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Abstract

The cloud computing paradigm enables the provision of cost efficient IT-services
by leveraging economies of scale and sharing data center resources efficiently
among multiple independent applications and customers. However, the sharing
of resources leads to possible interference between users and performance prob-
lems are one of the major obstacles for potential cloud customers. Consequently,
it is one of the primary goals of cloud service providers to have different cus-
tomers and their hosted applications isolated as much as possible in terms of the
performance they observe. To make different offerings, comparable with regards
to their performance isolation capabilities, a representative metric is needed to
quantify the level of performance isolation in cloud environments. Such a met-
ric should allow to measure externally by running benchmarks from the outside
treating the cloud as a black box. In this article, we propose three different
types of novel metrics for quantifying the performance isolation of cloud-based
systems.

We consider four new approaches to achieve performance isolation in Software-
as-a-Service (SaaS) offerings and evaluate them based on the proposed metrics
as part of a simulation-based case study. To demonstrate the effectiveness and
practical applicability of the proposed metrics for quantifying the performance
isolation in various scenarios, we present a second case study evaluating perfor-
mance isolation of the hypervisor Xen.
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1. INTRODUCTION

Resource sharing promises significant cost savings in cloud environments,
thanks to the reduced per customer overheads and economies of scale [25] [3].
The most significant obstacle for potential cloud users, besides data isolation
and security aspects, is unreliable performance [15] [3] [5]. Therefore, providing
performance guarantees is a major research issue in the area of cloud computing
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[12]. Providing one cloud customer constant Quality of Service (QoS) indepen-
dent from the load induced by others is referred to as performance isolation.

The National Institute of Standards and Technology [23] defines three ser-
vice models for cloud computing. The Infrastructure-as-a-Service (IaaS) model
leverages virtualization to share hardware resources among customers. The
Platform-as-a-Service (PaaS) model hosts applications of different customers
within one middleware instance. Software-as-a-Service (SaaS) is the last model
which provides a ready to run, hosted application. Isolating cloud customers
in terms of the performance they experience is an important concern in each of
these scenarios.

The allocation of hardware resources is handled by the lower levels (e.g.,
infrastructure level) in the stack. Therefore, we see performance isolation as a
bigger challenge in the upper levels (e.g., platform and software) as they have
no direct resource control. Within a SaaS environment, a group of users sharing
the same view onto the application are referred to as tenant. This view includes
the data they access, the application configuration, Service-Level-Agreements
(SLAs) and Quality-of-Service (QoS) aspects. Multi-tenant Applications (MTA)
share one application instance between multiple tenants and provide every ten-
ant a dedicated share of the instance, isolated from each other. In our opinion
the isolation of data and configuration aspects in MTAs is fairly easy as these
issues are handled by the application domain. Usually all tenants use an appli-
cation in a similar way with regards to the configuration and navigation paths.
Nevertheless, the amount of users and peak times might defer and the tight cou-
pling of tenants results in strong interference of non-functional system proper-
ties. Consequently, dealing with inference, especially considering non-functional
system properties is still an open research issue in the area of SaaS (e.g., Beze-
mer [4], Fehling [8] and Wang [28]) and a challenging task for developers and
architects of such systems.

In contrast to MTAs a hypervisor runs several virtual machine (VM) on
the same hardware. A VM is a computer which is not directly accessing the
hardware by leveraging virtualization. Thus, several virtual machines can run
in parallel and share the resources. This technology is used to provide several
customers access to SaaS offering whereby several instances of the application
serve the load. Furthermore, it is the enabling technology of IaaS. In the tradi-
tional datacenters without cloud context the technology is also widely accepted
and applied. We also observe considerable research interest in the field of per-
formance isolation for TaaS clouds and virtualization technolgogies. Huber et al.
[14] pointed out that different virtual machines (VM) have significant influence
on each other. Gupta et al. [11] were already aware of this issue and developed
an advanced scheduler resource scheduler for a specific hypervisor to solve the
problem. Nevertheless, performance isolation in existing implementations has
still potential to improve, especially in I/O intensive scenarios.

Performance isolation is an important aspect for various stakeholders. When
a developer or architect has to develop a mechanism to ensure performance isola-
tion between customers they need to validate the effectiveness of their approach
to ensure the quality of the product. Furthermore, to improve an existing mech-



anism they need an isolation metric to compare different variants of the solution.
When a system owner has to decide for one particular deployment in a virtual
environment not only traditional questions like the separation of components on
various hosts are of importance. Also the configuration of the hypervisor with
regards to resource allocation mechanism have to be considered.For a concrete
decision several concerns might be important. Performance, efficiency, admin-
istrative costs and security are mostly the basis for the decision. With a metric
quantifying isolation, one more parameter could be used for the decision making
process.

To the best of our knowledge, no metrics and techniques for quantifying per-
formance isolation have been proposed before. In this article, we present two
different methodologies and several alternative metrics along with appropriate
measurement techniques for quantifying the isolation capabilities of IT systems.
Although our focus is on cloud environments and cloud enabling technologies
the metrics are not limited to these. The metrics presented are applicable for
performance benchmarks, and preferable in situations where various customers
use similar functionality with various load. In addition to this, we introduce
general approaches for performance isolation in SaaS environments at the ar-
chitectural level using four concrete isolation mechanisms. Finally, we apply
the proposed metrics and measurement techniques for quantifying isolation in
two independent case studies to on the one hand demonstrate the practical ap-
plicability of the proposed metrics. On the other hand, the metrics allow us
to evaluate the effectiveness of the proposed performance isolation methods for
SaaS environments and the impact of different deployment options in a virtual
infrastructure that also allows us to reason for IaaS environments.

The remainder of this article is structured as follows. In Section 2, we first
define performance isolation. Based on this definition, Section 3 presents the
proposed isolation metrics. Section 4 discusses different approaches to ensure
performance isolation within a MTA. Section 5 presents the first experiment
setup for the evaluation of the isolation approaches and the metrics. Section
6 presents the second case study using virtualization. Based on the results
a discussion and final assessment of the metrics and their usability in various
scenarios is given in Section 7. In Section 8, we briefly introduce further ideas for
enhancements of the metrics and measurement approaches. Section 9 surveys
related work, while Section 10 concludes the article.

2. PERFORMANCE ISOLATION IN SHARED ENVIRONMENTS

This section provides a comprehensive definition of performance isolation
and differentiation to related concepts in shared environments. The metrics
presented in Section 3 are based on these definitions.

2.1. Fairness

Performance concerns in cloud environments are a serious obstacle for con-
sumers. To avoid distrust, it is necessary to ensure a fair behaviour of the



system with respect to its different customers. Due to sharing of resources,
performance-related issues are often caused by a minority of customers sending
a high amount of requests. We define a system as fair, if the following conditions
are met:

1. Customers working within their assigned quota should not suffer from
customers exceeding their quotas.

2. Customers exceeding their quotas should suffer performance degradation
if they have a negative impact on others. This forces them to reduce their
load, which eventually restores the system responsiveness for all customers.

3. Customers with higher quotas should be provided with better performance
than customers with lower quotas. Difference in performance might be
expressed with regards to the output related parameters (e.g., response
time) or input related parameters (e.g., request rate).

Within this article, quota refers to the amount of workload a customer is allowed
to execute. In the following, we define performance isolation based on this notion
of fairness provided by point 1.

2.2. Isolation

In this article, we focus on the first fairness criterion defined above which is
achieved by performance isolation. Performance isolation is defined as follows.

Performance Isolation: A system is performance-isolated, if for customers
working within their quotas the performance is not affected when other cus-
tomers exceed their quotas. A decreasing performance for the customers ex-
ceeding their quotas is fair with regard to the property 2. Additionally, it is
possible to relate the definition to SLAs: A decreased performance for the cus-
tomers working within their quotas is acceptable as long as it is within their
SLAs. One way to achieve performance isolation is by resource isolation which
enforces a strict isolation of resources allocated to different customers.

Non-Isolation: We speak of non-isolation, if the behaviour of the users from
one customer may influence the performance observed by the users of the other
customers as if all users are part of the same customer. Thus, every customer
may suffer from bad performance caused by one single disruptive customer ex-
ceeding its quota.

Firm Performance Isolation: Motivated by the definition of real-time sys-
tems we also introduce firm performance isolation. Systems that are firmly
performance isolated have one or both of the following two characteristics. Ei-
ther they provide performance isolation only on a restricted set of workload
scenarios. Or an observable influence of one customer onto the others exists.
However, in both situations the average isolation is within the accepted range
and a minor violation of isolation is acceptable within a this range.

An example for the first case is an overcommitted system which might re-
strict the load of a disruptive customer to the quota defined in the SLAs and
thus ensures performance isolation. However, because of the overcommitment
several customers might use their entire quota at one time and harm the systems
overall performance. A provider might accept this risk to increase the efficiency.



Elasticity: Elasticiy is a concept in cloud computing to satisfy changing re-
source demands under variable load with the goal to maintain SLAs. To avoid
the impression that isolation and elasticity have the same objectives we present
the following example. Assume a system is in an overload condition because
of one disruptive tenant. One approach to enforce customer SLAs could be to
provision and allocate additional resources by leveraging underlying technolo-
gies. This is commonly referred to as elasticity. This could be acceptable, if the
disruptive tenant pays for the increased overall capacity, e.g. in relation to its
quota. If the disruptive tenant does not pay for the extra resources, the system
is no longer fair. Furthermore, if new resources are provisioned they should be
reserved for customers paying extra fees (fair with regard to property 3).

3. METRICS

Existing benchmarks and metrics in the field of shared resources and Clouds
developed in the last years focus on single aspects like databases (e.g., [6]). Oth-
ers discuss metrics for cloud features like elasticity (e.g., [20]) or on traditional
metrics like throughput in a virtualized environment (e.g., [13]). In the following
section, we introduce different metrics to quantify the isolation capabilities of a
system which is not covered by the existing approaches. The actual discussion
about the feasibility of the metrics is provided after the case studies in Section
7. To provide a level playing field for comparisons, it is important to explicitly
consider the workload profiles used when applying the metrics. For example,
a given response time for a system is meaningless without consideration of the
system load during which the response time was measured. In our case further
aspects like the number of customers with exceeded quota might also influence
the results. In this section, we focus on the definition of adequate isolation
metrics. The metrics we define may be applied to quantify the isolation of any
measurable QoS-related system property in any system shared between differ-
ent entities. As such, the metrics are not limited to performance isolation and
Cloud although these are in the focus of this article. Of course, the actual type
of workload and QoS must be selected according to the scenario under investi-
gation. Later on in Section 5 and 6 we propose a set of specific workloads which
can be used for benchmarking performance isolation. We distinguish between
groups of disruptive and abiding customers. The latter work within their given
quota (e.g., defined number of requests/s) the former exceed their quota. Tra-
ditional performance measurements usually have only one group of users and
observe the performance of the group as a function of the workload induced by
this group. Our metrics are based on the influence of the disruptive customers
on the abiding customers. Thus we have to groups and observe the performance
of one group as a function of the workload of the other group. This is a major
differentiator of our approach to traditional performance measurements. For
the definition of the metrics, we define a set of symbols in Table 1.



’ Symbol \ Meaning ‘

t A customer in the system.

D Set of disruptive customers exceeding their quotas (e.g., contains
customers inducing more than the allowed requests per second).
|D| >0

A Set of abiding customers not exceeding their quotas (e.g., con-

tains customers inducing less than the allowed requests per
second).|A| > 0

Wy Workload caused by customer ¢ represented as numeric value €
R(}L . The workload is considered to increase with higher values
(e.g., request rate and job size). w, € W

W The total system workload as a set of the workloads induced by
all individual customers. Thus, the load of the disruptive and
abiding ones.

z:(W) | A numeric value describing the QoS provided to customer ¢. The
individual QoS a customer observes depends on the composed
workload of all customer W. We consider QoS metrics where lower
values of z; (W) correspond to better qualities (e.g., response time)
and z (W) € R{

1 The degree of isolation provided by the system. An index is added
to distinguish different types of isolation metrics. The various
indices are introduced later.

Table 1: Overview of variables and symbols

3.1. Metrics based on QoS Impact

QoS-oriented approaches define an isolation metric based on considering the
influence of disruptive customers by measuring their impact on the QoS provided
to customers working within their quotas.

These metrics depend on at least two measurements. First, the observed QoS
results for every t € A at a reference workload W,.¢. Second, the results for
every t € A at a workload Wy, when a subset of the customers have increased
their load to challenge the system’s isolation mechanisms. As previously defined
Wiey and Wy, are composed of the workload of the same set of customers which
is the union of A and D. At Wy, the workload of the disruptive customers is
increased.

We consider the relative difference of the QoS (Az4) for abiding customers
at the reference workload compared to the disruptive workload.

2. [zt (Waisr) = 2e(Wre)]
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Additionally, we consider the relative difference of the load induced by the two



workloads.
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Based on these two differences the influence of the increased workload on the
QoS of the abiding tenants is expressed as follows.

AZA
Igos = 1, (3)

A low value of this metric represents a good isolation as the difference of the
QoS in relation to the increased workload is low. Accordingly, a high value of
the metric expresses a bad isolation of the system.

The metric provides a result for two specified workloads (Wyey and Wais)
and thus the selection of the workloads plays an important role. On the one
hand this provides a good evidence for exactly this setup and thus provides
detailed information. On the other hand, only one measurement for a given
workload tuple (Wy.ef, Wa;sr) might not be sufficient if the exact workloads of
interest are unknown or vary. Thus, we enhanced the metric by considering the
arithmetic mean of Ig,s for m disruptive workloads. Whereby the disruptive
customers increase their workload equidistant within a lower and upper bound.

3

K3

Iqos.,
1

(4)

Iavg - m
This metric provides an average isolation value for the entire space of mea-
surements and provides one representative numeric value. The curve’s shape is
not reflected and thus the value might lead to missleading results within some
ranges.

It is conceivable that a provider is interested in the relative difference of dis-
ruptive workload Aw at which abiding tenants receive a predefined proportion
of the promised QoS Az4. This is conceptual similar to the already described
metrics and could be used as one additional approach.

3.2. Workload Ratios

The following metrics are not directly associated with the QoS impact re-
sulting from an increased workload of disruptive customers. The idea is to
compensate the increased workload of disruptive customers and try to keep the
QoS for the abiding ones constant by decreasing the workload of the abiding
ones. Naturally, this is only possible with the support of the abiding customers
and such a behaviour does not reflect productive systems. Thus, these metrics
are planned to be applied in benchmarks with artificial workloads where a load
driver simulates the customers and can be enhanced to follow the described
behaviour.



Assume one starts measuring the isolation behavior of a non-isolated system
by continually increasing the disruptive workload Wy. One would expect to
observe a decrease of z;(WW) for all customers. In such a situation, z:(WW) would
remain unaffected if the workload of the abiding customers W, is decreased
accordingly to compensate for the increase in the disruptive workload. Following
this idea, plotting W, as a result of W, describes a pareto optimum of the
systems total workload with regards to constant QoS.

A

=

aref

= Non-Isolated
= = Isolated
Real System

Abiding workload

s
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£
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Figure 1: Fictitious isolation curve including upper and lower bounds.

In Figure 1 the x-axis shows the amount of workload W, caused by the
disruptive tenants, whereas the y-axis shows the amount of the workload W,
caused by the abiding tenants. The blue/solid line shows how W, has to decrease
to maintain the same QoS as in the beginning. In a non-isolated system this
function proportionally decrease linear. For every additional amount added to
the disruptive load one has to remove the same amount at the abiding load,
because in a non-isolated system the various workload groups would behave if
they were one. In a perfectly isolated system the increased W, has no influence
on z (W) for all t € A. Thus, W, would be constant in this case as shown
with the red/dashed line in the figure. The red line and the blue line provide
exact upper and lower bounds, corresponding to a perfectly isolated and a non-
isolated system, respectively. Figure 1 shows some important points referenced
later and defined in Table 2.

Based on this approach, we define several metrics presented in the following.
As discussed before, the workload scenarios play an important role, and thus it
may be necessary to consider multiple different workload scenarios and average
over them as previously.

3.2.1. Significant Points
The significant points marked in Figure 1 provide several ways to define an
isolation metric by themselves. I.,q is a metric derived by the point at which



’ Symbol \ Definition ‘

Wy The total workload induced by the disruptive customers:
Wd = Z Wt

teD
Wiy... | Thelevel of the disruptive workload at which the abiding workload
in a non-isolated system is decreased to 0 due to SLA violations.
The level of the disruptive workload at which the abiding workload
must decreased to 0 in the system under test
The value of the disruptive workload at the reference point in
the system under test. This is the point to which the degree of
isolation is quantified. It is defined as the disruptive workload,
at which in a non-isolated system the abiding workload begins to
decrease.
W, The total workload induced by the abiding customers:
Wa = E Wt

teA
The value of the abiding workload at the reference point Wy, _, in
the system under test. W, .. =Way,,.. —Wa,,,
The value of the abiding workload corresponding to Wy, .. in the
system under test.

Grey

S

Qbase

Table 2: Overiew and definition of relevant points.

the workloads of abiding customers have to be decreased to 0 to compensate
for the disruptive workload. The metric sets Wy, , and W, _, in relation. Due
to the discussed relationship of the workloads in a non-isolated system and the
definition of the various points based on the behaviour of such a system the
condition W, . = Wa,,.. — Wa,,, holds. We leverage this relation to simplify

our formulas. With Figure 1 in mind, I.,q4 is defined as follows:

end

Wi,.s — Wa,..

end

W,

Qref

()

Iend =

Another approach uses W,,,.. as a reference. Setting this value and W, _, in
relation results in an isolation metric having a value between [0, 1]. The formula
for metric Ipyse is below:

Wa
Ibase = Wbase (6)

Greg

Both metrics have some drawbacks resulting from the fact that they do not take
into account the curve progression. This means, that in a system which behaves
linearly until a short distance from Wy, . and then suddenly drops to W, = 0,
both metrics would have the same value as in the case of a completely non-
isolated system which is obviously unfair in this case. Moreover, a well isolated
system might require a very high disruptive workload before W, drops to 0
making it hard to measure the metric in an experimental environment. Ip,s. has
some further disadvantages given that it is only representative for the behavior



of the system within the range of Wy, , and Wy, . . Given that the metric does
not reflect what happens after Wy, , it may lead to misleading results for well
isolated systems whose respective Wy, , points might differ significantly.

For systems that exhibit a linear degradation of abiding workload, we could
also define isolation metrics based on the angle between the observed abiding
workloads line segment and the line segment which represents a non-isolated
system. However, linear behaviour typically cannot be assumed.

8.2.2. Integral Metrics

We define two further isolation metrics addressing the discussed disadvan-
tages of the above metrics. They are based on the area under the curve derived
for the measured system A,,cqsureqd Set in relation to the area under the curve
corresponding to a non-isolated system A, onrsoiated- Lhe area covered by the
curve for a non-isolated system is calculated as W2 2

The first metric I;,:Base represents the isolation as the ratio of A, casured
and Anonrsolatea Within the interval [Wy, ., Wy,,..]. We define f, : Wy — W,
as a function which returns the residual workload for the abiding customers
based on the workload of the disruptive customers. We then define the metric
IinitBase as follows:

dease
f fm(Wd)de — Wgref /2
I s (7)
intBase —
W2, /2

LintBase has a value of 0 in cases the system is not isolated and a value of 1 if
the system is perfectly isolated within the interval [Wg, ., Wa,,..]. The metrics
major advantage is, that the value provided allows to set the system directly
into relation to an isolated and non-isolated system. This metric again has the
drawback that it only captures the system behavior within [Wy, ., Wa,,..]-

In a well isolated system it might not be feasible to measure the system
behavior only up to Wybase. Thus, the following metric I;n:pree allows to use
any predefined artificial upper bound pe,q which represents the highest value
of Wy that was measured in the system under test. We define the metric as
follows:

Pend
S fn(Wa)dWa | = WG /2
; Wa, (8)
intFree = Waref - (Pend — Wdref) - Waz,-ef /2

This metric quantifies the degree of isolation provided by the system for a speci-
fied maximum level of injected distructive workload peyq. A value of 1 represents
a perfect isolation and a value of 0 a non-isolated system.

10



4. PERFORMANCE ISOLATION IN MULTI-TENANT APPLICA-
TIONS

Regarding performance, related work is mostly concerned about resource
efficiency and optimal placement of tenants onto a limited set of nodes with
regards to their SLAs (e.g., Fehling et al. [8] and Zhang [32]).

This section discusses different approaches to enforce isolation within a
multi-tenant application. We start with an overview of a multi-tenant archi-
tecture presented by Koziolek [18] and discuss related performance isolation
extensions. Following this, we present some detailed approaches to enforce per-
formance isolation.

4.1. Multi-tenant Software Architectures

Koziolek [18] [17] analyzed several existing multi-tenant solutions. Based on
this, he developed a generic architecture and a corresponding style describing
the existing multi-tenant applications. Figure 2 presents Koziolek’s architecture.
The numbers were added by us and present points we identified as positions the
system performance can be influenced. The architecture relies on the common
three tier web application model enhanced with a Meta-Data Manager and a
Meta-Data Database responsible for tenant-specific customization regarding the
functional /non-functional behavior and/or appearance of the application.

Client Tier Application Tier Database Tier
Web REST / SOAP
sowser [ @[ @ Q | @
Y Cach d licati ®
REST/ ache L) Loa % Application Data
soAP L (optional) Balancer Threads Data (Shared Table)
/ transfer|
. . ]
Rich Client REST/SOAP customizes Relates to
Meta-Data
Manager Data Meta-Data
transfer

Figure 2: Potential points for a performance adaptation in multi-tenant architectures based
on [18] [17].

Admission Control(1): Controlling the incoming requests based on aware-
ness of the tenant they originate from can enable a MTA to differentiate the
provided QoS level and to isolate tenants. One solution could be to discard
requests sent by a disruptive tenant in order to maintain the service level for
the abiding tenants.

Cache Restrictions (2): In some MTA, cached objects might be shared be-
tween tenants. Some applications (like multimedia platforms) could use high
amounts of tenant specific data. Restricting the size of the cache available to
tenants is one way to isolate them from using space reserved for others.

Load Management (3): The ability of a MTA to serve different tenants
with one instance does not prevent us from having several application instances
available. Thus, a load balancer could enforce some isolation by forwarding
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requests of disruptive tenants to different application instances than those of
abiding tenants.

Thread Priorities (4) and Thread Pools (5): The main computing power is
consumed by threads handling requests. Thus, it is possible to implement isola-
tion approaches by leveraging thread management functionality. For example,
using a separate thread pool for every tenant limits the number of threads one
tenant could allocate at a time. Another idea is to dynamically control priorities
of threads depending on the tenant.

Database admission (6): Controlling the incoming database requests based
on the tenant they originate from can enable a MTA to differentiate the provided
QoS level and to isolate tenants. Controlling tenant specific database cache sizes
at the application level is another approach to isolate tenants.

4.2. Performance Isolation Solutions

In this section, we propose four approaches, developed in the context of our
work, for enforcing performance isolation focusing on response time as primary
QoS metric. The application area is a multi-tenant, interactive web application
where we assume a rather similar behaviour of different tenants and request
types as no batch jobs are expected and fast response times required. These
concepts leverage on admission control and thread pool management mecha-
nisms which corresponds to the position 1 and 5 in Figure 2. In the following,
you will find figures, explaining the basic architectural structure of the different
approaches. Every approach implements two top level components: A Request
Manager handling the incoming request and an Application Server providing
the Request Processor. In the default case, the Application Server’s Request
Processor has one thread pool with restricted size processing the requests.

Artificial Delay: This approach (Figure 3a) artificially delays incoming re-
quests depending on the request rate of the corresponding tenant. In closed
workload scenarios this results in artificially increased response times for tenants
exceeding their quotas and generates backpressure. Thus, the overall workload
induced by a tenants is controlled. A new request arrives the Request Man-
ager’s Quota Checker which evaluates the tenants currently used quotas, and
stores the results together with the allowed quotas in the tenants meta data.
After that, the quota checker triggers the request delayer, which possibly delays
the processing of a request before it is forwarded to the Request Processor for
processing. The duration of the artificial delay could be constant. The current
demand of the system and the difference between the allowed and actual usage
of the system could be used to calculate a dynamic delay. Within the applica-
tion server, the request might be FIFO-queued again, because of the restricted
size of the thread pool.

Round Robin: Round robin (Figure 3b) introduces separate queues for dif-
ferent tenants. There is no more need for a queue at the application server in
this scenario, as requests are directly buffered at the Request Manager. When
a new request approaches the system, it is queued in the corresponding tenant’s
queue. If the Request Processor has free threads, it triggers the Next Request
Provider to deliver a new request. The Next Request Provider then uses round

12
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Figure 3: Methods for performance isolation in multi-tenant applications.

robin to retrieve the next request. An empty queue for one tenant is skipped
and does not block the processing of the others.

Blacklist: The blacklist method (Figure 3c) triggers the quota checker for
every request. It checks if the quota for this particular tenant is exceeded. The
quotas available to tenants and the quotas actually used by them are maintained
in the tenants meta data. If a tenant exceeds its quota, it is blacklisted. Requests
from blacklisted tenants are enqueued in a separate list. When the Request
Processer requests for the next request, the Next Request Provider takes the
next request from the white queue on a FIFO basis. Usually, requests from
the blacklist queue are only handled if the normal queue is empty. This leads
to a problem, when a tenant is removed from the blacklist but he has requests
still pending in the blacklist queue. If there are always requests in the white
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queue, blacklisted requests will never be handled. We realized a mechanism
that slowly processes requests from the blacklist (e.g., every 30th request). The
method takes the first request, at which the tenant is actually not blacklisted
anymore.

Separate Thread Pools: The separate thread pool method (Figure 3d) pro-
vides a separate thread pool for each tenant. The limited size of these pools
isolates the tenants from each other. The conceptual model includes a sepa-
rate FIFO queue for each tenant. Every time, one of the tenant specific thread
pools has an idle thread, the Worker Controller requests a new request from the
Next Request Provider. The Next Request Provider selects a pending request
according from the tenants thread pool.

5. SIMULATION BASED EVALUATION

This section presents the results of a simulation-based evaluation. This
allows us to evaluate different concepts for isolation and the metrics efficiently
without disturbing influences. Furthermore, it is an example how a developer
or architect might use the metrics to decide for one implementation.

5.1. Simulation

We employed the ssj! discrete event simulation framework including the
provided stochastic features [21] as a simulation allows us to evaluate different
concepts and the metrics efficiently without disturbing influences. The major
artifacts that were used to simulate our shared system are the RequestManager,
RequestProcessor, Tenant and Scheduler. The RequestManager is responsible to
realize the different approaches for performance isolation discussed previously
and checks if the RequestProcessor has free resources to forward the next request.
If no resources are available, the request is queued until the RequestProcessor
signals that resources became free again. The RequestProcessor is responsible to
simulate the request processing behavior according to the predefined scheduling
strategy. The Scheduler used within our evaluation simulates a resource which
is partially shared and assumes that the capacity of requests it can handle is
limited. Thus, the calculation of the residual service time for each request is
based on the number of requests in the RequestPocessor and a user defined
factor for the proportion of shared resources as well as a reference service time
for the request in an unused system. The value becomes actualized every time a
request arrives or leaves the RequestProcessor. Once the request is processed it
is sent back to the corresponding Tenant. The Tenant instance than simulates
the think time and initializes the request for the next iteration.

5.2. Evaluation Scenarios

In this section, we present the workload profiles, the performance related
QoS of interest and the configuration we have chosen for our evaluation.

Thttp://www.iro.umontreal.ca/Simardr/ssj/indexe.html
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5.2.1. QoS-Metric and Considered Workload

The QoS metric we focus on is the response time. The time is measured from
the moment a request leaves a tenant to the point in time a tenant receives the
response. Thus, z;(W) returns the average response time for ¢. As a measure
for the workload caused by the tenants, the number of users associated with
each tenant is used.

The workload profile we used is described by the users’ behavior, the type
of requests sent, the amount of tenants in each group D and A, and the number
of users associated with each tenant.

In a MTA the workload induced by the tenants is rather homogeneous (ex-
cept the amount). In our simulation, all users send requests of the same type
with a mean think time of 1000ms and a standard deviation of 100ms in a closed
workload scenario. We expect that the system runs with a high utilization for
economic reasons. Another reason for running under high utilization is our goal
of evaluating performance isolation aspects. In a system with low utilization,
the increased workload of one tenant would have low impact. Therefore, we de-
signed our system to serve total 80 users. The mean service time for a request
in the system without contention is 1000ms with a standard deviation of 150ms.

We consider one normal scenario and one with overcommitment. In the first
scenario, the quota is set to 8 users and in the overcommitted one to 24. In
both situations, we expect only one disruptive tenant (¢y). The number of users
in the first scenario is 8 and in the overcommitted one ty = 24,t;..t3 = 8,t4 =
4t5.ts = 1,tg = 24.

Thus, the total workload was set to a value at which the system is already
at its limit of 80 users and the disruptive tenant allocates its full quota. We
consider this to be the best reference point. First, an increased workload of
one tenant in a non-isolated system would immediately cause SLA violations.
Second, with the next increase of workload by the disruptive tenant the isolation
mechanisms should intervene.

For the QoS-oriented metrics, we also have to define the disruptive work-
loads. For ty we have chosen 24, 40 and 251 users in the normal mode. In
the overcommitted scenario the number of users are set to 40, 56 and 251. For
the averaged isolation metric I,y we did measurements beginning with 8 and
stopping with 248 users in the normal scenario and 24 to 264 users in the over-
commited scenario. The values were increased by a stepwidth of 40 users. In
the following, we indicate the number of users by adding indexes to the various
symbols in order to distinguish the results.

5.2.2. Configuration

In the chosen configuration with a standard, non-tenant aware FIFO queue
as RequestManager, the maximum throughput achieved is 18 requests/second
at a response time of 2110ms (Figure 4). This results in 38 requests handled
in parallel. Thus, the size of the thread pool is restricted to 38 threads for an
optimal throughput. Without a restricted thread pool, most of the presented
performance isolation approaches would fail, as the RequestManager would al-
ways forward the requests to the processor. When 80 users are simulated, a
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standard FIFO queue results in an average response time of 3500ms and 62
requests in the system, whereby 24 are queued.
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Figure 4: Measurement of Throughput and Response Time.

5.3. Fwvaluation Results

In this section, we present the results from the simulation described above
and briefly comment on the observations made in the various considered sce-
narios. The overall assessment follows in a separate section.

Exemplary we calculate I4s,, for the normal non isolated case and Iint preeqs,
for the delay method in the overcommitted scenario. In the non-isolated case the
simulation returns a response time of 3446ms at the reference workload of 8 users
for ty and 4334ms at the disruptive workload with 24 users for t5. Due to the
absence of isolation the average response time for the abiding customers is the
same as for the disruptive customers. This results in Azg,, = % = 0.258.
The relative increase of workload is Aw = 2280 — 0.2, Consequently the
isolation metric is calculated as Ijs,, = % =1.29.

In the delayed scenario with Ijtpree,s, the point penq is at 251, Wy .
is 24. The integral desribing the area below the curve of remaining abiding
users [ f(W4)dW, within the limits [24, 251] is directly deduced from the mea-
surements (Figure 5) and has a value of 4687. W, . was set to 56 in the
workload definition. Thus, Wfre ; /2 = 1568 and consequently IiniFrecss; =

4687—1568 __ _ () 98
56-(251—24)— 1568

Concerning the overview of all results we begin with the QoS related metrics
presented in Table 3. The value for the isolation in the non-isolated situation
is almost the same in every case as the impact on the performance is linear,
because it stems from the extended length of the queue.

Table 4 present the integral related metrics for the different approaches and
workloads. The n/a entries stem from a very high value of Wy_ , which was

d
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Normal Overcommitted
Approach| 19os,.| 1QoSus| 1QoSus| Tavg24s | 1QoSao] 1QoSse] 1Qosss:| Lavg2sa
Non- 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29
Isolated
Round 0.00 | 0.00 | 0.00 0.00 0.02 | 0.02 | 0.06 0.03
Robin
Thread | 0.00 | 0.00 | 0.00 0.00 0.01 | 0.00 | -0.01 | 0.00
Pools

Delay 0.32 | 0.59 | 1.22 0.9 -0.49 | 0.19 | 1.22 0.67
Black 0.09 | 0.10 | 0.01 0.03 -0.73 | -0.26 | 0.02 -0.03
List

Table 3: Results of QoS based metrics.

not in the range of our evaluation. The rest of the section discusses different
behaviors of the isolation methods and their impact onto the metrics aligned
with selected conspicuous measurements.

Normal Overcommitted
ApproaCh Iend ‘ Ibase ‘ IintBase‘ IintFT€€251 Iend ‘ Ibase ‘ IintBase‘ IintFr66251
Non- 0 0 0 0 0 0 0 0
Isolated
Round | n/a |1 1 1 n/a | 1 0.99
Robin
Thread | n/a |1 1 1 n/a |1 1 1
Pools
Delay 1.11 | 0.58 | 0.68 0.23 1.5 | 0.75 | 0.86 0.28
Black n/a | 0.94 | 0.96 0.97 n/a | 0.96 | 0.94 0.96
List

Table 4: Results of workload ratio based metrics.

Round Robin: This method provides a good isolation in every scenario.
In the chosen scenario, the waiting queue for the disruptive tenant was never
empty at the reference workload. Therefore, ¢y was not able to disrupt the other
tenants by increasing its workload. In cases where at the reference workload the
queue of the disruptive tenant runs empty, the increased load is expected to
influence the others tenants.

Separate Thread Pools: In the normal mode, the size of the thread pools
was set to 4 which results in around 38 allowed threads in the system. To keep
the response time for the tenants with 24 users lower than 3500ms we had to
increase the thread pool to 17 threads. This resulted in an overloaded situation,
but thanks to the reduced queueing time we still achieved a response time of
3.5s at the reference workload. Overall, the thread pool approach showed a very
good isolation.
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Artificial Delay: The threshold for the artificial delay was based on the
number of users logged in for one tenant. The negative values of Ig,s,, and
1gosss stem from the constant penalty added to every request arising from the
disruptive tenants. Therefore, a part of the disruptive tenants’ resources become
available for the other tenants and consequently the QoS for the abiding tenants
improves. This results in negative isolation values. The isolation works only
within a limited range because of the constant character of the delay. This
point can be seen in Figure 5 when the abiding workload begins to decrease.

60 -
= -Non-lIsolated

—Delayed
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40
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Abiding workload

20
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Disruptive workload

Figure 5: Reduction of abiding workload while artificial delay is activated in the overcommit-
ted scenario.
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Blacklist: The blacklist exhibits a similar behavior as the artificial delay
in the beginning. Therefore, a negative isolation was measured. The relevant
metric for blacklisting the tenant is its throughput. The raw data shows, that
sometimes a white tenant is also blacklisted for a short while. This occurs in
situation when the actual disruptive tenant becomes blacklisted and its part
of the resources become available for the other tenants. In that situation the
response time and consequently the request rate of the abiding tenants improves
and exceeds the quota. However, the effect is negligible with regards to the
average response times.

5.4. Effectiveness of the SaaS Isolation Methods

The evaluation of the isolation methods presented in 4.2 is primarily based
on the results from our simulation study. Additionally we highlight some other
aspects that struck our attention.

Round robin provides a very good isolation. However, it is not sufficient
for overcommitted systems as it cannot fully leverage the unused resources from
some tenants. It is possible to increase a tenant’s throughput by skipping empty
queues. However, as long as requests are pending in every queue, tenants with
more users have higher response times. In our case the tenants with 24 users
had around 4660ms response time, even in cases in that the total amount of
users was within the limits in which the system could provide 3500ms for every
tenant. This is an issue in overcommitted systems. Furthermore, it is not
possible to provide different QoS to different tenants using a simple round robin.
Thread pools achieve good isolation in the simulations and QoS differentiation
is achievable by using different thread sizes. Besides that, the processing speed
and throughput of tenants is better if some tenants do not allocate all of their
threads. This also increases the throughput. In the chosen overcommitted
scenario, the response time is widely constant over all tenants at the reference
workload. A disadvantage is that the total number of potential threads is above
the optimal working point of the server. Thus, there is a danger of congesting
the server.

The delay approach seems to be ineffective, because of its weak isolation.
A dynamically assigned delay could increase effectiveness with the drawback of
increased complexity of the method. The introduction of different thresholds
enables QoS differentiation. The blacklist approach provides a good isolation
over a wide range of disruptive workloads. Furthermore, it could achieve differ-
ent QoS, especially for throughput, by using different thresholds. Additionally,
unused resources are equally used by all tenants. For the abiding tenants, in the
overcommitted scenario, this results in the same response time (around 3500ms)
for each. In our setup, the response time at Wy;sr,, was around 9360ms for
to where the thread pool is used. In the black list approach, it was around
16040ms. In both cases, the mean response times for the other tenants were
around 3500ms. This stems from the abiding tenants that were blacklisted from
time to time resulting in unstable performance.
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6. VIRTUALIZATION BASED CASE STUDY

This section presents the results of a virtualization based case study. By
this, we evaluate the applicability of the metrics in real environments and give
some insights on the isolation capabilities of the widely used hypervisor Xen.
Furthermore, it is an example how the metrics can be used by system owners
to decide for a deployment scenario.

Beside multi-tenancy, the sharing of hardware resources by serving several
operating systems on the same host is a widely adopted technology and the
foundation for IaaS clouds. Xen [2] is a widely used hypervisor for Linux en-
vironments that enables resource sharing on hardware level. Thus, we decided
to stress Xen with regards to performance isolation by leveraging our previ-
ously described approach. More precisely, we quantify the degree of isolation
for various Xen configurations and deployments based on a black box approach
using our previously defined metrics. Therefore, we deploy several instances of
the TPC Benchmark W (TPC-W) [1] onto different VMs hosted by one Xen
hypervisor and measure how they influence each other. Precisely because, the
case study itself has not a concrete Cloud deployment in mind it shows the wide
range of scenarios supported by the metrics and the results still allow to reason
for the isolation capabilities of TaaS clouds running on Xen.

In the following, we describe some details of Xen, the chosen TPC Bench-
mark W and the system landscape, followed by the scenario specific configura-
tion and finally the results with a short discussion.

6.1. Xen

A Hypervisor is a software to run several virtual machines (VM) as guests
on one host. Xen is one of the most known hypervisors for Linux environments.
The operating systems installed within these VMs are decoupled from the other
systems, have no permission for administrative tasks on the hardware or the
hypervisors configuration. In order to configure the system or the hypervisor and
to execute administrative tasks the first VM started in Xen (domain-0 or dom0)
has special privileges. Furthermore, dom0 provides a driver abstraction for the
different guest systems. The drivers in Xen are divided in two parts. The driver
really accessing the hardware is installed in dom0, the guest systems (domU)
drivers communicate with the dom0 to access the hardware. Consequently dom0
might become a bottleneck for various activities. Especially I/O intensive tasks
are known to produce high overhead in dom0 and thus the independent guest
domains are likely to influence each other on these tasks. Such a behavior was
already observed in [14] and [11]. By default the various VMs have access to
all existing resources. To increase performance and isolation it is possible to
exclusively pin a core to a domain. It is worth to mention that dom0O usually
does not host any services for the actual end user due to its administrative role.

6.2. TPC-W

The TPC-W [1] is a benchmark for business oriented transactional web
servers. The workload is based on a controlled internet commerce environ-
ment and simulates a bookshop. In our setup, the bookshop consists of a Java
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Servlet based application and a SQL database. The benchmark simulates mul-
tiple on-line browser sessions by calling dynamically generated pages. These
servlets access the database and consistent web objects. Usually the perfor-
mance metric reported by TPC-W is the number of web interactions processed
per second. However, in our case we consider the average response time of the
requests. The benchmark simulates three profiles that differ by the browse to
buy request ratio: primarily shopping, browsing and web-based ordering. In
our case study we used the browsing workload. The load can be varied by the
amount of emulated browsers (EB) running against a system. One EB simu-
lates one user calling various web transactions in a closed workload. Based on
the benchmark’s heavy I/O demands we expect to observe an influence of the
various domains onto each other.

6.3. System Landscape

The physical landscape comprises two servers with 2 physical quad core
CPUs (2133Mhz and 2 threads for each core) and contains 16 GiB main memory.
On both servers Xen 4.1 is installed and Suse Linux Enerprise (SLES) 11 SP2
is running on dom0 and on the guest systems. The servers are connected with a
1Gbit ethernet link. One server hosts the load driver for the TPC-W benchmark
in dom0. The various domains of the second server are described at the scenario
specific configuration 6.4.

The database schema is refreshed before every measurement and filled with
100000 items and 300000 customers.

At our first measurements we observed that increasing the load by more than
a maximum specific to the systems configuration results in timeout exceptions
or socket/file handle issues. Thus, a further increase of the load is no longer
representative, because the induced demand is no longer equivalent to the load
induced before this maximum was reached. Consequently, it does not represent
the corresponding demand for the abiding domains anymore. Therefore, we
had to tweak our system in several ways. We configured the application servers
http timeouts to be infinite, the operating systems socket specific timeouts to
be around 6 minutes and the maximum number of open TCP connections was
increased to the operating systems maximum value. Besides this, one has to
avoid domain internal (software) bottlenecks, because this hinders the system to
increase the load for the shared hardware resources under investigation. There-
fore, several measurements to find the optimum thread pool size and connection
pool limits were done before the actual isolation measurements of each scenario.

6.4. Fvaluation Scenarios

In total we investigated three different scenarios in this case study. In the
pinned scenario the server hosts 4 guest systems (doml, dom2, dom3, dom4)
and dom0. Every domU has a fixed memory allocation of 3096MB and hosts
a MySQL 5.0 database and a SAP specific customized Tomcat webserver. The

21



various domains were exclusively pinned to the existing cores. Thus, no com-
petition for the same CPU resources was possible. Based on this runtime en-
vironment four separate instances of the TPC-W bookshop application were
deployed.

In the unpinned scenario all domU and the dom0 were not pinned to a specific
CPU and free to use any existing hardware resource. Xen'’s credit scheduler was
chosen to allocate the domains to the various resources.

In addition to this we investigated an unpinned two tier scenario, which also
doesn’t have a fixed CPU pinning and likewise uses the Xen credit scheduler.
However, the database and the application server in this case are deployed onto
separate domains. Every domU with an application server has a fixed memory
allocation of 2024MB and the database domain allocates 1024MB. This memory
setup was chosen, because of the small database size.

Table 5 shows the values we used to define the reference and disruptive
workloads for the various scenarios. The number of EBs at the maximum ac-
cumulated throughput of all domains is presented in the second column, the
corresponding accumulated throughput, per domain specific throughput and
average response times are listed next. The last column shows the disruptive
domains amount of EBs at which we observed a high proportion of failed re-
quests. In the unpinned two tier scenario we observed different values for the
QoS based and workload ratio based metrics.

Scenario | EBs per | Total Throughput| Avg. Max. load dis-
domU through- | per domU | re- ruptive
put sponse
time

Pinned 3000 1195 r/s | 299 1104ms | 15000
Unpinned | 1500 721 1r/s 180 842ms 13500
Unpinned | 1300 617 r/s 154 833ms 8000 (QoS)
two tier 11050 (ratios)

Table 5: Results for the scenario setup and configuration.

The highest difference in throughput for one domain compared to the mean
was around 4.5% and the highest difference of the response times around 6.5%
in the pinned scenario. In the unpinned case we observed 2.2% (one tier) and
2.7% (two tier) difference for the throughput. The difference of the response
times was at 8.2%(one tier) and 9.4% (two tier).

As a consequence of these observations pe,q is set to 15000 for the pinned
scenario and to 13500 for the unpinned. In the unpinned two tier scenario we
had to choose 11050 for p.,q and had to stop our evaluation for the Ig,s metrics
at 8000 user. It is worth to mention that in both unpinned scenarios peynq is
very close to nine times the load of the maximum throughput for one domain.
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6.5. Fvaluation Results

In this section we provide an overview of the measurement results and the
observed isolation metrics. Figure 6 combines the results for both unpinned
scenarios based on normalized values for the abiding and disruptive load. Table
6 presents the QoS based metrics based on the same values of Aw. Thus,
the results provides a comparable view onto both deployments. The detailed
discussion of the results shown in the table and figure follows in the discussion
of the concrete scenarios.
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Figure 6: Normalized reduction of abiding workload in the unpinned and unpinned two tier
scenario.

Table 6 contains the values of Ig,g for all three scenarios. The first column of
Table 6 identifies the scenario, the second the amount of users for the disruptive
domain, the third column the average response time of all abiding domains
followed by the results for Aw, Az, Igog and I,,e. For the pinned scenario we
did only one measurement due to the very good isolation. To ensure a level
playing field of comparison we selected measurements where Aw is the same in
the relevant scenarios. The I,,, values were calculated based on an interpolation
of the measurements of Aw at 0.33, 0.60, 1.05 in the unpinned two tier scenario
and additionally 1.47 in the unpinned scenario. For the pinned scenario we
assume a linear behaviour of the isolation between Aw = 0 and Aw = 4.

6.5.1. Pinned

Overall, this scenario presented a nearly perfect isolation throughout the
whole range. The Ig,s presented in Table 6 at a disruptive load of 15000 users
was below 0.05 and the I,y resulted in 0.04 The workload ratio based metric
decreased for the abiding workload only once at 12000 disruptive users. The
related metrics Lintrree15000 and IintBase resulted in a value short below 1.

23



Scenario Disruptive | Response | Aw Az 10os Loy
load time
Pinned 15000 1317 4.00 0.19 0.05 0.03
3200 927ms 0.33 0.10 0.30
. 4800 942ms 0.60 0.12 0.20
Unpinned 7500 914ms 105|009 |o0s |0
10000 1173ms 1.47 0.39 0.27
3000 1011ms 0.33 0.21 0.64
Unpinned two tier| 4400 3784ms 0.60 3.54 5.90 4.20
6750 4354ms 1.05 4.22 4.02

Table 6: Results of Ig,s in the various scenarios.

6.5.2. Unpinned

For the metrics based on the QoS impact we determined the isolation at
various disruptive workloads shown in table 6. We observed two significant
characteristics. The first one is the increasing response time when the disruptive
load is set to 3200 users. The second is the increasing response time at 10000
users. Accordingly, the isolation becomes better between 3200 users and 10000
users. This is, because of the widely constant response times by increasing load
which changes the ratio of Az/Aw. In average the isolation (I4,4) is 0.18.

Figure 6 presents the total abiding workload W, based on the disruptive
users. Similar to the Ig,s based results two significant points can be observed at
the same position. In both cases, W, decreased because of an increasing response
time at the abiding tenants. At a disruptive load of 13500 users (corresponds
to 9 in the figure) the disruptive domain failed to successfully handle incoming
requests. Therefore the results are no longer valid for higher disruptive loads.
The overall isolation values are I;,;pree13500 = 0.89 and It Base = 0.86.

6.5.3. Unpinned Two Tier

Table 6 shows the various disruptive loads used to evaluate Ig,s. We config-
ured the disruptive loads in a way, they result in the same Aw as in the unpinned
single-tier scenarios. Due to the increasing number of timeouts and exceptions
at the disruptive domain we had to stop at 6750 users. For this workload range,
we observed a continuous increasing response time. Nevertheless, from 4400
users to 6750 users the isolation became better, because Aw increased more
than Az. Over the whole range of the measurements the average isolation I,
is 4.20.

Figure 6 presents the total abiding workload W, based on the disruptive
users for the workload ratio based metrics. Analogous to the response times
in table 6 we can see a continuous decreasing amount of abiding workload in
Figure 6. At 1.5 in the figure we can see the observed isolation curve crossing the
characteristic of a non-isolated system. This is, due to the selected step width
for reducing the number of users at the disruptive domain. At a disruptive load
of 11050 users (corresponds to 8.5 in the figure) the disruptive domain failed
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to successfully handle incoming requests. These results are no longer valid for
higher disruptive loads and are therefore illustrated using a dashed line. The
overall isolation values are I;,;pree1105 = 0.42 and I;,:Base = 0.36.

6.6. Effectiveness of the Deployment Options

Overall, the pinned scenario showed the best results and the unpinned two
tier the worst. The selected size of the database was small enough to be mostly
cached. The memory was not overcommitted in our setup and the network I/0
did not reach a critical point at which the CPUs for dom0 became a bottleneck in
the one tier scenarios. Therefore, the isolation was nearly perfect with pinned
CPUs. In the unpinned scenario the resources of the domU became shared
with those for dom0, therefore the slightly increasing I/O overhead for dom0
was competing for resources and had some minor effect. The credit scheduler
was not able to completely compensate this. By splitting the dom0 into an
application server and database server we visibly increased the network I/0.
In this setup we observed a significant impact of the disruptive domain onto
the others, whereby the handling of the I/O in dom0 led to a bottleneck or
requested additional processing resources from the guest domains.

When an administrator has to decide for one of the mentioned deployments,
various considerations might be of importance. In a pinned setup the overall
performance and isolation is the best. However unused resources of one domain
cannot be used by other domains, thus this setup might lack in efficiency. The
unpinned scenario overcomes this drawback but at the expenses of performance
and isolation. From a separation of concerns point of view it might be bene-
ficial to separate database and application. On the other hand, a distributed
deployment is less performant as table 5 shows and the isolation is the worst.
The case study showed how the isolation metrics provide the opportunity to
quantify one more dimension in the framework of several trade-off questions a
system provider has to answer. An additional result is, that an administrator
can increase isolation by hard resource allocation and deployments which re-
duce I/0O. Furthermore this allows to reason for IaaS Cloud environments, that
applications with high 1/O demands are less isolated than others.

7. FINAL ASSESSMENT OF THE METRICS

In the following we evaluate the metrics, regarding their expression and
feasibility.

For the evaluation of the metrics we concentrate on the following aspects.
First, how feasible is the metric for the target group of a system owner /provider
or a developer/researcher. Second, the expressiveness of the metric in terms of
the type of evidence it provides. Third, the number of measurements required
to obtain a valid value. Fourth, situations in which the metric is not meaningful.
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7.1. QoS Impact

These metrics show the influence of disruptive workloads on the QoS of
abiding tenants. This helps system owners to manage their systems, because
it indicates the influence of disruptive workload onto the QoS they provide,
which is important for capacity planning. QoS-based metrics can prove that
a system is perfectly isolated, however they fail in ranking a systems isolation
capabilities into the range between isolated and non-isolated. Thus it is hard
to estimate the potential of the method. In the simulation shown, we were
able to measure the system’s behavior in a non-isolated case. In reality this is
rarely possible, as a system owner or user might not be able to change, or event
set off, the system’s isolation method (e.g., in our case study). A single Ig,s
metric can be derived with only two measurements to obtain evidence for one
point of increased workload. However, to obtain some more detailed information
concerning the systems isolation more measurements are required. Therefore,
1,4 describes the average isolation value within the upper and lower bound of
interest. Nevertheless, the metric is not suitable to describe a systems behavior
for different disruptive workloads onto the abiding tenants because it cannot be
set into a relation for a concrete scenario. Thus we see the advantage of this
metric rather in comparing different systems.

7.2. Significant Points

The metric I.,q might not be feasible to quantify isolation in well isolated
systems. Furthermore, it is not possible to directly deduce relevant system
behaviors like response times. If the metric is given, it could help to compare two
systems regarding the maximum disruptive load they can handle. To determine
I.nq, more measurements as for QoS-based metrics are required.

Ipase orders a system within the range of isolated and non-isolated systems
for one specific point in the diagram. Nevertheless, it does not provide infor-
mation about the behavior of the system before that point. It is limited to
comparing the isolation behavior of the systems at one selected load level and
it is inadequate to derive direct QoS-related values. The usefulness of this met-
ric appears to be of limited value in contrast to the integral methods. One
advantage is the evidence at a well-defined and reliable point with only two
measurements.

7.3. Integral Metrics

LintBase and Iipipree are widely comparable metrics. I;,:pqse has the ad-
vantage to be measured at a predefined point. For I;,1pree, the endpoint of
the interval must be considered as well to have an expressive metric. Both
metrics provide good evidence of the isolation within the considered interval,
ordered between the magnitudes of isolated and non-isolated systems. They
lack in providing information concerning the degree of SLA violation. For ex-
ample, the SLA violation could be very low and acceptable or critically high
in each iteration when we reduce W,. However, in both cases, the results of
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the metrics are similar. This limits the value of I;tBase and Ijn¢pree for sys-
tem owners/providers. However, for comparison of systems and analyzing their
behavior, the metrics are very useful and can be exploited by developers or re-
searchers. Finally, on the negative side, a disadvantage of these metrics is that
their measurement may be a time consuming task. In our Xen based case study
we had experiment series of around 15 hours.

7.4. Concluding Discussion of the Metrics

The various metrics show their advantages in different fields of application
and express various semantics. The Ig,s and I,,4 metrics represent the reduced
QoS based on disruptive load. It can not provide a ranking within the range of
isolated and non-isolated systems. However, for a system operator this might
be helpful to estimate the impact of disruptive load onto the system. The I.,q4
metric shows how many times a system is better than a non-isolated one. This
information is helpful to compare different systems if one has to decide for one.
The Integral based metrics rank a system within the range of isolated/non-
isolated. This knowledge is beneficial for the developer of a system to estimate
the potential for improvements.

8. FURTHER ENHANCEMENTS

Within this chapter we discuss three practice oriented improvements for the
measurement methods described previously to broaden their scope.

8.1. Various Workloads

Workload can be divided in two parts. The work defines the tasks and the
sequence they are processed by the system. The load defines the amount. In
the selected evaluation scenarios we varied the load of the customers/tenants.
In a multi-tenant environment, where every tenant uses the same application
it is a valid assumption that the type of work generated by different tenants is
rather equivalent. In virtualized environments, the workloads might be more
heterogeneous. It is entirely conceivable that a provider or customer is interested
to measure the influence of various workload types onto each other. One example
is the impact of an I/O intensive application onto a CPU intensive one.

In such cases the function for a non-isolated system might not follow the
rules described in 3.2. Even the definitions for the abiding and disruptive load
could be of a completely different nature.

To solve this problem we propose to setup a non-isolated environment (e.g.,
deploying two different applications within one operating system). With such a
setup the curve measured by the workload ratio approaches represents the non-
isolated curve. Furthermore, it enables us to set the two different workloads into
relation to each other and it provides a way to calculate the overall workload
needed for the QoS impact oriented metrics.

27



8.2. Speed Up of Measurement Progress

The reduction of the time needed to collect meaningful data in an ade-
quate amount is essential to make a performance measurement method succeed.
Within our evaluation we observed a runtime of around 90 minutes for the in-
tegral metrics at the simulation. Whereby the hardware used, was a standard
desktop PC with 2 cores and 4GB memory. In the use cases with the Xen hy-
pervisor we had already observed, that the runtime for measuring every single
manipulation of the amount of user is not realistic and used intervals of vari-
ous step widths. However, even in this case one measurement for the integral
metrics used around 15 hours and the accuracy was not optimal, because of the
interval length. In some use cases an accurate measurement might need to much
time.

The adaptive breakdown measurement strategy presented in [19], [31] pro-
vides a mechanism to reduce the amount of experiments required. An exper-
iment is defined as one run of the benchmark with one defined setup. The
adaptive breakdown method consists of four basic steps.

The first selects a set of configurations for experiments with the goal to in-
crease the accuracy of an interpolation the most. The second starts the bench-
mark with the defined experiments and collects the results. The third creates
an interpolation based on the supporting points. In the fourth step, validation
experiments are selected and executed to find the area, where the interpolation
error is the maximum. After this last step the process is iteratively repeated.

In [19] we already observed good results of this method in scenarios where
only one parameter (disruptive workload in our case) is varied. As interpolation
method a linear interpolation can be used. Once the function is derived it is
possible to calculate the integral.

8.3. Measurement Framework

Manual performance measurements of computer systems is an error prone
and time intensive task. The Software Performance Cockpit (SoPeCo) [29]
[30] goal is to automate the performance measurements process. Therefore the
framework provides several adapters to apply the same measurement techniques
to various platforms. As aforementioned the metrics defined in this article are
flexible and might be adapted for any system where resources are shared. How-
ever, implementing the algorithms to adjust the workloads and the calculation
of the metrics is a time intensive task. Therefore, the SoPeCo can be lever-
aged to decouple the measurement logic and metrics from the actual domain
and technical constraints. Thus, the adaption of the presented metrics becomes
easily realizable.

9. RELATED WORK

We divided the related work into two parts. The first is about related work
in the area of the defined isolation metrics. The second covers related work in
the field of performance isolation in MTA.
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9.1. Metrics

The lack of performance guarantees is one of the major obstacles in cloud
computing [3] [5]. As a result different benchmarks and metrics were developed
in the last years. Usually these publications focus on single aspects of cloud
services like databases (e.g., [6]). Others discuss metrics for cloud features like
elasticity (e.g., [20]). However, the most relevant related work we found, comes
from the field of virtualization, which is the main enabling technology for TaaS.

One industrial example is VMmark [13], a benchmark developed by VM Ware.
They define a tile as a set of VMs serving different applications (e.g., mail server
and SPECweb2005). Several tiles are deployed on a virtualized hardware. The
benchmark score is based on a normalized overall throughput of the applica-
tions, a hosting platform could achieve. The total throughput increases with
the number of tiles deployed as long as the system is not saturated. VMWare
publishes the number of tiles in addition to the throughput. However, VMmark
focuses on overall performance of a hosting platform and fails to quantify the
mutual influence, of the different workloads.

Georges et al. [9] developed two metrics to express the efficiency of a virtu-
alized environment. One similar to VMmark. The other, Average Normalized
Reduced Throughput (ANRT), reflects the loss of throughput on a per VM basis,
when additional VMs are deployed. Nevertheless, they do not set the amount
of changed workload in relation to ANRT and use static amount of workload
for the VMs. Thus, these metrics are not feasibly to be used for quantifying
performance isolation.

Koh et al. [16] collected data within an experimental environment to closely
characterize the performance inference of workloads in different VMs. In addi-
tion, a prediction mechanism was implemented to predict the inference of these
workloads. Huber et al. [14] created a feature tree capturing the mutual influ-
ences of different VMs with different resource requirements. This was done in
an automated way.

Nevertheless, Huber and Koh did not extract a single value describing the
systems isolation behavior which might be used within a benchmark. Further-
more, their approaches focus on hardware related resources, only available in
white box scenarios. Consequently the approaches are hard to be used in SaaS
or PaaS scenarios.

Guo et al. [10] defined performance isolation based on their understanding
of a fair system behavior. From their point of view a system should prevent
high performance for one tenant at the cost of another. In cases the SLAs of
the tenants differ, providing different performance is still seen as fair. How-
ever, our definition of fairness was explicitly divided into three different aspects.
Additionally, we see performance isolation as only one part of a fair behav-
ior. Ensuring different SLAs on the system is important and is integrated as
one aspect in our definition of fairness although it does not directly relate to
performance isolation.
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9.2. Performance Isolation in MTAs

The popularity of multi-tenancy arose with the increasing interest in SaaS
applications. Several publications focus on general aspects of MTA, their re-
quirements and potential implementations [4] [10] [24].

Regarding performance, related work is mostly concerned about resource
efficiency. Fehling et al. [8] analyzed the challenges arising from multi-tenant
scenarios and provided a method to place tenants onto locations with different
QoS. Zhang [32] developed a method to place on boarding tenants on a restricted
set of nodes without SLAs violations. A good placement helps to decrease the
interference. However, it cannot completely ensure isolation.

Schroeter et al. [26] present a tenant aware component model which al-
lows automated reconfiguration. This might be leveraged to ensure isolation by
placing a disruptive tenant onto single nodes or by adding resources (elasticity).
Nevertheless, performance isolation is not in the focus of this article and based
on our definition, elasticity does not automatically ensure isolation.

An approach to achieve performance isolation within MTAs was proposed by
Lin et al. [22]. They provide different QoS on a tenant’s base. Additionally, one
test case evaluated the system regarding tenant specific workload changes and
their interference. Two proportional-integral controllers were used to achieve
this. The first one ensures the average overall response time by regulating the
request rate; the second one leveraged different thread priorities to control the
response times for different tenants. However, this approach was built mainly
with the goal to differentiate QoS. Although it provides minimal admission rate
settings for each tenant, the rates used are far below the system’s limit. No
evaluation was done for scenarios where the tenant quotas were sized to work at
a saturated system. Furthermore, compared to the above approach our proposed
isolation methods reduce the complexity of the implementation.

Wei et al. [27] developed a resource isolation mechanism based on a detailed
resource demand estimation for the tenants. The isolation was achieved by
blocking requests from tenants who had negative influence onto the others. The
presented approach differs from ours in several points. First, our approaches
are rather static, without dynamic adaptions to the system state. Second, the
focus of our work is directly coupled with SLAs. Controlling resources does
not guarantee that SLAs are fulfilled and the mapping between SLAs and re-
sources is still an open research question (e.g., Emeakaroha [7]). Furthermore,
our approaches have no additional overhead for the calculation of the resource
demands.

10. CONCLUSION

Cloud environments are becoming widely adopted due to their cost efficient
way of providing resources. However, performance isolation is still a widely open
issue, especially for SaaS offerings. To make different solutions or evolutions
of the same solution comparable one needs a metric to quantify the isolation
capabilities of systems.
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This article presents two different approaches and three basic metrics, for
quantifying performance isolation, decoupled from a concrete scenario and eval-
uated in the context of multi-tenant SaaS applications and a virtualized infras-
tructure. The first one is based on the impact of an increased workload, from
one customer, on the QoS of other customers. This metric has strengths to
express the impact of workload on the QoS which is relevant for capacity plan-
ning. The second group of metrics does reduce the workload of the customers
working within their quota (W,), if the workload of the disruptive customers
increases. This maintains constant QoS for the residual workload of W,. One
subgroup of metrics relies on resulting significant points (e.g., when W, becomes
0), another one on the area under the curve of W,. The results show strengths
of these metrics in ordering a system between the magnitudes of isolated and
non-isolated which makes systems easily comparable.

Furthermore, the article presents different approaches to achieve perfor-
mance isolation within a multi-tenant application. In addition, we realized
four approaches within a simulated environment. The subsequent discussion
showed that either round robin for scheduling requests of different tenants or
blacklisting disruptive tenants is a suitable approach.

The case studies showed how a system provider or developer could use our
metrics to quantify, and thus to improve, various performance isolation ap-
proaches. In the second case study we showed how these metrics can be applied
to help administrators to find a suitable deployment for a system in a virtual
environment. Furthermore, the virtualization based case study allows to reason
for the isolation capabilities of IaaS Clouds.

Our future research goals are targeted at developing advanced isolation ap-
proaches which address all fairness aspects discussed in the beginning of the
article and consider multiple server instances. Furthermore, we will investigate
the implications of different request types on the isolation methods and metrics
in more detail.
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