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ABSTRACT

In many areas of decision making, forecasting is an essential pil-

lar. Consequently, there are many different forecasting methods.

According to the “No-Free-Lunch Theorem”, there is no single

forecasting method that performs best for all time series. In other

words, each method has its advantages and disadvantages depend-

ing on the specific use case. Therefore, the choice of the forecasting

method remains a mandatory expert task. However, expert knowl-

edge cannot be fully automated. To establish a level playing field

for evaluating the performance of time series forecasting meth-

ods in a broad setting, we propose Libra, a forecasting benchmark

that automatically evaluates and ranks forecasting methods based

on their performance in a diverse set of evaluation scenarios. The

benchmark comprises four different use cases, each covering 100

heterogeneous time series taken from different domains. The data

set was assembled from publicly available time series and was de-

signed to exhibit much higher diversity than existing forecasting

competitions. Based on this benchmark, we perform a comprehen-

sive evaluation to compare different existing time series forecasting

methods.
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1 INTRODUCTION

Time series forecasting is an essential pillar in many decision-

making disciplines [18]. Accordingly, time series forecasting is also

an established as active field of research and different methods have

been proposed. Thus, the question arises if there is a single method
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that forecasts best for all time series. The “No-Free-Lunch Theo-

rem” [35], initially formulated for optimization problems, denies

the possibility of such a method. It states that improving one aspect

typically leads to a degradation in performance for some other

aspect. In other words, forecasting methods have their advantages

and drawbacks depending on the considered time series.

Besides consulting an expert, the selection of the most appro-

priate approach can be guided by reviewing experimental results

performed in either established benchmarks or scientific papers.

By benchmark, we refer to an instrument used to evaluate and/or

compare systems or methods based on certain properties [34]. More-

over, we consider benchmarks as a key instrument for improve-

ment and competition. In the context of time series forecasting,

the key concerns are the forecast accuracy and the time-to-result.

Although there are forecasting competitions that can be consid-

ered as benchmarks, like the well-known M-Competitions1, these

are barely applied in scientific works [5]. More precisely, a recent

survey found that publications on time series forecasting typically

consider only a small set of (mostly related) methods and evaluate

their performance on a small number of time series with only a

few error measures while providing no information on the time-

to-result of the different methods [5]. In other words, the quality

of the evaluations suffers due to this methodology and, therefore,

fails to guide the choice of an appropriate method for a particular

use case.

To approach the problem of limited comparability between exist-

ing forecasting methods, we pose ourselves the following research

questions:

RQ 1: How to automatically compare different forecastingmeth-

ods on a level playing field?

RQ 2: To what extent does the underlying data set differ from

existing data sets?

Towards addressing the research questions, we propose Libra—a

forecasting benchmark—that automatically evaluates and ranks

forecasting methods based on their performance in a diverse set

of evaluation scenarios. The benchmark comprises four different

use cases, each covering 100 heterogeneous time series taken from

different domains. The data set was assembled from publicly avail-

able time series and exhibits much higher diversity than existing

forecasting competitions.

The contributions of this paper comprise answering the two

research questions addressed above and publishing the available

source code of Libra on GitHub2, as well as the acquired data set

on Zenodo3. In addition, we provide a reproducible CodeOcean

capsule4 containing an example run for demonstration.

1M-Competitions: https://mofc.unic.ac.cy/history-of-competitions/
2GitHub: https://github.com/DescartesResearch/ForecastBenchmark
3Zenodo: http://doi.org/10.5281/zenodo.4399959
4CodeOcean: https://doi.org/10.24433/CO.3240518.v1



The rest of the paper is structured as follows: We first introduce

terms as well as definitions for understanding this paper and re-

view related work in Section 2. Then, we face RQ 1 and present

Libra in Section 3. In Section 4, we address RQ 2 and compare

the proposed data set with existing forecasting competitions. In

Section 5, we benchmark existing forecasting methods with Libra

before concluding this paper.

2 BACKGROUND

In this section, we briefly present the basic terms and definitions

related to time series and time series forecasting in Section 2.1 and

Section 2.2, respectively. In Section 2.3, we outline how to asses the

accuracy of a forecast. Finally, we present the state-of-the-art on

forecasting competitions in Section 2.4.

2.1 Time Series

A univariate time series is an ordered collection of values of a quan-

tity obtained over a specific period or since a certain point in time.

In general, observations are recorded in successive and equidistant

time steps (e.g., hours). Mathematically, if 𝑦𝑡 ∈ R is the observed

value at time 𝑡 and 𝑇 a discrete set of equidistant time points, a

univariate time series is defined by

𝑌 := {𝑦𝑡 : 𝑡 ∈ 𝑇 } . (1)

Correlated or dependent observations can be stored together to

form a multivariate time series. That is, there are multiple observed

values for each point in time. Not to narrow the spectrum of meth-

ods and to cover classical frameworks, we focus on univariate time

series.

A time series can also be seen as a composition of trend, seasonal,

cycle, and irregular components [18]. The long-term development

in a time series (i.e., upwards, downwards, or stagnate) is called

trend. The presence of recurring patterns within a regular period

in the time series is called seasonality, whereas the length of the

seasonal pattern is called frequency. Rises and falls within a time

series without a fixed frequency are called cycles. The remaining

part of the time series that is not described by trend, seasonality, or

cycles is called the irregular component. Note that there are time

series where some components are absent.

2.2 Time Series Forecasting

Based on the underlying statistical properties of the time series,

mathematical models can be developed for providing a plausible

description of the observed data. These mathematical models are

integrated into forecasting methods and can then be used to esti-

mate the future development of the time series. Hence, a forecast

of the time series can be conducted based on the historical data.

More formally, we define the forecast for the time 𝑛 + 𝑘 based on

the historical observations 𝑦1, . . . , 𝑦𝑛 as

𝑦𝑛+𝑘 |𝑛 := 𝑓 (𝑦𝑛, . . . , 𝑦1, 𝑘) (2)

with 𝑛 and 𝑘 being positive integers and 𝑓 being the forecast-

ing method capturing the time series model. While performing

the forecast, it can be distinguished between one-step-ahead and

multi-step-ahead forecasting. As the name indicates, when per-

forming a one-step-ahead forecast, only the next value 𝑦𝑛+1 |𝑛 is

forecast, i.e., 𝑘 = 1. In terms of a multi-step-ahead forecast, the val-

ues 𝑦𝑛+1 |𝑛, . . . , 𝑦𝑛+ℎ |𝑛 are forecast, where ℎ is the forecast horizon

and represents the number of values that are forecast based on the

historical data. In other words, the ℎ values are forecast at once

without updating the model with new data.

2.3 Assessing Forecast Accuracy

In principle, a forecast can either be evaluated a-priori or a-posteriori.

In the case of an a-posteriori evaluation, the forecast’s accuracy

can only be quantified once the future values are available because

the data is usually absent at the time of the forecast. In contrast, in

an a-priori evaluation, the forecasting method is assessed before

the actual forecast is carried out. For this reason, an estimator is

required for the forecast accuracy. The straightforward solution

is to use the error of the model fitting as an indicator for the fore-

cast accuracy. However, this approach is unreliable, e.g., due to

overfitting. Consequently, a more common practice is to split the

time series into a training set and test set [18]. The training set is

used to estimate the parameters of a forecasting method to fit the

model to the data. Based on this model, a forecast is performed and

then compared against the test set. Since the test data are not used

for model fitting, this practice should provide a reliable indicator.

Typically, the first 80% of a time series is used as the training set

and the remaining 20% is used for evaluation, i.e., as the test set.

According to R. Hyndman and G. Athanasopoulos [18], there are

three types of error measures: (i) Scale-dependent error measures, (ii)

percentage error measures, and (iii) scaled error measures. A detailed

distinction between different error measures and corresponding

discussions can be found in the works of M. Shcherbakov et al. [32],

R. Adhikari and R. Agrawal [1], or R. Hyndman and A. Koehler [19].

2.4 Related Forecasting Competitions

In the last decades, several papers have been published in which

forecasting methods have been evaluated either on a small or large

scale. However, based on our former review [5], we found that

most of the articles reviewed consider only a small set of (mostly

related) methods and evaluate their performance on a small number

of time series with only a few error measures while providing no

information on the execution time of the different methods. To this

end, we focus in this work on benchmarking forecasting methods

in large scale. More precisely, we review forecasting competitions.

Moreover, we restrict the scope on competitions involving multiple

participants.

One of the best-known forecasting competition series is the

Makridakis competitions or also known as M-Competitions. Before

the first M-Competition was launched in 1982, S. Makridakis and

M. Hibon [27] assembled 111 time series and compared different

methods. Then, in the first M-Competition [25], S. Makridakis et al.

compared forecasting methods on 1001 time series. In contrast to

its predecessor, the second M-Competition [26] considered only 26

time series. However, this competition lasted almost four years, as

participants, starting in 1987, received real-time data and feedback

on their submitted forecasts as new data became available. The final

forecast was then submitted in the last year. To extend and replicate

the former M-Competitions, S. Makridakis and M. Hibon ran their

third competition in 1998. The M3-Competition [28] contained 3003



time series. To show the potential of neural networks in terms of

forecasting, S. Crone et al. [9] used 111 time series from the M3-

Competition. A few years later, the Tourism competition was held in

2010 and contained 1311 time series [4]. To raise the importance of

energy forecasting and have a sound benchmark, the Global Energy

Forecasting Competition comprising 28 time series was first held

in 2012 [15]. Two years later, the second Global Energy Forecasting

Competition was held [16]. In contrast to the first edition, this

competition comprised 15 time series while the data was updated

monthly in a rolling manner. The last published competition is the

M4-Competition [29]. S. Makridakis et al. provided 100,000 time

series.

The existing data sets are designed for a specific use case, are very

homogeneous, or are based on certain assumptions. For instance,

most time series from the M3-Competition have a length of less

than 100 data points, or the time series from M4-Competition have

short frequencies. Consequently, both competitions cannot be used

when evaluating forecasting methods for time series with high

frequencies.

3 THE LIBRA FORECASTING BENCHMARK

In this section, we start with the design overview of Libra. Then,

we introduce the time series data set in Section 3.2. Afterwards,

we explain the evaluation types of the benchmark in Section 3.3.

Finally, we highlight the applied performance measures.

3.1 Design Overview and Use Cases

To establish a level playing field for evaluating the performance of

forecasting methods in a broad setting, we propose Libra, a forecast-

ing benchmark that automatically evaluates and ranks forecasting

methods based on their performance in a diverse set of evaluation

scenarios. Figure 1 illustrates the workflow of Libra. First, the user

implements the forecasting method. Then, the forecasting method

is deployed within the benchmark. Afterward, the user specifies

for which use case the deployed forecasting method should be eval-

uated. More precisely, the benchmark comprises four different use

cases (see Section 3.2), each covering 100 heterogeneous time series

taken from different domains. Moreover, the user has to select the

evaluation type (see Section 3.3).

For each time series within the domain, the benchmark splits

the time series into a training and test time series. The split de-

pends on the evaluation type. Then, the training time series and

the forecast horizon are passed to the forecasting method. Based

on this input, the forecasting method performs a forecast and sub-

mits it to the benchmark. Based on the forecast and the test time

series, the benchmark calculates different forecast error measures

(see Section 3.4) and records the time-to-result of the forecasting

method. After each time series is forecast, the benchmark creates

a report that contains a detailed overview and ranking compared

to the state-of-the-art methods. The overview shows the average

and the standard deviation of the collected measures. The state-of-

the-art methods in competition comprise ETS [20], GPyTorch [14],

NNetar [17], random forest [7], sARIMA [6], sNaïve, SVR [11],

TBATS [23], Theta [3], and XGBoost [8]. For details on the methods

see Section 5.1. Note that the results (i.e., forecast error measures

Send benchmarking report

Select use case
and evaluation type

Implement
forecasting method

Forecast time series

Deploy forecasting method

Send time series

Send time series

Calculate measures

Prepare report

Forecasting
method Libra

for each time series

Figure 1: Sequence diagram for the usage of Libra.

and normalized time-to-result) of these methods were conducted

beforehand and saved within the benchmark.

3.2 Time Series Data Set

Numerous data sets are available online: The M-Competitions (such

as M35 or M46), the website Kaggle7, R packages, and many more.

Usually, the data sets are designed for a specific use case, are very

homogeneous, or are based on certain assumptions. For instance,

the M3-Competition contains 3,003 time series from different do-

mains. However, most time series have a high degree of similarity

and a length of less than 100 data points. Although, for instance, the

M4-Competition comprises 100,000 time series, these time series

are also quite similar and have low frequencies (1, 4, 12, and 24).

A detailed analysis of the M-Competitions and other forecasting

competitions can be found in Section 4.

In general, many domains have time series with more data points

and/or higher frequencies than covered by the M-Competitions.

For example, the popular FIFA’98 trace [2] has a frequency of 96, or

in some self-aware systems, data are sampled each second leading

to a frequency of 3600. That is, both competitions are not suitable

for benchmarking forecasting methods for such domains. In other

words, the currently available time series competitions are not ex-

haustive enough as they focus on only a few domains. Furthermore,

it is hard to compare forecasting methods if they have been evalu-

ated in different domains. Accordingly, a data set is required that

5M3 competition: https://forecasters.org/resources/time-series-data/m3-competition/
6M4 competition: https://www.mcompetitions.unic.ac.cy/the-dataset/
7Kaggle: https://www.kaggle.com/



covers a wide range of domains with different characteristics for

generalizable forecasting results and enhancing the comparability

between forecasting methods.

7%
12%

45%

10%

9%

9%
8%

M3 Competition
Public vail ata ets

M4 Competition
R

Authorities
Other ompetitions
Universities

Origin of Time Series

Figure 2: Time series origins used in the Libra benchmark.

Consequently, we assembled a highly diverse data set comprising

400 real-world time series8 to enable a comprehensive and realistic

evaluation. The time series are publicly available and originate from

50 different sources, including also time series fromM3 and M4. Fig-

ure 2 shows the distribution of origins of the time series, which we

combined into different groups for the sake of clarity. The groups

are authorities from different countries, the M3-Competition, the

M4-Competition, other competitions (e.g., Kaggle), various uni-

versities, R packages, and other publicly available data sets (not

assignable to the other groups).

During the configuration of the benchmarking process, the user

has to specify the use case and the evaluation type (see Section 3.1).

More precisely, the user can choose between four different use

cases, namely

(1) Economics (gas, sales, unemployment, . . . ),

(2) Finance (stocks, sales prices, exchange rate, . . . ),

(3) Human access (calls, SMS, Internet, . . . ), and

(4) Nature and demographics (rain, birth, death, . . . ).

Therefore, the data set is split into four domains, each covering

100 time series. The length and frequency distributions of the use

cases are shown as cumulative distribution functions in Figure 3

and Figure 4. In addition, Figure 5 shows how the time series length

and frequency are related in each use case. Note that the horizontal

axes in the figures are depicted in log-scale and each x-axis shows

different ranges for better readability.

3.3 Applied Evaluation Types

To quantify the forecast accuracy of a forecasting method, three

different evaluation types are implemented in Libra: (i) One-step-

ahead forecasts, (ii) multi-step-ahead forecasts, and (iii) rolling origin

forecasts. For the first type, the forecasting method receives all

values of the time series except the last one, which must be forecast.

To evaluate forecast based on more values, the second type splits

the time series in 80% training and 20% test. In other words, the

8The time series are available at Zenodo: http://doi.org/10.5281/zenodo.4399959.
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Figure 3: Distribution of the time series lengths in each use

case.
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Figure 4: Distribution of the time series frequencies in each

use case.

forecast method has to forecast 20% of the time series at once.

However, the first evaluation types perform an “arbitrary” split,

resulting in forecasts that are sensitive to occurrences that may

only occur in that particular split. To stabilize the assessment of

forecasting methods, the third evaluation type is based on rolling

origin [18]. The evaluation based on rolling origin is the time series

equivalent of cross-validation from the field of machine learning.

The term origin refers in this context to the training set of the time

series, which is successively enlarged. In other words, this technique

allows obtaining multiple forecasts, each on the increasing training

set of a single time series. Typically, the origin is increased by 1,

leading to many forecasts for long time series. Consequently, Libra

offers a modified version of this rolling origin approach.
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Figure 6: Concept of rolling origin forecast in Libra.

The core idea of the modified rolling origin is illustrated in

Figure 6. The blue squares represent observations from the training

set, the green squares observations from the test set, and the white

squares the remaining observations from the time series. With

every iteration except the last one, the training set is increased by a

fixed number of observations. In the last iteration, the training set is

enlarged so that both sets together cover the entire time series. More

specifically, the starting point is set either to 40% of the time series

or at two times the frequency of the time series plus 1, depending

on which is greater. Note that the frequencies are already known.

As the horizon is 20% of the time series length, the endpoint is set to

80% of the time series. Then, the range between the starting point

and endpoint is divided into 100 parts of equal size. As the length

of each split may not be an integer, the length is rounded up and

the resulting integer is referred to as step. That is, the end indices

of the origin (i.e., training data) begin with the starting point and

are successively increased by the step to the endpoint. Therefore,

the end indices contain 𝑞 + 1 but a maximum of 101 points, where

𝑠𝑡𝑒𝑝 = �𝑟/100� and 𝑞 = �𝑟/𝑠𝑡𝑒𝑝�. Mathematically, the end indices

include the following points

{𝑦𝑒𝑛𝑑 } ∪
⋃

𝑖=0,...,𝑞

{
𝑦𝑠𝑡𝑎𝑟𝑡+𝑖 ·𝑠𝑡𝑒𝑝

}
, (3)

where 𝑦𝑡 is the observation of the time series at time 𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡 the
starting point, and 𝑦𝑒𝑛𝑑 the endpoint. For each iteration, the fore-

casting method performs a multi-step-ahead forecast (i.e., the next

20% of the time series) based on the current training set (starting

with the first observation of the time series and ends with the cur-

rent end index). Finally, the calculated measures per forecast are

averaged.

3.4 Applied Performance Measures

For the assessment of the forecasting method, our benchmark uses

forecast error measures and the time-to-result of the forecasting

method. For the benchmarking report, the average and standard

deviation of each measure is output. Since the time depends on the

underlying operating system and hardware, each time series is fore-

cast by the deployed forecasting method and also by sNaïve9. Then,

the time-to-result of the deployedmethod is normalized by the refer-

ence time of the sNaïve forecast to have comparable time-to-result

measures. Note that the time-to-result for a time series reflects

the duration in which the forecasting method receives the time

series, estimates the parameters, creates the model, and performs

the forecast. In general, it is impossible to prove the correctness of

a measure; instead, it is a joint agreement on how to quantify the

given property. To counter the weaknesses of a specific error mea-

sure, it is advantageous to takemore than one of thesemeasures into

account when evaluating forecasts. Since different measures allow

different insights and thus, a better understanding of the forecast

can be obtained. Consequently, the forecasting benchmark imple-

ments six forecast error measures. Based on a recent survey [5] and

in order to use common measures, the benchmark incorporates the

symmetrical mean absolute percentage error [24] (sMAPE) 𝑒sM and

the mean absolute scaled error [19] (MASE) 𝑒MA. Both measures

are independent of the scale and can be used across different time

series. In order to give useful insights into the forecasting method

(e.g., tendency to under- or over-estimation the data), the bench-

mark also considers the mean wrong-estimation shares [5] 𝜌 and

the mean wrong-accuracy shares [5] 𝛿 . We choose those measures

as all of them come with a deterministic mathematical expression,

are simplistic as they can be described each in a compact sentence

or formula, and are either unit-less (or have the unit of the time

series) or a normalized ratio (percentage) with the values lying in

the interval [0;∞), where 0 is the optimal value. Formally, the error

measures can be calculated as

𝑒sM :=
200%

𝑘

𝑘∑
𝑡=1

|𝑦𝑡 − 𝑦𝑡 |

|𝑦𝑡 + 𝑦𝑡 |
, (4)

𝑒MA :=
1
𝑘

∑𝑘
𝑡=1 |𝑦𝑡 − 𝑦𝑡 |

1
𝑛−𝑚

∑𝑛
𝑖=𝑚+1 |ℎ𝑖 − ℎ𝑖−𝑚 |

, (5)

𝜌𝑈 :=
1

𝑘
·

𝑘∑
𝑡=1

𝑚𝑎𝑥 (𝑠𝑔𝑛(𝑦𝑡 − 𝑦𝑡 ), 0), (6)

𝜌𝑂 :=
1

𝑘
·

𝑘∑
𝑡=1

𝑚𝑎𝑥 (𝑠𝑔𝑛(𝑦𝑡 − 𝑦𝑡 ), 0), (7)

9The sNaïve forecast repeats past observations so that each forecast value is equal to
the corresponding observation from the last seasonal period.



𝛿𝑈 :=

{
1

𝑘 ·𝜌𝑈
·
∑𝑘
𝑡=1

𝑚𝑎𝑥 (𝑦𝑡−𝑦𝑡 ,0)
|𝑦𝑡 |

, 𝜌𝑈 > 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(8)

𝛿𝑂 :=

{
1

𝑘 ·𝜌𝑂
·
∑𝑘
𝑡=1

𝑚𝑎𝑥 (𝑦𝑡−𝑦𝑡 ,0)
|𝑦𝑡 |

, 𝜌𝑂 > 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(9)

where 𝑘 is the forecast horizon, 𝑦𝑡 the actual value at time 𝑡 , 𝑦𝑡
the forecast value at time 𝑡 ,𝑚 the length of the period (𝑚 = 1 for

non-seasonal time series), 𝑛 the length of the history, and ℎ𝑖 the
historical values at time 𝑖 .

4 COMPARISONWITH OTHER

FORECASTING COMPETITIONS

In this section, we start with the description of the comparison of

Libra with prominent forecasting competitions. Then, we compare

Libras data set against the data sets from the forecasting compe-

titions regarding their time series characteristics in Section 4.2.

Finally, we investigate the similarity of the data sets.

4.1 Comparison Setup

During the last decades, some forecasting competitions have been

established (e.g., theM-Competitions). To anwser RQ 2, i.e., showing

that the assembled data set of Libra exhibits a high heterogeneity,

we compare Libra set with prominent forecasting competitions.

More precisely, we compare our assembled data set with publicly

available competitions, namely M1 [25], M3 [28], M4 [29], NN3 [9],

NN510, NNGC111, and Tourism [4]. To investigate a time series, one

can either examine the observations or the time series characteris-

tics describing the time series. The next two sections investigates

the latter to compare our data sets. More precisely, we examine

the distribution of the frequencies, the lengths, and 25 time series

characteristics, which were proposed by R. Hyndman et al. [21],

Y. Kang et al. [22], and B. Fulcher et al. [13].

4.2 Time Series Characteristics

First, we investigate the frequency distribution of the individual

data sets shown in Table 1. The competitions M1, M3, M4, NN3,

and Tourism comprise only time series with a low frequency. That

is, the frequencies range between 1 to 24. More precisely, the M1,

M3, and Tourism competitions support only the frequencies 1, 4,

and 12, while the M4-Competition additionally supports the fre-

quency of 24. The NN3 and NN5 competitions both support only

a single frequency, while the NNGC1 competition supports only

the frequencies 365 and 7,305. In contrast, our data set supports 37

different frequencies starting from 1 to 4,368.

Table 1: Frequency distribution within each data set.

Frequency Libra M1 M3 M4 NN3 NN5 NNGC1 Tourism

Min. 1 1 1 1 12 365 365 1

1st Qu. 7 4 1 1 12 365 365 1

Median 12 12 4 4 12 365 7,305 4

3rd Qu. 168 12 12 12 12 365 7,305 12

Max. 4,368 12 12 24 12 365 7,305 12

10NN5 competition: http://www.neural-forecasting-competition.com/NN5/
11NNGC1 competition: http://www.neural-forecasting-competition.com/

Next, we investigate the length distribution as shown in Table 2.

For instance, the time series from the NN5 competition all have

the same length, with 791 observations. The median length of the

time series within the M1, M3, NN3, and Tourism competitions

is less than or equal to 134. In contrast, the median length of our

time series is 570. While examining the interquartile range, our

data set has a range of about 3,000 observations, while the other

data sets have less than 300 observations. Furthermore, our data

set also contains the longest time series with 372,864 observations.

In comparison, the longest time series from the M4-Competition,

which has the longest time series among the other competitions,

comprises only 9,993 observations. To sum up, our data set shows

the highest diversity in terms of the time series’ lengths.

Table 2: Length distribution within each data set.

Length Libra M1 M3 M4 NN3 NN5 NNGC1 Tourism

Min. 20 15 20 19 68 791 502 11

1st Qu. 169 44 44 56 69 791 747 27

Median 570 68 69 106 134 791 902 110

3rd Qu. 2,074 85 133 252 144 791 1,026 199

Max. 372,864 150 144 9,933 144 791 1,742 333

Besides the lengths and frequencies distribution, we investigate

time series characteristics (e.g., C1: spectral entropy of the time

series [30], C10: first auto-correlation coefficient of the time series,

or C16: non-linearity of the time series [33]) proposed by different

scientific works [13, 21, 22]. The description of the time series char-

acteristics and the calculated characteristics of our data set as well

as each forecasting competition can be found at Zenodo12. For the

investigation, we apply min-max scaling to all time series character-

istics, taking all time series of all considered data sets into account.

This means that for each time series characteristic, the minimum

(0) and the maximum (1) can be located in different data sets. The

resulting distribution of each data set is illustrated as a spider-chart

in Figure 7. Each chart contains 25 edges, each representing a time

series characteristic. For each time series characteristic, the red

dot represents the largest value in the data set, the green dot the

average value, and the blue dot the smallest value. Based on these

charts, our data set exhibits a higher diversity of time series char-

acteristics than all other competitions except the M4-Competition.

Our data set has the minimum value for 9 out of 25 time series

characteristics and the maximum value for 10 out of 25 time series

characteristics. The M4-Competition covers the remaining minima

and maxima. However, the M4-Competition comprises 100,000 time

series. Therefore the likelihood of having a time series with a min-

imum/maximum for a time series characteristic is higher than in

our data set.

4.3 Distance between Time Series

To determine how similar time series are to each other in the in-

dividual data sets, we calculate the distance between them. If we

think of the geometric representation of a time series, we could, for

example, consider the Euclidean distance or dynamic time warping.

However, the first metric can only be calculated if the time series

12Time series characteristics at Zenodo: http://doi.org/10.5281/zenodo.4115345
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Figure 7: Distribution of time series characteristics per investigated data set.

are of equal length and the latter is difficult to interpret. To this end,

we adopt the idea of the zoomed ranking [10] approach applied to

time series. More precisely, the distance between two time series is

equal to the 𝐿1-norm of their describing time series characteristics.

Mathematically, the distance between two time series 𝑌𝑖 and 𝑌𝑗 is
defined as [10]

𝑑 (𝑌𝑖 , 𝑌𝑗 ) :=
𝑞∑

𝑚=1

|𝑐𝑌𝑖 ,𝑚 − 𝑐𝑌𝑗 ,𝑚 |

max
𝑘={1,...,𝑠 }/{𝑖 }

𝑐𝑌𝑘 ,𝑚 − min
𝑘={1,...,𝑠 }/{𝑖 }

𝑐𝑌𝑘 ,𝑚
, (10)

where 𝑌1, . . . , 𝑌𝑠 are all time series from all considered data sets

with 𝑠 being a positive integer, 𝑌𝑖 and 𝑌𝑗 origin from the same data

set, and 𝑐𝑌𝑖 ,1, . . . , 𝑐𝑌𝑖 ,𝑞 are the describing time series characteristics

of time series 𝑌𝑖 with 𝑞 being a positive integer, i.e., 25. The dis-

tance between two time series lies in the interval [0,∞), where 0

indicates that the time series are equal in terms of their describing

characteristics. Consequently, the higher the distance, the more

heterogeneous are both time series.

Table 3: Distance between time series within each data set.

Distance Libra M1 M3 M4 NN3 NN5 NNGC1 Tourism

Min. 0.003 0.000 0.000 0.000 0.237 0.000 0.018 0.033

1st Qu. 2.697 2.125 2.001 1.669 1.632 0.681 2.077 2.072

Median 3.866 2.950 2.968 2.473 2.797 0.992 2.867 2.899

Mean 4.104 3.186 3.304 2.808 3.112 1.087 2.900 3.024

3rd Qu. 5.296 4.027 4.331 3.594 4.291 1.405 3.660 3.846

Max. 27.898 10.785 10.876 13.583 8.758 3.235 8.395 9.092

To analyze the different data sets, we calculate the distance be-

tween each pair of time series within the data set and report the

average distance as well as the respective distribution in Table 3.

The time series in our data set have an average distance of 4.104,

while the time series in the other data have an average distance

between 1.087 and 3.304. Moreover, the M-Competitions and the

NN5 competitions have time series that are identical regarding

their describing time series characteristics. Except for the minimal

value, our data set exhibits the highest average time series distance

for all other quartiles. As for the maximum value, our data set’s

average distance is at least twice as far as in all other competitions.

In summary, our data set exhibits the higher average distance and

thus the greater heterogeneity between time series.

5 BENCHMARKING FORECASTING

METHODS

In this section, we benchmark existing forecasting methods with

Libra. We first introduce the benchmarking setup. Then, we bench-

mark the methods on the different use cases in Section 5.2 – 5.5.

Afterward, we report the overall performance of the methods in

Section 5.6. Finally, we sum the results and discuss threats to validty.

5.1 Benchmarking Setup

For having a broad and representative forecasting method competi-

tion stored in Libra, we compare different methods from different

fields. The competitors can be grouped into (i) “classical” time se-

ries forecasting methods and (ii) regression-based machine learning

methods. For each category, we consider a set of representative

methods. The classical forecasting methods are listed and briefly

described below:

• ETS [20] builds on the concept of exponential smoothing and

is a framework that automatically retrieves the components

(trend, season, and error) of a time series and determines

the relationships (additive, multiplicative, or not present)

between the components.

• sARIMA13 [6] extends the ARIMA model by adding a sea-

sonal counterpart to each component (autoregressive model

13In the experiments, we use auto.arima [18] to find the most suitable model for the
time series automatically.



for the past values, moving average for the past forecast

errors, and time series differencing for stationarity).

• sNaïve repeats past observations for the entire forecast hori-

zon. More precisely, each forecast value is equal to the cor-

responding observation from the last period.

• TBATS [23] extends ETS using a trigonometric representa-

tion based on Fourier series for the seasonal part of the time

series and an autoregressive-moving average model for the

error corrections. Further, the time series is transformedwith

Box-Cox transformations.

• Theta [3] first checks whether the time series is seasonal, and

if so, de-seasonalizes the time series. The de-seasonalized

time series is then split into a short- and a long-term com-

ponent. Finally, the forecast is the weighted forecast of both

components.

The competing methods from the field of machine learning are

outlined in the following:

• GPyTorch [14] is a Gaussian process library. The basic idea

for modeling the time series is to apply Gaussian process

inference based on black-box matrix-matrix multiplication.

• NNetar [17] is a feed-forward neural network with one hid-

den layer. The model is trained with lagged values of the

time series, while the number of lags and the number of

nodes in the hidden layer are automatically selected.

• Random forest [7] is an ensemble of decision trees based on

bagging, i.e., the trees are generated in parallel, fully grown,

and independent of each other. To reduce overfitting, each

tree is trained on a random sample of the features. In the

following, we refer to this method as RF.

• SVR [11] is based on the same principle as SMVs, i.e., finding

separation lines to group the data into different classes, with

the extension to predict numerical values.

• XGBoost [8] is an ensemble of decision trees based on gra-

dient tree boosting, i.e., the trees are growing sequentially

with knowledge from their preceding tree. To reduce overfit-

ting, XGBoost applies regularization objects, shrinkage, and

feature subsampling.

Each method received a single time series as input if not stated

otherwise. Note that using one time series at a time is a major

difference to the M4-Competition where it is possible to use the

complete training data set (i.e., all time series) for training the

algorithms. In our experiments, each time series was divided into

history and test, where the split depends on the evaluation type.

Based on the history, eachmethod learned amodel that was used for

forecasting future values of the time series (i.e., the test part) at once

with a single execution. This forecasting procedure (i.e., receiving

the time series, estimating the parameters, building the model, and

forecasting the time series) was repeated ten times for each time

series as some methods are not deterministic. Consequently, the

reported measures were determined on the average values of each

time series.

As input for the forecasting task, the classical time series forecast-

ing methods and NNetar received the time series and the respective

frequency. The regression-based machine learning methods except

NNetar got the time series and a synthetic seasonal pattern (a vec-

tor with the indices modulus the frequency) as input. To achieve a

reliable forecast for GPyTorch, we shifted each time series linearly

to obtain a mean value of zero [31]. Note that we used all meth-

ods "out-of-the-box" since the results of the M3-Competition have

shown that the methods were kept simple and, on average, com-

plex models do not necessarily perform better [28]. That is, there

was no parameter tuning and the methods were used with their

default settings. Recall the “No-Free-Lunch Theorem” [35], stating

that improving a method for one aspect leads to deterioration of

another aspect.

To compare and quantify the performance of the different fore-

casting methods, we use forecast error measures (see Section 3.4)

and the time-to-result. The time-to-result for a time series reflects

the duration in which the forecasting method receives the time

series, estimates the parameters, creates the model, and performs

the forecast. Note that the time-to-result is normalized to be inde-

pendent of the underlying hardware. Table 4 lists a brief description

of each measure.

Table 4: Overview of the applied measures.

Name Description

𝑒sM Forecast accuracy based on the sMAPE. The measures

𝑒sM, and 𝜎𝑒sM reflect the average error and the standard

deviation of the error.

𝑒MA Forecast accuracy based on the MASE. The measures

𝑒MA and 𝜎𝑒MA reflect the average error and the standard

deviation of the error.

𝜌𝑈 , 𝜌𝑂 Mean wrong-estimation share as the relative number of

forecast values that under- or overestimate the actual

values.

𝛿𝑈 , 𝛿𝑂 Mean wrong-accuracy share as the mean percentage

error during under- or overestimating the actual values.

𝑡𝑠𝑁 The time-to-result normalized by the time required by

sNaïve. The measures 𝑡𝑠𝑁 and 𝜎𝑡𝑠𝑁 reflect the average

time and the standard deviation of the time.

5.2 Economics Use Case

Table 5 and 6 show the results of the multi-step-ahead forecasting

competition on the economic use case for the classical time series

forecasting methods and the regression-based machine learning

methods, respectively. Each row shows a measure and the columns

correspond to the methods in competition. The best values (the

lower, the better) are highlighted in bold. The most accurate fore-

casting method based on 𝑒sM is ETS (13.02%) followed by sNaïve

(13.28%). The most accurate machine learning method is NNetar

(16.49%) followed by GPyTorch (17.32%). Concerning 𝑒MA, the most

accurate forecasting method is sARIMA (0.53) followed by TBATS

(0.59) and the most accurate machine learning method is XGBoost

(0.87) followed by GPyTorch (0.91). For both error measures, all fore-

casting methods (except sNaïve for 𝑒MA) exhibit a higher accuracy

than the most accurate machine learning method.

As there are different superior methods for both error measures,

we investigate measures describing the forecast. More precisely,

𝜌𝑂 or 𝜌𝑈 either reflects whether the forecasting method over- or

underestimates the future vales. The methods sARIMA, TBATS, and



Table 5: Comparison of classical time series forecasting

methods on the economics use case.

Measures ETS sARIMA sNaïve TBATS Theta

𝑒sM [%] 13.02 14.88 13.28 14.19 13.40

𝜎𝑒sM [%] 16.26 25.80 12.12 21.06 21.42

𝑒MA 0.66 0.53 0.90 0.59 0.77

𝜎𝑒MA 1.41 0.97 2.20 0.99 1.85

𝜌𝑈 [%] 55.52 49.33 67.86 49.71 60.07

𝜌𝑂 [%] 44.48 50.67 32.08 50.29 39.93

𝛿𝑈 [%] 7.44 7.45 10.18 9.51 9.05

𝛿𝑂 [%] 1.58·102 94.40 90.43 1.06·102 2.34·102

𝑡𝑠𝑁 3.40·102 7.29·103 1.00 2.63·103 6.04

𝜎𝑡𝑠𝑁 2.55·102 2.36·104 0.00 1.86·103 18.15

Table 6: Comparison of regression-based machine learning

methods on the economics use case.

Measures GPyTorch NNetar RF SVR XGBoost

𝑒sM [%] 17.32 16.49 19.80 25.08 17.58

𝜎𝑒sM [%] 13.33 16.86 18.27 29.23 19.89

𝑒MA 1.04 0.91 1.69 2.20 0.87

𝜎𝑒MA 2.06 2.0 5.71 8.14 2.16

𝜌𝑈 [%] 71.80 52.92 73.72 72.57 70.85

𝜌𝑂 [%] 28.20 47.08 26.28 27.43 29.15

𝛿𝑈 [%] 12.11 7.85 13.52 16.65 26.04

𝛿𝑂 [%] 1.05·102 2.84·102 1.51·102 1.39·102 2.01·102

𝑡𝑠𝑁 3.39·103 1.18·102 62.26 13.09 6.41

𝜎𝑡𝑠𝑁 3.00·103 1.19·102 77.32 39.08 16.90

NNetar exhibit almost no tendency (𝜌𝑂 ∼ 𝜌𝑈 ), while the remaining

methods tend to underestimate (𝜌𝑈 > 50%). Especially, the methods

sNaïve, GPyTorch, RF, SVR, and XGBoost underestimate a time

series on average more than 2/3 of the forecast horizon. However,

while underestimating a time series, all methods are more accurate

than overestimating a time series.

In terms of the time-to-result, the forecasting methods sNaïve

(1.00) and Theta (6.04) are by far the fastest methods. Note that the

time-to-result of sNaïve was used to normalize the recorded times

and thus, sNaïve has a value of 1.00. The remaining forecasting

methods are between 100 and 1,000 times slower than sNaïve. For

instance, sARIMA, which is the most accurate method concerning

𝑒MA, is the slowest method and also shows by far the most remark-

able variation for the time-to-result. The fastest machine learning

method is XGBoost (6.41) followed by SVR (13.09).

As Libra offers three different evaluation types, we compare 𝑒sM
and 𝜎𝑒sM for all evaluation types. For the sake of brevity, Table 7

comprises only ETS, sARIMA, GPyTorch, and NNetar as they are

the most accurate methods of their field according to the multi-

step-ahead-based 𝑒sM. Each row shows a measure and each column

one forecasting method. As the rolling origin performs several

multi-step-ahead forecasts to stabilize the forecast error and to

avoid arbitrary splits, 𝑒sM for multi-step-ahead and rolling origin

are almost similar. In contrast, the one-step-ahead forecast pro-

duces completely different results. For instance, sARIMA, which is

the second most accurate method based on the multi-step-ahead

forecast, exhibits a high 𝜎𝑒sM (2.13·103%) and thus has the highest

𝑒sM (227.01%). In other words, while having reliable forecasts on

long forecast horizons, sARIMA is prone to error on short forecast

horizons. In the following sections, we focus on multi-step-ahead

forecasts.

Table 7: Comparison of the most accurate forecasting meth-

ods on the economics use case considering all evaluation

types.

Type Measures ETS sARIMA GPyTorch NNetar

One-step
𝑒sM [%] 9.37 227.01 13.03 25.45

𝜎𝑒sM [%] 22.59 2.13·103 25.91 49.73

Multi-step
𝑒sM [%] 13.02 14.88 17.32 16.49

𝜎𝑒sM [%] 16.26 25.80 13.33 16.86

Rolling origin
𝑒sM [%] 12.14 16.35 16.82 17.25

𝜎𝑒sM [%] 11.27 30.49 11.76 15.73

5.3 Finance Use Case

The results of the multi-step-ahead forecasting competition on the

finance use case are listed in Table 8 showing the classical time

series forecasting methods and in Table 9 showing the regression-

based machine learning methods. Each row shows a measure and

each column a method. The most accurate values (the lower, the

better) are highlighted in bold. Among the forecasting methods,

ETS (17.59%) is based on 𝑒sM the most accurate method followed

by sARIMA (17.83%). The most accurate machine learning method

is XGBoost (19.25%) followed by RF (23.39%). In contrast to all

other methods, NNetar (1.33·103) is by far the most inaccurate

method and exhibits a standard deviation with a value of 4.14·104.

However, these high values are introduced by a single time series.

According to 𝑒MA, sARIMA (1.58) is the most accurate forecasting

method followed by ETS (1.88). Again, XGBoost is the most accurate

machine learning method (2.13) followed by GPyTorch (2.36). Like

the economics use case, all forecasting methods are more accurate

than the machine learning methods.

Table 8: Comparison of classical time series forecasting

methods on the finance use case.

Measures ETS sARIMA sNaïve TBATS Theta

𝑒sM [%] 17.59 17.83 24.40 17.95 18.00

𝜎𝑒sM [%] 17.96 22.04 24.31 17.44 18.14

𝑒MA 1.88 1.58 2.25 1.94 1.96

𝜎𝑒MA 5.32 4.07 5.89 5.29 5.24

𝜌𝑈 [%] 66.75 64.83 69.88 67.96 70.28

𝜌𝑂 [%] 33.25 35.17 30.10 32.04 29.72

𝛿𝑈 [%] 12.40 12.24 17.22 12.71 13.07

𝛿𝑂 [%] 18.56 25.32 19.79 15.48 20.07

𝑡𝑠𝑁 1.69·102 2.35·106 1.00 5.35·103 8.58

𝜎𝑡𝑠𝑁 2.09·102 1.75·107 0.00 6.50·103 16.72

In contrast to the economics use case, all methods tend heavily

to underestimate a time series. More precisely, the forecast of each



Table 9: Comparison of regression-based machine learning

methods on the finance use case.

Measures GPyTorch NNetar RF SVR XGBoost

𝑒sM [%] 31.64 1.33·103 24.94 30.44 19.25

𝜎𝑒sM [%] 32.65 4.14·104 23.39 30.69 19.46

𝑒MA 2.36 2.39 3.62 4.80 2.13

𝜎𝑒MA 5.80 6.89 11.64 16.59 5.92

𝜌𝑈 [%] 70.48 69.85 70.78 69.99 70.66

𝜌𝑂 [%] 29.01 30.15 29.22 30.01 29.34

𝛿𝑈 [%] 20.37 14.97 17.33 20.42 13.99

𝛿𝑂 [%] 17.89 29.24 17.21 15.50 22.06

𝑡𝑠𝑁 9.95·103 6.78·102 1.64·103 3.60·102 7.27

𝜎𝑡𝑠𝑁 1.16·104 8.47·102 3.16·103 6.23·102 17.24

method is, on average, at least 64% of the horizon below the actual

values. Moreover, all methods are exhibiting almost the same ac-

curacy during under- and overestimating. In terms of 𝑡𝑠𝑁 , sNaïve

(1.00) and Theta (8.58) are the fastest forecasting methods and XG-

Boost (7.27) and SVR (3.60·102) are the fastest machine learning

methods. Also, in this use case, sARIMA, which is the most accurate

method according to 𝑒MA, is, on average, more than one million

times slower than sNaïve.

5.4 Human Access Use Case

The results for the multi-step-ahead forecasting competition on

the human access use case are shown in Table 10 (classical time

series forecasting methods) and Table 11 (regression-based machine

learning methods). Each column shows a method and each row

a measure, where the most accurate values (the lower, the better)

are highlighted in bold. The most accurate forecasting method

based on 𝑒sM is sNaïve (23.60%) followed by sARIMA (27.95%).

XGBoost (28.45%) and GPyTorch (29.92%) are the most accurate

machine learning methods. In terms of 𝑒MA, XGBoost (0.55) and

GPyTorch (0.65) are the most accurate machine learning methods,

while sARIMA (0.50) and sNaïve (0.51) swap places. In contrast to

the economic and finance use cases, the forecasting methods do

not outperform the machine learning methods concerning both

accuracy measures.

Table 10: Comparison of classical time series forecasting

methods on the human access use case.

Measures ETS sARIMA sNaïve TBATS Theta

𝑒sM [%] 46.64 27.95 23.60 42.51 31.20

𝜎𝑒sM [%] 65.27 54.99 34.91 1.46·102 89.65

𝑒MA 1.42 0.50 0.51 0.63 0.65

𝜎𝑒MA 2.86 0.54 0.89 1.03 1.58

𝜌𝑈 [%] 45.68 48.73 53.61 49.40 50.03

𝜌𝑂 [%] 54.32 51.27 45.56 50.60 49.97

𝛿𝑈 [%] 2.46·102 52.79 17.63 23.55 21.02

𝛿𝑂 [%] 7.73·103 2.26·103 2.02·103 1.24·103 6.31·103

𝑡𝑠𝑁 6.90·102 9.05·105 1.00 1.48·104 15.33

𝜎𝑡𝑠𝑁 1.11·103 4.58·106 0.00 1.52·104 25.44

Table 11: Comparison of regression-basedmachine learning

methods on the human access use case.

Measures GPyTorch NNetar RF SVR XGBoost

𝑒sM [%] 29.92 33.09 75.60 1.47·102 28.45

𝜎𝑒sM [%] 50.22 67.99 6.17·102 1.08·103 42.73

𝑒MA 0.65 0.66 0.82 1.01 0.55

𝜎𝑒MA 1.02 0.91 1.44 1.83 0.87

𝜌𝑈 [%] 52.69 48.58 43.79 47.38 52.35

𝜌𝑂 [%] 47.13 51.42 56.21 52.62 47.65

𝛿𝑈 [%] 19.85 24.81 18.32 23.03 68.87

𝛿𝑂 [%] 1.95·103 2.59·103 3.82·103 3.59·103 2.58·103

𝑡𝑠𝑁 1.41·104 9.60·102 2.40·103 1.06·103 6.72

𝜎𝑡𝑠𝑁 1.11·104 1.01·103 4.90·103 2.20·103 13.30

Regarding the under- and overestimating, all methods behave dif-

ferently than in the economic and finance use case. More precisely,

all methods show almost no tendency to under- or overestimating

the future values (i.e., 𝜌𝑂 ∼ 𝜌𝑈 ). However, the methods are, on

average, far more accurate during underestimation than overestima-

tion. Regarding 𝑡𝑠𝑁 , the fastest forecasting method is sNaïve (1.00)

followed by Theta (15.33) and the fastest machine learning method

is XGBoost (6.72) followed by NNetar (9.60·102). Also, in this use

case, sARIMA is the most accurate method according 𝑒MA, but ex-

hibits the highest mean value (9.05·105) and the highest standard

deviation (4.58·106) for the time-to-result.

5.5 Nature and Demographics Use Case

The multi-step-ahead forecasting results of the last use case, nature

and demographics, are shown in Table 12 for the classical time

series forecasting methods and in Table 13 for the regression-based

machine learning methods. Each row reflects a measure and each

column a method. The most accurate values (the lower, the better)

are highlighted in bold. The most accurate forecasting method

based on 𝑒sM is TBATS (19.85%) followed by Theta (21.79%), while

the most accurate machine learning method is GPyTorch (24.00%)

followed by RF (26.53%). Among the forecasting methods, sARIMA

(0.31) and TBATS (0.36) are the most accurate methods regarding

𝑒MA. XGBoost (0.47) and GPyTorch (0.48) are the most accurate

machine learning methods. Similar to the human access use case,

the forecasting methods and machine learning methods exhibit a

comparable accuracy for both measures.

As in the human access use case, all methods neither tend to

under- nor overestimate the future vales (i.e., 𝜌𝑈 ∼ 𝜌𝑂 ). However,
while underestimating a time series, all methods are more accurate

than overestimating a time series. On average, the fastest fore-

casting methods are sNaïve (1.00) and Theta (1.04) and the fastest

machine learning methods are XGBoost (6.54) and SVR (1.04·102).

The remaining methods are at least 100 times slower than sNaïve.

For example, sARIMA is 125,000 times slower than sNaïve.

5.6 Overall Evaluation

In this section, we investigate the overall multi-step-ahead perfor-

mance of the forecasting methods. Table 14 shows the performance

of the classical time series forecasting methods on all use cases and



Table 12: Comparison of classical time series forecasting

methods on the nature and demographics use case.

Measures ETS sARIMA sNaïve TBATS Theta

𝑒sM [%] 38.54 21.87 26.00 19.85 21.79

𝜎𝑒sM [%] 1.05·102 28.47 39.54 22.52 24.41

𝑒MA 0.83 0.31 0.42 0.36 0.40

𝜎𝑒MA 2.75 0.28 0.64 0.53 0.58

𝜌𝑈 [%] 44.95 46.18 53.38 51.01 50.39

𝜌𝑂 [%] 55.05 53.82 46.39 48.99 49.61

𝛿𝑈 [%] 15.12 14.34 16.51 15.21 14.80

𝛿𝑂 [%] 1.60·102 51.15 58.83 33.51 40.68

𝑡𝑠𝑁 5.02·102 1.25·105 1.00 7.61·103 1.04

𝜎𝑡𝑠𝑁 5.17·102 5.11·105 0.00 1.03·104 19.31

Table 13: Comparison of regression-basedmachine learning

methods on the nature and demographics use case.

Measures GPyTorch NNetar RF SVR XGBoost

𝑒sM [%] 24.00 28.79 26.53 31.79 30.11

𝜎𝑒sM [%] 33.53 45.96 27.13 69.59 45.73

𝑒MA 0.48 0.52 0.57 0.54 0.47

𝜎𝑒MA 0.81 0.75 0.98 1.27 0.74

𝜌𝑈 [%] 51.83 42.75 48.00 50.82 48.79

𝜌𝑂 [%] 48.17 57.25 52.00 49.18 51.21

𝛿𝑈 [%] 16.02 15.23 15.04 16.92 17.84

𝛿𝑂 [%] 62.92 86.13 78.17 49.07 53.36

𝑡𝑠𝑁 1.01·104 6.11·102 1.58·103 1.04·102 6.54

𝜎𝑡𝑠𝑁 1.02·104 8.39·102 4.72·103 4.50·103 14.60

Table 15 the results of the regression-based machine learning meth-

ods on all use cases. Each row shows a measure and each column

a method. The best values (the lower, the better) are highlighted

in bold. Considering all use cases, the most accurate forecasting

method based on both accuracy measures is sARIMA (20.63%; 0.73).

For the machine learning methods, XGBoost (23.85%; 1.00) is the

most accurate method regarding both accuracy measures.

Table 14: Comparison of classical time series forecasting

methods on all use cases.

Measures ETS sARIMA sNaïve TBATS Theta

𝑒sM [%] 28.95 20.63 21.82 23.62 21.10

𝜎𝑒sM [%] 64.57 35.63 30.07 76.00 48.95

𝑒MA 1.20 0.73 1.02 0.88 0.94

𝜎𝑒MA 3.43 2.17 3.27 2.82 2.97

𝜌𝑈 [%] 53.22 52.27 61.18 54.52 57.69

𝜌𝑂 [%] 46.78 47.73 38.53 45.48 42.31

𝛿𝑈 [%] 70.44 21.71 15.38 15.25 14.48

𝛿𝑂 [%] 2.02·103 6.07·102 5.46·102 3.48·102 1.65·103

𝑡𝑠𝑁 4.25·102 8.48·105 1.00 7.59·103 10.10

𝜎𝑡𝑠𝑁 6.65·102 9.08·106 0.00 1.08·104 20.46

Table 15: Comparison of regression-basedmachine learning

methods on all use cases.

Measures GPyTorch NNetar RF SVR XGBoost

𝑒sM [%] 25.72 3.52·102 36.72 58.63 23.85

𝜎𝑒sM [%] 35.40 2.07·104 3.10·102 5.41·102 34.67

𝑒MA 1.13 1.12 1.68 2.14 1.00

𝜎𝑒MA 3.23 3.71 6.64 9.45 3.27

𝜌𝑈 [%] 61.70 53.53 59.07 60.19 60.66

𝜌𝑂 [%] 38.13 46.47 40.93 39.81 39.34

𝛿𝑈 [%] 17.09 15.71 16.05 19.26 31.69

𝛿𝑂 [%] 5.34·102 7.48·102 1.02·103 9.47·102 7.13·102

𝑡𝑠𝑁 9.39·103 5.92·102 1.42·103 6.19·102 6.73

𝜎𝑡𝑠𝑁 1.03·104 8.39·102 3.85·103 2.56·103 15.59

By taking all use cases into account, we can investigate the over-

all tendency of the methods. All methods tend to underestimate

the future vales (𝜌𝑂 > 50%). However, methods like ETS, NNetar,

sARIMA, and TBATS exhibit only a slight difference between 𝜌𝑂
and 𝜌𝑈 . In contrast, the remaining methods underestimate, on

average, almost 3/5 of the future values. Also, during the underes-

timation, the methods are, on average, more accurate than over-

estimating a time series. In terms of the time-to-result, XGBoost

(6.73) is the fastest method of the machine learning methods, while

sARIMA (8.48·105) is among all methods the slowest method. More-

over, all methods (except XGBoost and Theta) are at least 100 times

slower than sNaïve.

5.7 Summary of the Results and Threats to

Validity

While comparing the forecast error, the machine learning methods

exhibit a higher forecast error than the classical forecasting meth-

ods. This observation is in line with the high forecast error of pure

machine learning methods in the M4-Competition [29]. However,

the machine learning methods are faster than the classical forecast-

ing methods. Considering the individual methods over all four use

cases, no method performs best for all use cases (recall the “No-

Free-Lunch Theorem” [35]). For the classical forecasting methods,

sARIMA is, on average, the most accurate method, although it is not

the best method for any use case. In terms of time-to-result, how-

ever, sARIMA is, on average, almost one million times slower than

sNaïve. In contrast, the most accurate machine learning method

XGBoost is on average 6.73 times slower than sNaïve. Moreover,

XGBoost is, for two use cases, the best machine learning method.

The baseline method sNaïve achieves only good forecasts when a

strong seasonality within a time series is present.

Although we compare the methods on a broad competition com-

prising a wide range of domains containing 400 different time series,

the results may not be generalizable to all time series from all do-

mains. Moreover, we use all methods “out-of-the-box” with their

respective default setting. Thus, the individual methods’ perfor-

mance may be different if parameter tuning would have been per-

formed before the forecasting task. We also investigate (i) whether

the differences for the observed forecast accuracy are statistically

significant and (ii) whether the differences for the measured time-

to-result are statistically significant. Consequently, we apply the



Friedman test [12] that is a non-parametric statistical test. More

precisely, the test ranks the forecasting methods for each time series

separately and compares the methods’ average ranks. If there is a

tie, average ranks are assigned. Based on this test, we formulate the

following hypotheses:

𝐻0,1 : The methods perform equally regarding the forecast error.

𝐻0,2 : The methods perform equally regarding the time-to-result.

We conduct both hypotheses with a significance level of 1%. The

resulting p-values 𝑝1 < 2·10−16 and 𝑝2 < 2·10−16 indicate that both

hypotheses can be rejected. Thus, the differences in the exhibited

performance of the forecasting methods are statistically significant.

6 CONCLUSION

In this paper, we address RQ 1 “How to automatically compare dif-

ferent forecasting methods on a level playing field?” by introducing

Libra—a forecast benchmark14—that automatically evaluates and

ranks forecasting methods based on their performance in a diverse

set of evaluation scenarios. The benchmark comprises four different

use cases, each covering 100 heterogeneous time series taken from

different domains. Moreover, we showed that the assembled data

set has a higher diversity than established forecasting competitions

such as the well known M-Competitions (RQ 2 “To what extent does

the underlying data set differ from existing data sets?” ). Lastly, we use

Libra to perform a broad evaluation of state-of-the-art forecasting

methods. In summary, based on the provided data set and the auto-

matic evaluation procedure, the Libra contributes to enhance the

comparability of forecasting methods. The benchmarking results

for different forecasting methods enable the selection of the most

appropriate forecasting method for a given use case.
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