William G Macready. No Free Lunch
Theorems for Search. Technical report, SFI-TR-95-02-010, The
Santa Fe Institute, 1995. [see page

David H Wolpert and William G Macready. No Free Lunch
Theorems for Optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67-82, 1997. [see pages[]
and

Cheng-Lung Wu and Stephen] Maher. Airline Capacity Plan-
ning and Management. In The Routledge Companion to Air Trans-
port Management, pages 238-258. Routledge, 2018. [see page

World Economic Forum. Industrial Internet of Things: Unleash-
ing the Potential of Connected Products and Services. Technical
report, World Economic Forum, 2015. [see page [244]]

Walter Willinger, Vern Paxson, and Murad S Taqqu. Self-
similarity and Heavy Tails: Structural Modeling of Network
Traffic. A Practical Guide to Heavy Tails: Statistical Techniques and
Applications, 23:27-53, 1998. [see page [23]]

Xiaozhe Wang, Kate Smith-Miles, and Rob] Hyndman. Rule
Induction for Forecasting Method Selection: Meta-learning
the Characteristics of Univariate Time Series. Neurocomputing,
72(10-12):2581-2594, 2009. [see pages
and

Aiping Wang, Guowei Wan, Zhiquan Cheng, and Sikun Li. An
Incremental Extremely Random Forest Classifier for Online
Learning and Tracking. In 16th IEEE International Conference
on Image Processing (ICIP), pages 1449-1452. IEEE, 2009. [see

page[87]]

331

Bibliography

[WZT+18]

[XCCP06]

[XPL21]

[XW09]

[XW16]

[XWL*16]

[XXW+18]

[XZCM20]

332

Yi Wang, Ning Zhang, Yushi Tan, Tao Hong, Daniel S Kirschen,
and Chongging Kang. Combining Probabilistic Load Forecasts.
IEEE Transactions on Smart Grid, 10(4):3664-3674, 2018. [see

page[57]]

Jing-Xin Xie, Chun-Tian Cheng, Kwok-Wing Chau, and Yong-
Zhen Pei. A Hybrid Adaptive Time-delay Neural Network
Model for Multi-step-ahead Prediction of Sunspot Activity.
International Journal of Environment and Pollution, 28(3-4):364—

381, 2006. [see pages[65/and[142]

Yongyong Xiang, Baisong Pan, and Luping Luo. A New Model
Updating Strategy with Physics-based and Data-driven Models.
Structural and Multidisciplinary Optimization, 64:163-176, 2021.

[see page 1]

Xiaoyan Xu and Yu Wang. Financial Failure Prediction us-
ing Efficiency as a Predictor. Expert Systems with Applications,
36(1):366-373, 2009. [see page[]]

Shuliang Xu and Junhong Wang. A Fast Incremental Extreme
Learning Machine Algorithm for Data Streams Classification.
Expert Systems with Applications, 65:332-344, 2016. [see pages|[8§]

and [276]

Chang Xu, Gang Wang, Xiaoguang Liu, Dongdong Guo, and
Tie-Yan Liu. Health Status Assessment and Failure Prediction
for Hard Drives with Recurrent Neural Networks. IEEE Trans-
actions on Computers, 65(11):3502-3508, 2016. [see pages

and 269

Jiang Xiao, Zhuang Xiong, Song Wu, Yusheng Yi, Hai Jin, and
Kan Hu. Disk Failure Prediction in Data Centers via Online
Learning. In Proceedings of the 47th International Conference on
Parallel Processing, pages 1-10. ACM, 2018. [see pages
and

Zhiwei Xue, Yong Zhang, Cheng Cheng, and Guijun Ma. Re-
maining Useful Life Prediction of Lithium-ion Batteries with
Adaptive Unscented Kalman Filter and Optimized Support
Vector Regression. Neurocomputing, 376:95-102, 2020. [see

page[244]

[YDNO8]

[YHL*15]

[YM12]

[ZAG*21]

[ZBH*17]

[ZBL*19]

[Zeil6]

[ZEK21]

Bibliography

Zimin Max Yang, Dragan Djurdjanovic, and Jun Ni. Main-
tenance Scheduling in Manufacturing Systems based on Pre-
dicted Machine Degradation. Journal of Intelligent Manufactur-

ing, 19(1):87-98, 2008. [see page P44
g, 19(1) [see pag

Wenjun Yang, Dianming Hu, Yuliang Liu, Shuhao Wang, and
Tianming Jiang. Hard Drive Failure Prediction using Big Data.
In IEEE 34th Symposium on Reliable Distributed Systems Workshop
(SRDSW), pages 13-18. IEEE, 2015. [see page[269]]

Ming-Yi You and Guang Meng. A Modularized Framework for
Predictive Maintenance Scheduling. Proceedings of the Institution
of Mechanical Engineers, Part O: Journal of Risk and Reliability,
226(4):380-391, 2012. [see page[244]]

Marwin Ziifle, Joachim Agne, Johannes Grohmann, Ibrahim
Dortoluk, and Samuel Kounev. A Predictive Maintenance
Methodology: Predicting the Time-to-Failure of Machines in
Industry 4.0. In Proceedings of the 21st IEEE IES International
Conference on Industrial Informatics (INDIN). IEEE, 2021. (to

appear). [see pagesxxv][245] and [255]]

Marwin Ziifle, André Bauer, Nikolas Herbst, Valentin Curtef,
and Samuel Kounev. Telescope: A Hybrid Forecast Method for
Univariate Time Series. In International Work-Conference on Time

Series Analysis (ITISE), 2017. [see pages [xxviland €]

Marwin Ziifle, André Bauer, Veronika Lesch, Christian
Krupitzer, Nikolas Herbst, Samuel Kounev, and Valentin Curtef.
Autonomic Forecasting Method Selection: Examination and
Ways Ahead. In Proceedings of the 16th IEEE International Con-
ference on Autonomic Computing (ICAC), pages 167-176. IEEE,

2019. [see pages[xxvi}[142] and[161

Zeit Online. Wolfsburger Golf-Produktion steht fiir eine Woche
still. Zeit Online, 2016. https://www.zeit.de/mobilitaet/

2016-08/volkswagen-vw-golf-wolfsburg-produktion-
stillstand. Accessed: 2021-07-16. [see page|I85]]

Marwin Ziifle, Florian Erhard, and Samuel Kounev. Machine
Learning Model Update Strategies for Hard Disk Drive Failure
Prediction. In Proceedings of the 20th International Conference on

333

https://www.zeit.de/mobilitaet/2016-08/volkswagen-vw-golf-wolfsburg-produktion-stillstand
https://www.zeit.de/mobilitaet/2016-08/volkswagen-vw-golf-wolfsburg-produktion-stillstand
https://www.zeit.de/mobilitaet/2016-08/volkswagen-vw-golf-wolfsburg-produktion-stillstand

Bibliography

[ZG15]

[Zha03]

[ZK20]

[ZKE+20]

[ZLJ19]

[ZLZZ15]

[ZML*21]

[ZQZF18]

334

Machine Learning and Applications (ICMLA). IEEE, 2021. (under
review). [see pages[xxv} 270, and 279

Chunhui Zhao and Furong Gao. Online Fault Prognosis with
Relative Deviation Analysis and Vector Autoregressive Mod-
eling. Chemical Engineering Science, 138:531-543, 2015. [see

pagesfBland

Peter G Zhang. Time Series Forecasting using a Hybrid ARIMA
and Neural Network Model. Neurocomputing, 50:159-175, 2003.

[see pages[35|and

Marwin Ziifle and Samuel Kounev. A Framework for Time
Series Preprocessing and History-based Forecasting Method
Recommendation. In Proceedings of the 2020 Federated Conference
on Computer Science and Information Systems, pages 141-144.
IEEE, 2020. [see pages [xxvi}[143] and [161]|

Marwin Ziifle, Christian Krupitzer, Florian Erhard, Johannes
Grohmann, and Samuel Kounev. To Fail or Not to Fail: Predict-
ing Hard Disk Drive Failure Time Windows. In Proceeding of
the International Conference on Measurement, Modelling and Evalu-
ation of Computing Systems, pages 19-36. Springer, 2020. [see

pages xxvil 215 and 225

Rongtao Zhang, Binbin Li, and Bin Jiao. Application of XGBoost
Algorithm in Bearing Fault Diagnosis. In IOP Conference Series:
Materials Science and Engineering, page 072062. IOP Publishing,

2019. [see page [244]]

Xiaoyuan Zhang, Yitao Liang, Jianzhong Zhou, and Yi Zang.
A Novel Bearing Fault Diagnosis Model Integrated Permuta-
tion Entropy, Ensemble Empirical Mode Decomposition and
Optimized SVM. Measurement, 69:164-179, 2015. [see page[244]]

Marwin Ziifle, Felix Moog, Veronika Lesch, Christian Krupitzer,
and Samuel Kounev. A Machine Learning-based Workflow
for Automatic Detection of Anomalies in Machine Tools. ISA
Transactions, 2021. (in press). [see pagesxxv][186] and [199]]

Qi Zhao, Xiaoli Qin, Hongbo Zhao, and Wenquan Feng. A
Novel Prediction Method based on the Support Vector Regres-

[Ziif17]

[Zif20]

[ZWL+13]

[ZXHP18]

[ZXKT05]

[ZXL07]

[ZZC+21]

[ZZH*20]

Bibliography

sion for the Remaining Useful Life of Lithium-ion Batteries.
Microelectronics Reliability, 85:99-108, 2018. [see page [244]]

Marwin Ziifle. Dynamic Hybrid Forecasting for Self-Aware Sys-
tems. Master Thesis, Julius-Maximilians-Universitit Wiirzburg,

2017. [see page

Marwin Ziifle. Towards a Self-Aware Prediction of Critical
States. In Sven Tomforde and Christian Krupitzer, editors,
Organic Computing: Doctoral Dissertation Colloquium 2020, pages
139-155. Kassel University Press GmbH, 2020. [see page

Bingpeng Zhu, Gang Wang, Xiaoguang Liu, Dianming Hu,
Sheng Lin, and Jingwei Ma. Proactive Drive Failure Prediction
for Large Scale Storage Systems. In IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1-5. IEEE,

2013. [see pages[/5|and

Yongzhi Zhang, Rui Xiong, Hongwen He, and Michael G Pecht.
Long Short-term Memory Recurrent Neural Network for Re-
maining Useful Life Prediction of Lithium-ion Batteries. IEEE
Transactions on Vehicular Technology, 67(7):5695-5705, 2018. [see

pages P} B0} and

Xiaodong Zhang, Roger Xu, Chiman Kwan, Steven Y Liang,
Qiulin Xie, and Leonard Haynes. An Integrated Approach to
Bearing Fault Diagnostics and Prognostics. In Proceedings of the
2005 American Control Conference, pages 2750-2755. IEEE, 2005.

[see page

Jie Zhao, Limei Xu, and Lin Liu. Equipment Fault Forecasting
based on ARMA Model. In International Conference on Mecha-
tronics and Automation, pages 3514-3518. IEEE, 2007. [see

page[69]]

Ying Zhang, Baohang Zhou, Xiangrui Cai, Wenya Guo, Xiaoke
Ding, and Xiaojie Yuan. Missing Value Imputation in Multi-
variate Time Series with End-to-end Generative Adversarial
Networks. Information Sciences, 551:67-82, 2021. [see page

Ji Zhang, Ke Zhou, Ping Huang, Xubin He, Ming Xie, Bin
Cheng, Yongguang Ji, and Yinhu Wang. Minority Disk Failure

335

Bibliography

Prediction based on Transfer Learning in Large Data Centers
of Heterogeneous Disk Systems. IEEE Transactions on Parallel
and Distributed Systems, 31(9):2155-2169, 2020. [see page[82]]

336

	Introduction
	Motivation
	Problem Statement and Shortcomings of Existing Approaches
	Research Questions
	Contributions of this Thesis
	System Model for Meta Self-Aware Prediction of Critical Events
	Individual Contributions

	Use Cases for the Proposed System Model
	Univariate Time Series Forecasting with Thresholds
	Critical Event Prediction using Multivariate Monitoring Data

	Thesis Outline

	Fundamentals
	Foundations
	Self-Aware Computing Systems
	Vision of Self-Aware Computing Systems
	LRA-M Loop of Self-Aware Computing Systems

	Time Series Analysis
	Time Series Characteristics
	Seasonality and Cyclicality of Time Series
	Periodograms for Frequency Estimation
	Time Series Decomposition

	Time Series Forecasting
	Naïve Forecasting
	Exponential Smoothing State Space
	Autoregressive Moving Average
	Autoregressive Integrate Moving Average
	Trigonometric, Box-Cox Transformation, ARMA Errors, Trend and Seasonality Model
	Neural Network Autoregression

	Machine Learning Methods
	K-Means Clustering
	Hierarchical Clustering
	Support Vector Machine
	Random Forest
	eXtreme Gradient Boosting

	Deep Learning Models
	Feed-Forward Neural Network
	Recurrent Neural Network

	Evaluation Measures for Forecasting and Classification
	Forecast Error Measures
	Classification Quality Measures

	State-of-the-Art
	Hybrid Time Series Forecasting Methods
	Weighted Forecasting Method Ensembles
	Forecasting Method Recommendation
	Component-based Forecasting

	Critical Event Prediction
	Critical Event Prediction using Time Series Forecasting
	Critical Event Prediction using Multivariate Learning Models
	Update Strategies for Critical Event Prediction Models

	Improving Time Series Forecasting
	Telescope: Remainder Learning for Component-based Forecasting
	Overall Design of Telescope
	Time Series Preprocessing
	Frequency Determination
	Anomaly Detection and Removal
	Trend Tests

	Creation of Categorical Information
	Clustering of Single Periods
	Cluster Label Forecasting

	Decomposition and Component Forecasting
	Time Series Decomposition
	Season and Trend Forecasting

	Remainder Learning and Component Combination
	Summary and Discussion

	Evaluation of Telescope
	Evaluation Design
	Comparing Forecast Accuracy and Time-to-Result
	Detailed Forecasting Comparison
	Average and Variation in Forecast Accuracy
	Achieved Ranks per Forecasting Method

	Application of Telescope for Critical Event Prediction of Virtual Machine Scaling
	Concluding Remarks

	Meta-Learning for Time Series Forecasting Method Recommendation
	Data-based Time Series Forecasting Method Recommendation
	Basics on Rule Learning for Forecasting Method Recommendation
	General Approach of X. Wang et al.
	Binary Classification with Oversampling
	Recommendation-based Ensemble Forecasting

	History-based Time Series Forecasting Method Recommendation
	Preprocessing
	Modeling

	Summary and Discussion

	Evaluation of Meta-Learning for Forecasting Method Recommendation
	Evaluation of the Data-based Forecasting Method Recommendation
	Experimental Setup
	Evaluation of the Approach by X. Wang et al.
	Evaluation of Alternative Approaches
	Threats to Validity
	Summary of Evaluation Findings

	Evaluation of the History-based Forecasting Method Recommendation
	Time Series Preprocessing Steps
	Forecasting Accuracy for the FedCSIS 2020 Challenge
	Share of Forecasting Methods Recommended
	Threats to Validity
	Summary of Evaluation Findings

	Concluding Remarks

	Modeling, Detecting, and Predicting Machine Failures
	Automated End-to-End Workflow for Machine Anomaly Detection
	Data Acquisition
	Design of the End-to-End Machine Part Anomaly Detection Workflow
	Phase Detection
	Machine Learning-based Anomaly Detection Approach

	Summary and Discussion

	Evaluation of the End-to-End Machine Anomaly Detection Workflow
	Experimental Setup
	Accuracy of the Phase Detection Component
	Prediction Quality of the Anomaly Detection Component
	Acoustic Analysis
	Comparison of Machine Learning Methods

	Discussion
	Summary of Evaluation Findings
	Threats to Validity

	Concluding Remarks

	Comparison of Modeling Alternatives for Time-to-Failure Prediction
	Introduction to Hard Disk Drive Monitoring
	Binary Classification for HDD Failure Prediction
	Unmodified
	Enhanced Structure Preserving Oversampling
	Synthetic Minority Oversampling Technique

	Classification of Multiple Failure Levels
	Failure Level Labeling
	Model Learning
	Downscaling to the Binary Classification Case

	Integrating Forecasting into the Feature Generation Step
	Regression for Time-to-Failure Prediction
	Summary and Discussion

	Evaluation of Time-to-Failure Modeling Alternatives
	Evaluation Design
	Binary Failure Prediction
	Failure Level Classification
	Time-to-Failure Regression
	Runtime Comparison
	Feature Forecasting for Failure Prediction
	Summary of Evaluation Findings and Threats to Validity
	Concluding Remarks

	Time-to-Failure Prediction Methodology for Industrial Machines
	Feature Extraction from Raw Sensor Data
	Feature Handling
	Target Class Mapping
	Model Learning
	Prediction Aggregation
	Summary and Discussion

	Evaluation of the Time-to-Failure Prediction Methodology
	Case Study Details
	Macro Results
	Results by Class
	Details on the Best Predictions
	Discussion and Threats to Validity
	Summary of Evaluation Findings
	Threats to Validity

	Concluding Remarks

	On-line Update Strategies for Critical Event Prediction Models
	Hard Disk Drive Failure Prediction
	Data Set Generation
	Time-to-Failure Prediction Window
	Model Learning
	Prediction

	Update Strategies
	Prediction Quality Measures
	Update Triggers

	Summary and Discussion

	Evaluation of Model Update Strategies
	Data Set
	Comparison of Update Strategies
	Comparison of Machine Learning Algorithms
	Discussion
	Summary of Evaluation Findings
	Threats to Validity

	Concluding Remarks

	Conclusions
	Conclusion and Outlook
	Thesis Summary
	Outlook
	Future Work
	Future Application Scenarios

	List of Figures
	List of Tables
	Bibliography

