Online Performance Prediction
with Architecture-Level Performance Models

Fabian Brosig
Karlsruhe Institute of Technology, Germany
fabian.brosig @kit.edu

Abstract: Today’s enterprise systems based on increasingly complex software archi-
tectures often exhibit poor performance and resource efficiency thus having high op-
erating costs. This is due to the inability to predict at run-time the effect of changes
in the system environment and adapt the system accordingly. We propose a new per-
formance modeling approach that allows the prediction of performance and system
resource utilization online during system operation. We use architecture-level per-
formance models that capture the performance-relevant information of the software
architecture, deployment, execution environment and workload. The models will be
automatically maintained during operation. To derive performance predictions, we
propose a tailorable model solving approach to provide flexibility in view of predic-
tion accuracy and analysis overhead.

1 Introduction

Modern enterprise systems based on the Service-Oriented Architecture (SOA) paradigm
have increasingly complex architectures composed of loosely-coupled services that are
subjected to time-varying workloads and evolve independently. In such dynamic environ-
ments, managing system resources so that end-to-end performance requirements are met
while resources are efficiently utilized is a challenge. Due to the inability to keep track of
dynamic changes in the system environment and predict their effect, today’s SOA systems
often exhibit poor performance and resource efficiency thus having high operating costs.

System usage profiles, software deployments or execution environments change over time:
Services are subjected to time-varying workloads. New services are deployed or exist-
ing services are newly composed. The service-providing components are deployed on
distributed, heterogeneous system environments including different middleware configu-
rations and virtualization layers. System administrators are often faced with questions
such as: What performance would a new service deployed on the virtualized infrastruc-
ture exhibit? What would be the effect of migrating a service from one virtual machine to
another? How should the workloads of a new service and existing services be partitioned
among the available resources so that performance objectives are met and resources are
utilized efficiently? How should the system configuration be adapted to avoid anticipated
performance problems arising from growing customer workloads? In order to provide
for an efficient resource and performance management honoring service level agreements
(SLAs), the ability to predict resource utilization and system performance on-line, i.e.,



continuously during system operation, is essential.

Existing approaches to run-time performance prediction (e.g., [MG00, NKJT(09]) are based
on predictive performance models such as (layered) queueing networks or queueing petri
nets abstracting the system at a high level without taking the software architecture or, e.g.,
the virtualization layer into account. These approaches are often restricted to homoge-
neous servers, single workload classes and abstract individual services as black boxes.

Approaches to performance prediction at design and deployment time (e.g., [BKR09,
SLCT035, Obj]) are mostly based on architecture-level models that are annotated with de-
scriptions of the system’s performance-relevant behavior. The underlying modeling lan-
guages account for modeling systems at different levels of abstraction and detail as well
as modeling performance-relevant context dependencies between execution environments,
software deployments and usage profiles. However, most of them suffer from a significant
drawback which render them impractical for use at run-time: Given that they are designed
for off-line use, the models are static, i.e., do not capture the dynamic aspects of systems.
Maintaining them manually during operation is prohibitively expensive [Hel09].

We will provide dynamic service performance models that describe performance-relevant
system design abstractions and are automatically maintained during operation, thus can
capture also the dynamic aspects of modern enterprise system environments, where con-
figuration and deployment changes are common. For instance, new services are deployed
on-the-fly, virtual machines are migrated or servers are consolidated during operation. The
dynamic service performance models will include all information relevant to predict a ser-
vice’s performance on-the-fly. The models will be tied to their deployment platform in
order to keep them up to date. A deployment platform will provide interfaces describing
their performance-relevant aspects and have built-in self-monitoring functionality. Fol-
lowing [WFP07], we propose a convergence of performance monitoring, modeling and
prediction as interrelated activities.

The following goals will be pursued: i) Development of a meta-model for dynamic ser-
vice performance models capturing static and dynamic performance-relevant information
about the software architecture and deployment, the execution environment and the work-
load. ii) Development of a methodology to integrate the dynamic service performance
models with their deployment platforms. The focus will be on automated model mainte-
nance including model parameter estimation. iii) Development of techniques for solving
the dynamic service models. To derive performance predictions from dynamic service
models at run-time, the models will be transformed into predictive performance models
that are then solved by analytical or simulation techniques. We will use multiple solving
techniques to provide flexibility in view of prediction accuracy and analysis overhead.

The proposed thesis is part of the Descartes Research Project [KBHR10] which envisions
a new kind of SOA platforms that are self-aware of their performance and resource ef-
ficiency. They are self-aware in the sense that they will be aware of changes in their
environment and be able to predict the effects of such changes on their performance. They
will automatically adapt to ensure that system resources are utilized efficiently and perfor-
mance requirements are continuously satisfied.



2 Related Work

A survey of model-based performance prediction techniques was published in [BDMIS04].
A number of techniques utilizing a range of different performance models have been
proposed including queueing networks (e.g., [MGOO0]), layered queueing networks (e.g.,
[WZLO06]), queueing Petri nets (e.g., [Kou06]), stochastic process algebras [GHKMO5],
statistical regression models (e.g., [EFH04]) and learning-based approaches (e.g., [EEM10]).
Those models capture the temporal system behavior without taking into account its soft-
ware architecture and configuration. We refer to them as predictive performance models.

To describe performance-relevant system aspects at a different abstraction level, there are
a number of meta-models for describing architecture-level performance models specify-
ing the performance and resource-demanding behavior of software systems [Koz09]. The
most prominent meta-models are the UML SPT and MARTE profiles [Obj], both of which
are extensions of UML as the de facto standard modeling language for software archi-
tectures. The architecture-level performance models are built during system development
and are used at design and deployment time to evaluate alternative system designs or pre-
dict the system performance for capacity planning purposes. Over the past decade, with
the increasing adoption of component-based software engineering [CSSWO05], the perfor-
mance evaluation community has focused on supporting component-based systems. Pro-
posed meta-models include SPE-MM [SLC105], CSM [PW07], KLAPER [GMS07] and
PCM [BKRO09]. In the latter, the authors advocate an explicit context model as part of the
component specification that captures the dependencies of functional and extra-functional
properties on the components connections to other components, the execution environ-
ment, the allocated hardware and software resources and the usage profile. A modeling
notation is proposed allowing component developers to explicitly specify the influence of
parameters on the component resource demands as well as on their usage of external ser-
vices. Component service specifications describe the service’s behavior and control flow
in an abstract and parametric manner.

The common goal of these architecture-level modeling efforts is to enable the automated
transformation into predictive performance models making it possible to predict the system
performance and resource consumption for a fixed workload and configuration scenario.
However, the existing architecture-level performance models are normally designed for
offline use, assume a static system architecture and do not support modeling dynamic
environments [KBHR10]. In a virtualized environment changes are common, e.g., service
workloads change over time, new services are deployed, or VMs are migrated between
servers. The amount of effort involved in maintaining performance models is prohibitive
and therefore in practice such models are rarely used after deployment.

3 Goals and Approach

We aim at establishing service-providing systems that are aware of changes in their en-
vironment (e.g., service workload, software deployment and execution environment) and



have the ability to predict the effect of those changes on their performance. We intend to
provide a new method for online performance prediction by integrating dynamic service
performance models with system execution environments. In this section, the main goals
and tasks are discussed.

Meta-model for Dynamic Service Performance Models We will develop a meta-model
for dynamic service performance models capturing static and dynamic performance-relevant
information about service workload, the service’s software architecture and the execution
environment. Since we intend to keep meta-model instances continuously up to date dur-
ing system operation, we refer to the models as dynamic service models. The modeling
language should make it possible to specify information at different levels of abstraction
and granularity, since we will use the models in different scenarios with different goals
and constraints ranging from quick performance bounds analysis to accurate performance
prediction.

Suitable abstractions for capturing the dynamic aspects of multi-layered execution envi-
ronments (virtualization, operating system, Java virtual machine, application server) have
to be developed. The meta-model should allow to describe the layers (e.g., middleware,
virtualization) and their performance-influence explicitly [HKKRO09] to facilitate model-
ing an exchange of individual execution layers.

We will use the PCM [BKRO09] as a basis, given that it provides support for explicitly mod-
eling the performance-influencing factors of services, i.e., their implementation, execution
environment, workload and external service calls. PCM will be augmented by dynamic
model parameters and model entities allowing the specification of dynamic system behav-
ior.

Automated Model Maintenance at Run-time We will develop a methodology to in-
tegrate dynamic service models with service execution environments. This will include
a technique to extract the models semi-automatically based on monitoring data. In order
to keep the dynamic service performance models up to date during system operation, we
develop methods to automatically maintain them at run-time. Therefore, we plan to inte-
grate the models with the system, i.e., we will connect the performance-relevant system
properties with the model instances.

We develop a platform-neutral interface for communicating which components should
be monitored, according to which performance metrics should be measured and how the
measurement data needs to be processed. This includes application-level monitoring (e.g.,
method response times), middleware-level monitoring (e.g., database connections) as well
as monitoring at operating systems or virtualization layers (e.g., CPU utilization). Given
that we observe the system during operation, techniques reducing the monitoring overhead
such as sampling and filtering need to be considered.

In particular, the estimation of service resource demands will be of great importance for
our approach. In the literature, there exist already many different resource demand esti-
mation methods differing in their accuracy, their robustness and their applicability. For
instance, there are notable differences in the amount and type of measurement data that



is required as method input. We aim at providing a resource demand estimation approach
that supports tailoring towards specific constraints like available measurement data or the
time horizon. For that reason, we work on a classification scheme which will facilitate
evaluating the existing resource demand estimation approaches regarding their benefits
and drawbacks.

Automated Performance Prediction To derive performance predictions from dynamic
service models at run-time, the models have to be composed and transformed (in an au-
tomated manner) into a predictive performance model that is then solved by analytical or
simulation techniques. The predictive performance models will be generated by means of
model transformations using one or more dynamic service models as input. We intend to
use multiple existing model solving techniques to provide flexibility in terms of predic-
tion accuracy and analysis overhead. For instance, for a detailed performance analysis a
fine-grained simulation could be conducted, whereas an analytical solver based on sim-
ple queueing network models or even a coarse-grained bounds analysis would be more
appropriate in cases where a quick response is required.

Tailoring towards required prediction accuracy and timing constraints could be accom-
plished by selecting the appropriate predictive performance model type and level of model
granularity on-the-fly. Similarly, the way the predictive performance model is solved, by
analysis or simulation, can be varied. We intend to use existing predictive performance
models, existing model-to-model transformations, existing simulations and existing ana-
Iytical techniques that we plan to assemble to a tailorable service model solving process.
The methods will be selected based on their expressiveness, overhead, scalability and tool
support.

4 Summary

In order to provide for an efficient resource and performance management of modern
service-oriented systems, the ability to predict resource utilization and system performance
online during system operation is essential. To enable performance predictions in such
environments, we propose to use architecture-level performance models that capture the
performance-relevant aspects of both the software architecture and the virtualized, multi-
layered execution environment. The models will be automatically maintained at system
run-time by integrating them with the deployment platform. For performance predictions,
we propose a tailorable model solving approach that provides flexibility in view of predic-
tion accuracy and analysis overhead.

References

[BDMISO04] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based Performance
Prediction in Software Development: A Survey. IEEE Trans. Softw. Eng., 30(5), 2004.



[BKRO9]

[CSSWO05]

[EEM10]

[EFH04]

[GHKMO5]

[GMSO07]

[Hel09]

[HKKRO09]

[KBHR10]

[Kou06]

[Koz09]

[MG00]

[NKJT09]

[Obj]

[PWO7]

[SLCT05]

[WFPO7]

[WZLO06]

S. Becker, H. Koziolek, and R. Reussner. The Palladio component model for model-
driven performance prediction. Journal of Systems and Software, 82, 2009.

1. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau. Automated Component-Based
Software Engineering. Journal of Systems and Software, 74(1), 2005.

Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. FUSION: a framework for en-
gineering self-tuning self-adaptive software systems. In Proc. of FSE’10. ACM, 2010.

E. Eskenazi, A. Fioukov, and D. Hammer. Performance Prediction for Component
Compositions. In Proc. of CBSE, 2004.

S. Gilmore, V. Haenel, L. Kloul, and M. Maidl. Choreographing Security and Perfor-
mance Analysis for Web Services. In Proc. of EPEW and WS-FM, LNCS. 2005.

V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap between design and per-
formance/reliability models of component-based systems: A model-driven approach.
Journal on Systems and Software, 80(4), 2007.

J. L. Hellerstein. Engineering autonomic systems. In Proc. of the 6th Intl. Conf. on
Autonomic Computing (ICAC), pages 75-76, New York, NY, USA, 2009. ACM.

M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner. Modelling Layered Com-
ponent Execution Environments for Performance Prediction. In Proc. of CBSE, 2009.

S. Kouney, F. Brosig, N. Huber, and R. Reussner. Towards self-aware performance and
resource management in modern service-oriented systems. In Proc. of IEEE Intl Conf.
on Services Computing (SCC 2010), USA. IEEE Computer Society, 2010.

S. Kounev. Performance Modeling and Evaluation of Distributed Component-Based
Systems using Queueing Petri Nets. IEEE Trans. Softw. Eng., 32(7), July 2006.

H. Koziolek. Performance evaluation of component-based software systems: A survey.
Performance Evaluation, 2009.

D. A. Menascé and H. Gomaa. A Method for Design and Performance Modeling of
Client/Server Systems. IEEE Trans. Softw. Eng., 26(11), 2000.

R. Nou, S. Kounev, F. Julia, and J. Torres. Autonomic QoS control in enterprise Grid
environments using online simulation. Journal of Systems and Software, 82(3), 2009.

Object Management Group (OMG). UML SPT, vl.1 (January 2005) and UML
MARTE (May 2006).

D. Petriu and M. Woodside. An intermediate metamodel with scenarios and resources
for generating performance models from UML designs. Software and Systems Model-
ing, 6(2), 2007.

C. U. Smith, C. M. Llado, V. Cortellessa, A. Di Marco, and L. G. Williams. From UML
Models to Software Performance Results: an SPE Process based on XML Interchange
Formats. In In Proc. of Intl. Works. Softw Perf. (WOSP), 2005.

M. Woodside, G. Franks, and D. C. Petriu. The Future of Software Performance Engi-
neering. In FOSE "07: 2007 Future of Software Engineering, 2007.

M. Woodside, T. Zheng, and M. Litoiu. Service System Resource Management Based
on a Tracked Layered Performance Model. In ICAC’06, 2006.



