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4 Kounev et al.

Abstract We define the notion of “self-aware computing” and the relationship of
this term to related terms such as autonomic computing, self-management, and sim-
ilar. The need for a new definition, driven by trends that are only partially addressed
by existing areas of research, is motivated. The semantics of the provided definition
are discussed in detail examining the selected wording and explaining its meaning
to avoid misleading interpretations. The chapter also provides an overview of exist-
ing usage of the terms self-aware computing, respectively self-awareness, in related
past projects and initiatives.

1.1 Introduction

There have been a number of research projects and initiatives in computer science
and engineering that have explicitly engaged with the notion of self-awareness in
computing. Some examples include the SElf-awarE Computing (SEEC) project at
MIT and University of Chicago, the ASCENS and EPiCS FP7 EU Projects, the
FOCAS FET Coordination Action, and the SEAMS Dagstuhl Seminars and work-
shop series. Relevant work can be found in several different areas and communities
including autonomic computing, machine learning and artificial intelligence, multi-
agent systems, self-organizing and self-adaptive systems, situation- and context-
aware systems, reflective computing, model-predictive control, as well as work from
the models@run-time community. Recent reviews of relevant work [21,29,32] have
grouped contributions either by community or thematically, and have found that the
terms themselves often lack precise definitions.

This book adopts the notion of self-aware computing as defined by the Dagstuhl
Seminar 15041 “Model-driven Algorithms and Architectures for Self-Aware Com-
puting Systems”1 held on January 18-23, 2015. The seminar brought together re-
searchers from the respective communities to discuss past and future trends in self-
aware computing and encourage active collaborations and cross-fertilization be-
tween related research efforts. An important first step in this direction was the for-
mulation of a new definition of the term “self-aware computing system” integrating
the different ways in which this term is used in the interdisciplinary research land-
scape. In this chapter, we introduce this new broader notion of “self-aware comput-
ing” and provide an overview of previous projects and initiatives that have explicitly
used this term in the past. By providing a common language, we aim to foster in-
teraction and collaborations between the respective research communities, raising
the awareness about related research efforts and synergies that can be exploited to
advance the state-of-the-art.

1 http://www.dagstuhl.de/15041
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1 The Notion of Self-Aware Computing 5

1.2 Definition of Self-Aware Computing

Definition 1.1. Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their environment
(such as their structure, design, state, possible actions, and run-time behavior)
on an ongoing basis and

2. reason using the models (for example predict, analyze, consider, plan) en-
abling them to act based on their knowledge and reasoning (for example ex-
plore, explain, report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change.

It is assumed that a self-aware system is built by an entity with some higher-level
goals in mind. This entity may be a human (e.g., a developer) or a set of humans
(e.g., a developer team), but it doesn’t necessarily have to be. The entity that built
the system may also be another computing system, at a higher-level, that generates
a new system for a given purpose (e.g., in the form of executable code or models).

The major distinctive characteristics of a self-aware computing system are: i) it
must have the capability to learn models on an ongoing basis, capturing knowledge
relevant to the purpose for which it is built, ii) it must be able to use the models to
reason about this knowledge and act accordingly. Both the learning and reasoning
part are driven by the system’s goals, which may be established by the entity that
built the system, by the end user of the system, or by a combination of the two. The
goals are referred to as higher-level goals to emphasize that they are at a higher-
level of abstraction than the system itself and they are not under its direct control.
Note that the system itself may generate its own goals (at lower levels) as part of its
learning and model-based reasoning processes.

It is assumed that the learned models capture knowledge about the system and its
environment. We note that for some systems the boundary between what is consid-
ered “knowledge about the system itself” and what is considered “knowledge about
the environment” is somewhat blurred. Therefore, we do not require a strict sepa-
ration of the learned models with respect to whether they capture knowledge about
the self or knowledge about the environment in which the self operates. However,
it is expected that both the amount and scope of the acquired knowledge should be
driven by the higher-level goals and what information could possibly be of use to
achieving them.

The term “model” is used here in a general sense and refers to any abstraction
of the system and its environment that captures some knowledge and may be used
for reasoning with respect to the system goals. In his general model theory, Sta-
chowiak [33] identifies the following three features as essential for models: i) map-
ping: a model is always a model of some original (which can be a model itself),
ii) reduction: a model always abstracts from the original by reflecting only a subset
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6 Kounev et al.

of its attributes, and iii) pragmatic: a model only replaces the original for a certain
purpose. We note that “purpose” in this context is understood as potential purpose
or a general utility, allowing for exploratory behavior. Usually, we further distin-
guish descriptive models, which capture the originals as they are, from prescriptive
models, which describe envisioned futures (planned originals). Descriptive models,
in our context, describe a given system aspect that may be relevant with respect to
the system’s higher-level goals. We further distinguish predictive models that sup-
port more complex reasoning such as, for example, predicting the system behavior
under given conditions or predicting the impact of a considered possible adaptation
action. We note that the descriptive, prescriptive and predictive model categories are
not strictly mutually exclusive as both descriptive and prescriptive models can also
be used for predictive analysis and therefore can be predictive models as well.

Some examples of different types of models capturing various aspects that may
be relevant in a given scenario include:

• a descriptive model capturing the system’s resource landscape and software ar-
chitecture and their performance-relevant parameters
• a descriptive model describing the system’s possible adaptation actions (degrees-

of-freedom at run-time)
• a prescriptive model describing how to act in a given situation (e.g., after a

component failure)
• a descriptive model describing the system’s goals and policies (e.g., service

level agreements)
• a predictive statistical regression model capturing the influence of user work-

loads on the system resource consumption and energy efficiency
• a predictive stochastic model allowing to predict the system performance for a

given user workload and resource allocation
• a control theory model used to guide the system behavior

We stress that the term “learn” does imply that some information based on which
models are derived is obtained at system run-time, while also additional static in-
formation built into the system at design-time can be employed as well. Typically,
a combination of both would be expected, for example, a system may be built with
integrated skeleton models whose parameters are estimated using monitoring data
collected at run-time. The model learning is expected to happen on an ongoing basis
during operation meaning that models should be continuously refined and calibrated
in order to better fulfill the purpose for which they are used.

Taken together the learning and reasoning are expected to enable model-based
analysis at run-time that goes beyond applying simple rules or heuristics explicitly
programmed at system design-time. Depending on the considered type of system
and its respective goals, different types of model-based reasoning may be relevant.
For example, in the context of an IT system that has been designed to guarantee
certain performance requirements, the following types of reasoning may be relevant:

• predict the load of an IT system (e.g., number of users or requests sent per unit
of time) in a future time horizon
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1 The Notion of Self-Aware Computing 7

• predict the system performance (e.g., response time) for a given workload and
resource allocation (e.g., number of servers)
• predict the expected impact of a given system adaptation action (e.g., adding or

removing system resources) on the end-to-end system performance
• determine how much resources need to be added to ensure that performance

requirements are satisfied under an increasing system workload
• estimate the system’s energy consumption at runtime and compare it to other

system configurations (e.g., with respect to voltage and frequency) in order to
select an optimal configuration

An example of reasoning in the context of a cyber-physical system for traffic man-
agement may be to analyze the traffic situation in order to provide a recommendation
which route to take for a given target destination. Another example, in the context
of medical implants, is a system that monitors concentrations of substances in the
body to determine if release of medication is needed in case these substances are not
at the right level. Further, a system that monitors signals in the body (those before
an epileptic attack) in order to issue a warning signal / alarm in case patterns are
identified that match the pattern of an attack.

To clarify our intention, we compare the terms learning, reasoning and acting,
employed in our definition, with the weaker alternative terms observing and react-
ing. While observing is a critical prerequisite for learning, learning clearly goes
beyond only observing by accumulating knowledge about the subject of observa-
tion over time and manifesting this knowledge in reflective models. Also reacting
can be the result of reasoning and acting, however, a system that only reacts, but
does not reason, does not have the capability to consider the current situation and
its options before it takes any action. Therefore, according to our definition, a self-
aware computing system is expected to not only observe and react, but also to learn,
reason, and act.

By stressing the role of model learning and model-based reasoning, driven by
higher-level goals, we distinguish the term self-aware computing from related terms
such as autonomic computing or self-adaptive systems. Although, in most cases,
it would be expected that the system uses the learned models to reason and self-
adapt to changes in the environment, we note that self-adaptation (often referred to
as self-expression in this context) is not strictly required. In this way, we accom-
modate cases where all adaptation actions must be supervised and authorized by
an entity outside of the system, such as the entity that built the system or a human
system user. For example, in mission-critical cognitive computing applications, sys-
tems may provide recommendations on how to act, however, the final decision on
what specific action to take is often made by a human operator.

1.3 Previous Initiatives in Self-Aware Computing

As mentioned earlier, there have been a number of research projects and initiatives
that have explicitly engaged with the notion of self-awareness in computing. Here,
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8 Kounev et al.

we provide an overview of some of the most significant efforts, perspectives and key
contributions. In the next chapter, we discuss previous work in self-aware computing
in more detail, contextualising the perspectives taken in this book.

1.3.1 Self-awareness in Artificial Intelligence

Self-awareness has long been of interest in the artificial intelligence (AI) commu-
nity. In particular, studies have focused on higher levels of self-awareness such as
meta-self-awareness: a system’s awareness of its own self-awareness. This con-
cept overlaps significantly with meta-cognition, defined by Metcalfe and Shima-
mura [22] as knowing about knowing. Integration of AI technologies into systems
that, as a result of the integration, exhibit self-awareness of this meta-cognitive form,
has been on DARPA’s research agenda for some time [27]. Indeed, architectural is-
sues in building such integrated systems which then exhibit self-awareness were the
subject of a DARPA workshop [4] in 2004.

One example of the consideration of self-awareness in the artificial intelligence
community is the algorithm selection problem, where a system can reason about its
own reasoning, that is, it possesses meta-cognition, and can select an appropriate
reasoning method according to its situation [8]. In autonomous robotics, it has been
argued that self-awareness is not only beneficial, but essential for safety and robot
ethics [29].

Furthermore, self-awareness is not only a property that can be observed at an in-
dividual level, but also something that can arise in a collective intelligence context.
For example, a group of robots with simple behavioural rules and local interactions
may arrive at an emergent awareness of the properties of the group, including for
example its history and interactions with the world, though this awareness is dis-
tributed across the individual units [23].

1.3.2 Engineering Self-Aware Systems

While meta-cognition or meta-self-awareness are concerned with higher reason-
ing abilities, and are of particular interest in artificial intelligence, efforts exist at
a more fundamental level to engineer systems that explicitly consider knowledge
about themselves. Agarwal et al. [1, 2] put forward a case for a paradigm shift in
system design practice. The idea here is to move from a procedural design method-
ology wherein the behaviour of the computing system is pre-programmed or consid-
ered beforehand (i.e., at design time), towards a self-aware system where this is not
required and the system adapts to its context at run-time. One aim is to avoid or re-
duce the need to consider the availability of resources and various other constraints
beforehand, instead intelligently trading-off available resources for performance at
run-time.
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1 The Notion of Self-Aware Computing 9

For example, the programming effort required to build a system to satisfy care-
fully considered specifications could be reduced if there are resources at hand for
the system to use in an automated manner in order to optimise its own behaviour,
such that it achieves a goal given current constraints. A self-aware computer is thus
given a goal and it automatically works to achieve the goal, for example with the
minimal amount of energy or other resources. In order to facilitate the engineering
of such systems, Hoffman et al. have developed a general and extensible framework
for self-aware computing [14], which integrates both control theory and machine
learning methods.

Self-awareness has also been proposed as a way to tackle the increasing complex-
ity and dynamics associated with modern service-based IT systems. Kounev [19]
proposes that self-aware software services, which have built-in models of their
own architecture and dynamic aspects of the system’s interactions with its environ-
ment, can improve the utilisation of resources, while continuing to satisfy quality
of service requirements. Further, Kounev et al. [18] highlight self-reflection, self-
prediction and self-adaptation as key characteristics of self-aware service-based sys-
tems, and propose that methodologies for the systematic engineering of self-aware
systems are needed.

Importantly, for a system to be self-aware it is not required to be highly complex;
indeed the scalability of the concept means that self-awareness has also been con-
sidered in much simpler systems. An example of this is so called cognitive radio
devices [11], which monitor and control their own capabilities and also communi-
cate with other radio devices to monitor theirs. This enables them to improve the
efficiency of communication by negotiating changes in parameter settings [34]. We
will explore a wide range of self-awareness concepts in the following chapter, where
both minimal examples such as this, and more “full stack” self-aware systems will
be compared.

In order to design self-aware systems, various enabling technologies have been
proposed in the form of application heartbeats [13, 31], for establishing a standard
way of setting application goals and evaluating the performance of the system whilst
trying to achieve the goals, and the use of heuristic and machine learning techniques
for adaptation and decision making on the part of the system. An example of the
latter is the use of reinforcement learning in order to optimise a scheduling policy
for system components to gain access to the critical section within applications [10].

1.3.3 Self-Awareness in Pervasive Computing

The Pervasive Computing community is also interested in self-awareness, due to the
typically mobile characteristics of agents, whose context continuously changes. As
such, they need to synthesise knowledge based on their own state and their environ-
ment, in order to adapt to changes. Often monitoring and adaptation are studied in
the context of human-computer interaction, since the interest is on how such sys-
tems self-adapt in order to be useful to humans in different situations (e.g., “going
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10 Kounev et al.

for a run”). Ye et al. [35] discuss issues and challenges involved in assimilating
sensor data from a myriad of sources in order for pervasive computing systems to
identify situations that human users may be in. They show a shift in techniques over
time from logic based ones towards those that are learning based, as the sensor
data has become more complex, erroneous and uncertain, with sensors becoming
ever more pervasive. The learning of mappings between sensor data and the situa-
tion, given current model building techniques, poses challenges such as the lack of
training data, which can lead to low performing models. This has been tackled by
considering unsupervised learning [5,12] and web mining [28], allowing for extract-
ing common sense knowledge. Another line of research within pervasive computing
concerns constructing simulation models of contexts, for applications to be tested
in [15].

1.3.4 Systems with Decentralised Self-Awareness

Self-awareness research is not limited to an entity or system in itself being able to
monitor and reason about itself, but also describes emergent phenomena [23] in col-
lective systems. In natural systems like ant colonies and the immune system, the
awareness of the global state is distributed across the elementary units that make
up the system (e.g., ants and their trails) and is statistical in nature. This helps the
system stay robust at the global level in the face of disturbances. In essence, the
system as a whole is aware enough of itself to understand when the globally stable
state gets disturbed, and engages the elementary units to collect information locally,
which builds up in a statistical fashion, helping the elementary units use this sta-
tistical information to get the system back into the globally stable state. Mitchell
proposed [23] that such systems can provide guidelines for designing artificial in-
telligence systems with decentralised architectures, for example robotic swarms,
which exhibit apparent self-awareness.

One example of where such a system has been developed is within the SWARM-
BOTS project [24]. One of the objectives of the SWARM-BOTS project was the
design and implementation of a novel mobile robot, called an s-bot. While s-bots’
individual capabilities within an environment are physically limited (much like in-
dividual insects in the natural world), through local communication they are able to
self-assemble [9] into larger structures, known as swarm-bots, which are capable of
achieving goals not reachable by individual s-bots. Examples of such goals might
include navigation over challenging terrain or the transportation of large objects;
in all cases, these tasks cannot be solved without the coordinated movements of
individual s-bots.

In this context, it is important to consider the relationship between individual
systems’ self-awareness, the self-awareness of neighbouring systems, and the self-
awareness of the collective as a whole. Zambonelli et al. [36] discuss some of
the issues involved here, considering aspects of self-awareness relating to the abil-
ity of components to recognise situations, and changes in situations (both inter-
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1 The Notion of Self-Aware Computing 11

nal and external) in a collective system. This self-awareness is then used to drive
self-expression, including adaptation to the new situation. Importantly, this self-
expression also occurs at the level of the collective.

Other research challenges within the area of self-assembly, or structural self-
organisation, include better understanding how system structures, rather than indi-
vidual behaviours, can be adapted over time with respect to the system’s distributed
sense of self-concept [17].

1.3.5 Computational Self-Awareness

Lewis et al. [20] propose that human self-awareness can serve as a source of in-
spiration for a new notion of computational self-awareness, and associated self-
expression, behaviour based on self-awareness. These comprise various capabilities,
encapsulated as different “levels” of self-awareness, based on cognitive psycholo-
gist Ulric Neisser’s [25] broad set of levels of human self-awareness. The intention
is to explicitly account for a full spectrum of existing and future systems, includ-
ing simple systems which sense and learn about themselves, as well as what might
typically be considered highly advanced artificial intelligence. The levels of com-
putational self-awareness provide one axis on which to compare how self-aware a
computing system is. Lewis et al. argue that increased self-awareness (in terms of
the levels) can improve a system’s ability to manage complex trade-offs in changing
conditions.

They introduce a general framework for the description of the self-awareness
properties of computing systems, which includes a reference architecture and a
series of derived architectural patterns. These can be used by engineers to deter-
mine whether, how, and to what extent to build self-awareness capabilities into a
system. The framework proposed by Lewis et al. has been used to consider the
self-awareness properties of such diverse systems as distributed smart cameras [30],
heterogeneous reconfigurable multi-core systems [3], and fault tolerance in avionic
systems [26].

Lewis et al.’s notion of computational self-awareness [20] intentionally includes
many existing and prior systems, which have not been previously described as self-
aware. Nevertheless these systems use capabilities, which fulfil some self-awareness
aspect, often due to their benefit in a complex environment.

1.4 A Concept of a Self-Aware Learning and Reasoning Loop

In autonomic computing, the system behavior is typically represented as a control
loop. To structure the principle of operation exhibited by autonomic managers, [16]
defined a reference architecture based on a control loop, typically referred to as the
MAPE-K loop. This reference architecture has the advantage that it offers a clear
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12 Kounev et al.

way to identify and classify areas of particular focus and thus, it is used by many
researchers to communicate the architectural concepts of autonomic systems.

In the following, we contrast the MAPE-K loop used in autonomic computing to
the concept of self-aware computing as defined above. To this end, we first briefly
describe the MAPE-K loop. The acronym MAPE-K reflects the five main con-
stituent phases of autonomic loops, i.e., MONITOR, ANALYZE, PLAN, EXECUTE,
and KNOWLEDGE, as depicted in Figure 1.1. Basically, the MONITOR phase col-
lects information from the sensors provided by the managed artifacts and its context.
The ANALYZE phase uses the data of the MONITOR phase to assess the situation
and determine any anomalies or problems. The PLAN phase generates an adaptation
plan to solve a detected problem. The EXECUTE phase finally applies the generated
adaptation plan on the actual system. A cross-cutting aspect shared among all phases
of the loop is the KNOWLEDGE about the system and its context, capturing aspects
like the software architecture, execution environment, and hardware infrastructure
on which the system is running.

Autonomic Manager

Monitor

Plan

Execute

Analyze

Knowledge

Managed System

Sensors Effectors

Fig. 1.1: MAPE-K autonomic control loop [16].

The software engineering community uses a similar feedback loop concept, dis-
tinguishing the four phases COLLECT, ANALYZE, DECIDE, and ACT [7]. Concep-
tually, the behavior of these phases is similar to the phases in the MAPE-K loop,
however, this concept does not explicitly consider the KNOWLEDGE part. More de-
tails about the use of feedback loops in self-adaptive systems, such as the use of
multiple, multi-level, positive, or negative feedback loops, are given by [6].

Although the notion of self-aware computing, as defined in this book, has some
common aspects with the concept of a feedback loop, such as MAPE-K, there
are some important differences. While the MONITOR and ANALYZE phases of
MAPE-K imply that information is gathered and analyzed continually at run-time,
this does not necessarily imply that the acquired information is abstracted and used
to learn models on an ongoing basis during operation. Similarly, while taken to-
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1 The Notion of Self-Aware Computing 13

gether the ANALYZE and PLAN phases can be compared to the model-based learn-
ing and reasoning process in self-aware computing, the latter requires that the type
of analysis conducted at run-time based on the learned models goes beyond apply-
ing simple rules or heuristics explicitly programmed at system design-time. Finally,
the EXECUTE phase in MAPE-K implies that the system self-adapts at run-time.
In contrast, as mentioned earlier, self-adaptation (or self-expression) is not strictly
required in self-aware computing. A self-aware computing system may provide rec-
ommendations on how to act, however, the final decision on what specific action to
take may be left to a human operator, for example, as typical for many cognitive
computing applications.

Figure 1.2 illustrates our concept of a model-based learning and reasoning loop
(LRA-M loop) capturing the main activities in a self-aware computing system. The
figure shows the self and its interfaces to the environment in which it is operating.
The activities within the self are driven by its goals and its observations collected
as empirical data about relevant aspects of the system and its environment, its users,
and so on. The empirical data is used as a basis for the ongoing LEARNING pro-
cess, as part of which observations are abstracted into models capturing potentially
relevant aspects of the system and its environment (such as their structure, design,
state, possible actions, and run-time behavior). The learned models form the sys-
tem’s knowledge base (corresponding to the KNOWLEDGE part in the MAPE-K
loop), which provides the basis for the system’s REASONING process. The reason-
ing process may trigger ACTIONS affecting both the behavior of the system itself
(self-adaptation) as well as possibly impacting the environment. The actions may
also affect the system’s learning and reasoning activities themselves, for example,
by focussing the learning process on selected aspects or observations. We note here
that although we explicitly distinguish the learning process from the reasoning pro-
cess, it is not strictly required that in a self-aware computing system these processes
are separated, since in many cases the two activities may be interweaved.

1.5 Conclusion

The two major distinctive characteristics of a self-aware computing system are: i) it
must have the capability to learn models on an ongoing basis, capturing knowledge
relevant to the purpose for which it is built, ii) it must be able to use the models to
reason about this knowledge and act accordingly. The term “model” refers to any
abstraction of the system and its environment that captures some knowledge and
may be used for reasoning with respect to the system goals. Both the learning and
reasoning part are driven by the system’s goals, which may be established by the en-
tity that built the system, by the end user of the system, or by a combination of the
two. Taken together the learning and reasoning are expected to enable model-based
analysis at run-time that goes beyond applying simple rules or heuristics explicitly
programmed at system design-time. As discussed in this introductory chapter, the
notion of “self-aware computing” is strongly related to existing notions like auto-
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14 Kounev et al.

Goals

Phenomena
(environment, other systems, humans,...)

Empirical Observations

Models
(self, environment, goals,...)

Learn Act

Actions

Reason

SELF

Fig. 1.2: Self-aware learning and reasoning loop: LRA-M loop.

nomic computing, self-management, and similar. The novelty of the term is that it
explicitly stresses model learning and reasoning as ongoing processes built into a
system’s design. Thus, the role of models capturing static and dynamic knowledge
about the system, as well as the use of model-driven algorithms and architectures as
a basis for reasoning, are central to the vision of self-aware computing systems.
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