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ABSTRACT
Over the past few decades, many performance modeling for-
malisms and prediction techniques for software architectures
have been developed in the performance engineering com-
munity. However, using a performance model to predict the
performance of a software system normally requires exten-
sive experience with the respective modeling formalism and
involves a number of complex and time consuming man-
ual steps. In this paper, we propose a generic declarative
interface to performance prediction techniques to simplify
and automate the process of using architecture-level soft-
ware performance models for performance analysis. The
proposed Descartes Query Language (DQL) is a language
to express the demanded performance metrics for prediction
as well as the goals and constraints in the specific predic-
tion scenario. It reduces the manual effort and the learning
curve when working with performance models by a unified
interface independent of the employed modeling formalism.
We evaluate the applicability and benefits of the proposed
approach in the context of several representative case stud-
ies.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; D.3.2 [Programming Languages]: Language Clas-
sifications—specialized application languages

General Terms
Performance, Languages
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Software Performance Engineering, Performance Prediction,
Automation, Query Language, Domain-specific Language
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1. INTRODUCTION
Performance and availability are crucial for today’s soft-

ware systems [22, 33]. Modern IT solutions introduce ad-
ditional abstraction layers such as virtualization layers and
need to sustain increasing workloads. The increasing com-
plexity makes providing adequate performance a challenging
task. Analyzing the performance characteristics of a soft-
ware system during all phases of its lifecycle helps to avoid
performance problems.

The performance of a software system can normally be
analyzed through performance prediction techniques based
on performance modeling formalisms. These techniques and
formalisms differ in their expressiveness, prediction capa-
bilities, computing effort and modeling effort. We distin-
guish between two major families of performance models.
Predictive performance models such as Queueing Networks
(QNs), Queueing Petri Nets (QPNs) or Layered Queueing
Networks (LQNs) focus on capturing the temporal system
behavior. They are used on a high level of abstraction and
can be solved analytically or by simulation techniques [22,
17, 21]. Architecture-level performance models describe the
software architecture, the deployment and are annotated
with performance-relevant aspects of the software system.
Prominent examples are the UML SPT profile [23] and its
successor the UML MARTE profile [24], CSM [38], PCM [2]
and KLAPER [10]. To predict performance metrics, auto-
mated model-to-model transformations into predictive per-
formance models are normally employed.

During the performance prediction process, users execute
or trigger the following tasks as shown in Fig. 1. When a
performance analysis is triggered, the architecture-level per-
formance model is transformed into a suitable predictive per-
formance model. The resulting model is then solved by an-
alytical or simulation means to derive performance metrics.
Finally, the user extracts the metrics of interest. However,
the presented process has several shortcomings arising from
a lack of automation and required manual efforts: While the
transformation and model solving steps are typically auto-
mated, their configuration has to be done manually and is
dependent on the tooling and the performance model for-
malism. Furthermore, depending on the output of the model
solving step, the extraction of the performance metrics of in-
terest is a manual step and requires performance modeling
expertise of the user.

In this paper, we propose a generic declarative interface
for performance prediction techniques to simplify and au-
tomate the process of using architecture-level software per-
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Figure 1: Performance prediction process

formance models for performance analysis. The interface al-
lows the formulation of performance queries. A performance
query specifies which performance metrics should be pre-
dicted under which scenario-specific constraints. Further-
more, performance queries may involve parameter variations
for different performance model parameters such as request
arrival rates or thread pool sizes.
The unified interface that is independent of the employed

modeling formalism reduces the manual effort and learning
curve when working with performance models. We provide
our approach as an extensible architecture with an imple-
mentation that is capable to integrate third-party exten-
sions supporting specific performance modeling formalisms
and prediction techniques. To demonstrate the applicabil-
ity and benefits of our approach, we present representative
case studies showing how to integrate different established
performance prediction techniques. Other tool developers
can leverage our approach by offering an interface for their
performance modeling formalism and prediction technique.
In summary, the contributions of this paper are: (i) the

Descartes Query Language (DQL), a novel query language
to specify performance queries with optional parameter vari-
ations, (ii) an architecture and implementation that unifies
the prediction process by using DQL as declarative interface,
and (iii) a detailed evaluation of the applicability and bene-
fits of our approach in the context of several representative
case studies.
The remainder of the paper is organized as follows: First,

a requirements specification based on usage scenarios and
user stories is presented in Sec. 2. Then we describe the DQL
approach in Sec. 3. We show syntax diagrams of DQL and
explain its different features. In Sec. 4, we present the archi-
tecture and implementation of our corresponding toolchain.
Sec. 5 provides an overview of related work. In Sec. 6, we
evaluate the applicability and benefits of the proposed ap-
proach in the context of several representative case studies.
Sec. 7 concludes the paper and provides an outlook on future
work.

2. REQUIREMENTS
We investigate common usage scenarios in performance

engineering to derive user stories as requirements for our
language for performance queries. The presented usage sce-
narios are based on examples from literature [3, 29, 34].
They vary in the user type and the user role. Furthermore,
we distinguish whether the performance queries are issued
in an online or offline context, i.e., if the system is at run-
time during operation or if the system is in the development
or deployment phase.

2.1 Usage Scenarios

Design Time. At software design time, a software architect
tries to find a suitable assembly of components to build a
software system. Using an architecture-level performance
model of the system, the software architect can simulate
different assemblies and configurations to predict the per-
formance behavior. The predictions are not constrained to
complete within strict time bounds, but should allow quali-
tative comparisons of design alternatives with high accuracy.
Furthermore, the software architect may want to optimize
compositions or configuration parameter settings. For that
purpose, an automated design and parameter space explo-
ration covering defined Degrees of Freedom (DoFs) is help-
ful [19, 14]. DoFs specify how entities in a performance
model can be varied and thus span the space of valid config-
urations and parameter settings. Depending on the size of
the configuration space and the space exploration strategy,
the time-to-result of a single performance prediction gains
in importance. Otherwise, the exploration might take too
long to be feasible.

Deployment Time. At deployment time, a software de-
ployer tries to size the resource environment so that the
system on the one hand satisfies performance objectives and
on the other hand does not waste resources. Using a per-
formance model, this system sizing and capacity planning
step can be facilitated. Expensive performance tests can be
avoided, because different load situations can be simulated
on different resource settings.

System Run-Time. A proactive online performance and re-
source management aims at adapting system configuration
and resource allocations dynamically. Overload situations
should be anticipated and suitable reconfigurations should
be triggered before Service Level Agreements (SLAs) are vi-
olated. Performance predictions need to be conducted to
answer questions such as: What performance would a new
service or application deployed on the infrastructure exhibit
and how much resources should be allocated to it? How
should the workloads of the new service/application and ex-
isting services be partitioned among the available resources
so that performance requirements are satisfied and resources
are utilized efficiently? What would be the performance im-
pact of adding a new component or upgrading an existing
component as services and applications evolve? If an ap-
plication experiences a load spike or a change of its work-
load profile, how would this affect the system performance?
Which parts of the system architecture would require addi-
tional resources? What would be the effect of migrating a
service or an application component from one physical server
to another? However, there is a trade-off between prediction
accuracy and time-to-result. There are situations where the
prediction results need to be available very fast to adapt the
system before SLAs are violated. An accurate fine-grained
performance prediction comes at the cost of a higher pre-
diction overhead and longer prediction durations. Coarse-
grained performance predictions allow speeding up the pre-
diction process. This trade-off should be configurable when
conducting performance predictions.
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Figure 2: Descartes Query Language (DQL)

2.2 User Stories
We formulate the following user stories as requirements

for the query language.
◦ As a user, I want to issue queries independent of the

underlying performance modeling formalism.

◦ As a user, I want to list the modeled services of a se-
lected performance model instance.

◦ As a user, I want to list the modeled resources of a
selected performance model instance.

◦ As a user, I want to list the variable parameters of a
selected performance model instance.

◦ As a user, I want to list supported performance metrics
for selected services and resources.

◦ As a user, I want to conduct a prediction of selected
performance metrics of selected services and resources.

◦ As a user, I want to aggregate retrieved performance
metrics by statistical means.

◦ As a user, I want to control the performance prediction
by specifying a trade-off between prediction speed and
accuracy.

◦ As a user, I want to conduct a sensitivity analysis for
selected parameters in defined parameter spaces.

◦ As a user, I want to query revisions of model instances.
We emphasize that the query language needs to be inde-
pendent of a specific performance modeling formalism. Pre-
dictable performance metrics may vary from model instance
to model instance and model solver to model solver, so the
query mechanism needs to include means to evaluate the un-
derlying model and list queryable performance metrics to the
user. For each performance modeling formalism, the query
language requires a Connector to bridge the mentioned gaps.
Furthermore, queries should be user-friendly to write, i.e.,
there should be a text editor with syntax highlighting and
auto-completion features.

3. QUERY LANGUAGE
In this section, we present the concepts of the performance

query language. We use syntax diagrams to describe the
most relevant parts of the language grammar. Details can
be found in [9]. Fig. 2 shows the uppermost grammar rule.
In general, there are two query classes: (i) A ModelStruc-
tureQuery is used to analyze the structure of performance
models. It can provide information about available services
and resources, performance metrics as well as model vari-
ation points. (ii) A PerformanceMetricsQuery is used to
trigger actual performance predictions. Both query classes
are followed by a ModelAccess part that refers to a perfor-
mance model instance.

3.1 Model Access
The query language is independent of a specific perfor-

mance modeling formalism. Thus, to issue a query on a
performance model instance, both the location of the model
instance as well as a DQL Connector need to be specified. A

Figure 3: Model Access

Figure 4: Model Structure Query

DQL Connector is specific for a performance modeling for-
malism and bridges the gap between performance model and
DQL. Fig. 3 shows the model access initiated by keyword
USING. The nonterminal ModelFamily refers to an identifier
that serves as reference to a DQL Connector. The DQL
Connector has to be registered in a central DQL Connector
registry (see Section 4). The ModelLocation is a reference to
a model instance location.

3.2 Model Structure Query
The user can request information about which services

or resources are modeled, and for which model entities the
referred model instance can provide which performance met-
rics. In DQL notation, a model entity is either a resource or
a service. Fig. 4 shows a ModelStructureQuery initiated by
keyword LIST. Using terminals ENTITIES, RESOURCES, SERVICES
the user can query for respective entities, resources or ser-
vices. The result is a list of entity identifiers that are unique
for the referred model instance. Listing 1 illustrates a simple
query example.

Besides querying for services and resources, the user can
also query for available performance metrics. We denote a
performance metric as available if the performance metric
can be derived from the performance model instance. For
example, for a Central Processing Unit (CPU) resource of an
application server, the average utilization is typically avail-
able. Since the available performance metrics may differ
from entity to entity, the user has to specify for which en-
tity the available performance metrics should be listed. For
that purpose, the user has to provide an EntityReference-
Clause. A EntityReferenceClause is a comma-separated list
of EntityReferences whose syntax is illustrated in Fig. 5.

An entity reference thus starts with a keyword identifying
the entity type (RESOURCE or SERVICE) followed by an entity
identifier and an optional AliasClause. Listing 2 shows a cor-
responding query example. In the example, the user queries
for available metrics of a resource with identifier ‘AppServer-
CPU1’ and a service with identifier ‘newOrder’. For the re-

Figure 5: Entity Reference
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LIST ENTITIES
USING connector@location;

Listing 1: List all Modeled Entities

LIST METRICS
(RESOURCE ’AppServerCPU1’ AS r,
SERVICE ’newOrder’ AS s)

USING connector@location;

Listing 2: List available Performance Metrics

source and the service the user sets alias r respectively alias
s.

Furthermore, DQL allows querying for model variation
points, also denoted as Degrees of Freedom (DoFs). The
query result then is a list of DoF identifiers. The way how
model variation points are modeled is independent from
DQL, it depends on the DQL Connector. We provide an
example of DoF queries in Section 3.3.2.

3.3 Performance Metrics Query
A PerformanceMetricsQuery is used to trigger performance

predictions. Fig. 6 shows the syntax. First, we explain
the parts of the query that are obligatory to write basic
queries. For optional extensions such as query constraints,
evaluations of DoFs and model revisions, we refer to Sub-
sections 3.3.1, 3.3.2 and 3.3.3.
A user can specify the performance metrics of interest

with wildcard ‘*’ (all available performance metrics) or via
the nonterminal MetricReferenceClause. MetricReference-
Clause is a comma-separated list of MetricReferences that
is shown in Fig. 7. A MetricReference either refers to a sin-
gle metric or to an aggregated metric. A single metric is
described by an EntityIdOrAlias followed by a dot and a
MetricId or wildcard. Listing 3 shows a corresponding ex-
ample where the utilization of an application server CPU
and the average response time of a service is requested.

A specification of an aggregated metric consists of two
parts. The first part (nonterminal AggregateFunction) se-
lects an aggregate function. The set of supported aggregate
functions is based on the descriptive statistics part of Apache
Commons Math1 and provides common statistical means,
e.g. arithmetic and geometric mean, percentiles, sum and
variance. The second part describes the list of performance
metrics that should be aggregated. A wildcard (‘*’) can be
used to iterate over all entities where a specific performance
metric is available. An exemplary use of an aggregated met-

1http://commons.apache.org/proper/commons-math/

SELECT r.utilization, s.avgResponseTime
FOR RESOURCE ‘AppServerCPU1’ AS r,

SERVICE ‘newOrder’ AS s
USING connector@location;

Listing 3: Trigger Basic Performance Prediction

SELECT MEAN(r1.utilization, r2.utilization)
FOR RESOURCE ‘AppServer1’ AS r1,

RESOURCE ‘AppServer2’ AS r2
USING connector@location;

Listing 4: Query with Aggregated Metric

Figure 8: Constraint Clause

ric is shown in Listing 4, where the mean value of two ap-
plication server utilization rates is computed. Note that the
computation of the aggregate is provided by the DQL Query
Execution Engine (QEE) (see Section 4) and not part of a
DQL Connector. The DQL Connector only needs to support
querying single metrics.

3.3.1 Constraints
In online performance and resource management scenar-

ios, controlling performance predictions by specifying a trade-
off between prediction accuracy and time-to-result can be
important to act in time [16]. DQL allows the specifica-
tion of such constrained performance queries. The syntax
of the corresponding ConstraintClause is shown in Fig. 8.
The ConstraintIDs are DQL Connector specific and are in-
tended to control the behavior of the underlying model solv-
ing process. For instance, a DQL Connector might support
a constraint named ‘FastResponse’ to trigger fast analyti-
cal mean-value solvers or a constraint named ‘Detailed’ to
trigger a full-blown simulation that may take a significant
amount of time but is able to simulate, e.g., fine-grained
OS-specific scheduling behavior [11]. Listing 5 shows a cor-
responding example.

3.3.2 Degrees of Freedom (DoF)
To evaluate DoFs, DQL provides several optional lan-

guage constructs. Fig. 9 shows the syntax diagram of non-
terminal DoFClause. A DoFClause refers to DoFs (non-
terminal DoFReferenceClause) and an optional exploration
strategy.

A DoFReferenceClause is a comma-separated list of non-
terminal DoFReference that is shown in Fig. 10. It starts
with a DoF identifier (with an optional alias) and is followed
by DoFVariationClause that provides optional parameter
settings (see Fig. 12). In its current version, DQL supports
lists of parameter values of type Integer or Double as well
as interval definitions of type Integer. Listing 6 shows an
example with two DoFs. On the one hand, we vary the
inter-arrival time of the open workload (values 0.1, 0.2, 0.3),
on the other hand we vary the size of the database connec-

SELECT r.utilization, s.avgResponseTime
CONSTRAINED AS ‘FastResponse’
FOR RESOURCE ‘AppServerCPU1’ AS r,

SERVICE ‘newOrder’ AS s
USING connector@location;

Listing 5: Constrained Query
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Figure 6: Performance Metrics Query

Figure 7: Metric Reference

Figure 10: DoF Reference

SELECT r.utilization, s.avgResponseTime
EVALUATE DOF
VARYING
‘DoF_OpenWorkload_InterarrivalTime’
AS dof1 <0.1, 0.2, 0.3>,

‘DoF_JDBCConnectionPool_Size’
AS dof2 <10..30 BY 5>

FOR RESOURCE ‘AppServerCPU1’ AS r,
SERVICE ‘newOrder’ AS s

USING connector@location;

Listing 6: DoF Query

tion pool from 10 to 30 in steps of 5. Without an explicitly
defined exploration strategy, the default exploration strat-
egy is considered to be a full exploration. In the example,
this means that 3×5 = 15 performance predictions are trig-
gered. The query result set is then a list of 15 prediction
results. Each prediction result contains the prediction for
performance metrics r.utilization and s.avgResponseTime.

Using the optional ExplorationStrategyID, together with
user-defined configuration properties (see Fig. 12), it is pos-
sible to trigger an alternative exploration strategy provided
that the DQL Connector supports it. This is necessary
for, e.g., DoFs representing migrations of Virtual Machines
(VMs) from a physical host machine to another physical
host machine. In these cases, it is the DQL Connector that

Figure 11: DoF Variation Clause

Figure 12: DoF Configuration Property

SELECT s.avgResponseTime
EVALUATE DOF
VARYING ‘DoF_AppServerVM_Migration’ AS dof1
GUIDED BY ‘MyExplorationStrategy’
[dof1.targets =
‘PhysicalMachineA,PhysicalMachineB’]

FOR SERVICE ‘newOrder’ AS s
USING connector@location;

Listing 7: DoF Query with Exploration Strategy

needs to provide means to iterate the configuration space.
An integration of complex exploration strategies, e.g., multi-
attribute Quality of Service (QoS) optimization techniques
to derive Pareto-optimal solutions [18], is thus supported.
Listing 7 shows a query example with an explicit exploration
strategy. The query has one DoF, namely the physical ma-
chine where the appserver VM is assigned to. The config-
uration space, a set of two physical machines, is described
as String as value of property targets. Note that the se-
mantics of the configuration properties are specific for the
DoF and the exploration strategy, i.e., the properties are not
interpreted by DQL.

3.3.3 Temporal Dimension
As additional feature for Performance Metrics Queries,

DQL offers facilities to access different revisions of a perfor-
mance model. The assumption is that the model instances
are annotated with a revision number and/or timestamp,
i.e., that there is a chronological order.

In particular if the performance models are used in online
scenarios, queries that allow the user to ask about perfor-
mance metrics in the past, the development of performance
metrics over time, or (together with a workload forecasting
mechanism [12]) the development of performance metrics in
the next time, are desirable. In online scenarios, perfor-
mance model instances are typically part of a performance

103



Figure 9: DoF Clause

SELECT r.utilization, s.avgResponseTime
FOR RESOURCE ‘AppServerCPU1’ AS r,

SERVICE ‘newOrder’ AS s
USING connector@location
OBSERVE
BETWEEN ‘2013-10-09 08:00:00’
AND ‘2013-10-10 08:00:00’
SAMPLED BY 1h;

Listing 8: Performance Metrics Over Time

SELECT r.utilization
FOR RESOURCE ‘AppServerCPU1’ AS r
USING connector@location
OBSERVE
NEXT 2h SAMPLED BY 10M;

Listing 9: Anticipated Resource Utilization

data repository that integrates revisions of calibrated model
instances and performance monitoring data [16].
DQL allows to express the temporal dimension in different

ways: (i) with a time frame defined by a start and end, and
(ii) with a time frame starting or ending with the current
time and a time delta. Alternative (i) is used in the example
in Listing 8. Resource utilization and service response time
are queried for a specific time frame of one day. The results
are sampled groups of one hour, possibly read from historical
monitoring data, thus leading to a set of 24 result sets. The
example shown in Listing 9 uses alternative (ii). The query
requests the application server CPU utilization for the next
two hours, sampled in twelve groups of ten minutes length
each. This query triggers performance predictions, provided
that a workload forecast for the next two hours is available.

4. TECHNICAL REALIZATION
Based on our query language as described in the previ-

ous sections, we provide an implementation of DQL based
on an extensible software architecture. The DQL environ-
ment is built up on the OSGi Framework, Eclipse Modeling
Framework (EMF) and Xtext2. In the following we present
our realization of the DQL environment, describe internal
data structures, outline control flows and give an outline for
contributions of custom DQL Connectors.

4.1 Architecture and Components
The architecture of the DQL approach is shown in Fig. 13.

It is realized in Java and based on the OSGi Framework [26,

2http://www.eclipse.org/Xtext/
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Connector
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Model-specific

External Toolchain

Figure 13: DQL System Architecture

27]. The current implementation is based on plain OSGi
operations and runs on Eclipse Equinox3. Each component
is encapsulated in a dedicated OSGi Bundle and activated
on demand. For the interaction among Bundles, the OSGi
Service Layer is utilized, which results in an event-driven
interaction of components triggered by incoming queries.

The first component, DQL Language & Editor, provides
the interface to users and offers an Application Program-
ming Interface (API). The component is based on Xtext.
Xtext is a framework to develop Domain-specific Languages
(DSLs) and offers facilities to generate software artifacts
such as text editor and parser based on a grammar specifica-
tion. The component provides a DQL query parser and rep-
resents statements in an EMF model of the abstract syntax
tree. For convenience, an Eclipse-based editor is also part of
DQL. The Xtext-generated editor is customized, e.g., code
assistance to obtain identifiers of model entities or available
performance metrics. Furthermore, users can issue queries
and visualize query results.

The second component, DQL Query Execution Engine
(QEE), provides the main execution logic in the DQL system
architecture. Here, all tasks take place that are independent
of a specific performance modeling formalism and predic-
tion technique. The DQL QEE transforms queries into the
internal abstraction for queries, the Mapping Meta-Model,
which will be introduced in Sec. 4.2. The DQL QEE then
selects an adequate DQL Connector to access the requested
model instance, to execute the query, and to provide the re-
sults to the user. The DQL QEE also calculates aggregate
functions if requested and performs the necessary pre- and
post-processing steps.

The third component, a DQL Connector, provides func-
tionality that is dependent on a specific performance mod-
eling formalism and prediction technique. This includes ac-
cessing performance models, triggering the prediction pro-
cess and providing additional information, e.g., about the
model structure and available performance metrics. To in-
tegrate different approaches for performance prediction in
a DQL environment, multiple DQL Connectors can be de-
ployed to the OSGi run-time. As each DQL Connector

3http://www.eclipse.org/equinox/
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comes with a unique identifier that needs to be referenced in
a DQL query together with a model location, the DQL QEE
can select a suitable DQL Connector to execute the query.
To find a suitable DQL Connector, the DQL Connector Reg-
istry is used. The latter uses the OSGi Declarative Service
interface to build and maintain an index of available DQL
Connectors and their support for query classes.
Our proposed architecture allows to integrate various dif-

ferent performance modeling approaches and prediction tech-
niques. Extensions of the DQL environment are primarily
possible by contributing additional DQL Connectors. DQL
Connector implementations can be partially, which allows
to implement approaches that are not capable of all features
of DQL.

4.2 Mapping Meta-Model
The Mapping Meta-Model is an abstraction layer to en-

capsulate different performance modeling formalisms, pre-
diction approaches and requests resulting from DQL queries.
An instance of the Mapping Meta-Model is used to (i) send
a DQL query request from DQL QEE to a DQL Connector,
to (ii) send the query result back from the DQL Connector
to DQL QEE, and (iii) to present the query result to the
user.
Fig. 14 shows the Mapping Meta-Model. EntityMapping is

the top-level type and stores references to different parts of
an architecture-level performance model or a related perfor-
mance modeling formalism. Resource and Service reference
elements of a performance model instance by an identifier.
Both are derived from Entity which represents any kind of a
performance-relevant model entity with an absolute identi-
fier. Probe is attached to type Entity and either requests the
prediction of a specific performance metric or, if the query
has been processed, represents the value of the requested
metric in an instance of a derived type of type Result, e.g.,
type DecimalResult. Thus, in case a Mapping Meta-Model
instance contains instances of Probe, it is a request to be
processed by a DQL Connector, otherwise it represents a
result of a query. The type DoF represents the usage of a
DoF in a query, or, if the query has been processed, rep-
resents a specific parameter setting of a DoF during a per-
formance prediction. The type Aggregate is inserted in the
post-processing step of DQL QEE and represents an aggre-
gate computed on top of returned performance metric val-
ues. An example for the usage of the Mapping Meta-Model
follows in the next section, detailed usage scenarios and ex-
emplary instances are shown in [9, p. 52 ff.].

4.3 Query Execution
This section describes the sequence of query processing

steps of Performance Metrics Queries. The process shown
here focuses on the interaction to trigger a performance pre-
diction and to return performance metrics to a user. Fig. 15
shows an overview of the execution sequence that consists
of phases that are independent of a modeling formalism and
phases that are modeling formalism specific, involving both
the DQL QEE and a DQL Connector.
In the first phase, processing takes place at the DQL QEE.

The steps are independent of a performance modeling for-
malism. They involve the look-up of a DQL Connector and
its invocation, operations to parse the query, preparation
of the request and the setting of configuration options for
the DQL Connector. The relevant parts of the query are
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transformed into an instance of the Mapping Meta-Model.
When the necessary preparation of the request is done, the
request is submitted for execution to the chosen DQL Con-
nector. Here, steps are specific to a performance modeling
formalism and prediction technique. The implementation
of the DQL Connector is not constrained to specific tools
but may use any kind of external service to obtain the re-
sult. When the result is available, it is represented as an
instance of the Mapping Meta-Model and returned to the
DQL QEE. In the third phase, post-processing operations
take place. Here, the instance of the Mapping Meta-Model
can be altered before it is sent back to the user as result set.
This is the case if, e.g., aggregate functions are involved.

4.4 Developing DQL Connectors
To contribute a new DQL Connector, a developer has to

accomplish three major tasks: (i) Create a new OSGi Bun-
dle providing a ConnectorProvider as OSGi Service to the
run-time, (ii) provide implementations for the relevant query
classes and (iii) deploy the OSGi Bundle to the DQL envi-
ronment.
For (i), the Bundle needs to be created and meta infor-

mation needs to be added using the OSGi Component def-
inition. The meta information is used to identify a DQL
Connector and to register it with the DQL environment.
In (ii) the effort to implement the query classes depends

on various factors and the underlying performance model-
ing formalism and prediction technique. ConnectorProvider

is a factory class to create instances of classes implement-
ing interfaces for each supported query class. For each query
class a specialized interface exists, e.g. ModelStructureQuery-

Connector or PerformanceMetricsQueryConnector. Using this
approach, in later revisions additional query classes can be
added to DQL, while the compatibility with existing im-
plementations is ensured. Within an interface, developers
are free to implement only those methods for requests that
should be handled by the resulting DQL Connector. For
each method that requests the computation of a query, there
is a corresponding method that asks for the support of the
request. The DQL QEE checks for support of query re-
quests before their invocation and in case of an unsupported
method, it throws an exception. Thus, users are not required
to implement each method.
To support basic queries, a DQL Connector needs to map

the concepts of Resource, Service and Probe of the Mapping
Meta-Model to representations in the performance modeling
formalism that should be connected to DQL. As an entry
point, we provide a DQL Connector skeleton that can be
used to implement a custom DQL Connector. The skeleton
contains all relevant meta-data and examples for the inter-
action with the DQL QEE.
Finally, after the implementation is done, in (iii) the OSGi

Bundle has to be added to the run-time and queries can
then be executed. As the DQL architecture is compliant to
the OSGi Lifecycle Layer, a Bundle can be deployed and
removed on demand.

5. RELATED WORK
DQL is related to existing work in the performance engi-

neering domain and the model-driven engineering domain.

Intermediate Performance Models. We analyzed exist-
ing approaches in Software Performance Engineering (SPE)

to reduce the efforts to transform performance models, to
trigger predictions and to extract performance metrics [30].
The approaches focus on intermediate modeling techniques.
The intermediate performance modeling techniques aim to
generalize the transformation process from architecture-level
performance models to predictive performance models uti-
lizing an intermediate step. The approaches cope with the
problem of having n input formats and m output formats
(N-to-M problem) by providing an intermediate meta-model.
The idea is that existing transformations from the interme-
diate meta-model to predictive performance models can be
reused only by providing a transformation from an archi-
tecture-level performance model to the intermediate repre-
sentation. Thus, the intermediate meta-model represents a
generic performance abstraction for architecture-level per-
formance models. Prominent examples are PMIF [32, 31],
Core Scenario Model (CSM) [38] and Kernel LAnguage for
PErformance and Reliability analysis (KLAPER) [10].

However, these approaches are focused on offline settings
with predefined transformations, do not expose a unifying
API and provide no means for a fine-granular result speci-
fication that can be used for tailored transformations as we
propose with DQL.

Modeling of Degrees-of-Freedom. The analysis of DoFs
in SPE is a challenging task that is common in perfor-
mance prediction scenarios. In [19], DoFs are formalized for
multi-objective optimization problems. Another approach is
the Adaptation Points Meta-Model presented in [14]. It is
mainly used to annotate model instances of system resource
environments with DoFs that represent system configuration
and resource allocation options. The approach also provides
a language to express reconfiguration strategies [15]. Other
methods for the exploration of the configuration space in-
clude, e.g., adaptive sensitivity analyses [37].

DQL is designed to integrate existing DoF modeling and
corresponding exploration strategies. The mentioned ap-
proaches can thus be re-used with DQL.

Modeling Performance Metrics. As one approach for the
modeling of metrics, the Objects Management Group (OMG)
introduced the Structured Metrics Metamodel (SMM) as
part of their Architecture Driven Modernization (ADM) road-
map [25]. Using SMM, any kind of structured metric can
be modeled, measured and represented. As an example for
the implementation of SMM, Measurement Architecture for
Model-Based Analysis (MAMBA) [7, 6] supports a wide-
range of SMM features. One notable addition of MAMBA is
MAMBA Query Language (MQL) as interface to access the
metrics. MQL has a Structured Query Language (SQL)-like
textual syntax and supports aggregates on measurements.

However, the generic SMM andMAMBA approaches come
with a significant overhead to model metric values because
they are not focused on performance but aim at general
analyses. They do not provide the necessary means to trig-
ger performance predictions, but are an option for internal
operations in DQL.

Domain-specific Languages. The structure of DQL is sig-
nificantly influenced by the structure of SQL. SQL is a promi-
nent example for a DSL as a query language. It allows hiding
the actual data access and calculation from the user [4] and
can thus be considered as role model.
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6. EVALUATION
We evaluate the applicability and benefits of the proposed

approach in the context of several representative case stud-
ies. We show how to query different established performance
prediction techniques such as PCM [2], KLAPER [10] or QP-
Nss, and how to query performance data repositories such
as VMware vSphere. The results of our evaluation are pre-
sented in the following.

6.1 DQL Connector for PCM
Palladio Component Model (PCM) is a modeling language

for component-oriented software systems and their deploy-
ment on resource landscapes. It is used to predict the per-
formance of systems already at design time. The approach
addresses the needs of users during design, development and
maintenance phases of software systems and [29, 2]. PCM
is ranked as a mature approach for performance modeling
with sophisticated prediction techniques and comprehensive
tool support [20]. PCM has been used successfully to model
several different classes of component-oriented software sys-
tems [13, 28]. The Palladio Bench4 is an Eclipse-based set
of tools for modeling instances of PCM and to execute sim-
ulations of these models. With the Palladio Bench, users
can develop model instances using editors with an Unified
Modeling Language (UML)-based graphical syntax.
In our evaluation we demonstrate how to use PCM with

DQL. The case study shows how DQL queries can be used
to trigger complex performance predictions.
For the development of a DQL Connector for PCM, we

analyze the meta-model of PCM and evaluate how to map
PCM entities to the DQL Mapping Meta-Model. In the Us-
age Model of PCM, workload-specific modeling aspects are
modeled by domain experts to represent usage scenarios of
the modeled software system [29, p. 159 ff.]. We identify
the types UsageScenario and EntryLevelSystemCall as rele-
vant entities in the PCM Usage Model to be mapped to
the type Service in the Mapping Meta-Model. In addition,
PCM provides a Repository Model to model and store soft-
ware components with their behavioral descriptions [29, p.
108 ff., p. 134 ff.]. Here, the type ExternalCallAction is rele-
vant and mapped to the Service type of the Mapping Meta-
Model. ExternalCallAction represents the call of a service
provided by another component. Finally, in the Resource
Environment Model of PCM the types ProcessingResource-

Specification and CommunicationLinkResourceSpecification

can be mapped to the Mapping Meta-Model type Resource.
The first type represents active resources of a hardware server,
the latter type represents the network link of a hardware
server.
In the DQL Connector implementation, we use the op-

erations of the EMF API and Object Constraint Language
(OCL) queries to access PCM instances and to obtain all
necessary information for Model Structure Queries. For Per-
formance Metrics Queries, we use the PCM Experiment Au-
tomation API to trigger performance predictions and the
SensorFramework, which is part of the Palladio Bench, to
obtain performance metrics. For the mapped type Resource,
the demanded time and utilization are available as perfor-
mance metrics, and for the mapped type Service, the metric
response time is available. Furthermore, there are mappings
for specific types of PCM to the type DoF.

4http://www.palladio-simulator.com/tools/

SELECT AppServer_CPU.utilization,
DBServer_CPU.utilization,
DBServer_HDD.utilization

EVALUATE DOF
VARYING ’_TyV-MFBwEd6ActLj8Gdl_A’

AS ClosedWorkloadPopulation <100, 200>
’_Q8jwMEg9Ed2v5eXKEbOQ9g’
AS ActionReplication <2, 8>

FOR RESOURCE ’_5uTBUBpmEdyxqpPYxT_m3w@CPU’
AS AppServer_CPU,
RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@CPU’
AS DBServer_CPU,
RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@HDD’
AS DBServer_HDD

USING pcm@’mediastore.properties’;

Listing 10: Complex DoF Query in the Palladio Bench

The DQL Connector implementation is evaluated in a case
study using the MediaStore example5 [9]. First, we analyze
the model structure of the example to obtain the necessary
identifiers of the model entities in the MediaStore to trigger
a performance prediction. Listing 10 is a DoF Query ap-
plied to the MediaStore example. Fig. 16 shows the DQL
Workbench consisting of a query editor with the DoF Query
in the upper half and a view to visualize results in the lower
half. The query editor provides syntax highlighting as well
as auto-completion features. The visualization is a tabu-
lar representation of the Mapping Meta-Model instance re-
turned from the DQL API call. The query contains the
request to vary two DoFs with two different DoF settings
each. The first DoF references the workload intensity set-
ting for the simulation using a closed workload, the second
DoF modifies the behavior of a component by replicating
an internal action. The query leads to a total of four PCM
simulations and four independent result sets. For each sim-
ulation run, the result set contains the utilization rates of
the AppServer CPU, DBServer CPU and DBServer HDD
together with the DoF setting for the simulation. All enti-
ties in the query, i.e. Resources and DoFs, are directly ref-
erenced from the MediaStore and the performance metrics
are extracted from the SensorFramework after the simula-
tion runs complete. As a complete PCM instance consists of
several sub-models, they are referenced in a properties file
as the model loction in the USING expression.

6.2 DQL Connector for KLAPER
KLAPER aims to generalize the transformation process

from architecture-level performance models to predictive per-
formance models through an intermediate step [10]. The
approach copes with the problem of having n input formats
and m output formats (N-to-M problem) by providing an
intermediate meta-model. The idea is that existing trans-
formations from the intermediate meta-model to predictive
performance models can be reused only by providing a trans-
formation from an architecture-level performance model to
the intermediate representation. An implementation of the
KLAPER approach is available as KlaperSuite [5].

Since the KLAPER intermediate meta-model represents
a generic performance abstraction for architecture-level per-
formance models and already provides support for several

5http://sdqweb.ipd.kit.edu/wiki/PCM_3.3/Example_Workspace
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Figure 16: DQL Workbench controlling PCM simulations

modeling formalisms, it lends itself as a target model for
a DQL Connector to evaluate the applicability of the DQL
modeling abstractions.
We analyze the KLAPER meta-model and evaluate how

to map its entities to the DQL Mapping Meta-Model. The
KLAPER Meta-Model consists of different parts: (i) re-
sources and their interaction, (ii) services and their depen-
dencies, and (iii) the behavioral specification of services [10].
The behavior is specified in steps, which have properties
to describe resource demands and performance and reliabil-
ity characteristics. The Mapping Meta-Model captures only
structural properties of performance models. The KLAPER
types Resource and Service can be directly mapped to the
Mapping Meta-Model types Resource and Service. Most of
the behavioral types can be omitted in this mapping, but
ActualParam and Workload can be used as DoF in the Map-
ping Meta-Model to express model variation points. Due to
the nature of KLAPER as intermediate modeling language,
the available performance metrics for Resource and Service

depend on the used analysis model.
In summary, the mapping shows similarities of the struc-

tural abstractions used in KLAPER and the DQL Map-
ping Meta-Model. Furthermore, the KlaperSuite approach
would benefit from an API to automate prediction processes
and a mechanism to visualize results of performance predic-
tions [5]. These points make KLAPER a valuable choice for
a future DQL Connector implementation.

6.3 DQL Connector for VMware vSphere
VMware vSphere is a popular management product for

VMware virtualization environments [36, 8]. vSphere offers
several proprietary tools and an API that is being exposed
through a web service [35]. We utilize vSphere as a per-
formance data repository to obtain performance data from
running vSphere environments.
We experienced several shortcomings of the vSphere API.

The extraction of performance data needs a significant amount
of repetitive source code, even for single data requests. The
API and the underlying data model have a generic struc-

ture, which is hard to access in a simple way. To solve these
shortcomings, we propose a DQL Connector implementation
for vSphere. With vSphere, we evaluate the applicability of
DQL to performance data repositories.

vSphere’s underlying data center model organizes the data
center resources in a deep hierarchy. The model covers
the range from data center infrastructure down to resources
of VMs like virtual Central Processing Units (vCPUs) and
memory. In addition to live monitoring data, vSphere main-
tains historical performance data that can be accessed by
corresponding API calls. The vSphere resource data struc-
tures can be mapped to the Resource type of the DQL Map-
ping Meta-Model. The Mapping Meta-Model does not pro-
vide means to represent the hierarchy represented in vSphere,
but each vSphere resource layer can be mapped to an in-
stance of Resource. There are no vSphere model elements
that are mapped to the Service type of the Mapping Meta-
Model.

With a DQL Connector for vSphere, the monitoring data
access is simplified. The feature to query historical data as
presented in Sec. 3.3.3 eases the access of historical data.
Listing 11 is an example of an issued DQL query. The ex-
ample retrieves information about the CPU and network
utilization of a physical server and the mean vCPU utiliza-
tion of two VMs deployed on this host. The utilization is
obtained from a twelve hour time frame, in samples of one
hour.

6.4 DQL Connector for Queueing Petri Nets
To show the general applicability of DQL and especially

the DQL Mapping Meta-Model, we use the QPN formal-
ism as target for an evaluation together with SimQPN as
tool for simulating QPNs [1, 17]. Our goal is to show that
even predictive performance models can be mapped to the
Mapping Meta-Model and an integration with a DQL Con-
nector is possible. Fig. 17 shows an example of a QPN model
representing parts of the SPECjAppserver2004 benchmark
application. There is an application server WLS accessing a
database server DBS to serve customer requests. We refer
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SELECT host.cpuUtilization, host.netUtilization
MEAN(vm1.cpuUtilization,

vm2.cpuUtilization)
FOR RESOURCE ‘hostId’ AS host,

RESOURCE ‘vm1Id’ AS vm1,
RESOURCE ‘vm2Id’ AS vm2

USING vsp@location
OBSERVE
BETWEEN ‘2013-09-18 09:00:00’ AND +12h
SAMPLED BY 1h;

Listing 11: Example of a Basic Query for VMware vSphere

WLS-CPU DBS-PQ DBS-CPU DBS-I/Ot1

t t t

t2 t3 t4 t5

c c c

Client

x x x x x x x x

p p p
1'p

1'c

x

1'p

1'c

ri

rj

DBS-Process-Pool

DBS-Conn-Pool

WLS-Thread-Pool

1't

DATABASE SERVER

Figure 17: Part of SPECjAppserver2001 based on [17]

to [17] for the formal description of the referenced QPN and
focus on the description of the mapping to DQL.
The example consists of the queueing places WLS-CPU,

DBS-CPU and DBS-I/O. Each of these nodes consist of a
queue, a scheduling strategy and a departure process. Queues
are used to store tokens that are selected by a scheduling
strategy to enter the departure process. The departure pro-
cess depends on the token color, the token color’s assigned
processing time, and the number of available servers. We
consider a queueing place in QPNs as an active resource
to process requests and thus map it to the Resource type
of the Mapping Meta-Model. The node Client is a special
kind of queueing place and is used to model the clients in
the system representing a closed workload. The process-
ing time at this node is considered to be the think time
required by clients to issue new requests. Client can also
be mapped as active resource. The next family of model
elements are ordinary places, i.e. WLS-Thread-Pool, DBS-
PQ, DBS-Process-Pool and DB-Conn-Pool. These resources
can be considered passive resources. These elements model
shared resources within the network and are populated with
a specified amount of tokens, i.e., the size of a thread pool.
Client requests can only traverse the transitions ti if the con-
nected resources contain tokens. Otherwise the transitions
do not fire and requests have to wait. Passive resources are
mapped to the type Resource.
To model the workload imposed to the system, the Client

queueing place is used. For a workload mix, different work-
load classes are specified as tokens of different colors. For
each workload class ri, i ∈ N a predefined amount of tokens is
populated within the Client queue and, as different workload
classes impose different processing steps, at each queueing

SELECT wls.utilization, order.serviceTime,
dbs.utilization, dbsIo.utilization,
dbsProc.population

FOR RESOURCE ‘wlsCpuId’ AS wls,
RESOURCE ‘dbsCpuId‘ AS dbs,
RESOURCE ‘dbsPoolId‘ AS dbsProc,
RESOURCE ‘dbsIo‘ as dbsIo,
SERVICE ‘newOrder’ AS order

USING connector@location;

Listing 12: Example of a Basic Query for SimQPN

place the processing demand is parameterized accordingly.
In DQL notation, ri, rj , i ̸= j represent two different in-
stances of Service in the Mapping Meta-Model and i, j are
considered as absolute identifiers of a Service instance.

After the type mapping of model entities is established,
we describe how we obtain the available performance met-
rics. The mapping of available performance metrics is based
on SimQPN [17]. For the different workload classes ri, the
mean service time is available. For the queueing places and
ordinary places, the token population, utilization, throughput
and residence time are available.

Listing 12 is an example to trigger a performance predic-
tion for the QPN shown in Fig. 17. Here, the query is used to
analyze the WLS-CPU and the service time of requests from
the workload class newOrder. To determine if the Database
Server is a bottleneck in this model, the utilization rates of
DBS-CPU and DBS-IO are requested. Additionally, the pop-
ulation of DBS-Process-Pool is requested. In this scenario,
either the resources of the Database Server are saturated or
it is the process pool that is too small and thus a bottle-
neck. Furthermore, using DoFs the population of client can
be varied to capture the behavior for different load levels.

7. CONCLUSIONS & FUTURE WORK
We presented the Descartes Query Language (DQL), a

novel query language to specify performance queries. It
unifies the interfaces of available performance modeling for-
malisms and their prediction techniques to provide a com-
mon Application Programming Interface (API). DQL is in-
dependent of the employed modeling formalisms, hides low-
level details of performance prediction techniques and thus
reduces the manual effort and the learning curve when work-
ing with performance models. DQL allows expressing simple
performance queries, that specify which performance met-
rics should be predicted under which scenario-specific con-
straints, and also allows complex queries that trigger an au-
tomated exploration of the configuration space of a perfor-
mance model for a sensitivity analysis.

We implemented our approach using an extensible ar-
chitecture. Support for specific performance modeling for-
malisms and prediction techniques can be easily integrated
by adding new DQL Connectors. To demonstrate the ap-
plicability and benefits of our approach, we presented rep-
resentative case studies for DQL showing how to query dif-
ferent established performance prediction techniques such as
PCM [2], KLAPER [10] or Queueing Petri Nets (QPNs), and
how to query performance data repositories such as VMware
vSphere.
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As part of our future work, we plan to integrate further
DQL Connectors and to provide additional query classes.
Additional query classes in DQL are intended to address
problems like the automated detection of bottlenecks. These
classes are intended as a step towards goal-oriented queries
that can be used to express optimization problems. Fur-
thermore, we encourage researchers and tool providers to
contribute their own DQL Connectors to ease the usage of
their prediction techniques.
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