
Modeling Event-Driven Service-Oriented Systems using
the Palladio Component Model∗

Christoph Rathfelder
FZI Forschungszentrum Informatik

76131 Karlsruhe
Germany

rathfelder@fzi.de

Samuel Kounev
FZI Forschungszentrum Informatik

76131 Karlsruhe
Germany

kounev@fzi.de

ABSTRACT
The use of event-based communication within a Service-
Oriented Architecture promises several benefits including
more loosely-coupled services and better scalability. How-
ever, the loose coupling of services makes it difficult for sys-
tem developers to estimate the behavior and performance of
systems composed of multiple services. Most existing perfor-
mance prediction techniques for systems using event-based
communication require specialized knowledge to build the
necessary prediction models. Furthermore, general purpose
design-oriented performance models for component-based sys-
tems provide limited support for modeling event-based com-
munication. In this paper, we propose an extension of the
Palladio Component Model (PCM) that provides natural
support for modeling event-based communication. We show
how this extension can be exploited to model event-driven
service-oriented systems with the aim to evaluate their per-
formance and scalability.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures—Domain-specific
architectures; C.4 [Computer Systems Organization]:
PERFORMANCE OF SYSTEMS—Modeling techniques; I.6.5
[Computing Methodologies]: SIMULATION AND MOD-
ELING—Model Development

General Terms
Performance

Keywords
Event-driven communication, Performance prediction, Soft-
ware architecture

∗This work was supported by the European Commission
(grant No. FP7-216556)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QUASOSS’09, August 25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-709-7/09/08 ...$10.00.

1. INTRODUCTION
In the enterprise context, business processes are often

driven by real-life events, e.g., arrival of a shipment or re-
ceipt of a new order. The combination of event-based com-
munication and Service-Oriented Architecture (SOA) pro-
vides a good basis for implementing the IT services un-
derlying such business processes [24]. Compared to syn-
chronous request/reply communication, event-based com-
munication among services using a mediating communica-
tion bus promises several benefits [15]. For example, be-
ing asynchronous in nature, it allows a send-and-forget ap-
proach, i.e., a service that sends a message can continue its
execution without waiting for the receiver to acknowledge
the message or react on it. Furthermore, the loose-coupling
of services achieved through the mediating communication
bus enables an easy extension of the system since new ser-
vices have to be connected to the bus only and not to each
individual service they communicate with.

However, the above benefits come along with some new
challenges for system developers and architects [15]. The
event-driven programming model is more complex because
the application logic is distributed among multiple indepen-
dent event handlers and the flow of control during execution
is more difficult to track. On the one hand, the asynchronous
communication might improve the system performance, on
the other hand, the introduction of an intermediary between
message senders and receivers introduces some overhead. It
is difficult to predict the influences of the event-based com-
munication and the underlying message bus on the system
performance especially in the early phases of system develop-
ment when no implementation is available for testing. Per-
formance modeling and prediction techniques, surveyed in
[3] and [5], support the architect in evaluating different de-
sign alternatives. However, most existing performance pre-
diction techniques for systems using event-based communi-
cation require specialized knowledge to build the necessary
prediction models (e.g., [2, 8, 16]). Furthermore, general
purpose design-oriented performance models for component-
based systems provide limited support for modeling event-
based communication.

In this paper, we propose an extension of the Palladio
Component Model (PCM) [6] to support the design-oriented
modeling of event-driven service-oriented systems. PCM
is a design-oriented performance meta-model for modeling
component-based software architectures. It allows to ex-
plicitly capture component context dependencies (e.g., de-
pendencies on the component usage profile and execution
environment) and provides support for a number of differ-



ent performance analysis techniques. The contributions of
this paper are: i) an extension of PCM that provides natural
support for modeling event-based communication, ii) a map-
ping of the introduced model extension to existing model
elements in the current version of PCM and iii) a case study
that demonstrates the application of the proposed modeling
approach in the context of an event-based service-oriented
system. Using an automated model-to-model transforma-
tion from the extended PCM to the original PCM allows to
take advantage of existing analytical and simulative analy-
sis techniques significantly reducing the modeling effort and
complexity.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces PCM, which is the basis of this work. Sec-
tion 3 presents the proposed extension of PCM and the map-
ping to existing model elements. Section 4 demonstrates our
case study. Section 5 presents an overview of related work.
Finally, Section 6 concludes with a brief summary and a
discussion of ongoing and future work.

2. PALLADIO COMPONENT MODEL
The Palladio Component Model (PCM) [6] is a domain-

specific modeling language for modeling component-based
software architectures. It supports automatic transforma-
tion of design-oriented architectural models to analysis-ori-
ented performance models including layered queueing net-
works [18], stochastic process algebras [10] and simulation
models [6, 4]. In PCM, architectural models are parame-
terized over the system usage profile and the execution en-
vironment. This allows to reuse models in different con-
texts for different usage scenarios and execution environ-
ments. Model artifacts are divided among the developer
roles involved in the component-based software engineering
process, i.e., component developers, system architects, sys-
tem deployers and domain experts.

Software components are the core entities of PCM. They
contain an abstract behavioral specification called Resource
Demanding-Service Effect Specification (RD-SEFF) for each
provided component service. RD-SEFFs describe by means
of an annotated control flow graph how component services
use system resources and call external services provided by
other components. Similar to UML activities, RD-SEFFs
consist of different types of actions:

• InternalActions model resource demands and ab-
stract from computations performed inside a compo-
nent. To express the performance-relevant resource
interaction of the modelled computations, an Inter-
nalAction contains a set of ParametricResourceDe-
mands. A ParametricResourceDemand specifies the
amount of processing power requested from a certain
type of resource (e.g., CPU, HDD, or network).

• AquireAction and ReleaseAction are used to ac-
quire and respectively release a semaphore which can
be used for example to model a thread pool. The ca-
pacity of these passive resources can be parameterized.

• ExternalCallActions represent component invoca-
tions of services provided by other components. For
each external service call, component developers can
specify performance-relevant information about the ser-
vice input parameters. External service calls are al-

ways synchronous in PCM, i.e., the execution is blocked
until the call returns.

• SetVariableActions are used to specify the returned
value of a service or other temporary variables inside
RD-SEFFs.

• Loops model the repetitive execution of a set of ac-
tions. The number of loop iterations can depend on
the service input parameters.

• Branches represent “exclusive or” splits of the control
flow, where only one of the alternatives can be taken.
In PCM, the choice can be either probabilistic or it
can be determined by a guard. In the former case,
each alternative has an associated probability deter-
mining the likelihood of its execution. In the latter
case, boolean expressions based on the service input
parameters determine which alternative is executed.

• Forks split the control flow in several parts that are ex-
ecuted in parallel. Usually, forks are asynchronous,i.e.,
the original control flow continues to execute directly
after the parts are forked. However, Synchronisation-
Points can be used to synchronize the forks. In this
case, the original control flow is blocked until all parts
have completed their execution.

In the following, we present a set of extensions of PCM
that provide explicit support for modeling event-based com-
munication. We then show how the newly introduced model
elements can be mapped to existing PCM modeling con-
structs. Using an automated model-to-model transforma-
tion, this enables the reuse of existing performance predic-
tion techniques supported by PCM. Thus, the model exten-
sions significantly reduce the modeling effort and complex-
ity while maintaining backward compatibility with existing
model analysis techniques.

3. MODEL EXTENSIONS
In the current version of PCM, only synchronous call-

return communication between components is supported.
As shown in [11], it is possible to model asynchronous point-
to-point communication using a combination of non-synchro-
nized fork actions and external service calls. However, fol-
lowing this approach asynchronous events are modeled us-
ing synchronous service calls and therefore a semantic gap
between the system implementation and the architecture
model is introduced. Moreover, the modeling effort of this
workaround solution increases dramatically if event-based
communication following the publish-subscribe paradigm is
considered. To reduce this overhead and to eliminate the se-
mantic gap, it is necessary to extend PCM with the follow-
ing elements allowing to model event-based communication
explicitly:

• Events are the central element of event-based com-
munication. In contrast to interfaces which include
method signatures, events only specify the underly-
ing data type. For example an UpdateStockData event
can be defined as a complex data type that includes
a sender ID, a product ID, a timestamp and a num-
ber of elements added to or removed from the stock.
The event data can be considered when modeling the



behavior of a component processing events of a given
type.

• Event Sources specify that a component emits a cer-
tain type of events. For each emitted event type, the
component must provide a respective event source. It
is necessary to extend the RD-SEFF with a new ac-
tion called Event Action allowing to instantiate and
send events. This action is similar to an ExternalSer-
viceCall, however, it does not block waiting for return
values.

• Event Sinks specify that a component receives and
processes certain types of events. In analogy to the
event sources, each consumed event type induces a sep-
arate event sink. Only compatible event sources and
sinks are allowed to be connected. Similar to provided
interfaces which require the specification of RD-SEFFs
for provided services, each event sink requires the spec-
ification of an Event Handler. Event handlers are
modeled similar to ordinary component services using
RD-SEFFs.

In the following, we present a mapping of the introduced
model extensions to existing model elements in the current
version of PCM to enable the reuse of the supported perfor-
mance prediction methods.

Event Sinks are transformed into interfaces provided by
the respective component. Each interface includes a service
OnEvent with the respective event type as input parameter.
The RD-SEFF representing the corresponding event handler
is then associated with this service. Additionally, it is pos-
sible to integrate the marshalling of events as done in [11]
for point-to-point connections.

The transformation of Event Sources and Event Ac-
tions is more complex and requires much more modeling
effort if done manually. First, it is necessary to explicitly
require an interface for each connected event sink, because
PCM supports only 1-to-1 connections between required and
provided interfaces. Second, every event action is substi-
tuted by a fork action with a separate forked RD-SEFF for
each connected event sink. Each RD-SEFF includes an ex-
ternal service call to one of the required OnEvent interfaces
and respective associated service. In the following section,
we present a case study demonstrating these mappings by
modeling a concrete event-driven service-oriented system.

4. CASE STUDY
Figure 1 shows a simplified event-driven service-oriented

system used to track the inventory of a supermarket. When
new products are delivered, they have to pass a gate equipped
with an RFIDScanner. The latter creates an UpdateStock-

Data event for each scanned product. It is possible to com-
bine several scanned products of the same type in one event.
This reduces the amount of events but increases the com-
plexity of the RFIDScanner. UpdateStockData events are
also produced by the CashdeskService. For each product
sold, an UpdateStockData event is created to update the
supermarket inventory.

The events produced by the CashdeskService and the
RFIDScanner are consumed and processed by the three ser-
vices: LoggingService, InventoryManagementService, and
OrderManagementService. The LoggingService persists all

RFID
Scanner

Logging
Service

Inventory
Management
Service

Source
UpdateStockData

Sink
UpdateStockData

Sink
UpdateStockData

Order
Managment
Service

Cashdesk
Service

Source
UpdateStockData

Sink
UpdateStockDataProv. Interface

CreateOrder

Req. Interface
CreateOrder

Figure 1: Example Scenario

Sink
UpdateStockData

Order
Management

Service

Order
Management

Service

Prov. Interface
OnEvent(UpdateStockData)

Figure 2: Transformation of OrderManagementService

events in a local database for 48 hours. The Inventory-

ManagementService updates the supermarket inventory to
reflect the flow of goods in and out of the supermarket.
When goods of a given type are depleted, the Inventory-

ManagementService calls the OrderManagementService to
place an order with the respective supplier. In addition,
the OrderManagementService receives all events sent by the
RFIDScanner in order to register incoming order deliveries.

We now use the mappings defined in Section 3 to model
this event-driven service-oriented system. We concentrate
on the RFIDScanner and the OrderManagementService to
demonstrate the mapping of event sources and sinks. The
other components can be modeled in a similar way. The
event UpdateStockData is realized as a PCM complex data
type with attributes senderID, productID, timestamp and
numberOfItems. numberOfItems is positive if products are
added to the stock and negative if they are sold at the cash
desk. The mapping of the OrderManagementService is illus-
trated in Figure 2. The event sink is substituted by a pro-
vided interface which includes the method OnEvent with an
input parameter of type UpdateStockData. The RD-SEFF
of the event handler can be used without changes for the
respective OnEvent method.

The mapping of the RFIDScanner is more complex and re-
quires some more modeling effort. For each connected event
sink, the respective event interface with its OnEvent method
has to be declared as a required interface of the RFIDScanner
component. As illustrated in Figure 3, the service requires
this interface three times. The behavior of the RFIDScan-

ner is modeled as RD-SEFF. This RD-SEFF includes at
least one EventAction which is responsible to instantiate
and send the UpdateStockData event. Each of this Even-



<<ForkAction>>
SendUpdateEvent

<<ExternalCall>>
Logger.OnEvent

RFIDScanner

Source
UpdateStockData

RFIDScanner

OnEvent
Logger

OnEvent
Inventory OnEvent

Order

<<EventAction>>
SendUpdateEvent

<<Variable
Characterization>>

setData

<<Variable
Characterization>>

setData

<<ExternalCall>>
Inventory.OnEvent

<<Variable
Characterization>>

setData

<<ExternalCall>>
Order.OnEvent

<<Variable
Characterization>>

setData

...

...

...

...

Figure 3: Transformation of RFIDScanner

tAction is substituted by a ForkActions. In this fork ac-
tion, a separate RD-SEFF is created for each required inter-
face corresponding to an event sink connected to RFIDScan-

ner. Thus, the onEvent methods of LoggerService, In-

ventoryManagementService, and OrderManagementService

are invoked in parallel. The instantiation of the event data
object is copied from the EventAction into each External-

Call. Since the ForkAction does not define a synchroniza-
tion point, the execution of the parent RD-SEFF continues
immediately. For this reason, the resulting behavior resem-
bles an asynchronous event dissemination although strictly
speaking the semantic of the model is different.

The example we described demonstrates that the model-
ing effort required to model event-based systems using our
proposed PCM extensions can be reduced significantly espe-
cially when event sources are connected with multiple sinks.
In combination with an automated model-to-model trans-
formation following the described mapping, it is possible to
continue to use the existing performance prediction methods
supported by PCM.

5. RELATED WORK
The work related to the results presented in this paper can

be classified into two areas: i) design-oriented performance
meta-models that can be used for modeling service-oriented
systems and ii) performance analysis techniques specialized
for event-based systems including message-oriented middle-
ware.

Over the last fifteen years a number of approaches have
been proposed for integrating performance prediction tech-
niques into the software engineering process. Efforts were
initiated with Smith’s seminal work pioneered under the
name of Software Performance Engineering (SPE) [26]. Since
then a number of design-oriented performance meta-models
have been developed by the performance engineering com-
munity. The most prominent examples are the UML SPT
profile [22] and its successor the UML MARTE profile [23],
both of which are extensions of UML as the de facto stan-
dard modeling language for software architectures. Other
proposed meta-models include CSM [25], SPE-MM [27] and
KLAPER [9]. Design-oriented performance models are built
manually during system development and are used at design

and deployment time to evaluate alternative system designs
and/or predict the system performance for capacity planning
purposes. A recent survey of model-based performance pre-
diction techniques was published in [3]. In recent years, with
the increasing adoption of component-based software engi-
neering, the performance evaluation community has focused
on adapting and extending conventional SPE techniques to
support component-based systems which are typically used
as foundation for building modern service-oriented systems.
A survey of methods for component-based performance-en-
gineering was published in [5].

We now present an overview of existing performance mod-
eling and analysis techniques for systems based on message-
oriented middleware (MOM). In [14], an analytical model
of the message processing time and throughput of the Web-
SphereMQ JMS server is presented and validated through
measurements. The message throughput in the presence of
filters is studied and it is shown that the message replication
grade and the number of installed filters have a significant
impact on the server throughput. Several similar studies us-
ing Sun Java System MQ, FioranoMQ, ActiveMQ and BEA
WebLogic JMS server were published by the same authors.
A more in-depth analysis of the message waiting time for the
FioranoMQ JMS server was published in [20]. The authors
study the message waiting time based on an M/G/1 − ∞
queue approximation and perform a sensitivity analysis with
respect to the variability of the message replication grade.

A method for modeling MOM systems using performance
completions is presented in [12]. Performance completions
provide a general mechanism for including low-level details
of execution environments into abstract performance mod-
els. The authors propose a pattern-based language for con-
figuring the type of message-based communication. Model-
to-model transformations are used to integrate low-level de-
tails of the MOM system into high-level software architec-
ture models. In [19], an approach to predicting the per-
formance of messaging applications based on the Java En-
terprise Edition is proposed. The prediction is carried out
during application design, without access to the application
implementation. This is achieved by modeling the interac-
tions among messaging components using queueing network
models, calibrating the performance models with architec-
ture attributes, and populating the model parameters using
a lightweight application-independent benchmark.

Several performance modeling techniques specifically tar-
geted at distributed publish/subscribe systems exist in the
literature. In [16], an analytical model of publish/subscribe
systems that use hierarchical identity-based routing is pre-
sented. The model is based on continuous time birth-death
Markov chains. The proposed modeling approach, however,
does not provide means to predict the event delivery la-
tency and it suffers from a number of restrictive assump-
tions. Many of these assumptions are relaxed in [21] where
a generalization of the model is proposed, however, the gen-
eralized model is still limited to systems based on hierar-
chical identity-based routing. In [8], an analytical model of
pub/sub systems based on subscription forwarding is pro-
posed. The authors provide closed form analytical expres-
sions for the overall network traffic required to disseminate
subscriptions and propagate notifications, as well as for the
message forwarding load on individual system nodes. How-
ever, the same restrictive assumptions as in [16] are made
about the system topology and the distribution of publish-



ers and subscribers among brokers. In [17], a methodology
for workload characterization and performance modeling of
distributed event-based systems is presented. A workload
model of a generic system is developed and analytical analy-
sis techniques are used to characterize the system traffic and
to estimate the mean notification delivery latency. For more
accurate performance prediction queueing Petri net models
are used. While this technique is applicable to a wide range
of systems, it relies on monitoring data obtained from the
system and it is therefore only applicable if the system is
available for testing.

In [2], the authors present an attempt to formally model a
publish/subscribe communication system as a classical dis-
tributed computation. The authors formalize the concept
of information availability and model a few properties of
the computation, namely completeness and minimality, that
capture the expected behavior of a publish/subscribe sys-
tem from an application viewpoint. In [1, 28] a computa-
tional model of a publish/subscribe notification service is
proposed, where the latter is abstracted as a black box con-
necting all participants in the computation. While some in-
teresting results are presented, the proposed model is rather
coarse grained and it is based on the assumption that the
subscription and diffusion delays are known which is not re-
alistic to expect. In [7], Bricconi et al. present a simple
model of the Jedi publish/subscribe system. The model is
mainly used to calculate the number of notifications received
by each broker using a uniform distribution of subscrip-
tions. To model the multicast communication, the authors
introduce a spreading coefficient between 0 and 1 which
models the probability that a broker at a given distance
(in hops) from the publishing broker receives a published
notification. Finally, in [13], probabilistic model checking
techniques and stochastic models are used to analyze pub-
lish/subscribe systems. The communication infrastructure
(i.e., the transmission channels and the publish/subscribe
middleware) are modeled by means of probabilistic timed
automata. Application components are modeled by using
statechart diagrams and then translated into probabilistic
timed automata. The analysis considers the probability of
message loss, the average time taken to complete a task and
the optimal message buffer sizes.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed an extension of PCM providing

native support for modeling event-driven service-oriented
systems. Furthermore, we described a mapping of the newly
introduced modeling elements to existing elements in the
current version of PCM. This allows to continue to use ex-
isting performance prediction techniques supported in PCM.
We presented a case study demonstrating the application of
the proposed modeling approach in the context of an event-
based service-oriented system.

The proposed extensions of PCM allow a semantically
correct modeling of event-driven systems. In combination
with an automatic model-to-model transformation based on
the proposed mapping, our approach significantly reduces
the effort to build and analyze models of systems that use
event-based communication. The automation of the trans-
formation is part of our current work. Furthermore, we plan
to introduce some further constructs in PCM to support the
modeling of an event bus.

As part of our future work, we intend to study the per-

formance-relevant influence factors associated with event-
based communication in service-oriented systems. As a first
step, we intend to focus on the influence of persistent vs.
non-persistent message delivery, the number of event con-
sumers, and the event filtering mechanisms. Based on the
results, we plan to extend the models and respective trans-
formations to consider these factors in order to increase the
prediction accuracy.

7. REFERENCES
[1] R. Baldoni, R. Beraldi, S. T. Piergiovanni, and

A. Virgillito. On the modelling of publish/subscribe
communication systems. Concurrency and
Computation: Practice and Experience,
17(12):1471–1495, 2005.

[2] R. Baldoni, M. Contenti, S. Piergiovanni, and
A. Virgillito. Modeling publish/subscribe
communication systems: towards a formal approach.
pages 304–311, Jan. 2003.

[3] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-Based Performance Prediction in
Software Development: A Survey. IEEE Transactions
on Software Engineering, 30(5):295–310, May 2004.

[4] S. Becker. Coupled Model Transformations for QoS
Enabled Component-Based Software Design, volume 1
of Karlsruhe Series on Software Quality.
Universitätsverlag Karlsruhe, 2008.

[5] S. Becker, L. Grunske, R. Mirandola, and
S. Overhage. Performance Prediction of
Component-Based Systems: A Survey from an
Engineering Perspective. In R. Reussner, J. Stafford,
and C. Szyperski, editors, Architecting Systems with
Trustworthy Components, volume 3938 of Lecture
Notes in Computer Science, pages 169–192.
Springer-Verlag Berlin Heidelberg, 2006.

[6] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82:3–22,
2009.

[7] G. Bricconi, E. D. Nitto, and E. Tracanella. Issues in
analyzing the behavior of event dispatching systems.
In Proc. of 10th Intl. Workshop on Software
Specification and Design, pages 95–103, 2000.

[8] S. Castelli, P. Costa, and G. P. Picco. Modeling the
communication costs of content-based routing: the
case of subscription forwarding. In DEBS ’07:
Proceedings of the 2007 inaugural international
conference on Distributed event-based systems, pages
38–49, New York, NY, USA, 2007. ACM.

[9] V. Grassi, R. Mirandola, and A. Sabetta. Filling the
gap between design and performance/reliability
models of component-based systems: A model-driven
approach. Journal of Systems and Software,
80(4):528–558, April 2007.

[10] J. Happe. Concurrency Modelling for Performance
and Reliability Prediction of Component-Based
Software Architectures. PhD Thesis, University of
Oldenburg, Germany, 2008.

[11] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and
R. H. Reussner. Parametric Performance Completions
for Model-Driven Performance Prediction.
Performance Evaluation, 2009. To appear.



[12] J. Happe, H. Friedrich, S. Becker, and R. H. Reussner.
A pattern-based Performance Completion for
Message-oriented Middleware. In Proc. of the 7th
International Workshop on Software and
Performance, pages 165–176. ACM, 2008.

[13] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. Formal
analysis of publish-subscribe systems by probabilistic
timed automata. In 27th IFIP WG 6.1 Intl. Conf. on
Formal Techniques for Networked and Distributed
Systems, volume 4574 of LNCS, pages 247–262, 2007.

[14] R. Henjes, M. Menth, and C. Zepfel. Throughput
Performance of Java Messaging Services Using
WebsphereMQ. In ICDCSW ’06: Proceedings of the
26th IEEE International ConferenceWorkshops on
Distributed Computing Systems, Washington, DC,
USA, 2006. IEEE Computer Society.

[15] G. Hohpe and B. Woolf. Enterprise integration
patterns. Addison-Wesley, 2008.

[16] M. A. Jaeger and G. Mühl. Stochastic Analysis and
Comparison of Self-Stabilizing Routing Algorithms for
Publish/Subscribe Systems. In Proc. of the 13th IEEE
Intl. Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS’05), 2005.

[17] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. A
methodology for performance modeling of distributed
event-based systems. In Proc. of the 11th IEEE Intl.
Symposium on Object/Component/Service-oriented
Real-time Distributed Computing, May 2008.

[18] H. Koziolek and R. Reussner. A Model
Transformation from the Palladio Component Model
to Layered Queueing Networks. In Performance
Evaluation: Metrics, Models and Benchmarks, SIPEW
2008, 2008.

[19] Y. Liu and I. Gorton. Performance Prediction of J2EE
Applications Using Messaging Protocols. pages 1–16.
2005.

[20] M. Menth and R. Henjes. Analysis of the Message
Waiting Time for the FioranoMQ JMS Server. In
ICDCS ’06: Proceedings of the 26th IEEE
International Conference on Distributed Computing
Systems, Washington, DC, USA, 2006. IEEE
Computer Society.

[21] G. Mühl, A. Schröter, H. Parzyjegla, S. Kounev, and
J. Richling. Stochastic Analysis of Hierarchical
Publish/Subscribe Systems. In Proceedings of the 15th
International European Conference on Parallel and
Distributed Computing (Euro-Par 2009), 2009.

[22] Object Management Group (OMG). UML Profile for
Schedulability, Performance, and Time (SPT), v1.1,
Jan. 2005.

[23] Object Management Group (OMG). UML Profile for
Modeling and Analysis of Real-Time and Embedded
systems (MARTE), May 2006.

[24] M. Papazoglou and W.-J. van den Heuvel. Service
oriented architectures: approaches, technologies and
research issues. The VLDB Journal, 16(3):389–415,
July 2007.

[25] D. Petriu and M. Woodside. An intermediate
metamodel with scenarios and resources for generating
performance models from UML designs. Software and
Systems Modeling, 6(2):163–184, June 2007.

[26] C. U. Smith. Performance Engineering of Software
Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1990.

[27] C. U. Smith, C. M. Lladó, V. Cortellessa,
A. Di Marco, and L. G. Williams. From UML models
to software performance results: an SPE process based
on XML interchange formats. In 5th Intl. Workshop
on Software and Performance (WOSP), pages 87–98,
2005.

[28] A. Virgillito. Publish/Subscribe Communication
Systems: From Models to Applications. PhD thesis,
Universita La Sapienza, 2003.


