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Auto-Scaling (AS) of Cloud Infrastructures
 Cloud infrastructure providers have to

face changing requirements

 To guarantee a reliable service, most 
application run with a fixed amount of 
resources
 High energy consumption, if the system is not 

fully utilized
 Bad performance, if unexpected peaks appear

 High quality auto-scalers are required, which
reconfigure the system regarding its load

Introduction Approach Evaluation Summary
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Related Work on Auto-Scaling Methods

Introduction Approach Evaluation Summary

Auto-scalers can be classified into 5 groups [Lorido-Botran14]

Prominent examples are:

 Predictive models from different disciplines are applied mostly in isolation.
 Smart integration of multiple predictive/proactive 

with reactive mechanisms is missing.  
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Challenges of Auto-Scaling
Based on related work,
we identify following challenges:
 Knowledge: models, history
 Awareness of own and system’s 

performance and its boundaries
 Descriptive performance model

 Guide to detect need/demand
 Resource demand estimation

 Proactive planning of actions
 Time series forecasting

 Reliable fallback options
 Reactive cycle as fallback

Introduction Approach Evaluation Summary

A resource demand is the time a unit of work (e.g., request) 
spends obtaining service from a resource (e.g., CPU or hard 

disk) in a system (excluding waiting time). [Spinner15]
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Chameleon Hybrid Auto-Scaler

[Spinner17]

[Herbst13]

Introduction Approach Evaluation Summary
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Chameleon Auto-Scaler: Decision Logic

Introduction Evaluation SummaryApproach

 Simplification: Each service modelled as 
M/M/1/∞ queue

 Input: observed (reactive) and forecast 
(proactive) arrival rate

 Resource demand estimations 
based on monitored utilization, throughput 
and response time, e.g., service demand law

 Target utilization & response time 
 # resources add/remove

 Check “trustworthiness” of proactive scaling 
decisions

 Resolve conflicts in between proactive and 
reactive

 Optimize proactive scaling decisions pairwise
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Chameleon: Example

Introduction Evaluation SummaryApproach
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Assumptions and Limitations
 Forecasting

 2 days of historical data is required
 Monitoring

 Requests per second, response time and utilization are 
gathered by a monitoring infrastructure

 SLO
 Response time of the application

 Use case 
 CPU intensive, request-based applications due to 

resource demand estimation
 Descriptive model

 Can be transformed into a queuing network

Introduction Evaluation SummaryApproach
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Evaluation Setup
 Scaling a Java web application

 Re-implementation of LU worklet from Rating Tool SERTTM2
 LU decomposition of nxn matrix, where n is GET parameter

 3 different Environments
 Private CloudStack
 AWS EC2 IaaS cloud
 Distributed ASCI Supercomputer 4 (DAS-4)

 5 real-world traces
 FIFA, BibSonomy, IBM, Wikipedia, and Retailrocket
 3 days each 3.2 hours  9.6 hours experiment

 More than 400 hours of experiments

Introduction Evaluation SummaryApproach
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Benchmarking
 Evaluation with Bungee experiment controller [Herbst15]
 Perform each scenario with Chameleon
 Perform each scenario with standard reactive auto-scaler
 Perform each scenario with sota auto-scalers

 Hist [Urgaonkar08]  
 Reg [Iqbal11] 
 Adapt [Adhikari12]
 ConPaaS [Pierre12]

 Compare the results with benchmarking metrics
 Individual elasticity metrics
 Aggregate elasticity metrics
 User metrics

Introduction Evaluation SummaryApproach
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Elasticity Metrics
 Accuracy

 Timeshare

 Instability

 AS deviation

 Elasticity speed-up

 Pairwise competition
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Experiment Example: Chameleon on CS, Retailrocket

Introduction Evaluation SummaryApproach
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Experimental Evaluation: CS, Retailrocket
 Setup

Introduction Evaluation SummaryApproach
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Experimental Evaluation: private CS vs. AWS EC2

Introduction Evaluation SummaryApproach
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Result Visualization: Explanation

UnderprovisioningOverprovisioning

SLO violations

Instability
Introduction Evaluation SummaryApproach



16 André Bauer

Chameleon Adapt Hist

Reg Reactive ConPaas
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Summary of all Experiments: Average Metrics

Introduction Evaluation SummaryApproach
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Auto-Scaler Benchmark Competition: Findings
 Chameleon outperforms in the evaluated scenarios 
 Reliable slight over-provisioning, lowest SLO violations
 Coupling of proactive and reactive scaling decisions improves 

the elasticity
 Adapt: closely follows the demand, 

high number of adaptations
 Hist and Reactive: high over-provisioning accuracy
 Reactive: accurate, timely CPU utilization metrics 

required – not always reliable
 ConPaaS and Reg: unstable behavior – often not reliable 

Introduction Evaluation SummaryApproach
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In a Nutshell
 Cloud Infrastructure providers have to face changing requirements

 High quality auto-scaler are required
 Predictive models from different disciplines are applied mostly in isolation
 Smart integration of multiple predictive/proactive with reactive mechanisms is missing

 Design of a hybrid auto-scaler Chameleon

 More than 400 hour evaluation in 3 different environments with 5 real-world 
traces

 Chameleon outperforms other auto-scalers

Introduction Evaluation SummaryApproach
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Experimental Evaluation: CS, Wiki
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Experimental Evaluation: CS, IBM
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Chameleon Components
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Evaluation – Scaling Behavior
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