
Towards self-aware performance and resource management in modern
service-oriented systems

Samuel Kounev, Fabian Brosig, Nikolaus Huber and Ralf Reussner
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

{kounev,fabian.brosig,nikolaus.huber,reussner}@kit.edu

Abstract—Modern service-oriented systems have increas-
ingly complex loosely-coupled architectures that often exhibit
poor performance and resource efficiency and have high
operating costs. This is due to the inability to predict at run-
time the effect of dynamic changes in the system environ-
ment (e.g., varying service workloads) and adapt the system
configuration accordingly. In this paper, we describe a long-
term vision and approach for designing systems with built-in
self-aware performance and resource management capabilities.
We advocate the use of architecture-level performance models
extracted dynamically from the evolving system configuration
and maintained automatically during operation. The models
will be exploited at run-time to adapt the system to changes in
the environment ensuring that resources are utilized efficiently
and performance requirements are continuously satisfied.

I. INTRODUCTION

In today’s data centers, IT services and applications based
on the Service-Oriented Architecture (SOA) paradigm are
typically hosted on dedicated server machines with over-
provisioned capacity to ensure adequate performance at peak
usage times. Driven by the pressure to improve energy
efficiency and reduce operating costs, enterprises are in-
creasingly adopting server virtualization and consolidation
technologies. The adoption of virtualization, however, comes
at the cost of increased system complexity and dynamicity.
The increased complexity is caused by the introduction of
virtual resources and the resulting gap between logical and
physical resource allocations. The increased dynamicity is
caused by the lack of direct control over the underlying
physical hardware and by the complex interactions between
the applications and workloads sharing the physical infras-
tructure. The inability to predict such interactions and adapt
the system accordingly makes it hard to provide quality-of-
service guarantees in terms of performance and availability.
Service providers are often faced with questions such as:
What performance would a new service deployed on the
virtualized infrastructure exhibit and how much resources
should be allocated to it? What would be the effect of
migrating a service from one virtual machine (VM) to
another? How should the system configuration be adapted to
avoid performance problems arising from changing customer
workloads? Answering such questions requires the ability
to predict at run-time how the performance of running
services would be affected if the system configuration or the

This work was funded by the German Research Foundation (DFG) under
grant No. KO 3445/6-1.

workload changes. We refer to this as online performance
prediction. Predicting the performance of a SOA applica-
tion, however, even in an offline scenario is a challenging
task. Consider the architecture of a typical modern service-
oriented system as depicted in Figure 1. For a given set
of hardware and software platforms at each layer of the
architecture, Figure 1 shows some examples of the degrees
of freedom at each layer and the factors that may affect the
performance of SOA services. Predicting the performance
of a service requires taking these factors into account as
well as the dependencies among them. Therefore, a detailed
performance model capturing the performance-relevant as-
pects of both the software architecture and the multi-layered
execution environment is needed.

Service A Service CService B

ComponentComponent

Component Component

Component

Hypervisor

Physical Machine

Virtual

Machine

Guest OS

Java VM

App Server

Components

Virtual

Machine

Guest OS

Java VM

App Server

Components

Java VM

App Server

Components

Hypervisor

Physical Machine

Virtual

Machine

Guest OS

Virtual

Machine

Guest OS

Java VM

App Server

Components Database

Server

S
e

rv
ic

e

W
o

rk
fl

o
w

S
o

ft
w

a
re

A
rc

h
it

e
c

tu
re

E
x

e
c

u
ti

o
n

E
n

v
ir

o
n

m
e

n
t

System workload and usage profile

· Number and type of clients

· Input parameters and input data

· Data formats used

· Service workflow

Software architecture

· Connections between components

· Flow of control and data

· Component resource demands

· Component usage profiles

Execution environment

· Number of component instances

· Server execution threads

· Amount of Java heap memory

· Size of database connection pools

Virtualization layer

· Physical resources allocated to VMs

 - number of physical CPUs

 - amount of physical memory

 - secondary storage devices

Figure 1. Modern Service-Oriented System

II. PERFORMANCE MODELS

We distinguish between descriptive architecture-level per-
formance models and predictive performance models. The
former describe performance-relevant aspects of software
architectures and execution environments (e.g., UML mod-
els augmented with performance annotations). The latter
capture the temporal system behavior and can be used for
performance prediction by means of analytical or simulation
techniques (e.g., queueing networks). Over the past decade, a
number of architecture-level performance meta-models have
been developed by the performance engineering community,
the most prominent examples being the UML SPT and
MARTE profiles [1]. Other proposed meta-models include

CSM [2], PCM [3] and KLAPER [4]. Architecture-level
performance models are built during system development
and are used at design and deployment time to evaluate
alternative system designs and/or predict the system perfor-
mance for capacity planning purposes. While a number of
model-based performance prediction techniques exist, most
of them suffer from two significant drawbacks which render
them impractical for use at run-time: i) models are expensive
to build and provide limited support for reusability and
customization, ii) models are static and maintaining them
manually during operation is prohibitively expensive [5].

An attempt to address the first issue was made by re-
cent efforts in the area of component-based performance
engineering [6]. The latter deals with techniques and tools
for building performance models of software components
that are parameterized to explicitly capture the influences
of the component execution context. While techniques for
component-based performance engineering have contributed
a lot to facilitate model reusability, there is still much work
to be done on further parameterizing performance models
before they can be used for online performance prediction.
In particular, current techniques do not provide means to
model the layers of the component execution environment
(e.g., the virtualization layer) explicitly [7]. The performance
influences of the individual layers, the dependencies among
them and the resource allocations at each layer should be
captured as part of the models.

As to the second issue indicated above, the heart of the
problem is in the fact that architecture-level performance
models are normally designed for offline use and as such
they do not capture dynamic aspects of the environment.
In a virtualized SOA environment changes are common,
e.g., new services are deployed on the virtualized infrastruc-
ture, service workloads change, VMs are migrated between
servers. Given the frequency of such changes, the amount
of effort involved in maintaining performance models is
prohibitive and therefore in practice such models are rarely
used after deployment. Even though some techniques have
been proposed to automatically track predictive performance
models at run-time (e.g., [8]–[10]), such techniques abstract
the system at a very high level without taking into account
its software architecture and configuration.

III. VISION AND APPROACH

We now present a long-term vision and approach for
designing systems with built-in online performance pre-
diction capabilities enabling self-aware performance and
resource management. The idea is to make architecture-
level performance models (e.g., PCM) usable at run-time
by enhancing them to capture dynamic aspects of the en-
vironment and making them an integral part of the system.
To achieve this, models should be integrated into the system
components they represent and execution platforms should
be enhanced with functionality to track dynamic changes in

the environment and automatically maintain models during
operation. The assumption is that the initial models are either
built manually during system design or they are extracted
at run-time based on online monitoring and measurement
data [11]. We will refer to the new models as dynamic
service performance models since they will be continuously
updated, refined and calibrated during operation based on
online monitoring and measurement data.

The new models should be designed to encapsulate all
information, both static and dynamic, relevant to predicting
a service’s performance on-the-fly. This includes information
about the service’s software architecture, its workload and
its execution environment. Current architecture-level perfor-
mance models for component-based architectures, surveyed
in [6] provide a foundation to build on. The models will be
used to answer performance-related queries arising during
operation such as the ones mentioned in Sect. I. We refer to
such queries as online performance queries.

Dynamic

Service Models

Model

Composition

Model-To-Model

Transformation

Online Performance Query

Model

Analysis

Architecture-level

Performance Model

Dynamic

Service Models

Query Results

Performance

Predictions

Predictive

Performance Model

Figure 2. Online Performance Prediction Process

Figure 2 illustrates the process that will be followed in
order to provide an answer to a query. First, the models
of all involved services will be retrieved and combined
by means of model composition techniques into a single
architecture-level performance model encapsulating all in-
formation relevant to answering the performance query. This
model will then be transformed into a predictive perfor-
mance model by means of an automatic model-to-model
transformation. Existing model-to-model transformations for
static architecture-level performance models will be used as
a basis, e.g., [2]–[4]. The target predictive model type and
level of abstraction as well as the solution technique will be
determined on-the-fly based on the required accuracy and
the time available for the analysis. Different model types
(layered queueing networks, queueing Petri nets and general-
purpose simulation models) and model solution techniques
(exact analytical techniques, numerical approximation tech-
niques, simulation and bounding techniques) should be
exploited here in order to provide flexibility in trading-off

between prediction accuracy and analysis overhead.
The ability to answer online performance queries during

operation will provide the basis for implementing techniques
for self-aware performance and resource management. Such
techniques will be triggered automatically during operation
in response to observed or forecast changes in service
workloads. The goal will be to proactively adapt the system
to such changes in order to avoid anticipated performance
problems or inefficient resource usage. The adaptation will
be performed in an autonomic fashion by considering a set of
possible system reconfiguration scenarios (e.g, changing VM
placement and/or resource allocations) and exploiting the
online performance query mechanism to predict the effect
of such reconfigurations before making a decision. Figure 3
illustrates the online reconfiguration process. The latter is
based on the generic model of a control loop from [12]
which we have extended to integrate the use of the online
performance query mechanism. In addition to the main
control loop, two additional loops are running in the back-
ground, one for continuously refining and calibrating online
models and one for forecasting the workload evolution.

 Analyze Act

 Decide

Anticipate/Detect

Problem

Generate

Reconfiguration

Scenario

Predict

Reconfiguration

Effect(s)

Analyze Query

Results

Generate

Query

Problem

resolved

Problem persists

* SLA Violations

* Inefficient Resource

 Usage

Reconfigure

System

Forecast

Workload

 Collect

Monitor

System and

Workload

* Service Workloads

* Resource Utilization

* SLAs

Online

Performance

Prediction

Refine/Calibrate

Model(s)

Figure 3. Online Reconfiguration Process

While model-based self-adaptation techniques have been
studied in the software engineering and autonomic comput-
ing communities (see e.g. [8], [12]–[14]), the use of dynamic
architecture-level performance models at run-time for online
performance and resource management is a new research
direction. The described approach raises several big chal-
lenges that will be subject of long-term fundamental research
(the references below provide some further motivation and
initial steps in the respective direction):

◦ Abstractions for modeling performance-relevant aspects
of services in dynamic virtualized environments. Indi-
vidual layers of the software architecture and execution

environment [7], context dependencies and dynamic
system parameters should be modeled explicitly.

◦ Automatic online model extraction, maintenance, re-
finement and calibration during operation [11], [15].
Models should be tightly coupled with the system
components and maintained automatically at run-time.

◦ Efficient resolution of service context dependencies
including dependencies between service input param-
eters, resource demands, invoked third-party services
and control flow of underlying components [16].

◦ Automatic generation of predictive performance models
for online performance prediction [15]. The model type
and level of abstraction as well as the model solution
technique should be determined automatically.

◦ Efficient heuristics exploiting the online performance
prediction techniques for dynamic system reconfigura-
tion and utility-based optimization [17].

◦ Techniques for self-aware performance and resource
management guaranteeing SLAs while improving en-
ergy efficiency and lowering costs [12].

IV. INITIAL STEPS

Initial steps towards the realization of the described long-
term vision have been started as part of a new five-year
research project [18] funded by the German Research Foun-
dation (DFG). The project, named after René Descartes,
aims to develop a set of novel techniques for self-aware
performance and resource management in modern service-
oriented systems. Self-awareness in this context is meant
in the sense that systems should be aware of changes
that occur in their environment (changing workloads or
resource allocations) and should be able to predict the
effect of such changes on their performance (“thought is
what happens in me such that I am immediately conscious
of it” – René Descartes). Furthermore, systems should
automatically adapt as the environment evolves in order to
ensure that infrastructure resources are utilized efficiently
and performance requirements are continuously satisfied
(“for it is not enough to have a good mind: one must use
it well” – René Descartes). The idea is to use dynamic
performance models that will serve as a “mind” to the
system controlling its behavior, i.e., resource allocations
and scheduling decisions. In analogy to Descartes’ dualism
principle (“the mind controls the body, but the body can
also influence the mind”), the link between the performance
models and their respective system components should be
bidirectional. In the rest of this section, we describe two
initial case studies that were carried out before the initiation
of the Descartes Project as a preliminary proof-of-concept
of the proposed research directions.

In the first case study, we studied a complex Java EE
application showing how detailed architecture-level perfor-
mance models can be extracted automatically at run-time
based on online monitoring data [11]. The Java EE appli-
cation we studied was a beta version of the new SPEC-

jEnterprise2010 standard benchmark deployed on Oracle
WebLogic Server (WLS) with Oracle Database 11g. We
employed the WebLogic Diagnostics Framework (WLDF)
as a monitoring and instrumentation tool and the Palladio
Component Model (PCM) [3] as a performance meta-model.

The extraction method we implemented has three main
steps: i) the extraction of the effective application architec-
ture, ii) the extraction of the performance-relevant control
flow of components and iii) the extraction of resource
demands. The extraction is based on trace data reflecting the
observed call paths during execution as well as the measured
response times and resource utilization. To validate the
extraction method, we compared predictions derived from
the extracted PCM models with measurements on the real
system. We considered a number of different scenarios,
on the one hand, varying the operation mix and throughput
level under which the PCM models were extracted, and on
the other hand, varying the operation mix and throughput
level for which performance predictions were made. In all
cases, the prediction error was between 20% and 30% [11].
Even though the current version of the extraction method is
not 100% automated, the case study demonstrated that the
existing gap between low-level monitoring data and high-
level performance models can be closed.

As a second preliminary proof-of-concept demonstrating
the benefits of online performance prediction, we conducted
a case study of a SOA application running in a service-
oriented Grid computing environment [19]. The latter was
implemented using the Globus Toolkit middleware and the
Xen virtualization platform. We augmented the Grid middle-
ware with an online performance prediction component that
can be called at run-time to predict the Grid performance for
a given resource allocation and load-balancing strategy. The
performance prediction was based on hierarchical queueing
Petri net models dynamically composed at run-time to
reflect the system configuration and workload. Based on the
online performance prediction mechanism, we developed a
methodology for designing autonomic QoS-aware resource
managers that have the capability to predict the performance
of the Grid components they manage and allocate resources
in such a way that SLAs are honored. We conducted an ex-
tensive performance evaluation of our framework consider-
ing a number of different scenarios each focusing on selected
aspects [19]. In all scenarios, the system was able to cope
with variations in the service workloads and nearly all client
SLAs were fulfilled. The results were very encouraging and
demonstrated the benefits of online performance models for
self-aware performance and resource management.

V. CONCLUSION

Architecture-level performance models provide a pow-
erful tool for performance prediction, however, to make
it possible to exploit this at run-time, models need to be
integrated into the system components they represent and

made to evolve together with the system environment. In this
paper, we presented a vision and research agenda aiming to
achieve this goal by developing novel techniques for building
dynamic service performance models tightly coupled with
the system components and automatically maintained during
operation. The new models will provide the basis for imple-
menting intelligent techniques for self-aware performance
and resource management. We presented a roadmap to
realize this vision and discussed two preliminary case studies
conducted as initial steps in this direction. The proposed
research direction promises a number of benefits such as
better quality-of-service, lower operating costs and improved
energy efficiency.

REFERENCES
[1] Object Management Group (OMG), “UML SPT, v1.1 (Jan-

uary 2005) and UML MARTE (May 2006).”
[2] D. Petriu and M. Woodside, “An intermediate metamodel

with scenarios and resources for generating performance
models from UML designs,” Softw. and Syst. Modeling, vol. 6,
no. 2, pp. 163–184, 2007.

[3] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Syst. and Softw., vol. 82, pp. 3–22, 2009.

[4] V. Grassi, R. Mirandola, and A. Sabetta, “Filling the
gap between design and performance/reliability models of
component-based systems: A model-driven approach,” Jour.
of Syst. and Softw., vol. 80, no. 4, pp. 528–558, 2007.

[5] J. L. Hellerstein, “Engineering autonomic systems,” in Proc.
of the 6th Intl. Conf. on Autonomic Computing (ICAC). New
York, NY, USA: ACM, 2009, pp. 75–76.

[6] H. Koziolek, “Performance evaluation of component-based
software systems: A survey,” Perform. Eval., 2009, in Press.

[7] M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner,
“Modelling layered component execution environments for
performance prediction,” in CBSE’09, 2009.

[8] M. Woodside, T. Zheng, and M. Litoiu, “Service System
Resource Management Based on a Tracked Layered Perfor-
mance Model,” in ICAC’06, 2006, pp. 175–184.

[9] D. Menascé, H. Ruan, and H. Gomaa, “QoS management in
service-oriented architectures,” Perform. Eval., vol. 64, no.
7-8, pp. 646–663, 2007.

[10] T. Israr, M. Woodside, and G. Franks, “Interaction tree
algorithms to extract effective architecture and layered perfor-
mance models from traces,” Journal of Sys. and Soft., vol. 80,
no. 4, pp. 474–492, 2007.

[11] F. Brosig, S. Kounev, and K. Krogmann, “Automated Extrac-
tion of Palladio Component Models from Running Enterprise
Java Applications,” in Proc. of ROSSA-2009. ACM, 2009.

[12] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, “Software Engineering for Self-Adaptive Systems:
A Research Roadmap,” in Software Engineering for Self-
Adaptive Systems, LNCS 5525, 2009, pp. 1–26.

[13] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker, “Model-driven architectural monitoring and adap-
tation for autonomic systems,” in ICAC’09, 2009, pp. 67–68.

[14] F. Irmert, T. Fischer, and K. Meyer-Wegener, “Runtime adap-
tation in a service-oriented component model,” in SEAMS’08,
2008, pp. 97–104.

[15] M. Woodside, G. Franks, and D. C. Petriu, “The future of
software performance engineering,” in FOSE’07, 2007.

[16] H. Koziolek, “Parameter Dependencies for Reusable Per-
formance Specifications of Software Components,” Ph.D.
dissertation, University of Oldenburg, 2008.

[17] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malex, and J. P.
Sousa, “A framework for utility-based service oriented design
in SASSY,” in WOSP/SIPEW’10, 2010, pp. 27–36.

[18] “Descartes Project,” http://www.descartes-research.net, 2010.
[19] R. Nou, S. Kounev, F. Julia, and J. Torres, “Autonomic

QoS control in enterprise Grid environments using online
simulation,” Jour. of Syst. and Softw., vol. 82, 2009.

