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Abstract. Nowadays, virtualization solutions are gaining increasing im-
portance. By enabling the sharing of physical resources, thus making
resource usage more efficient, they promise energy and cost savings. Ad-
ditionally, virtualization is the key enabling technology for Cloud Com-
puting and server consolidation. However, the effects of sharing resources
on system performance are not yet well-understood. This makes perfor-
mance prediction and performance management of services deployed in
such dynamic systems very challenging. Because of the large variety of
virtualization solutions, a generic approach to predict the performance
influences of virtualization platforms is highly desirable. In this paper, we
present a hierarchical model capturing the major performance-relevant
factors of virtualization platforms. We then propose a general method-
ology to quantify the influence of the identified factors based on an em-
pirical approach using benchmarks. Finally, we present a case study of
Citrix XenServer 5.5, a state-of-the-art virtualization platform.
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1 Introduction

In recent years, advances in virtualization technologies promise cost and energy
savings for enterprise data centers. Server consolidation, i.e., running multiple
virtual servers on a single shared infrastructure, increases resource utilization,
centralizes administration, and introduces flexibility. Virtualization allows shar-
ing server resources on-demand, thus creating new business opportunities by
providing a new delivery model for a broad set of enterprise services. Therefore,
it can be considered as a key technology enabler for Cloud Computing. Accord-
ing to the International Data Corporation (IDC), 18% of all new servers shipped
in the fourth quarter of 2009 were virtualized, an increase from 15% compared
to 2008 [6]. The server virtualization market is expected to grow 30% a year
through 2013 [7]. However, the adoption of server virtualization comes at the



cost of increased system complexity and dynamics. The increased complexity is
caused by the introduction of virtual resources and the resulting gap between
logical and physical resource allocations. The increased dynamics is caused by
the lack of direct control over the underlying physical hardware and by the com-
plex interactions between the applications and workloads sharing the physical
infrastructure introducing new challenges in systems management.

Hosting enterprise services requires an efficient performance management at
the application level. Service-Level Agreements (SLAs), e.g., performance guar-
antees such as service response time objectives, have to be respected. On the
other hand, it is important to use server resources efficiently in order to save
administration and energy costs. Thus, service providers are faced with ques-
tions such as: What performance would a new service deployed on the virtual-
ized infrastructure exhibit and how much resources should be allocated to it?
How should the system configuration be adapted to avoid performance problems
arising from changing customer workloads? Answering such questions for dis-
tributed, non-virtualized execution environments is already a complex task [11].
In virtualized environments, this task is complicated by the sharing of resources.
Moreover, since changes in the usage profiles of services may affect the entire
infrastructure, capacity planning has to be performed continuously during op-
eration. Proactive performance management, i.e., avoiding penalties by acting
before performance SLAs are violated, requires predictions of the application-
level performance under varying service workloads. Given that computation de-
tails are abstracted by an increasingly deep virtualization layer, the following
research questions arise: i) What is the performance overhead when virtualizing
execution environments? ii) Which are the most relevant factors that affect the
performance of a virtual machine? iii) How can the performance influence of the
identified factors be quantified?

Related work concerning the characterization of virtualization platforms fo-
cuses mainly on comparisons of specific virtualization solutions and techniques,
e.g., container-based virtualization versus full virtualization [3, 12, 16, 14]. Other
work like [2, 17, 8] investigates core and cache contention effects, but the focus
there is on reducing the virtualization overhead by introducing shared caches. To
the best of our knowledge, an explicit characterization of the major performance-
relevant factors of virtualization platforms does not exist.

In this paper, we classify and evaluate the major factors that affect the per-
formance of virtualization platforms. We capture those factors that have to be
considered for performance prediction at the application level, i.e., which have
an impact on the application-level performance. We abstract from all possible
configuration options of the currently available virtualization solutions with the
goal to provide a compact hierarchical model capturing the most important
performance-relevant factors and their dependencies. In addition, we propose
a general methodology to quantify the performance influence of the identified
factors. The methodology is based on an empirical approach using benchmarks
executed in an automated manner in several predefined configuration scenarios.
We applied the methodology to Citrix XenServer 5.5, the most popular freely



available and state-of-the-art solution [6]. The conducted experiments involved a
series of benchmark runs on different hardware platforms. We evaluated the over-
head of full virtualization for CPU-intensive and memory-intensive workloads,
respectively. Following this, we evaluated how different core affinity properties
affect the performance of individual virtual machines (VMs). Furthermore, we
evaluated how different orders of overcommitment (when the logical resources
allocated to all VMs exceed the available physical resources) influence the perfor-
mance of the overall system and the individual VMs. The contributions of this pa-
per are: 1) a generic model of the most relevant performance-influencing factors
of virtualization platforms, 2) a benchmark-based methodology for quantifying
the effect of the identified factors and 3) a case study applying the methodology
to the state-of-the-art Citrix XenServer 5.5 virtualization platform.

The remainder of this paper is organized as follows. Section 2 provides an
overview and classification of current virtualization technologies. A model char-
acterizing the major performance-relevant factors of virtualization platforms is
introduced in Section 3. In Section 4, we present our automated approach to
quantify the effect of the identified factors. Section 5 presents the case study
of Citrix XenServer 5.5 on two representative hardware platforms. Section 6
discusses related work, followed by a conclusion and an outlook on future work.

2 Background

Virtualization technology enables consolidating multiple systems on a shared
infrastructure by running multiple virtual machines (VMs) on a single physical
machine. Each VM is completely separated from the other VMs and hence, it can
be moved to other machines. This simplifies load balancing, dealing with hard-
ware failures and eases system scaling. In addition, sharing resources promises
a more efficient usage of the available hardware. However, as all VMs share the
same physical resources, they also mutually influence each others performance.

Virtualization

Native Virtualization

(same ISA)

Emulation

(different ISA)

Hardware

VMM

Guest OS

Guest Apps

Hardware

Host OS

VMM

Guest OS

Guest Apps

Fig. 1: Native Virtualization vs. Emulation and the VMM as an abstraction layer
between hardware and guest (type-I) and between Host OS and guest (type-II).

Over the last years, different types of virtualization were introduced and
sometimes terms related to virtualization are used with a different meaning. In
this paper, virtualization always refers to native virtualization (or system virtu-
alization, see Figure 1). In this case, the virtualization layer provides the native



instruction set architecture (ISA) to its guests. This is in contrast to emulation
(or non-native virtualization) where the virtualization layer can provide a dif-
ferent ISA. The latter allows software applications or operating systems (OS)
written for a special purpose computer processor architecture to be executed
on a different platform. The rest of this paper focuses on system virtualization.
The core of each virtualization platform is the virtual machine monitor (VMM,
also called hypervisor). Basically, a VMM is an abstraction layer added on top
of the bare metal hardware [10]. It provides a uniform interface to access the
underlying hardware. A VM is an execution environment created by a VMM
and is similar to the underlying physical machine, but usually with different or
reduced hardware resource configuration (e.g., less memory).

Vallee et al. distinguish between two different types of system virtualiza-
tion [18]. The first is type-I virtualization where the VMM runs directly on the
physical hardware (see Figure 1), e.g., the Xen hypervisor. On the other hand, if
the VMM runs within a host operating system, it is called type-II virtualization.
An example is the VMware Server,

The VMM provides an abstraction of the underlying machine’s hardware
and transparent hardware access to all VMs. This implies that software, e.g., an
operating system, can be executed without changes or adjustments. An example
of such a VMM is the z/VM hypervisor [13].

Unfortunately, not all architectures were designed to support virtualization,
e.g., the x86 architecture [10, 15]. Not all instructions of the standard x86 ar-
chitecture can be virtualized and hence, standard x86 processors do not sup-
port direct execution. There are several approaches to address this issue. Para-
virtualization (PV) is a software solution that addresses the above mentioned
problem. Here, the VMM provides an “almost” identical abstraction of the un-
derlying ISA. Any operating system running in a para-virtualized VM must be
adapted to support the changed instruction set which limits the set of possible
guest OSs. On the other hand, para-virtualization provides better performance
since guest systems can be further optimized for their virtualized execution. An
example of a VMM that uses para-virtualization is the Xen hypervisor. An-
other software solution is direct execution with binary translation, introduced
by VMware [1]. The advantage of binary translation is that any unmodified x86
OS can be executed in VMware’s virtual machines. Binary translation basically
translates kernel code by replacing non-virtualizable instructions with new se-
quences of instructions that have the intended effect on the virtualized hardware.
Recently, a hardware approach to address the challenge of virtualizing the x86
architecture has been developed by Intel and AMD, enabling full virtualization
(FV) and the execution of unmodified guest operating systems.

3 Modeling Performance-Influencing Factors of
Virtualization Platforms

Ongoing trends show that virtualization technologies are gaining increasing im-
portance. VMware ESX continues to be the most popular virtualization platform



followed by VMware Server and Microsoft Hyper-V. Citrix XenServer showed
year-over-year growth of 290% and hence is among the top 5 [6]. Table 1 gives a
quick overview of the most common, currently available virtualization solutions.
This overview is not complete but shows the diversity of existing solutions and
their maturity. It shows several open source implementations like Xen, KVM,
VirtualBox and OpenVZ covering all types of virtualization. Other commercial
but also free alternatives are, e.g., VMware Server or VMware ESXi. Also im-
portant to note is that parts of the open source solutions like Xen or KVM are
also used in commercial products like Citrix XenServer or RedHat Enterprise
Server, respectively.

Name Type Executed As License Since Latest Ver. (06-2010)

Xen PV/FV type-I GPL 10-2003 4.0.0

KVM FV type-I (L)GPL (v2+) 02-2007 kvm-88

VirtualBox FV type-II GPL 02-2007 3.2.4

VMware ESXi FV/PV type-I comm. (free) 12-2007 4

VMware Server FV/PV type-II comm. (free) 07-2006 2

OpenVZ container-based GPL v2 12-2005 vzctl 3.0.23

Linux-VServer container-based GNU FDL 1.2 2003 2.2stable

Table 1: Common virtualization platforms.

In this section, we summarize the performance-influencing factors of the pre-
sented virtualization platforms. The goal is to provide a compact hierarchical
model of performance-relevant properties and their dependencies. To this end,
we abstract from all possible configurations of the currently available virtualiza-
tion platforms presented in Table 1. We capture those factors that have to be
considered for performance predictions at the application level, i.e., that have a
considerable impact on the virtualization platform’s performance, and we struc-
ture them in a so-called feature model. Feature models, used in the context of
the engineering of software product lines [4], capture variabilities of software
products. They define all valid combinations of the software product’s property
values, called features. One feature defines a certain set of options in the con-
sidered domain. In our context, a feature corresponds to a performance-relevant
property or a configuration option of a virtualization platform. The goal of the
feature model is to reflect the options that have an influence on the performance
of the virtualization platform in a hierarchical structure. The feature model
should also consider external influencing factors such as workload or type of
hardware (with or without hardware support).

We now discuss the different influencing factors included in the feature model
depicted in Figure 2. The first performance-influencing factor is the virtualiza-
tion type. Different techniques might cause different performance overhead, e.g.,
full virtualization performs better than other alternatives because of the hard-
ware support. In our feature model, we distinguish between the three types of
virtualization: i) full virtualization, ii) para-virtualization and iii) binary trans-
lation.
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Fig. 2: Major performance-influencing factors of virtualization platforms.

Several influencing factors are grouped under resource management config-
uration. First, CPU scheduling has a significant influence on the virtualization
platform’s performance. In turn, it is influenced by several factors. The first
factor CPU allocation reflects the number of virtual CPUs allocated to a VM.
Most of the performance loss of CPU intensive workloads comes from core and
cache inferences [2]. Hence, the second factor that has a significant performance
influence is core affinity, specifying if a virtual CPU of a VM is assigned to a ded-
icated physical core (core-pinning). The third parameter reflects the capability
of assigning different CPU priorities to the VMs. For example, the Xen hyper-
visor’s weight and cap parameters or VMware’s limits and fixed reservations
parameters are represented by these CPU priority configurations. Finally, the
memory allocation and the number of VMs influence the resource management
configuration, too. Managing memory requires an additional management layer
in the hypervisor. The number of VMs has a direct effect on how the available
resources are shared among all VMs.

Last but not least, an important influencing factor is the type of workload
executed on the virtualization platform. Virtualizing different types of resources
causes different performance overheads. For example, CPU virtualization is sup-
ported very well whereas I/O and memory virtualization currently suffer from
significant performance overheads. In our model we distinguish CPU, memory
and I/O intensive workloads. In the case of I/O workload, we further distin-
guish between disk and network intensive I/O workloads. Of course, one can
also imagine a workload mixture consisting of all three workload types.

4 Automated Experimental Analysis

We now present a generic approach based on an automated experimental anal-
ysis to quantify the performance-influence of the factors captured in our feature
model. First, we give an overview of the experimental setup and describe the
general process that is followed when conducting experiments. We then describe
the different sets of experiments and how to structure them to assess the perfor-
mance influence of a given factor. We assume that in each set of experiments a



selected benchmark is executed multiple times in different scenarios to charac-
terize the impact of the considered factor. The process is completely automated
using a set of scripts for each experiment type. In Section 4.3, we provide an
overview of several benchmarks that provide a basis for evaluating the various
influence factors.
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Fig. 3: Static view of the experimental setup.

4.1 Experimental Setup

Static view: As a first step, the virtualization platform to be evaluated is
installed on the target hardware platform. In case of type-II virtualization, one
would have to install a host OS first. Then, we create a MasterVM (see Figure 3)
which serves as a template for creating multiple VM clones executing the selected
benchmark as part of the considered set of experiments described in Section 4.2.
To this end, the respective benchmark is installed on the MasterVM together
with scripts to control the benchmark execution (e.g., to schedule benchmark
runs). The MasterVM is the only VM with an external network connection. All
other VMs and the MasterVM are connected via an internal network. The second
major part of our framework is the controller which runs on a separate machine.
It adjusts the configuration (e.g., amount of virtual CPUs) of the MasterVM
and the created clones as required by the considered type of experiments. The
controller also clones, deletes, starts, and stops VMs via the virtualization layer’s
API. Furthermore, it is responsible for collecting, processing and visualizing the
results. In this generic approach, the benchmark choice is left open and one can
use any available benchmark stressing the considered influencing factor.

Dynamic view: Figure 4 shows the process of automated execution of ex-
periments from the controller’s point of view. At first, the controller starts and
configures the MasterVM by configuring the benchmark to be executed and
scheduling the experiment runs. After that, the MasterVM is replicated accord-
ing to the requirements of the respective set of experiments described in Sec-
tion 4.2. After the VM cloning, the controller undertakes further VM-specific
configuration for each created clone as required, e.g., assigning the VMs’ virtual



CPUs to physical cores. Finally, the VMs are started and the benchmarks are
executed at the scheduled starting time. The controller is responsible to detect
the end of the benchmark runs and after the experiments are finished, it triggers
the MasterVM to collect the results of all VMs. This is done by the MasterVM
because it is the only connection between the VM subnet and the controller. If
there are further experiments to be executed, the MasterVM is reconfigured and
the whole process starts from the beginning, continuing until all experiments
are completed. Finally, the controller processes and stores the results from the
experiments. The grey boxes of Figure 4 depict the parts of the process where
configuration is applied depending on the specific set of experiments considered.

Experiments

Start MasterVM
Configure MasterVM

(benchmark, run schedule)
Stop MasterVM Clone MasterVM

Start cloned VMs

Configure VMs
VM1: execute benchmark

Start MasterVM,

Collect results

Further 

Experiments

Process results

Further configurations

 required

YES

NOYES

NO
VMn: execute benchmark

...

Scheduled 

experiment start

Experiment stop

Fig. 4: Automated execution of experiments from the controller’s point of view.

4.2 Experiment Types

We distinguish between the following categories of influencing factors according
to Section 3: (a) virtualization type, (b) resource management configuration, and
(c) workload profile. For category (a), an initial set of experiments is executed
to quantify the performance overhead of the virtualization platform, possibly
varying the hardware environment and/or the virtualization type if multiple al-
ternatives are supported . This initial set of experiments quantifies the overhead
of the hypervisor but does not consider the influence of the number co-located
VMs.

The number of VMs and other resource management-related factors like core
affinity or CPU scheduling parameters are part of category (b). We investigate
the influence of these factors in two different scenarios. The first one focuses on
scalability (in terms of number of co-located VMs), the second focuses on over-
commitment (in terms of allocating more resources than are actually available).
For scalability, we increase the number of VMs until the all available physical
resources are used. For overcommitment, the number of VMs is increased beyond
the amount of available resources. The process is illustrated in Figure 5. As the
example resource type, we use the number of available physical cores c. In the
first case, the number of VMs is increased step-by-step up to c, whereas in the
second case the number of VMs is increased by a factor x ∈ {1, . . . , n} multiplied



with the number of cores c. As an example, to determine the influence of core
affinity on scalability and overcommitment, the experiment series depicted in
Figure 5 is executed one time with and one time without core affinity comparing
the results. In the latter case, each virtual core is automatically pinned to a
dedicated physical core.

Finally, for category (c) we execute a set of benchmarks focusing on the
different types of workloads as described in the next section.

Set Workload
Set CPU 

scheduling parameters

Scalability Benchmarks

(#VMs ≤ c)

Execute
(#VMs = c)

Execute
(#VMs = 1)

...

Overcommitment Benchmarks

(#VMs ≥ c)

Execute
(#VMs = n*c)

Execute
(#VMs = 1*c)

...

c = # available physical cores

Fig. 5: Benchmark execution in scalability and overcommitment scenarios.

4.3 Benchmark Selection

We now briefly discuss a set of benchmarks representing different types of work-
loads that can be used in the experiments described in the previous section. For
CPU and memory-intensive workloads, we recommend two alternative bench-
marks: Passmark PerformanceTest v7.01 (a benchmark used by VMware [19])
and SPEC CPU20062 (an industry standard CPU benchmark).

Passmark PerformanceTest is a benchmark focused on CPU and memory per-
formance. The benchmark rating is a weighted average of several single bench-
mark categories (CPU, memory, I/O, etc.). In this paper, we focus on the CPU
mark and memory mark rating and are not interested in the overall Passmark
rating. SPEC CPU2006 is an industry standard benchmark for evaluating CPU
performance. It is structured in a similar fashion and consists of CINT2006
integer benchmarks and CFP2006 floating point benchmarks. However, unlike
Passmark, SPEC CPU2006 does not distinguish between CPU and memory per-
formance.

The Passmark benchmark has the advantage that it explicitly distinguishes
between CPU and memory, and its benchmark runs are much shorter. Given
the short benchmark runs, in our experiments with Passmark we repeat each
benchmark run 200 times to obtain a more confident overall rating and to gain
a picture of the variability of the results. In the scalability scenario, multiple
instances of the benchmark are executed in separate identical VMs simultane-
ously. In the end, the results of all benchmark instances are aggregated into
one set to compute the overall mean rating. For example, when executing 200
benchmark runs on one machine, we would get 4800 separate benchmark results
when scaling up to 24 VMs.

In addition to the above, the Passmark benchmark offers a separate workload
focusing on I/O performance, however, for I/O intensive workloads we recom-
1 Passmark PerformanceTest: http://www.passmark.com/products/pt.htm
2 SPEC CPU2006: http://www.spec.org/cpu2006/



mend to use the Iometer benchmark3 which measures the performance of disk
and network controllers as well as system-level hard drive performance. Fur-
thermore, for network performance measurements, the Iperf benchmark4 can be
used. It is based on a client-server model and supports the throughput measure-
ment of TCP and UDP data connections between both endpoints.

Finally, further workloads that can be used in our experiments are provided
by SPEC standard benchmarks such as SPECjbb2005 (stressing CPU and mem-
ory performance), SPECmail2009 (stressing I/O performance) and SPECjEnter-
prise2010 (emulating a complex three tier e-business application). These bench-
marks are partly used together with others in the new SPECvirt benchmark
which is currently under development. However, this benchmark is out-of-scope
of this work as it calculates an overall metric to compare servers and different
virtualization option. It is not designed to analyze the influence of specific factors
on the system performance.

5 Case Study: Citrix XenServer 5.5

We now present a case study with the Citrix XenServer 5.5 virtualization plat-
form. We apply our automated experimental analysis to evaluate the influence of
the major performance-influencing factors. We chose Citrix XenServer 5.5 as the
representative virtualization platform because it is a free solution with a signif-
icant market share and implementing current virtualization technologies based
on the open source hypervisor Xen. We consider full virtualization because it is
the most common type used in practice. As workload types, we investigate CPU,
memory and network intensive workloads. Concerning the resource management
configuration, we investigate the influences of the memory management and the
credit-based CPU scheduler implemented in the Xen hypervisor. We also put a
special focus on varying the number of co-located VMs.

5.1 Experimental Environment

We conducted experiments in two different hardware environments described
below. In each considered scenario, unless stated otherwise, we used Windows
2003 Server as the native and guest OS hosting the benchmark application.

Environment 1: The purpose of the initial experiments was to evaluate the
overhead of the virtualization layer. To this end, we used a standard desktop HP
Compaq dc5750 machine with an Athlon64 dual-core 4600+, 2.4 GHz. It has
4 GB DDR2-5300 of main memory, a 250 GB SATA HDD and a 10/100/1000-
BaseT-Ethernet connection. We also used this hardware to run experiments on
a single core of the CPU by deactivating the second core in the OS.

Environment 2: To evaluate the performance when scaling the number of
VMs, we used a SunFire X4440 x64 Server. It has 4*2.4 GHz AMD Opteron

3 Iometer: http://www.iometer.org/
4 Iperf: http://iperf.sourceforge.net/



6 core processors with 3MB L2, 6MB L3 cache each, 128 GB DDR2-667 main
memory, 8*300 GB of serial attached SCSI storage and 4*10/100/1000-BaseT-
Ethernet connections.

5.2 Experimental Results

We now describe the different experiments we conducted. We consider three dif-
ferent scenarios. The target of the first scenario is to quantify the performance
overhead of the Xen hypervisor for CPU and memory intensive workloads. The
second scenario addresses the influences of core affinity. The third scenario anal-
yses the influence of the number of VMs and specifically addresses the scalability
of the virtualization platform.

CPU Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Passmark CPU, 1 core 639.3 634.0 5.3 0.83%

Passmark CPU, 2 cores 1232.0 1223.0 9.0 0.97%

SPECint(R) base2006 3.61%

SPECfp(R) base2006 3.15%

Memory Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Passmark Memory, 1 core 492.9 297.0 195.9 39.74%

Passmark Memory, 2 cores 501.7 317.5 184.2 36.72%

Network Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Iperf, Client to Server 527.0 393.0 134.0 25.43%

Iperf, Server to Client 528.0 370.0 158.0 29.92%

Table 2: CPU, memory and network benchmark ratings for native and virtualized
system on the HP Compaq dc5750.

Scenario 1 – Native vs. Virtualization: The purpose of this scenario is
to compare the performance of the native system with a virtualized platform
for CPU, memory and network intensive workloads. To this end, we executed
Passmark, SPEC CPU2006 and Iperf benchmarks in native and virtualized en-
vironments. In the virtualized environment, we used only one VM executing the
benchmark. The results of these experiments are depicted in Table 2. The rela-
tive delta is the ratio of absolute delta and native system performance. As one
can see, the performance overhead of CPU intensive workloads is almost negli-
gible. For both the Passmark and SPEC CPU2006 benchmark, the performance
degradation when switching from a native to a virtualized system remains below
4%. The results from the two benchmarks are very similar in terms of the mea-
sured overhead and lead to the same conclusion. Moreover, the boxplots of the
Passmark measurements in Figure 6 show a relatively low scattering. Please note
the different y-axis scales in the sub-figures. Also consider that for the SPEC
benchmark results we can only publish the relative delta because of licensing
reasons.
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Fig. 6: Native vs. virtualized Passmark CPU and memory mark results and the
Iperf benchmark results

When comparing the performance of a memory-intensive workload (Table 2),
one can observe a much higher performance degradation, i.e., about 40%. The
reason for this is the fact that CPU virtualization is well-understood and hard-
ware supported, whereas memory virtualization is still rather immature and
currently lacks hardware support [15].

Table 2 and Figure 6c depict the results of the network performance mea-
surements with Iperf. In our experiment setup, client and server were connected
with a DLink 1Gbit Switch and we used Windows2003 Server for both machines.
We observe a performance decrease for TCP connections in both directions, up-
stream (Client to Server) 25% and downstream (Server to Client) 30%. This
shows that like for memory virtualization there is still a relatively high perfor-
mance loss because of lacking hardware support. Also interesting is that perfor-
mance degradation of up- and downstream differs by 5%. Hence, it is important
to consider the type of network traffic (up- or downstream)when modeling the
workload.

As a preliminary result, we consider the performance overhead of CPU, mem-
ory and I/O virtualization to be 5% and 40% and 30%, respectively (in the case
of full virtualization).

Scenario 2 – Core Affinity and Scalability: In a virtualized environment,
the way VMs are scheduled to cores has a significant influence on the VMs’
performance [2]. For example, imagine a machine with 24 cores, each core having
its own cache. If a VM is re-scheduled from one core to another, its performance
will suffer from cache misses because the benefit of a warm cache is lost. To avoid
this, current virtualization platforms provide means to assign cores to VMs. In
this scenario, we quantify the performance influence of core affinity considering
the effect of scaling the number of co-located VMs. Core affinity denotes the
assignment of virtual CPU(s) of VMs to dedicated physical cores, also called
core pinning. In this case, the VM is executed only on the assigned core(s) which
in turn has a significant influence on the cache and core contention and hence



on performance. We also investigate the performance overhead when scaling the
number of VMs up to the limit of available resources, i.e., CPU cores.
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Fig. 7: Performance influence of core affinity in different experiments. The box-
plots for multiple VMs contain the measurements over all VMs.

We tested the effect of core pinning using several experiments on the 24
core SunFire X4440 (see Table 3 and Figure 7). First, we compare the CPU
and memory mark rating of one VM running with no affinity and one VM
pinned to a dedicated core. In this case, performance changes about 0.80% for
the CPU mark and 0.10% for the memory mark, so there is no measurable
performance influence. However, when comparing the benchmark results of the
same experiment for 24 VMs (each VM has one virtual CPU), performance
increases by 88.1 (9.56%) and 46 (18.82%) for the CPU and memory mark,
respectively.

CPU Mark Memory Mark

no affinity with affinity rel. delta no affinity with affinity rel. delta

one VM 953.60 961.30 0.80% 339.95 339.60 0.10%

24 VMs 832.90 921.00 9.56% 198.40 244.40 18.82%

rel. delta 12.66% 4.19% - 41.64% 28.03% -

Table 3: CPU and memory benchmark results for different core affinity experi-
ments. The values shown are the median over all benchmark runs (200 for one
VM, 200 ∗ 24 for 24 VMs) on the SunFire X4440.



The performance loss comparing one VM without affinity and 24 VMs with-
out affinity is 120.7 (12.66%) and 141.55 (41.64%) for CPU and memory mark,
respectively. However, when increasing the amount of VMs from one VM with
core affinity to 24 VMs with core affinity, performance drops only by 40.3 (4.19%)
and 95.2 (28.03%), respectively. Hence, on average 8.47% of the performance
penalty for the CPU mark and 13.61% for the memory mark can be avoided
when using core pinning. Also interesting is that the variability of the measure-
ments increases with the number of co-located VMs. This leads to performance
degradations of up to 10% in the worst case. Nonetheless, the difference between
the median and mean values is negligible.

Another interesting fact observable in Figure 7 is that there is little difference
in performance between 23 VMs and 24 VMs both with affinity. In the former
case one core is left free for the hypervisor. The median of both measurements
deviates only by 0.12% for the CPU mark and 0.83% for the memory mark.
Hence, leaving one core for the hypervisor has no significant effect on reducing
the performance degradation introduced by virtualization.

From the above results we conclude that core affinity has a significant effect
on virtualization platform’s performance. We model this factor in such way that
for predictions consider performance gains up to 20% relative to the ratio of
executed virtual machines and available resources.
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Fig. 8: Absolute scalability and overcommitment experiment results of the CPU
and memory benchmark on SunFire X4440.

Scenario 3 – Overcommitment: In this scenario, we investigate the perfor-
mance degradation when systematically overcommitting shared resources. In
this scenario, we scale the amount of VMs (each VM is configured with one vir-
tual CPU) above the amount of physically available CPUs by a factor x ranging
between 1 and 4.

In case of the HP Compaq dc5750 environment, we increased the number
of VMs to 2, 4, 6 and 8 and for the SunFire X4440 to 24, 48, 72 and 96. The



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overcommitment Level

C
P

U
 M

ar
k 

R
at

in
g 

(n
or

m
al

iz
ed

)

●

●

●

●

●

●

HP dc5750
SunFire X4440
Single Core
expected (1/x)

CPU Scalability Comparison

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overcommitment Level

M
em

or
y 

M
ar

k 
R

at
in

g 
(n

or
m

al
iz

ed
)

●

●

●

●

●

●

HP dc5750
SunFire X4440
Single Core
expected (1/x)

Memory Scalability Comparison

1 2 3 4

Fig. 9: Normalized scalability comparison of the HP dc5750, the SunFire X4440
and a single core for CPU and memory benchmark compared to the expected
value of 1/x.

absolute results for the CPU and memory benchmark in the SunFire X4440
environment are depicted in Figure 8. We also considered a single core scenario
with the SunFire X4440 in which we deactivated all but one physical core and
increased the number of VMs to 1, 2, 3 and 4. Figure 9 compares the normalized
CPU rating of both hardware environments with the single core scenario. We
observe that performance decreases roughly about 1/x. Moreover, for the CPU
benchmark, the measured performance is even slightly better than this expected
theoretical value. The reason for this observation is that the single benchmark
cannot utilize the CPU at completely 100%. Hence, there are unused CPU cycles
which are utilized when executing multiple VMs in parallel. When increasing the
number of VMs up to 72, we observed a CPU utilization of all cores at 100%.
This effect however does not apply to the memory-intensive workload. Therefore
the memory mark rating is slightly worse than the expected theoretical value.
The single core performs better than the HP Compaq which in turn is better
than the SunFire.

From the results we see that the performance degradation can be approx-
imated by 1/x which is the expected theoretical value. Intuitively, one might
assume that performance decreases faster or even suddenly drops when overcom-
mitting system resources. Moreover, one can see that performance degradation
is very similar in both hardware environments (max. 10% deviation). This is re-
markable because one would intuitively assume that the SunFire would perform
significantly better because of the more resources it has available. Addition-
ally, the boxplots in Figure 10 show the CPU and memory mark measurements
over all 96 VMs. Although there is a relative huge positive deviation of the out-
liers from the median, the scattering around the median is low, indicating a fair
resource sharing and good performance isolation.
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Fig. 10: Boxplots of CPU mark and memory mark results over all 96 VMs (over-
commitment factor of 4).

As a result, we conclude that the performance degradation by overcommit-
ting CPU resources through increasing number of VMs is proportional to the
overcommitment factor with an upper limit of 1/x. Furthermore, we observed
that the hardware environment has almost no influence on the scalability and
performance degradation and both CPU and memory workloads are affected in
a similar way.

6 Related Work

There are two groups of existing work related to the work presented in this paper.
The first and bigger group deals with benchmarking and performance analysis
of virtualization platforms and solutions. The second group is small and related
to this work in terms of modeling the performance-influencing factors.

In [3], Barham et al. present the Xen hypervisor and compare its performance
to a native system, the VMware workstation 3.2 and a User-Mode Linux (compa-
rable to container-based virtualization) on a high level of abstraction. They show
that the performance is practically equivalent to a native Linux system and state
that Xen is able to run up to 100 operating systems on a single server. Quétier
et al. [14] follow a similar approach by benchmarking and analyzing the over-
head, linearity and isolation for Linux-VServer 1.29, Xen 2.0, User-Mode Linux
kernel 2.6.7 and VMware Workstation 3.2. Soltesz et al. propose an alternative
to the Xen hypervisor, the container-based virtualization Linux-VServer [16]. In
their work they evaluate the Linux-VServer with Xen3 performance with sys-
tem benchmarks and compare performance in scalability scenarios. Similar is
the work by Padala et al., where the authors compare Xen 3.0.3 unstable with
OpenVZ, another container-based virtualization solution [12]. Both approaches



conclude that a container-based virtualization performs better than the hypervi-
sor solution, especially for I/O intensive workloads. In [2], Apparao et al. analyze
the performance characteristic of a server consolidation workload. They study
the performance slowdown of each workload due to consolidation. Their results
show that most of the performance loss of CPU intensive workloads is caused
by cache and core interferences. They also show that core affinity can mitigate
this problem. However, they do not consider the virtualization overhead due to
consolidation. Moreover, the considered virtualization solutions have changed a
lot since the above results were published (e.g., hardware support was intro-
duced) which renders them outdated. For example, meanwhile Xen 4.0 has been
released, introducing a lot of new features. Hence the results of these works must
be revised especially to evaluate the influences of hardware support. Moreover, all
the work presented do not come up with a model of the performance-influencing
factors nor do they propose a systematic approach to quantify their impact.

The second area of related work is the modeling of virtualization platforms or
shared resources. Tickoo et al. identify three challenges of VM modeling, namely
modeling the contention of the visible and invisible resources and the hypervi-
sor [17]. In their consecutive work based on [2] and [17], Iyer et al. measure
and model the influences of VM shared resources. The concept they present is
a virtual platform architecture (VPA) with a transparent shared resource man-
agement [8]. They show the importance of shared resource contention on virtual
machine performance. However, their model only focuses on cache and core ef-
fects and does not consider other performance-influencing factors. There is still
a lot of work to do on measuring, benchmarking and analyzing different virtu-
alization solutions and their performance-relevant factors. Particularly because
virtualization is a technology improving and changing very quickly, it is difficult
to keep benchmark results and models up-to-date.

7 Conclusion and Future Work

In this paper, we presented a generic feature model of the performance-influen-
cing factors of virtualization platforms. We proposed a benchmark-based method-
ology for quantifying the effect of the identified factors and applied the method-
ology to analyze and quantify the performance-influencing factors and properties
of the Citrix XenServer 5.5. The results showed that performance degradation
for CPU intensive workloads on full virtualized platforms is below 5% and for
network workloads below 30%, and memory intensive workloads suffer from per-
formance degradation of up to 40%. We also showed that core affinity has a
considerable influence on reducing the performance degradation. Our scalabil-
ity experiments revealed that performance degradation is independent of the
hardware environment and is roughly proportional to the overcommitment fac-
tor. Moreover, it is remarkable that performance converges to the reciprocal of
the overcommitment-factor and does not suddenly drop when overcommitting
resources.



As a next step, we plan to study further performance influencing factors con-
sidering other virtualization platforms such as VMware. In addition, we plan to
use the results of this work as input in the Descartes research project to pre-
dict the performance of services deployed in dynamic virtualized environments,
e.g., Cloud Computing [5, 9].
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