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Abstract—Allowing for self-adaptation in technical systems is
intended to tackle the ever-increasing complexity resulting from
the open, interconnected, and mobile characteristics of informa-
tion and communication technology. Typically, self-adaptation is
established by means of a feedback loop concept, e.g., in terms
of the monitor-analyse-plan-execute (-knowledge) loop as known
from the Autonomic Computing domain that acts on top of the
productive part of a technical system. Two of the major parts
of this loop are related to actually steering the behaviour of the
productive part: planning what to do and executing this plan.
In this paper, we present a novel concept for multi-objective
optimisation-based planning of adaptations in autonomous self-
adaptive systems. We focus on a subset of self-adaptive systems
that deal with resource coordination problems and highlight
issues between central planning and decentral execution of plans
by autonomous resources. We discuss four application scenarios
to illustrate the challenges and the benefits of our concept.

Index Terms—adaptation, autonomous systems, coordination,
optimisation

I. MOTIVATION

Recent developments in information and communication
technology highlight that especially mobility of such systems
is increasing, e.g., visible in the context of the Internet-
of-Things [1]. A second trend is that these former small,
closed systems become large-scale, open-world systems-of-
systems [2]. Self-adaptive systems (SASs) [3] address these
developments as they are able to change their behaviour at run-
time to cope with changes in their environment or the system
itself. These systems are the foundation of research communi-
ties for adaptive systems, such as Organic Computing (OC) [4]
and Autonomic Computing (AC) [5]. Often, SASs reasons
on adaptation following the MAPE model [5]: Monitoring
the environment and the system, analysing, i.e., search for
changes in the environment and the system, planning necessary
adaptations, and control the execution of these adaptations.
Alternative models with comparable functionality include the
LRA-M model [6] or the Observer/Controller model [7].

Approaches for planning adaptation in SASs often rely
on rules, goals, models, or utility functions (see [3] for an
overview). Through the increasing computational power and
its omnipresence (e.g., provided by clouds), approaches based
on statistical optimisation procedures gained more importance
recently. However, within large systems, these optimisation
processes face a trade-off between finding a local vs. global

optimal solution. A local optimal solution can be found in
a decentralised fashion, i.e., each device can optimise itself
autonomously. The shorter processing time and the individual
optimal solution have the advantage of scalability but come
with the cost of potentially contradicting adaptations. Global
optimisation can overcome this issue with the downside of
higher processing times. However, the central bottleneck can
delay necessary adaptations. Often, researchers balance the
trade-off by applying a global optimisation with heuristics to
reduce the information load. However, hybrid solutions can
be observed where a continuous decentralised optimisation
process is augmented with an on-demand (semi-)centralised
routine that runs with a larger time-horizon (e.g., [8]).

Another issue for adaptation arises through the systems-of-
systems nature of SASs. These systems might be composed of
collaborating autonomous systems [9]. For local optimisation,
the entities are responsible for planning the adaptation, i.e., the
plan complies with the individual preferences and goals. If we
assume to have an instance of the system that is able to plan
using global optimisation techniques, this does not guarantee
that the autonomous entities of the system execute this plan
as it might contradict to individual goals. Accordingly, in case
of global optimisation, the system requires to guarantee the
execution of the plan through coordination.

In this paper, we outline our vision for multi-objective
optimisation in collaborating, autonomous SASs. Our ap-
proach targets the planning and executing of adaptations in the
context of large-scale SASs with autonomous resources. This
includes an evaluation of trade-offs between global and local
decision making w.r.t. reaction time, costs, and coordination
effort for adaptation. Further, our approach uses incentives,
coordination, and regulations to enable adaptation.

Next, Section II describes the underlying system model and
introduces platooning as running example for this paper. Sec-
tion III describes the state-of-the-art in the field and identifies
the research gap. Afterwards, Section IV explains the resulting
research objectives. Section V derives specific challenges
from the research statement. Following, Section VI maps the
insights on a set of application scenarios and highlights how
these applications could benefit from the corresponding efforts.
Finally, Section VII concludes the paper.



II. HYBRID COLLABORATING (SELF-)ADAPTIVE SYSTEMS

Self-adaptive systems (SASs) are able to change their
behaviour at runtime as a reaction to observed changes in
the environment or the system itself [3]. These systems are
composed of two major parts: an adaptation manager (AM)
and managed resources (MR) [10]. The managed resources
are a set of resources MRSAS = {mr1, ...,mrn} with
mri as any kind of software and hardware, e.g., servers,
laptops, smartphones, robots, or unmanned vehicles. The
adaptation manager AMSAS = {am1, ..., amn} is a set
of software modules ami that implement the MAPE func-
tionality. Hence, the self-adaptive system is defined as a
tuple SAS = (AMSAS ,MRSAS) with the adaptation man-
ager AMSAS and the managed resources MRSAS [3].

In literature, different interaction patterns between the adap-
tation manager and the managed resources can be found, each
manifesting a different degree of autonomy for the resources.
In an SAS with a central adaptation manager, one instance
controls the whole system. This allows for global, optimal
planning. The contrary is a fully decentralised approach: each
managed resource has its own dedicated adaptation manager.

In these scenarios, the entities might collaborate fully au-
tonomously: They (i) cooperate for fulfilling common tasks,
(ii) compete for resources, or (iii) co-exist, i.e., their au-
tonomously planned interactions are not coordinated but do
not have conflicting goals. Diaconescu et. al refer to these ex-
tremes as entity versus collective awareness [11]. In-between
these two extreme forms lies a hybrid approach for the
adaptation manager. There, some of the MAPE functionality
is centralised, others are decentralised. Weyns et al. proposed
different decentralised control patterns for hybrid control [10].
Usually, scientists assume that the central elements have con-
trol over the implementation of central decisions, e.g., in case
of central planning that the managed resources adapt according
to the plan. However, with a higher degree of autonomy, the
managed resources might act independently, i.e, they ignore
the decision making [11]. Hence, conflicts arise between the
central decision making and the autonomic decision execution.
These conflicts may also arise in fully decentralised settings
as well as in hierarchical settings with layered MAPE loops.
Accordingly, appropriate decision execution approaches are
required that force or motivate the adaptation of resources.

A. Coordination as Sub-problem of SAS

As outlined above, SASs define a very broad field of
research. In order to focus the research efforts and to be able
to come up with a general statement, we restrict our work to a
sub-group of SASs: systems with ordering-based coordination
problems. Therefore, we state several assumptions (cf. Fig-
ure 1) which we discuss in the following:

• An AMSAS = (GSAS , AMext,1, . . . , AMext,l) has a
set of certain goals GSAS and one or several optional
AMext,l for achieving these goals.

• The GSAS = (gSAS
1 , . . . , gSAS

n ) may contain several
subgoals gSAS

n .
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Fig. 1. System model for hybrid collaborating (self-)adaptive systems.

• The AMSAS = (CR1, . . . , CRi) coordinates one or
several coordinated resources CRi.

• The CRi = (S1, . . . , Sj) consists of one or several
subsystems Sj .

• Each subsystem Sj = (MRj , Gj , AMint,j) contains one
managed resource MRj and may have an optional set
of goals Gj . In case the subsystem has certain goals,
an additional internal adaptation manager AMint,j is
responsible for coordinating the MRj .

• The Gj = (gj1, . . . , g
j
m) has, as well as the GSAS , several

subgoals gjm.
• The MRj = (mrj1,mrj2, . . . ,mrjk) are composed of

several hardware and software elements mrjk. In case the
MRj are fully controlled by the AMext, the AMint just
forwards the control signals.

• The position of each subsystem Sj , i.e., the position
of each MRj , within the CRi group and the common
properties of this group have direct impacts on the goal
achievement of each subsystem and the overall SAS.

• There are a set of six standard processes that can be
performed within such a group context:
– For participation: 1) initialiseGroup(),

2) dissolveGroup(), 3) joinGroup(),
4) leaveGroup()

– For organisation: 5) changePosition(),
6) changeGroupProperties()

These processes describe the basic formation and re-
organisation behaviour of such a CR. Performing these pro-
cesses can either be done externally (via AMext) or internally
(via negotiations between the AMint), both resulting in an
optimisation problem. We introduce a running example for
such a coordination problem in SAS and outline what these
processes mean in the scenario within the next paragraphs.

B. Running Example: Platooning

Platooning is driving in convoys of (semi-)automated ve-
hicles with inter-vehicle distances of only a few meters [12].
Accordingly, a platoon pi is a vector pi = (vpi1, vp

i
2, ..., vp

i
n)

with vehicles vppi that are part of a platoon pi. Traffic in total
is a set of platoons p = {p1, p2, ...pn} and non-controllable



vehicles vni that cannot platoon, e.g., human-driven vehicles.
Mapping to our system model, a platoon is a coordinated
resource CR, composed of autonomic vehicles as MRi.

In [13], we present the Platooning Coordination System
(PCS) which coordinates the formation of platoons. It
searches a suitable platoon and navigates the vehicles to
the platoon. Therefore, each vehicle vppi of a platoon
p can be described by its input parameters: vppi =
{route, destination, objective, vehicle characteristics}.
The PCS acts as adaptation manager: using global decision
making algorithms it coordinates joining or leaving a platoon
of vehicles as well as inter-platoon interactions, e.g., to
overtake another platoon or merge with another platoon.
Figure 2 shows platooning with the PCS.

Fig. 2. The platooning process on a highway controlled by the PCS, shown
as MAPE loops. A vehicle leaves platoon(1), platoon(2) overtakes
platoon(3), and, additionally, a vehicle joins platoon(2).

The definition of the six processes of CR problems are
defined for platooning as follows:

1) initialiseGroup(): A set of vehicles are coordinated to
form a new platoon.

2) dissolveGroup(): An existing platoon is dissolved.
3) joinGroup(): A vehicle or a group of vehicles (including

platoons) becomes part of an existing platoon.
4) leaveGroup(): A vehicle is removed from the platoon.
5) changePosition(): The ordering within the platoon is

modified, i.e., vehicles within the platoon change their
positions.

6) changeGroupProperties(): The properties of the platoon
are modified, e.g., speed.

However, as the vehicles are autonomous instances having
their own goal function, they might disobey the commands of
the PCS. This might be beneficial from the point of view of
the vehicles in situations, in which the vehicle should act as
platooning leader and would less benefit from platooning due
to air drag while the vehicles behind benefit from slipstream
effects. Accordingly, platooning is a good example to show
our main challenges. On the one hand, our category of systems
requires an optimisation approach that balances constraints and
multiple objectives in scenarios with central decision making
as well as collaborative decision making. On the other hand, it
requires a decision execution mechanism with a compensation
strategy to control the execution of adaptation plans.

III. STATE OF THE ART

Optimisation in SASs. To get an overview of com-
monly used optimisation techniques in the field of SASs,
we analysed the published works of the last ten years in
the ACM Autonomous and Adaptive System (TAAS) jour-
nal, the International Conference on Autonomic Computing
and Communications (ICAC), the International Conferences
on Self-Adaptive and Self-Organising Systems (SASO), the
Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), and the Symposium on the
Foundations of Software Engineering (FSE). We identified
54 publications. In these works, the planning functionality is
supported by the following optimisation techniques1:

• Probabilistic Approaches: Bayesian Networks, Bayesian
Optimisation, Simulated Annealing

• Combinatorial Optimisation Approaches: Cross-
entropy Method for Combinatorial Optimisation,
Decentralised Combinatorial Optimisation

• Evolutionary Approaches: Evolutionary Algorithm, Ge-
netic Algorithm, Genetic Programming, Learning Classi-
fier System, NSGA-II, SPEA2

• Stochastic Approaches: Greedy Algorithm, Markov De-
cision Process, Stochastic Approximation, Stochastic Pro-
gramming, Variable Neighbourhood Search

• Mathematical Optimisation Approaches: Binary Pro-
gramming, Integer Programming, Linear Programming,
Sequential Quadratic Programming, Convex Optimisation
Solver, Pattern Search Algorithm

• Meta-Heuristics: Heuristic Algorithm, Tabu Search
• Others: Canonical Correlation, Weighted Sum Model,

Reinforcement Learning, Distributed Constraint Optimi-
sation, Gradient Descent

The list is of exemplary nature; however, it shows the diver-
sity of optimisation techniques used in SASs as the different
optimisation techniques are applicable in different scenarios.
With the exception of the approaches presented in [14]–
[27], the approaches target optimisation in centralised systems.
Hence, decentralised optimisation techniques as required in
our targeted system domain is underrepresented. Further, the
authors neglect the integration of coordination or negotiation
techniques as they assume that instances obey the instruction
of the adaptation plan. In our work, we target the study of
the resulting issues between the planning phase based on
optimisation and its execution on autonomous resources as
well as how to support this through decentralised optimisation.
A thoroughly analysis of the optimisation techniques used for
planning in SASs is part of ongoing work.

Autonomous Self-coordination. Autonomous self-
coordination mainly focused resource allocation without
external intervention for finding an ordering of requesters by
optimising a certain goal (e.g., priorities, cost, waiting times,
or fairness). In the context of this paper, we consider three
basic classes of autonomous self-coordination:

1Due to space constraints, the references can be found at: https://doi.org/
10.5281/zenodo.2584266



a) Centralised approaches: This category of approaches
uses algorithms such as leader election for choosing one
specific node that acts on behalf of the group (see e.g.,
[28] for an overview of algorithms). Afterwards, the resource
allocation or coordination problem is handled in a centralised
manner with the leader deciding about the current strategy.
There are further concepts for exchanging the leader if it does
not act as expected, e.g., measured in terms of fairness metrics.
Examples include [29] or [30].

b) Negotiation-based approaches: There are several reasons
why a centralised (even a pseudo-centralised solution based
on leader election) is not used in specific cases: single-point-
of-failure, exploitation of power, communication overhead,
or a variety of attack vectors. Consequently, decentralised
approaches have been a promising alternative, see, e.g., [31].
Especially in the context of multi-agent systems, solutions
among a group of autonomously acting agents that are con-
sidered to be equal have been investigated.

Several situations can occur, where agents may not agree,
but still need to find a consensus, i.e., a solution that everyone
accepts, even if it is not everyone’s favourite choice. This
helps to achieve overall system reliability in the presence of a
number of disagreeing agents. In general, this is referred to as
“consensus problem” [32]. Approaches to tackle this include
protocols (e.g., the Terminating Reliable Broadcast protocol
[33] or the Contract Net protocol [34]), negotiation techniques,
or mechanisms such as auctions [35].

c) Emergent approaches: The third group of approaches
does not make use of explicit coordination or management
mechanisms. In turn, the system is fully decentralised as agents
act fully autonomously without the usage of explicit coordina-
tion or negotiation techniques. For coordination purposes this
generally refers to simple scheduling schemes, e.g., first-come-
first-serve (see [36] for an overview). Alternative solutions
include Organic Computing concepts, e.g., [37].

A. Identification of the Research Gap

In this vision paper, we focus the interaction of planning
adaptation and its execution; two research streams that are
often addressed in isolation. This might be valid if the
adaptation manager has full control over the resources, e.g.,
in centralised settings or decentralised systems with fully
cooperative decision making. However, in settings with au-
tonomous resources, the aforementioned conflicts between
decision making and adaptation execution may arise—which
is not addressed explicitly in research so far.

Some researchers integrate techniques from the area of
optimisation problems for planning of adaptation. However,
often the researchers do not compare which technique might
be the best for coping with specific situations of system /
environmental states. Further, the types of coordinated systems
we target might require decentralised, local decision making.
Accordingly, we plan to research decentralised optimisation
techniques. This includes an analysis of the required degree
of information exchange and coordination. Further, we plan
to analyse which techniques are superior in which situations.

On the one hand, we analyse the trade-off between local, fast
but potentially conflicting optimisation versus time-consuming
but global optimisation. On the other hand, we compare
the suitability of different techniques based on whether they
deliver a usable result in situations where the optimisation
procedure is stopped, i.e., they belong to the class of anytime
algorithms and, hence, support anytime learning [38].

Regarding the execution of adaptation, research focuses on
safe states for execution, i.e., guaranteeing that the system
reached quiescence or at least tranquillity [39]. However,
researchers often assume (implicitly) that a central instance
can use optimisation techniques to find an adaptation plan
that is then executed by the autonomous entities. Therefore,
these autonomous entities require to behave cooperatively and
coordinate the adaptation actions. This includes that entities
might behave altruistically in case the global optimal adap-
tation plan decreases their individual utility. However, this
changes if the autonomous entities become self-ish, i.e., they
behave competitively. We will study the resulting issues from
such situations. This includes the identification of mechanisms
to reward those entities that have to decrease their utility
for achieving global optimal behaviour as well as interaction
mechanisms to control the execution of the adaptation plan.

IV. RESEARCH STATEMENT

The identified research gap leads to several objectives
and challenges that need to be addressed. A straight-forward
approach would rely on a global optimisation of the system in
terms of coordination. However, this is highly time-consuming,
computational-intensive, and requires a significant load in
terms of communication, while simultaneously decreasing
the robustness of the system due to introducing a single
point of failure. Further, the adaptation decisions are multi-
objective and require a balance between different goals within
a set of given constraints. Even if we assume that global
optimisation is feasible, the autonomous nature of the agents
does not guarantee the execution of the adaptation plan.
As an alternative, purely decentralised decision making of
autonomous entities might be beneficial, which comes with
the cost of potentially conflicting decisions. However, (partly)
centralised decision making of hybrid approaches requires,
again, information exchange and coordination. Further, self-
ish entities need to be convinced to act altruistically for global
welfare as local optima require coordination to overcome the
issue of conflicting adaptation plans.

As a result of these considerations, we propose to investigate
the interplay of centralised and decentralised decision making
for planning of adaptation and the execution of planned
adaptation in coordination scenarios. In particular, we claim
that an approach to balance the interests of the autonomous
entities with the global optimal settings for the SAS as a whole
is needed. This leads to the following research objectives:
Objective 1 Design and implementation of a support process

for developers to derive appropriate decentralised and
centralised decision making mechanisms for local and
global optimisation of adaptations



Objective 2 Development of a centralised optimisation mech-
anism that balances conflicting goals and constraints

Objective 3 Improvement of the robustness of the solutions
by providing degrees of freedom and alternative solutions
for the execution-enforcement

Objective 4 Investigation of a subsequently distributed adap-
tation execution algorithm that controls the application of
the plan within a set of autonomous entities by making
use of the provided freedom

Objective 5 Analyse the relations of autonomic vs. hetero-
nomic decisions of entities on the optimisation procedure

In the following, we illustrate the practical relevance of the
defined objectives using the example of platooning presented
in Section II-B. The self-driving vehicles act autonomously
based on individual preferences of the driver. However, as
they interact in a shared environment with specified interaction
rules, this represents a setting of co-existing collaborating
entities. To find a platoon, two approaches are feasible. First,
the vehicles can collect information about available platoons
themselves and decide locally which platoon to join. This
requires a vehicle-to-vehicle communication infrastructure or
intermediaries for the information exchange and the decisions
will be locally optimised. This results in conflicts, e.g., each
vehicle tries to optimise its position in a platoon for having
the highest possible slipstream effect. Second, an intermediary
system can collect the data and plan centrally, which platoon
a vehicle should join. Our PCS follows this approach [13].
This enables globally optimal decisions for the multi-objective
optimisation problem of balancing the interests of the indi-
vidual vehicles, platoons, and the global traffic within given
constraints. However, these vehicles get instructions on how
to join but act autonomously, i.e., it is not guaranteed that
they follow these instructions. Especially instructions such
as joining a platoon at the front might be critical as being
the platoon leader reduces the effects of fuel saving through
slipstream effects. Accordingly, the system requires to control
the adaptation execution and a reward system for the vehicles
to motivate them to obey the instructions in an altruistic
manner. In the following, we present several challenges for
implementing our vision and how we plan to tackle them.

V. RESEARCH ROADMAP

In order to achieve these objectives, we propose to investi-
gate novel mechanisms from two perspectives in parallel and
with increasing complexity: from a bottom-up (BU, i.e., from
a purely decentralised perspective at the autonomous entities
themselves) and a top-down (TD, i.e., from the centralised
planning and optimisation) perspective. Therein, an increase
of complexity of the optimisation problem refers to decreasing
the assumption of benevolent behaviour, i.e., decreasing the
level of compliance with the computed (TD) or negotiated
(BU) solution. This results in a roadmap for tackling the
described research statement. For each challenge, the accord-
ing implementation of the system model from Section II is
presented. The first part of challenges deals with the top-down
perspective.

Challenge TD-1: Multi-objective central optimisation
with constraints

• Goal: Provide the best possible solution within a given
time constraint.

• Which are suitable basic optimisation techniques?
• How to balance the trade-off between fast response and

optimal solutions?
• How to incorporate constraints (e.g., given by character-

istics and preferences of entities)?
In the first setting, we look at a central adaptation manager

with central, global optimisation (see Figure 3a). This means
for the system model that there is only one AMext that is
responsible for optimisation of the entire system. This optimi-
sation includes single-objective and multi-objective optimisa-
tion. As the optimisation is running during the execution of the
system, it might be necessary to sacrifice an optimal solution
for using fast-responding heuristics. We plan to compare dif-
ferent optimisation categories such as evolutionary approaches,
stochastic approaches, and mathematical approaches. Further,
the approach integrates global constraints for the planning
procedure. The managed resources send monitoring data and
receive instructions for adaptation which they obey, i.e., they
execute decisions heteronomically.

Challenge TD-2: Multi-objective central optimisation
with adaptation freedom

• Goal: Provide solutions with alternative realisations and
degrees of freedom for the adaptation execution.

• How to define ranges of allowed configurations for de-
grees of freedom for the adaptation execution?

• How to ensure compliance of autonomous adaptation
execution?

• How to generate feedback from the adaptation enforce-
ment that guides the search within the planning process?

The adaptation manager integrates central planning for
global, multi-objective optimisation (see Figure 3b). Moni-
toring and execution are located at the resources, i.e., we
have a combination of one AMext for analysing and planning
and many AMint for monitoring and execution. The local
execution enables the integration of local constraints. As
multi-objective optimisation usually generates a set of Pareto-
optimal solutions, we have a many-objective approach as the
adaptation freedom for the managed resources might lead to
a situation in which the resources execute different planning
aspects targeting different objectives. However, compliance of
the adaptations must be ensured. Therefore, different proce-
dures known from reinforcement learning might be feasible
to either reward the instances or punishing them. Within the
bottom-up stream, we have two corresponding challenges.

Challenge BU-1: Decentralised non-coordinated optimi-
sation

• Goal: Negotiate solutions in open collections of au-
tonomous entities.

• How to avoid re-optimisation if composition changes?
• How to incorporate multiple goals in the negotiation?
• How to act on local information sub-sets?



In both bottom-up settings, we do not integrate an external
adaptation manager AMext (see Figure 3c). Rather, each
subsystem has a AMint and tries to optimise for its individual
constraints and objectives. Similar to TD-1, the system uses
single- and multi-objective optimisation. Using a local, smaller
set of information can speed up the optimisation. Further, it
eliminates the single point of failure of a central approach. The
advantages raise several challenges that can result from the
uncoordinated adaptation, such as concurrency of conflicting
objectives, adaptation oscillation, and reasoning incomplete
information.

Challenge BU-2: Decentralised coordinated multi-
objective optimisation

• Goal: Negotiate solutions in open collections of au-
tonomous entities.

• Which aspects need to be taken into account?
• How to integrate local constraints while obeying coordi-

nation results?
• How to include an invcentivation for coordination?
Contrary to the uncoordinated setting in BU-1, in challenge

BU-2, the different AMint coordinate the adaptation execution
(see Figure 3d). Still, the planning takes place locally as
each AMint follows a multi-objective approach. However,
coordination enables the fulfillment of several objectives of
different AMint. This represents a many-objective optimi-
sation approach for planning. Accordingly, similar flexible
optimisation procedures as in challenge BU-1 are required for
flexibility through the adaptation execution. Efficient coordi-
nation approaches are necessary. The interplay of the TD and
BU challenges result in some hybrid challenges (HY) targeting
both categories:

Challenge HY: Distributed global, multi-objective opti-
misation

• Goal: Coupling of global planning and local execution.
• How to effectively coordinate a decentralised planning

process within autonomous agents?
• How to enforce plans if collections change continuously?
This system setting combines the advantages of a global

optimal, conflict-free optimisation for planning of adaptation
with the data-reduced local decision making process which
obeys local constraints. In contrast to the previous setting,
coordination now targets the planning instead of the execution
(see Figure 3e). Hence, this approach relies on a distributed
optimisation approach, i.e. only AMint are involved in the
planning process. Planning is based on a coordinated optimisa-
tion procedure that runs distributed on several planners, hence,
it eliminates the need of a central element for planning but
requires exchange of monitoring and analysing information.
For the execution, the system requires a coordination mecha-
nism to ensure the execution of the plan, since resources might
decide autonomously on the execution of the plans. Last, we
define several cross-aspect challenges that for all categories:

Challenge Cross-1: Evaluation and generalisation
• Goal: In-depth analysis of the coupled behaviour between

planning and execution.

• Which metrics are meaningful? Which scenarios need to
be covered?

• Can we generalise the results to other use cases?
Challenge Cross-2: Decision support process for engi-

neers
• Goal: Development of a decision support process that

simplifies and improves the design process for engineers.
• In which cases are which solutions appropriate?
• How to trade-off between decentralised, centralised, and

hybrid solutions?
• How to standardise the design process for these aspects?
The challenges Cross-1 and Cross-2 concern all five system

settings presented above and are underlying aspects concerning
the evaluation of the mechanisms as well as the decision
support delivered for application developers. Regarding the
evaluation, the definition of metrics is important to compare
different optimisation techniques or the coordination impact.
Further, we need to apply the mechanisms in different use
cases to avoid a restriction to a certain use cases. To simplify
the application of the mechanisms, these should be integrated
into frameworks or development processes. Additionally, re-
searchers require development support in choosing between
central, decentral, and hybrid approaches to find the optimal
approach in terms of trade-offs as well as their (dis)advantages.
The use of the different mechanisms should be integrated into
a standardised process which makes them easily exchangeable.

TABLE I
DIMENSIONS OF DECISION EXECUTION AND DECISION MAKING WITHIN

DIFFERENT PLANNED USE CASE SYSTEMS. IN PARENTHESIS, WE SPECIFY
THE RELATED CHALLENGES FOR THE SCENARIOS.

Autonomic
Decision Execution

Heteronomic Deci-
sion Execution

Central Decision
making

Highway platooning
(TD-2, HY)

Industry 4.0
inventory
management (TD-1)

Local Decision
making

Code offloading
(BU-1)

Inner-city
platooning (BU-
2, HY)

VI. APPLICATION SCENARIOS

In order to allow for a proof of general applicability of
the developed methods, an investigation in different use cases
is required. Therefore, we have to define use cases along two
different axes: (i) from autonomic to heteronomic enforcement
of planning results and (ii) from centralised to decentralised
decision making. Dimension (i) targets the execution activity
while dimension (ii) focuses on the planning step. Autonomic
decision execution of the resources relates to the mentioned
BU approaches; heteronomic decision execution symbolises
the TD approaches. Similar, central decision making refers to
the TD approaches; decentralised decision making are prob-
lems from the category of BU approaches. Table I provides
an overview of the corresponding space with four possible use
cases for each dimension conforming to the above described
challenges. In the following, this section presents them.
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Fig. 3. Overview on the challenges exemplified with systems having two resources. M, A, P, and E are the corresponding MAPE functions. S stand for the
sensor, Ef for the effector interfaces. Dashed lines indicate an external AM, solied lines an internal AM.

A. Use Case 1: Platooning Coordination on Highways

The first use case represents autonomic decision / central
decision making and focuses on the coordination of platooning
on a highway by our PCS (cf. Section II-B). The PCS has to
balance several (partly) conflicting objectives:

• Global optimisation for all traffic participants,
• optimisation of the interactions between platoons,
• optimisation of the vehicle order within a platoon, and
• individual optimisation objectives of drivers.
The execution of the adaptation plans as output of the

central decision making approach is enforced on autonomously
deciding vehicles. We assume fully autonomous driving; how-
ever, since vehicles act on behalf of their drivers’, transparency
of plans is required and autonomous behaviour may ignore
the plan. Accordingly, the execution requires a mechanism
with incentives. Alternatively, the PCS could force vehicles
to join a specific platoon by omitting the possibility to choose
the platoon. Additionally, uncertainty is added though non-
controllable vehicles which are further constraints.

B. Use Case 2: Inner-city Platooning

Previous work defined a concept for a hybrid platooning
approach which integrates platooning on highways with an
urban traffic management system for achieving platooning in
cities [13]. In contrast to platooning on highways, platoons
in cities are loosely-coupled connections of vehicles. Their
formation is controlled by the traffic management system
and is established via different actuators, e.g., traffic light
control, dynamic assignment of bus/taxi lanes, and re-routing
of traffic. Consequently, this may serve as a representative of
the category heteronomic enforcement / local decision making.

As a first step, the existing decentralised traffic management
systems [40], [41] have to be integrated with the testbed for the
PCS. Based on this integration, an extension of the system is
required which is able to cope with the additional functionality,
e.g., for dynamic re-routing through vehicle-to-infrastructure
communication and adaptive signalling system.

The vehicles are forced to obey the traffic light control. As
we assume to have self-driving vehicles present, we assume
that they also obey the re-routing instructions.

C. Use Case 3: Industry 4.0 Inventory Management

In modern production facilities, often self-driving vehicles /
robots are able to transport items or goods within the facility.
As the systems share routes, coordination is necessary. Further,

the flexibility demand for Industry 4.0 production processes
requires also flexibility in planning the routes. This is a
multi-dimensional optimisation problem as it has to integrate
different aspects besides just finding the shortest path, e.g.,
prioritisation of items for premium customers. As this requires
the integration of various data sources, the coordination of
the vehicles is done centrally, i.e., central decision making is
necessary. Further, the vehicle follows the instruction of the
central system representing heteronomic decision execution.

We plan such a scenario for inventory management which
requires the interaction of heteronomically coordinated vehi-
cles with either employees or robots for loading items to/from
the inventory shelves. The central coordination system and the
robots should be simulated as well as emulated in a testbed.

D. Use Case 4: Code Offloading with the Tasklet System

The two trends of mobility of resources as well as the
omnipresence of computation resources through Cloud Com-
puting converge to the new trend of code offloading. Mobile
devices – with potentially limited computational capacity –
benefit from code offloading as they can offload computation-
intensive tasks and, through that, save energy. Different ap-
proaches exist for that purpose. The Tasklet system [42]
focuses on code offloading for edge and IoT devices.

The idea of the Tasklet system is to provide a middleware-
based infrastructure for distributed computing on hetero-
geneous devices. Three classes of entities exist: resource
providers, resource consumers, and resource brokers. Resource
providers offer the possibility to execute the offloaded code.
Resource consumers contact one or several resource broker(s)
for finding suitable resource providers. Brokers form a peer-
to-peer overlay network. The requested broker(s) reply a list
of resource providers, out of which the resource consumer can
choose one based on different metrics such as costs.

The Tasklet use case is an example of local decision making.
Each broker has a limited set of registered resource providers
only. Further, each resource consumer decides on its own
to which resource provider it will offload the tasks, i.e.,
follows an autonomic decision execution. Since some resource
providers may be superior to others, they may be flooded with
requests. This can be avoided by a more heteronomic decision
execution, i.e., through negotiations between the brokers but
also between resource providers and consumers.



VII. CONCLUSION

Self-adaptive and self-organising systems attracted increas-
ing research activities due to the need of mastering complexity
in interconnected and autonomous systems. These adaptation
capabilities are established by means of a feedback loop
concept that performs monitoring, analysing, planning, and
execution steps. However, planning and execution are typically
considered in an isolated manner. Consequently, this paper
proposes to shift research attention towards a better integration
of these two steps. We therefore defined a system model that
defines a sub-class of SASs with coordination tasks. Based on
this model, we discussed the objectives required to close the
gap in research and described the most important challenges.
We explained the necessary efforts in terms of four different
case studies. Next we will address these challenges.
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