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a b s t r a c t

Modern service-oriented enterprise systems have increasingly complex and dynamic
loosely-coupled architectures that often exhibit poor performance and resource efficiency
and have high operating costs. This is due to the inability to predict at run-time the effect
of workload changes on performance-relevant application-level dependencies and adapt
the system configuration accordingly. Architecture-level performance models provide a
powerful tool for performance prediction, however, current approaches to modeling the
context of software components are not suitable for use at run-time. In this paper, we
analyze typical online performance prediction scenarios and propose a performancemeta-
model for (i) expressing and resolving parameter and context dependencies, (ii) modeling
service abstractions at different levels of granularity and (iii) modeling the deployment
of software components in complex resource landscapes. The presented meta-model is a
subset of the Descartes Meta-Model (DMM) for online performance prediction, specifically
designed for use in online scenarios. Wemotivate and validate our approach in the context
of realistic and representative online performance prediction scenarios based on the
SPECjEnterprise2010 standard benchmark.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modern enterprise software systems are increasingly complex and dynamic. They are typically composed of loosely-
coupled services that operate and evolve independently. The increased flexibility gained through the adoption of, e.g.,
paradigms like service-oriented architecture, comes at the cost of higher system complexity. Managing system resources
in such environments to ensure acceptable end-to-end Quality-of-Service (QoS, e.g., performance and availability) while at
the same time optimizing resource utilization is a challenge. This is due to the inability to keep track of workload changes
and application-level dependencies and their effect on the system QoS. Service providers are often faced with questions
such as:What performance would a new service deployed on the infrastructure exhibit and howmuch resources should be
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allocated to it? How should the system configuration be adapted to avoid performance issues or inefficient resource usage
arising from changing customer workload parameters? Answering such questions requires the ability to predict at run-time
how the performance of running services would be affected if the workload or the system configuration changes. We refer
to this as online performance prediction [1].

Existing approaches to online performance prediction (e.g., [2–5]) are based on stochastic performance models such
as (layered) queueing networks or queueing Petri nets. Such models, often referred to as predictive performance models,
normally abstract the system at a high level without explicitly taking into account its software architecture (e.g., flow of
control and dependencies between software components) and configuration. Services are typically modeled as black boxes
andmany restrictive assumptions are often imposed such as a single workload class, single-threaded components, homoge-
neous servers or exponential request inter-arrival times. Detailed models that explicitly capture the software architecture
and configuration exist in the literature, however, such models are intended for use at design-time (e.g., [6–9]). Models in
this area are descriptive in nature, e.g., software architecture models based on UML, annotated with descriptions of the sys-
tem’s performance-relevant behavior. Such models, often referred to as architecture-level performance models, are used at
design time to evaluate alternative system designs and/or predict the system performance for capacity planning purposes.

While architecture-level performance models provide a powerful tool for performance prediction, they are typically
expensive to build and provide limited support for reusability and customization which renders them impractical for use
at run-time. Recent efforts in the area of component-based performance engineering [10] have contributed a lot to facilitate
model reusability, however, there is still much work to be done on further parameterizing performance models before they
can be used for online performance prediction.

We argue that there are fundamental differences between offline and online scenarios for performance prediction. This
leads to different requirements on the underlying performance abstractions of the system architecture and the respective
performance prediction techniques suitable for use at design-time vs. run-time. In particular, the type and amount of data
available as a basis for model parameterization and calibration at system design-time vs. run-time is different. Furthermore,
current approaches to modeling the component context in architecture-level performance models are not suitable for use
at run-time since they do not provide enough flexibility in the way parameter dependencies can be expressed and resolved.

In this paper, we analyze the above-mentioned issues when trying to use classical architecture-level modeling
approaches in an online scenario and propose a new meta-model for online performance prediction. This involves (i) a
novel approach to model the component context and parameter dependencies specifically for use at run-time, (ii) a new
approach to model performance-relevant service behavior at different levels of detail, and (iii) a meta-model to describe
the resource environment and the deployment of the software system. The presented modeling abstractions are subsets
of the Descartes Meta-Model (DMM) [11], a new meta-model for run-time QoS and resource management in virtualized
service infrastructures. In this paper, we focus on performance modeling abstractions for the application architecture-
level. For details on modeling virtualized infrastructures and system adaptation with DMM, we refer to [12,13]. We
motivate and validate our meta-model elements in the context of the industry-standard SPECjEnterprise2010 benchmark,1
which provides a set of realistic and representative application scenarios such as customer relationship management,
manufacturing and supply chain management.

In summary, the contributions of this paper are: (i) analysis of typical online performance prediction scenarios and the
requirements on online modeling approaches, (ii) novel modeling abstractions and concepts for expressing and resolving
parameter and context dependencies providing increased flexibility at run-time, (iii) a new approach tomodel performance-
relevant service behavior at different levels of detail, (iv) detailed evaluation of the suitability of the proposed abstractions
in the context of a set of representative real-life scenarios. To the best of our knowledge, no similar performance modeling
approach at the architecture-level providing the level of flexibility achieved through the proposed abstractions exists in the
literature.

This paper extends our previous work [14] in the following points. We provide an analysis presenting the different
requirements for offline respectively online scenarios on the underlying abstractions for performance prediction. The
analysis captures several differences including meta-model structure, type and amount of available monitoring data,
trade-off decisions and different degrees-of-freedom. Furthermore, we added a brief description of how we model the
resource landscape with DMM [11]. Additionally, we provide new evaluation scenarios (i) showing the differences between
the different ways to model service behavior abstractions and (ii) illustrating the performance-relevance of parameter
dependencies and how they can be represented in a performance model.

The remainder of this paper is organized as follows. Section 2 describes the different requirements for offline respectively
online scenarios on the performance abstractions. Section 3 discusses current approaches to modeling parameter and
context dependencies in performance models as implemented in the Palladio Component Model (PCM). In Section 4, we
present the novel modeling abstractions and validate their suitability in the context of representative real-life scenarios.
We summarize the results from the evaluation of the feasibility and accuracy of the proposed approach in Section 5. Finally,
we review related work in Section 6 and conclude in Section 7.

1 SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010 results or findings in this
publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance inference can be made against any published SPEC
result. The official web site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.

http://www.spec.org/jEnterprise2010
http://www.spec.org/jEnterprise2010
http://www.spec.org/jEnterprise2010
http://www.spec.org/jEnterprise2010
http://www.spec.org/jEnterprise2010
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2. Design-time vs. run-time models

We argue that there are some fundamental differences between offline and online scenarios for performance prediction.
This leads to different requirements on the underlying performance abstractions of the system architecture and the
respective performance prediction techniques suitable for use at design-time vs. run-time. In the following, we summarize
themain differences in terms of goals and underlying assumptions driving the evolution of design-time vs. run-timemodels.

Evaluate design alternatives vs. evaluate impact of changes. At system design-time, the main goal of performance modeling
and prediction is to evaluate and compare different design alternatives in terms of their performance properties.

In contrast, at run-time, the system design (i.e., architecture) is relatively stable and themain goal of online performance
prediction is to predict the impact of dynamic changes in the environment (e.g., changing workloads, system deployment,
resource allocations, deployment of new services).

Model structure aligned with developer roles vs. system layers. Given the goal to evaluate and compare different design
alternatives, design-time models are typically structured around the various developer roles involved in the software
development process (e.g., component developer, system architect, system deployer, domain expert), i.e., a separate sub-
meta-model is defined for each role. In line with the component-based software engineering paradigm, the assumption
is that each developer with a given role can work independently from other developers and does not have to understand
the details of sub-meta-models that are outside of their domain, i.e., there is a clear separation of concerns. Sub-meta-
models are parameterized with explicitly defined interfaces to capture their context dependencies. Performance prediction
is performed by composing the various sub-meta-models involved in a given system design. To summarize, at design-time,
model composition and parameterization is aligned with the software development processes and developer roles.

At run-time, the complete system now exists and a strict separation and encapsulation of concerns according to the
developer roles is no longer that relevant. However, given the dynamics of modern systems, it is more relevant to be able to
distinguish between static and dynamic parts of themodels. The software architecture is usually stable, however, the system
configuration (e.g., deployment, resource allocations) at the various layers of the execution environment (virtualization,
middleware) may change frequently during operation. Thus, in this setting, it is more important to explicitly distinguish
between the system layers and their dynamic deployment and configuration aspects, as opposed to distinguishing between
the developer roles. Given that performance prediction is typically done to predict the impact of dynamic system adaptation,
models should be structured around the system layers and parameterized according to their dynamic adaptation aspects.

Type and amount of data available for model parameterization and calibration. Performance models typically have multiple
parameters such as workload profile parameters (workload mix and workload intensity), resource demands, branch
probabilities and loop iteration frequencies. The type and amount of data available as a basis for model parameterization
and calibration at design-time vs. run-time greatly differs.

At design-time, model parameters are often estimated based on analytical models or measurements if implementations
of the system components exist. One the one hand, there is more flexibility since in a controlled testing environment,
one could conduct arbitrary experiments under different settings to evaluate parameter dependencies. On the other hand,
possibilities for experimentation are limited since often not all system components are implemented yet, or some of them
might only be available as a prototype. Moreover, even if stable implementations exist, measurements are conducted in a
testing environment that is usually much smaller and may differ significantly from the target production environment.
Thus, while at design-time, one has complete flexibility to run experiments, parameter estimation is limited by the
unavailability of a realistic production-like testing environment and the typical lack of complete implementations of all
system components.

At run-time, all system components are implemented and deployed in the target production environment. This makes
it possible to obtain much more accurate estimates of the various model parameters taking into account the real execution
environment. Moreover, model parameters can be continuously calibrated to iteratively refine their accuracy. Furthermore,
performance-relevant information can be monitored and described at the component instance level, not only at the
type level as typical for design-time models. However, during operation, we do not have the possibility to run arbitrary
experiments since the system is in production and is used by real customers placing requests. In such a setting, monitoring
has to be handled with care, keeping the monitoring overhead within limits (non-intrusive approach) such that system
operation is not disturbed. Thus, at run-time, while theoretically much more accurate estimates of model parameters can
be obtained, one has less control over the system to run experiments and monitoring must be performed with care in a
non-intrusive manner.

Trade-off between prediction accuracy and overhead. Normally, the same model can be analyzed (solved) using multiple
alternative techniques such as exact analytical techniques, numerical approximation techniques, simulation and bounding
techniques. Different techniques offer different trade-offs between the accuracy of the provided results and the overhead
for the analysis in terms of elapsed time and computational resources.

At design-time, there is normally plenty of time to analyze (solve) the model. Therefore, one can afford to run detailed
time-intensive simulations providing accurate results.

At run-time, depending on the scenario, the model may have to be solved within seconds, minutes, hours, or days.
Therefore, flexibility in trading-off between accuracy and overhead is crucially important. The same model is typically used
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Fig. 1. Components providing and requiring interfaces.

in multiple different scenarios with different requirements for prediction accuracy and analysis overhead. Thus, run-time
models must be designed to support multiple abstraction levels and different analysis techniques to provide maximum
flexibility at run-time.

Degrees-of-freedom. The degrees-of-freedomwhen consideringmultiple design alternatives at systemdesign-time aremuch
different from the degrees-of-freedomwhen considering dynamic system changes at run-time such as changing workloads
or resource allocations.

At design-time one virtually has infinite time to vary the system architecture and consider different designs and configu-
rations. At run-time, the time available for optimization is normally limited and the concrete scenarios considered are driven
by the possible dynamic changes and available reconfiguration options. Whereas the system designer is free to design an
architecture that suits his requirements, at run-time the boundaries within which the system can be reconfigured are much
stricter. For example, the software architecture defines the extent to which the software components can be reconfigured
or the hardware environment may limit the deployment possibilities for virtual machines or services. Thus, in addition to
the performance influencing factors, run-timemodels should also capture the available system reconfiguration options and
adaptations strategies.

3. Example of an architecture-level performance modeling language

One of the most advanced architecture-level performance modeling languages, in terms of parameterization and tool
support, is the Palladio Component Model (PCM) [6]. In this paper, we use PCM as an example of a mature component-
based performance meta-model to motivate and discuss the issues when trying to use classical architecture-level modeling
approaches in an online scenario. To make the paper self-contained, we first provide a brief overview of PCM.

PCM provides a meta-model designed to support the prediction of extra-functional properties of component-based
software architectures. It is focused on design-time performance analysis, i.e., enabling performance predictions early in
the development lifecycle to evaluate different architectural design alternatives. The performance behavior of a component-
based software system is a result of the assembled components’ performance behavior. In order to capture the behavior and
resource consumption of a component, four factors are taken into account. Obviously, the component’s implementation
affects its performance. Additionally, the component may depend on external services whose performance has to be
considered as well. Furthermore, both the way the component is used, i.e., its usage profile, and the execution environment
in which the component is running are taken into consideration.

PCM models are divided into five sub-models: The repository model consists of interface and component specifications.
A component specification defines which interfaces the component provides and requires. For each provided service, the
component specification contains an abstract description of the service’s internal behavior. The systemmodel describes how
component instances from the repository are assembled to build an entire system. The resource environment model specifies
the execution environment in which the system is deployed. The allocation model describes the mapping of component
instances from the system model to resources defined in the resource environment. The usage model describes the user
behavior. It captures the services that are called, the frequency (workload intensity) and order in which they are invoked,
and the input parameters passed to them.

Component model and system model. A component may be either a basic (i.e., atomic) component or a composite
component. Fig. 1 shows an example with basic components, composite components and interfaces. Composite component
CompA and basic component CompB both provide interface InterfaceX. The interfaces required by component CompB are
provided by CompC respectively CompD. A composite componentmay contain several child component instances assembled
through so-called assembly connectors connecting required interfaces with provided interfaces. A component-based system
is modeled as a designated composite component that provides at least one interface. An example of how a composite
component is assembled is shown in Fig. 2. Component CompA comprises three instances of basic components introduced
in Fig. 1 connected according to their provided and required interfaces.
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Fig. 2. Assembly of the composite component.

Fig. 3. RDSEFF of service with signature execute(int number, List array) (cf. [6]).

Service behavior abstraction. For each service a component provides, in PCM the service’s internal behavior is modeled
using a ResourceDemanding Service Effect Specification (RDSEFF) [6]. AnRDSEFF captures the control flowand resource con-
sumption of the service depending on its input parameters passed upon invocation. The control flow is abstracted covering
only performance-relevant actions. An example of a RDSEFF for the service execute(int number, List array)[6]
is shown in Fig. 3. Starting with an ExternalCallAction to a required service and an InternalAction, there is a
BranchAction with two BranchTransitions. The first BranchTransition contains a LoopAction whose body
consists of another ExternalCallAction. The second BranchTransition contains a further ExternalCallAction.

The performance-relevant behavior of the service is parameterized with service input parameters. Whether the first or
second BranchTransition is called, depends on the value of service input parameter number. This parameter depen-
dency is specified explicitly as a branching condition. Similarly, the loop iteration count of the LoopAction is modeled
to be equal to the number of elements of the input parameter array. PCM also allows to define parameter dependencies
stochastically, i.e., the distribution of the loop iteration count can be described with a probability mass function (PMF):
IntPMF[(9;0.2) (10;0.5) (11;0.3)]. The loop body is executed 9 times with a probability of 20%, 10 times with
a probability of 50%, and 11 times with a probability of 30%. Note that this probabilistic description remains component
type-specific, i.e., it should be valid for all instances of the component.

In PCM, the performance behavior abstraction is encapsulated in the component type specification, enabling performance
predictions of component compositions at design-time. However, as we show in the next section, such design-time
abstractions are not suitable for use in online performancemodels ofmodern enterprise software systems due to the limited
flexibility in expressing and resolving parameter and context dependencies at run-time. Furthermore, we show that inmany
practical situations, providing an explicit specification of a parameter dependency as discussed above is not feasible and an
empirical representation based on monitoring data is more appropriate.

4. Performance meta-model

In this section, we present a new performancemeta-model specifically designed for use in online scenarios.Wemotivate
and validate our approach in the context of a realistic and representative online performance prediction case study based
on the industry-standard SPECjEnterprise2010 benchmark.

Starting with an overview on SPECjEnterprise2010, we present (i) our meta-model’s flexible service behavior abstrac-
tions, (ii) a novel approach to model parameter dependencies and (iii) an introduction to our infrastructure resource meta-
model [12,11]. For each of the three model abstractions, we first provide a motivation using SPECjEnterprise2010 scenarios,
then describe themodeling approach at a high-level, followed by a description of the semantics of themodeling entities and
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Fig. 4. SPECjEnterprise2010 architecture [15].

Fig. 5. SPECjEnterprise2010 deployment.

an evaluation that is focused on the introduced abstractions. Note that we evaluate the entire modeling approach later in
Section 5.

4.1. Online performance prediction scenario

SPECjEnterprise2010 is a Java EE benchmark for measuring the performance and scalability of Java EE-based application
servers. It implements a business information system of representative size and complexity. The benchmark workload
is generated by an application that is modeled after an automobile manufacturer. As business scenarios, the application
comprises customer relationship management (CRM), manufacturing, and supply chain management (SCM). The business
logic is divided into three domains: orders domain, manufacturing domain and supplier domain.

Fig. 4 depicts the architecture of the benchmark. We refer the reader to [15] for further details. We consider a scenario
where a set of customers are running their applications in a distributed execution environment. In our case, each customer
is running an instance of SPECjEnterprise2010 tailored to a particular type of workload (e.g., CRM, SCM). Each benchmark
application instance is deployed in one application server cluster in our deployment environment depicted in Fig. 5. One
application server clusterwith a running SPECjEnterprise2010 instance is assigned toCustomerA. Another application server
cluster is assigned to Customer B. The database server runs separately and serves the requests of all application instances.We
assume that each customer has its own independent workload and its own Service Level Agreements (SLAs). The application
server clusters are heterogeneous, the cluster may consist of several different machines. Given that customer workloads
vary over time and new services may be deployed on-the-fly, the system has to be reconfigured dynamically to enforce SLAs
while ensuring efficient resource utilization. Some examples of dynamic reconfigurations are the addition/removal of cluster
nodes to scale up/down resource allocations, or the deployment of a new cluster to serve a new customer. To ensure SLA
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Fig. 6. Supply chain management component.

compliance, the service provider requires the ability to predict at run-time how application performance would be affected
if the system configuration or the workload changes.

Before conducting performance predictions for all five benchmark operations in the evaluation section (Section 5), in the
followingweuse order processing scenarios tomotivate our newmodeling approaches. In SPECjEnterprise2010, a dealership
may trigger a manufacturing site to schedule a new work order. In case the items available in the manufacturing site’s
warehouse are not enough to process the order, the SCM is called to purchase additional items. Based on that user story, we
describe and evaluate the new meta-model elements.

4.2. Flexible service behavior abstractions

4.2.1. Motivation
In order to ensure SLAs while at the same time optimizing resource utilization, the service provider needs to be able

to predict the system performance under varying workloads and dynamic system reconfigurations. The underlying per-
formance models enabling online performance prediction must be parameterized and analyzed on-the-fly. Such models
may be used in many different scenarios with different requirements for accuracy and timing constraints. Depending on
the time horizon for which a prediction is made, online models may have to be solved within seconds, minutes, hours, or
days. Hence, in order to provide maximum flexibility at run-time, our meta-model must be designed to support multiple
abstraction levels and different analysis techniques allowing to trade-off between prediction accuracy and speed.

Explicit support for multiple abstraction levels is also necessary since we cannot expect that the monitoring data needed
to parameterize the component models would be available at the same level of granularity for each system component.
For example, even if a fine granular abstraction of the component behavior is available, depending on the platform on
which the component is deployed, some parameter dependencies might not be resolvable at run-time, e.g., due to the lack
of monitoring capabilities allowing to observe the component’s internal behavior. In such cases, it is more appropriate to
use a coarse-grained or black-box abstraction of the component behavior which only requires observing its behavior at the
component boundaries.

In the following, we describe three practical examples where models at different abstraction levels would be needed.
We consider the supplier domain of SPECjEnterprise2010 (see Section 4.1). Whenever the inventory of parts in the
manufacturing domain is getting depleted, a request is sent to the supplier domain to order parts fromsuppliers. The supplier
domain places a purchase order with a selected supplier offering the required parts at a reasonable price. Fig. 6 shows the
SupplyChainManagement (SCM) component providing a purchase service for ordering parts.

If we imagine that the SCM component is an outsourced service hosted by a different service provider, the only type of
monitoring data thatwould typically be available for thepurchase service is response time data. In such a case, information
about the internal behavior or resource consumption would not be available and, from the perspective of our systemmodel,
the component would be treated as a ‘‘black-box’’.

If the SCM component is a third party component hosted locally in our environment, monitoring at the component
boundaries including measurements of the resource consumption as well as external calls to other components would
typically be possible. Such data allows to estimate the resource demands of each provided component service (using
techniques such as, e.g., [16,17]) as well as frequencies of calls to other components. Thus, in this case, a more fine granular
model of the component can be built, allowing to predict its response time and resource utilization for different workloads.

Finally, if the internal behavior of the SCM component including its control flow and resource consumption of internal
actions can be monitored, more detailed models can be built allowing to obtain more accurate performance predictions
including response time distributions. Predictions of response time distributions are relevant for example when evaluating
SLAs with service response time limits defined in terms of response time percentiles.

In summary, service behavior descriptions should be modeled at different levels of abstraction and detail. The models
should be usable in different online performance prediction scenarios with different goals and constraints ranging from
quick performance bounds analysis to accurate performance predictions. Moreover, the modeled abstraction level depends
on the informationmonitoring tools can obtain at run-time, e.g., towhat extent component-internal information is available.

4.2.2. Modeling approach
To providemaximum flexibility, for each provided service, our proposedmeta-model supports havingmultiple (possibly

co-existing) behavior abstractions at different levels of granularity:
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Fig. 7. Service behavior abstraction.

(a) (b)

Fig. 8. (a) Coarse-grained and (b) black-box behavior abstractions.

Black-box behavior abstraction. A ‘‘black-box’’ abstraction is a probabilistic representation of the service response time
behavior. Resource demanding behavior is not specified. This representation captures the view of the service behavior from
the perspective of a service consumer without any additional information about the service behavior.

Coarse-grained behavior abstraction. A ‘‘coarse-grained’’ abstraction captures the component behavior when observed
from the outside at the component boundaries. It consists of a description of the frequency of external service calls and
the overall service resource demands. Information about the service’s total resource consumption and information about
external calls made by the service is required, however, no information about the service’s internal control flow is assumed.

Fine-grained behavior abstraction. A ‘‘fine-grained’’ abstraction is similar to the RDSEFF in PCM [6]. The control flow
is modeled at the same abstraction level as in PCM, however, our approach has some significant differences in the way
model variables and parameter dependencies are modeled. The details of these are presented in Section 4.3. In contrast
to the coarse-grained behavior description, a fine-grained behavior description requires information about the internal
performance-relevant service control flow including information about the resource consumption of internal service actions.

If a service is modeled at different behavior abstraction levels, e.g., a service can be described by both a coarse-grained
abstraction and a black-box behavior abstraction, we do not require a conformance relation between the different behavior
descriptions. As explained in the previous section, the separate behavior descriptions may be based on different types of
monitoring data.

4.2.3. Meta-model elements
Fig. 7 shows the meta-model elements describing the three proposed service behavior abstractions. Type

FineGrainedBehavior is attached to the type BasicComponent, a component type that does not allow containing
further subcomponents. The CoarseGrainedBehavior is attached to type InterfaceProvidingRequiringEntity
that generalizes the types System, Subsystem, CompositeComponent and BasicComponent. Type
BlackBoxBehavior is attached to type InterfaceProvidingEntity, neglecting external service calls to required ser-
vices. Thus, in contrast to the fine-grained abstraction level, the coarse-grained and black-box behavior descriptions can also
be attached to service-providing composites, i.e., ComposedStructures.

The meta-model elements for the CoarseGrainedBehavior and BlackBoxBehavior abstractions are shown in
Fig. 8. ACoarseGrainedBehavior consists ofExternalCallFrequencies andResourceDemandSpecifications.
An ExternalCallFrequency characterizes the type and the number of external service calls. Type
ResourceDemandSpecification captures the total service time required from a given ProcessingResourceType.
A BlackBoxBehavior, on the other hand, can be described with a ResponseTime characterization.

Fig. 9 shows the meta-model elements for the fine-grained behavior abstraction. A ComponentInternalBehavior
models the abstract control flow of a service implementation. Calls to required services are modeled using so-called
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Fig. 9. Fine-grained behavior abstraction.

Fig. 10. SCM component internals.

ExternalCallActions, whereas internal computations within the component are modeled using InternalActions.
Control flow actions like LoopAction, BranchAction or ForkAction are only used when they affect calls to required
services (e.g., if a required service is called within a loop; otherwise, the whole loop would be captured as part of an
InternalAction). LoopActions and BranchActions can be characterized with loop iteration counts and branch
probabilities, respectively.

4.2.4. Evaluation
In our scenario, as shown in Fig. 10, the SCM component is implemented as a composite component containing a child

componentPurchaseOrder. The latter is responsible for dispatching the purchase orders (servicesendPurchaseOrder).
The sending operation supports two modes of operation: (i) sending the order as an inline message without attachments,
or (ii) sending the order as a message with attachment. In the benchmark application, the probability of an inline message
or a message with attachment each equals to 50%.

A fine-grained model of service sendPurchaseOrder is depicted in Fig. 11. Internal service behavior is taken into
account by reflecting the service’s internal control flow. There is a branch action that either leads to an external service call
to processPurchaseOrderAttachment or an external service call to processPurchaseOrderInline, both with a
probability of 0.5.

A coarse-grained model of service sendPurchaseOrder is depicted in Fig. 12. The external service calls to
processPurchaseOrderAttachment and processPurchaseOrderInline are modeled as they can be observed
from the component boundary of component PurchaseOrder. For each call to sendPurchaseOrder, a respective
external service is either called once or not at all. For both cases, one observes a probability of 0.5. In the model, this
call frequency is described with the probability mass function IntPMF[(0;0.5)(1;0.5)]. However, the exclusive
relationship between the two external service calls is not reflected in the coarse-grained model.

Fig. 13(c) shows measurements of the response time of sendPurchaseOrder as a histogram. The measurements were
obtained during a benchmark run under medium load with a steady state time of 15 min. As expected, the measured
response time distribution is multi-modal. We compare the measured response time distribution with predicted response
time distributions using (i) the fine-granular model (Fig. 13(a)) and (ii) the coarse-grained model (Fig. 13(b)). The resource
demanding behavior of external service processPurchaseOrderInline was described as exponential service timewith
a mean of 10 ms. Service processPurchaseOrderAttachment has a 30 ms higher resource demand.

The fine-granular model reflects the bimodal distribution of sendPurchaseOrder better than the coarse-grained
model. This is because the interdependency between the two external service calls is reflected in the fine-grained model
as branch action, while ignored in the coarse-grained model. The latter obviously affects the response time distribution,
however, the mean values of the response time predictions do not differ. Both predictions show a mean of 26 ms which
well reflects the measured response time mean of 29 ms. If one is only interested in predicting the mean response time, the
coarse-grained abstraction is sufficient. For a more representative response time distribution, the fine-grained abstraction
is more appropriate.
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Fig. 11. Fine-grained behavior abstraction of PurchaseOrder#sendPurchaseOrder.

Fig. 12. Coarse-grained behavior abstraction of PurchaseOrder#sendPurchaseOrder.

(a) (b)

(c)

Fig. 13. Response time statistics of sendPurchaseOrder: (a) predicted using fine-grained behavior abstraction (b) predicted using coarse-grained
behavior abstraction (c) measured.
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Fig. 14. Manufacturing component.

Fig. 15. Dealer and manufacturing components.

4.3. Modeling parameter dependencies

4.3.1. Motivation
Fig. 14 shows the Manufacturing component in our scenario which provides a service scheduleManufacturing to

schedule a new work order in the manufacturing domain for producing a set of assemblies. The component is instantiated
two times corresponding to two deployments of the SPECjEnterprise2010 application in our scenario. Awork order consists
of a list of assemblies to be manufactured and is identified with a workOrderId. In case the items needed to produce the
assemblies available in the manufacturing site’s warehouse are not enough, the purchase service of the SCM component
is called to order additional items.

We are now interested in the probability of calling purchase which corresponds to a branch probability in the control
flow of the scheduleManufacturing service. This probability will depend on the number of assemblies that have to be
manufactured and the inventory of parts in the customer’s warehouse. The higher the number of assemblies, the higher the
probability of having to purchase additional parts. Given that two different deployments of the application are involved, the
respective probabilities for the two component instances of type Manufacturing can differ significantly. For instance, a
customer with a large manufacturing site’s warehouse will order parts less frequently than a customer who orders items
‘‘just in time’’.

As discussed in Section 3, PCM allows to model dependencies of the service behavior (including branch probabilities) on
input parameters passed over the service’s interface upon invocation. However, in this case, the only parameter passed is
workOrderId which refers to an internal structure stored in the database. Such a parameter does not allow to model the
dependency without having to look into the database which is external to the modeled component. Modeling the state of
the database is extremely complex and infeasible to consider as part of the performance model. This situation is typical for
modern business information systems where the behavior of business components is often dependent on persistent data
stored in a central database. Thus, in such a scenario, the PCM approach of providing explicit characterizations of parameter
dependencies is not applicable.

To better understand the considered dependency, in Fig. 15 we show that the Manufacturing component is actually
triggered by a separate Dealer component providing a newOrder service which calls the scheduleManufacturing
service. The newOrder service receives as input parameters an assemblyID and quantity indicating a number of
assemblies that are ordered by a dealer. This information is stored in the database in a data structure (see Fig. 16) using
workOrderId as a reference which is then passed to service scheduleManufacturing as an input parameter.

Intuitively, one would assume the existence of the following parameter dependency: The more assemblies are ordered
(parameter quantity of service newOrder of the Dealer component), the higher the probability that new items will
have to be purchased to refill stock (i.e., probability of calling purchase in the Manufacturing component). However,
this dependency cannot be modeled using the PCM approach since two separate components are involved and furthermore
an explicit characterization is impractical to obtain.
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Fig. 16. WorkOrder data structure.

Fig. 17.Modeling parameter dependencies.

In such a case, provided thatwe know about the existence of the parameter dependency, we can usemonitoring statistics
collected at run-time to characterize the dependency probabilistically. At run-time, we can monitor the dependency
between the values of influencing parameter quantity and the observed relative frequency of the purchase service calls.

The behavior of software components is often dependent on parameters that are not available as input parameters passed
upon service invocation. Suchparameters are oftennot traceable directly over the service interface and tracing themrequires
looking beyond the component boundaries, e.g., the parameters might be passed to another component in the call path
and/or they might be stored in a database structure queried by the invoked service. Furthermore, even if a dependency can
be traced back to an input parameter of the called service, inmany practical situations, providing an explicit characterization
of the dependency is not feasible (e.g., using PCM’s approach) and a probabilistic representation based on monitoring data
is more appropriate. This type of situation is typical for business information systems and our meta-model must provide
means to deal with it.

4.3.2. Modeling approach
To allow the modeling of the above described ‘‘hidden’’ parameter dependencies, in addition to normal call parameters,

our performance meta-model supports the definition of arbitrary influencing parameters where call parameters are treated
as a special case. In order to resolve parameter dependencies, the influencing parameters need to be mapped to some
observable parameters that would be accessible at run-time. Often such a mapping will only be feasible at deployment
time once the complete system architecture and execution environment is available.

Fig. 17 illustrates our modeling approach in the context of the presented example from Fig. 15. The branch probability
of calling the purchase service in the control flow of the scheduleManufacturing service is represented as
InfluencedVariable1. The component developer is aware of the existence of the dependency between the branch
probability and the quantity of assemblies to bemanufactured. However, he does not have direct access to the quantity
parameter and does not know where the parameter might be observable and traceable at run-time. Thus, to declare the
existence of the dependency, the component developer defines an InfluencingParameter1 representing the ‘‘hidden’’
quantity parameter and provides a semantic description as part of the component’s performance model. He can then
declare a dependency relationship between InfluencedVariable1 and InfluencingParameter1.

The developer of composite component SPECjEnterprise2010 is then later able to link InfluencingParameter1
to the respective service call parameter of the Dealer component, designated as InfluencingParameter2. We refer to
such a link as declaration of a correlation relationship between two influencing parameters. In our example, the correlation
can be described by the identity function. Having specified the influenced variable and the influencing parameters, as
well as the respective dependency and correlation relationships, the parameter dependency then can be characterized
empirically as illustrated earlier (Fig. 24). Our modeling approach supports both empirical and explicit characterizations
for both dependency and correlation relationships between model variables.

Note that an influencing parameter does not have to belong to a provided or required interface of the component. It can
be considered as auxiliary model entity allowing to model parameter dependencies in a more flexible way. If an influencing
parameter cannot be observed at run-time, the component’s execution is obviously not affected, however, the parameter’s
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Fig. 18. Model variables.

influence cannot be taken into account in online performance predictions. The only thing that can be done in such a case is
to monitor the influenced variable independently of any influencing factors and treat it as an invariant.

Finally, the same software component might be used multiple times in different settings, e.g., as in our scenario where
the same application is run on behalf of different customers in separatemachines with customized application components.
Hence, the meta-model should provide means to specify the scope of influencing parameters. A scope of an influencing
parameter specifies a context where the influencing parameter is unique. This means, on the one hand, that measurements
of the influencing parameter can be used interchangeably among component instances provided that these instances belong
to the same context. On the other hand, itmeans thatmeasurements of the influencing parameter are not transferable across
scope boundaries. Thus, if monitoring data for a given influencing parameter is available, it should be clear based on its scope
for which other instances of the component this data can be reused.

Information about parameter scopes is particularly important when using online performance models to predict the
impact of dynamic reconfiguration scenarios. For instance, when considering the effect of adding server nodes to the
application server cluster of a given customer (hosting instances of our SPECjEnterprise2010 composite component),
given that influencing parameters within the cluster belong to the same context, monitoring statistics from existing
instances of the SPECjEnterprise2010 component can be used to parameterize the newly deployed instances.

4.3.3. Meta-model elements
In the following, we first describe the notion of model variables to describe both influencing parameters and influenced

variables. Then we present the meta-model elements to model the different types of relationships betweenmodel variables
as they are shown in Fig. 17. After presenting the semantics of themeta-model elements representing the above-mentioned
scopes, we describe how we characterize the introduced relationships.

Model variables. The model variables involved in dependency specifications are divided into influenced variables and
influencing parameters. As shown in Fig. 18, model variables that can be referenced as InfluencedVariable include
resource demands and control flow variables (for coarse- and fine-grained behavior descriptions) and response times (for
black box behavior descriptions). Parameters having an influence on the model variables are represented using the entity
InfluencingParameter. Normal service call parameters such as service input parameters, external call parameters or
return parameters of external calls (see Fig. 19) are special types of influencing parameters. Given that in performance
models, a service call parameter is only modeled if it is performance-relevant (see Fig. 20), each modeled service call
parameter can be considered to have a performance influence. Furthermore, following the characterizations of variables as
they are used in PCM, ourmeta-model supports referring not only to a parameter VALUE, but also to other characterizations
such as NUMBER_OF_ELEMENTS if the referred parameter is a collection.

An InfluencingParameter is attached to a service behavior abstraction and has a designated name and
description. These attributes are intended to provide a human-understandable semantics that could be used by
component developers, system architects, system deployers or run-time administrators to identify andmodel relationships
between the model variables.

Relationships: dependency and correlation. As shown in Fig. 21, we distinguish the two types of relationships
DependencyRelationship and CorrelationRelationship between model variables. The former declares an
influenced variable to be dependent on an influencing parameter. The latter connects two influencing parameters declaring
the existence of a correlation between them. The Relationship entities are attached to the innermost (composite)
component or (sub-)system that directly surrounds the relationship. A dependency is defined at the type-level of the
component and is specified by the component developer. In this paper, for reasons of clarity, we only consider one-
dimensional dependencies. In general, our meta-model supports the modeling of multi-dimensional dependencies where
influenced variables are dependent on multiple influencing parameters.
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Fig. 19. Call parameter hierarchy.

Fig. 20. Call parameters.

Fig. 21. Relationships between InfluencedVariables and InfluencingParameters.

A correlation is specified when a composed entity such as a Subsystem is composed of several assembly contexts. Thus,
both sides of the correlation, designated as ‘‘left’’ and ‘‘right’’, are identified not only by an InfluencingParameter
but also by the specific component instance where the influencing parameter resides.

To provide maximum flexibility, it is possible to map the same InfluencingParameter to multiple co-related
InfluencingParameters, some of which might not be monitorable in the execution environment, others might be
monitorablewith different overhead. Depending on the availability ofmonitoring data, some of the definedmappingsmight
not be usable in practice and others might involve different monitoring overhead. Given that the same mapping might be
usable in certain situations and not usable in others, the more mappings are defined, the higher flexibility is provided for
resolving context dependencies at run-time.

Finally, note that an AssemblyContext cannot always serve as unique identifier of a component instance. For ex-
ample, imagine a subsystem containing several instances of the SPECjEnterprise2010 component of Fig. 17 rep-
resenting a customer-specific application server cluster. From the subsystem’s perspective, the different component
instances of, e.g., the Manufacturing component, cannot be distinguished by one AssemblyContext since this context
is the same among all instances of the SPECjEnterprise2010 component. Hence, in order to unambiguously identify
a certain Manufacturing instance from the perspective of such a customer-specific subsystem, we require the spec-
ification of a path consisting of the AssemblyContext of the SPECjEnterprise2010 component followed by the
AssemblyContext of the Manufacturing component. Accordingly, in our meta-model, such paths used to uniquely
refer to a component instance are represented as ordered lists of AssemblyContexts.

Scopes.As shown in Fig. 21, we decided tomodel a scope as a reference to a InterfaceProvidingRequiringEntity.
An InfluencingParameter may have several scopes. Let p be an influencing parameter, and C(p) the (composite)
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(a)

(b)

Fig. 22. Example of a nested composed structure: (a) showing the component types, (b) showing the composition of components.

component or (sub-)system where the influencing parameter p resides. Let S(p) = {scopeC1, . . . , scopeCn} denote the
set of (composite) components or (sub-)systems referenced as scopes of p. Set S0(p) = S(p) ∪ {scopeC0}, where scopeC0
equals to the global system. Then, for an instance of C(p), denoted as instC(p), the influencing parameter’s scope is defined
as scopeC(instC(p)) = scopeCi ∈ S0(p), where scopeCi is the most inner composite in S0(p) when traversing from instC(p) to
the system boundary.

In Fig. 22, we provide an example illustrating the scope concept. As depicted in Fig. 22(a), component Z has an influencing
parameter p with a scope reference to composite component X. Fig. 22(b) shows four instances of component Z nested
in composite components. The instances instC(p)_1, instC(p)_2 share the same scope which is different from the scope of
instC(p)_3 and instC(p)_4. In the figure, the scopes of these instances are illustrated as light gray respectively light red box.

The default case is when an influencing parameter is globally unique (at the component type level). In this case, monitor-
ing data from all observed instances of the component can be used interchangeably and treated as a whole. Moreover, once
a declared dependency of the component behavior on this influencing parameter has been characterized empirically (e.g.,
‘‘learned’’ frommonitoring data), it can be used for all instances of the component in any current or future system. This trivial
case can be modeled by either omitting the specification of scopes or by specifying a scope referencing the global system.

Characterization of relationships. Each dependency or correlation relationship can be characterized using either
an ExplicitCharacterization or an EmpiricalCharacterization (see Fig. 23). The former means that the
relationship is characterized using explicit parameter dependencies as known from PCM. Such a characterization is
suitable if an expression of the functional relation between the two considered model variables is available. If this is not
the case, an EmpiricalCharacterization can be used to quantify the relationship using monitoring statistics. The
entity EmpiricalFunction in the figure describes the interface to a characterization function based on empirical data.
An EmpiricalFunction can for example be based on monitoring statistics as discussed earlier (Fig. 24) and can be
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Fig. 23. ExplicitCharacterization and EmpiricalCharacterization.

represented by abstracting the obtained statistics as illustrated in Fig. 24(b), e.g., using equidistant or equiprobable bins.
In this paper, we focus on the modeling concepts at the meta-model level. Due to lack of space, we omit descriptions of how
the empirical characterizations can be derived from monitoring statistics. In the following, we formalize the semantics of
the characterization functions for dependency relationships and correlation relationships.

Let v be an influenced variable of a dependency relationship and p the respective influencing parameter. A correspond-
ing explicit function f then has the signature f : Literal −→ ProbabilityFunction. It maps a value of p to a
probability function describing v. The signature of an empirical function f̂ is f̂ : Literal × AssemblyContext −→

ProbabilityFunction. This function also maps a value of p to a probability function. However, depending on the de-
fined scope S(p), the function has to evaluate differently for different component instances of C(p). We denote a component
instance as instC(p). According to the function’s signature, f̂ evaluates depending on an assembly context. More precisely,
f̂ evaluates depending on the assembly context of the scope-specifying composite of instC(p), i.e., the assembly context of
scopeC(instC(p)).

The formalization of the semantics of characterization functions for correlation relationships is similar. The main dif-
ference is that a correlation relationship may provide two functions for both directions ‘‘left to right’’ and ‘‘right to left’’,
i.e., fleftToRight and frightToLeft for explicit functions, respectively f̂leftToRight and f̂rightToLeft for empirical functions. For the explicit
functions, the scopes of the involved influencing parameters pleft and pright are ignored. For the empirical functions, the
intersection of the scopes pleft and pright has to be considered.

4.3.4. Evaluation
In Section 4.3.1, we described a parameter dependency between the values of parameter quantity and the probability

of calling the purchase service (see Fig. 15). In the following, we use this parameter dependency in several evaluation
scenarios.

Fig. 24(a) shows monitoring statistics that we measured at run-time showing the dependency between the influencing
parameter quantity and the observed relative frequency of the purchase service calls. For instance, if the quantity equals
to 20, in roughly one out of every four calls of scheduleManufacturing, service purchase was called. Fig. 24(b) shows
how the dependency can be characterized probabilistically by considering three ranges of possible quantities. For example,
for quantities between 50 and 100, the probability of a purchase call is estimated to be 0.67.

To further illustrate the relevance of the considered parameter dependency, we conducted experiments with the
scheduleManufacturing workload. In the first scenario, we called scheduleManufacturing varying the quantity
parameter at random in a range between 0 and 10. For the second scenario, we varied the quantity parameter between 0
and 200, while keeping the workload intensity at the same level as in the first scenario. Themeasurements were obtained in
experiment runs with a steady state time of 15 min. Knowing the monitoring statistics in Fig. 24(a) we expect the number
of purchase calls in the second scenario to be higher than in the first scenario. Given that scheduleManufacturing
calls the purchase service asynchronously using point-to-pointmessaging provided by the JavaMessage Service (JMS), the
more frequentpurchase calls in the second experiment should not affect the response time ofscheduleManufacturing
directly but result in a higher application server utilization.

The results of the experiment runs are shown in Fig. 25. While in the first experiment (‘‘quantity in [0..10]’’) the average
utilization of the Oracle WebLogic Server (U_WLS) is approximately 17%, it increases to 63% in the second experiment
(‘‘quantity in [0..200]’’). The increasedmean response time (R_avg) of service scheduleManufacturing can be explained
by the increased utilization.

Using a fine-grained behavior model, with a characterization of the parameter dependency as shown in Fig. 24(b), we
made predictions for both scenarios. Regarding the second scenario, the utilization U_WLS and average response time
R_avg differ from the actual measurements with a small, negligible error. However, concerning the first scenario, with
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(a) Monitoring data.

(b) Summarized statistics.

Fig. 24. scheduleManufacturing statistics.

Workload: Measurements Predictions
scheduleManufacturing U_WLS R_avg [ms] U_WLS R_avg [ms]
quantity in [0..10] 0.166 17.2 0.365 19.4
quantity in [0..200] 0.627 32.9 0.607 28.3

Fig. 25. Measurements and predictions of scheduleManufacturing scenarios.

U_WLS = 0.365 the prediction particularly overestimates the server utilization. The overestimation is the result of the
summarized monitoring statistics. For the interval between 0 and 50, the model simplifies the probability of a purchase
call to be 0.37. Adapting the model by mapping the interval between 0 and 10 as suggested by Fig. 24(b) to a purchase
call probability of, e.g., 0.10, the prediction yields representative results: With U_WLS = 0.196 and R_avg = 16.8 ms, the
predictions match the measurements also in the first scenario.

The evaluation shows the performance-relevance of the parameter dependency between the influencing parameter
quantity and the observed relative frequency of the purchase service calls. It further shows that detailed monitoring
statistics may be of importance for a representative performance model. Monitoring may introduce a non-negligible
overhead. However, our experiments showed that it is possible to gather the relevant measurements without impacting the
overall system performance significantly: The monitoring data in Fig. 24(a) was collected using the WebLogic Diagnostics
Framework (WLDF) of Oracle WebLogic Server (WLS). We instrumented the service entries of scheduleManufacturing
and the external service call purchase. Whenever an instrumented service is called, the monitoring framework creates a
so-called event record. Using the diagnostic context id provided by WLDF, the event records can be mapped to individual
call paths, i.e., it is possible to map a service entry to an external service call. For a detailed explanation of how such call
path traces can be extracted, see, e.g., [17]. We employed monitor throttling strategies to control the number of requests
that are processed by the instrumented monitors. Only a subset of the system requests have actually been tracked. That
way, it is possible to obtainmonitoring samples while keeping themonitoring overhead low.We conducted one benchmark
run where we gathered the above statistics, and one benchmark run where we disabled the monitoring facilities. In both
cases, the utilization of the WLS CPU was about 40%. Thus, the average system utilization was not influenced significantly.
Of course, the individual response time of a system request which is actually traced is affected. However, the sampling rate
can be configured taking the trade-off between overhead and monitoring information into account.

4.4. Resource landscape

4.4.1. Motivation
Having modeled the performance-relevant behavior of the software architecture as described in Sections 4.2 and 4.3,

predicting the performance requires information about the execution environment (the resource landscape) where the
software is deployed.
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Fig. 26. Hierarchical run-time environments in the resource landscape.

Today’s IT execution environment implement abstraction layers like virtualization and middleware technologies. This
promises to be beneficial when reacting on changes of service workloads and resource consumption by provisioning and
allocating resources as they are needed. However, introducing new abstraction layers to increase flexibility comes at the cost
of increased system complexity. The new abstraction layers provide new reconfiguration possibilities that have an impact
on the system performance. Existing model-based resource management and capacity planning techniques such as [6,18]
are targeted at design-time QoS analyses. In general, such approaches are not applicable at run-time because they abstract
the complex infrastructure architecture or do not consider the dynamic aspects important for run-time system adaptation
and resource management. For instance, the virtualization overhead [19] affecting resource utilization and service response
times is typically ignored.

4.4.2. Modeling approach
Current techniques do not provide means to model the layers of the component execution environment (e.g., the

virtualization layer) explicitly. The performance influences of the individual layers, the dependencies among them and the
resource allocations at each layer should be captured as part of the models. This is necessary in order to be able to predict
at run-time how a change in the execution environment (e.g., modifying resource allocations at the virtual machine level)
would affect the system performance. The resource landscape meta-model should reflect the static view of a distributed
execution environment, i.e., providemeans to describe (i) the computing infrastructure and its physical resources, and (ii) the
different layers within the system which also provide logical resources, e.g., virtual machines, virtual CPUs, etc.

An instance of the resource landscape model can then be annotated with dynamic aspects. In [12], we introduced the
adaptation points sub-meta-model of DMM that can be used to describe which parts of the DMM resource landscape model
instance are variable and can be adapted during operation, i.e., it provides possibilities to specify the configuration range
of the dynamic system. Note that the adaptation points meta-model [12] as well as the adaptation language we presented
in [13] are out of scope of this paper.

4.4.3. Meta-model elements
In this section,we showonly a part of theDMMresource landscapemeta-model. A detailed description is provided in [12]

or in the technical report [11]. Fig. 26 depicts the part of the meta-model describing the nested containment principle to
model resource landscapes. For example, imagine servers which contain a virtualization platform and VMs, again containing
an operating system, containing a middleware layer and so on. This leads to a tree of nested entities which can change
at run-time (e.g., when a VM is migrated). The central entity of this meta-model is the abstract entity Container. We
distinguish between twomajor types of containers, the ComputingInfrastructure and the RuntimeEnvironment. A
ComputingInfrastructure forms the root element in our tree-like structure of containers and corresponds to a physical
machine. It cannot be contained by another container but it can have nested containers. The RuntimeEnvironment is
a generic model element to build nested layers, i.e., it can be contained within a container and it might contain further
run-time environments. Each RuntimeEnvironment has a property to specify the class of the RuntimeEnvironment.
These classes are listed in the enumeration type RuntimeEnvironmentClasses. The classes are HYPERVISOR for the
different hypervisors of virtualization platforms, OS for operating systems, OS_VM for virtual machines emulating standard
hardware, PROCESS_VM for virtual machines like the Java VM, MIDDLEWARE for middleware environments, and OTHER for
any other type. The consistency within the modeled layers is ensured with Object Constraint Language (OCL) expressions.
The implemented constraints prohibit the instantiation of different RuntimeEnvironment classes within one container.

Furthermore, the type Container has a property to specify its configuration. We distinguish three different
types of configuration specifications: ActiveResourceSpecification, PassiveResourceSpecification, and
CustomConfigurationSpecification (see Fig. 27(a)). The purpose of the ActiveResourceSpecification is
to specify the active resources a Container provides. Currently supported ProcessingResourceTypes are CPU and
HDD. Network resources are out of scope of this paper. Using the properties schedulingPolicy, processingRate
and numberOfParallelProcessingUnits, for example, a dualcore CPU can be specified with PROCESSOR_SHARING
as schedulingPolicy, a processingRate of 2.4 GHz and a numberOfParallelProcessingUnits of 2. The
PassiveResourceSpecification can be used to specify properties of passive resources. Passive resources can be,
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(a) (b)

Fig. 27. (a) Configuration specification and (b) container template repository.

Fig. 28. Deployment.

e.g., the main memory size or software resources such as database connection thread pools. The attribute capacity is
used to specify, e.g., the number of threads. In case a Container has an individual configuration which cannot be modeled
with the previously introduced elements, one can use the CustomConfigurationSpecification. The semantics of this
entity is described in [12].

With the meta-model concepts presented so far, it would be necessary to model each container and its configuration
explicitly. This can be very cumbersome, especially when modeling clusters of several identical machines. Our concept
enables the differentiation between container types and instances of these types. A container type specifies the general
performance properties relevant for all instances of this type and the instances store the performance properties of each
container instance. The concept is implemented using the ContainerTemplate entity. Configured container templates
are collected in the ContainerRepository (see Fig. 27(b)). The ContainerTemplate is similar to a Container since
it also may refer to ConfigurationSpecification. A Container in a resource landscapemodel instancemight have a
reference to a ContainerTemplate (see Fig. 26). The advantage of this template mechanism is that the general properties
relevant for all instances of one container type can be stored in the container template and the relevant configuration specific
for an individual container instance can differ. For example, assume that a container instance has no individual properties
and only a reference to a template. Then, only the configuration specification of the templatewould be considered. However,
if the container instance has an individual configuration specification, then these settings would override the properties of
the template. The template mechanism is useful is situations where, e.g., a VM is cloned (use template as configuration) and
later changed (individual configuration options possible).

After describing the execution environment, one must specify which services are executed on which part of the resource
landscape. We refer to this specification as deployment captured in the deployment model shown in Fig. 28 which is based
on PCM [6]. A Deployment connects a model instance of the software architecture (System) with a model instance of a
resource landscape (DataCenter). It consists of several deployment contexts that map an AssemblyContext contained
in the system model to a Container that is described in the resource landscape.

4.4.4. Evaluation
For the evaluation of the resource landscape meta-model, we refer to the work we presented in [12]. Modeling the

performance impact of virtualization layers is beyond the scope of this paper. Thus, the presentedmeasurement experiments
do not involve OS virtualization layers.

5. Summary of evaluation

To evaluate the feasibility and effectiveness of the entire modeling approach, we deployed the benchmark in the system
environment depicted in Fig. 5 in two application server clusters consisting of two and four nodes, respectively. We used
PCM as a basis adopting the modeling approach presented in this paper. The resource demands were estimated based on
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(a) Utlization measurements and predictions.

(b) Relative error of responce time predictions.

Fig. 29. Exemplary measurements and prediction results with SPECjEnterprise2010.

utilization and throughput data. As performance metrics, we considered the average response times of the five benchmark
operations aswell as the average CPUutilization of theWebLogic application servers (WLSCPU) and the database server (DBS
CPU). We predicted the performance metrics for low load conditions (≈20% WLS CPU utilization), medium load conditions
(≈40%), high load conditions (≈60%) and very high load conditions (≈80%) and then compared them with steady-state
measurements under the same load conditions on the real system.Note that the response times of the benchmark operations
are measured at the benchmark driver agents. We measured the delay for establishing a connection to the WLS instance
which is dependent on the system load. With the knowledge of the number of connections the individual benchmark
operations trigger, the load-dependent delay is considered in the predicted operation response times.

The response times of the benchmark operations vary from 10 to 70 ms. We considered a number of different scenarios
varying the application workload and system configuration. The measured and predicted server utilization for the different
load levels are depicted in Fig. 29(a). The utilization predictions fit the measurements very well, both for the WLS instances
as well as for the DBS. Fig. 29(b) shows the relative error of the response time predictions. The error is mostly below 20%,
only predictions of operation Browse show a higher error (30%). The prediction accuracy of the former increases with the
load. This is because Browse has a rather small resource demand but includes a high number of round trips to the server (15
on average) translating in connection delays.

6. Related work

First we present an overview of existing performance modeling approaches, distinguishing between predictive perfor-
mance models that capture the temporal system behavior and architecture-level performance models that provide means
to model the performance-relevant aspects at the software architecture level. Then we refer to online performance analysis
and name existing approaches on online QoS and resource management.

A survey of model-based performance prediction techniques was published in [20]. A number of techniques utilizing a
range of different performance models have been proposed including product-form queueing networks (e.g., [2]), layered
queueing networks (e.g., [4]), queueing Petri nets (e.g., [18]), stochastic process algebras [21], statistical regression models
(e.g., [22]) and learning-based approaches (e.g., [23]). Such models capture the temporal system behavior and can be used
for performance prediction bymeans of analytical or simulation techniques. However, these predictive performancemodels
are normally used as high-level system performance abstractions and as such they do not explicitly distinguish the degrees-
of-freedom and performance-influencing factors of the system’s software architecture and execution environment. They
are high-level in the sense that: (i) complex services are modeled as black boxes without explicitly capturing their internal
behavior and the influences of their deployment context, configuration settings and input parameters, and (ii) the execution
environment is abstracted as a set of logical resources (e.g., CPU, storage, network) without explicitly distinguishing
the performance influences of the various layers (e.g., physical infrastructure, virtualization and middleware) and their
configuration.
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Architecture-level performance models provide means to model the performance-relevant aspects of system architec-
tures at a more detailed level of abstraction. Such models are descriptive in nature (e.g., software architecture models based
on UML, annotatedwith descriptions of the system’s performance-relevant behavior) and they can normally be transformed
automatically into predictive performancemodels. A number of architecture-level performancemeta-models have been de-
veloped by the performance engineering community in the last years. The most prominent examples are the UML SPT pro-
file [24] and its successor the UMLMARTE profile [9], both of which are extensions of UML as the de facto standardmodeling
language for software architectures. Other proposed meta-models include CSM [25], PCM [6], SPE-MM [8], and KLAPER [7].
A recent survey of model-based performance modeling techniques for component-based systems was published in [10].

Approaches that explicitly consider the influence of parameters in their performance analysis include [6,26–28]. Themost
advanced approaches concerning parametric dependencies are [6,26]. Components and their behavior can be specified in a
parameterized way, considering the dependency of input and deployment specific parameters to the component’s resource
demand, control flow, etc. The approaches in [28,27] have less expressiveness. For example, they do not consider service
input or output parameters or limit the set of parameters to, e.g., thread pool size or to resource demand parameterization.
Orthogonal approaches tackling the challenge of parametric dependencies in performance analysis are [29,30]. They model
the component’s internal state which might lead to state space explosion. Furthermore, the approaches do not differentiate
the execution time on different resources (CPU, HDD, etc.) or miss the specification of required interfaces.

The existing architecture-level performance models are normally intended for use in an offline setting at design and
deployment time to evaluate alternative system designs and/or to predict the system performance for capacity planning
purposes. However, as we described in Section 2, at run-time there are different requirements on the underlying perfor-
mance abstractions of the system architecture and the respective performance prediction techniques.

Approaches on run-time QoS and resource management based on online performance analysis are presented in, e.g.,
[4,5,31]. Problem of all the approaches is that their performance analysis are rather restricted (if any) in terms of the level of
detail. The main drawbacks are that they are either limited to a subset of parameters, try to abstract from important details,
or do not capture important parametric dependencies.

7. Concluding remarks

Weanalyzed typical online performance prediction scenarios and the requirements on online performance-modeling ap-
proaches at the architecture-level. The analysis revealed that current architecture-level performance modeling approaches
are not suitable at run-time.

We proposed new software architecture-level performance abstractions, specifically designed for use in online scenarios.
This involves (i) a novel approach to model the component context and parameter dependencies specifically for use at run-
time, (ii) a new approach tomodel performance-relevant service behavior at different levels of detail, and (iii) a meta-model
to describe the resource environment and the deployment of the software system. We conducted a detailed evaluation of
the suitability of the proposed modeling approach in the context of the SPECjEnterprise2010 benchmark providing a set of
realistic and representative application scenarios.

The presented modeling abstractions are subsets of the Descartes Meta-Model (DMM) [11], a new meta-model for
run-time QoS and resource management in virtualized service infrastructures. The DMM approach directly aims at the
identified gaps between run-time and design-time modeling as presented in Section 2: The approach to model parameter
dependencies and the flexible service behavior abstractions are designed (i) with regard to the different types and amount
of data available for model parameterization and calibration as well as (ii) with regard to the trade-off between prediction
accuracy and overhead. The DMM resource landscape model on the other hand allows to structure the model aligned with
the system layers. The other parts of DMM formodeling the adaptation points of a running system [12] and formodeling the
corresponding adaptation activities [13] allow tomodel the degrees-of-freedomwhen considering dynamic system changes
at run-time such as changing workloads or resource allocations.
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