
QPME 2.0

Queueing Petri net Modeling Environment

User’s Guide

A software tool for performance modeling and
analysis using queueing Petri nets

Samuel Kounev and Simon Spinner

May 2011

v2.0-110502

Contents

1 Introduction 1
1.1 System Requirements . 1

2 Primer on Queueing Petri Nets 3
2.1 Basic Queueing Petri Nets . 3
2.2 Hierarchical Queueing Petri Nets 8

3 Building QPN Models with QPE 11
3.1 Overview . 11
3.2 QPE User Interface . 12

3.2.1 QPE Main Window . 12
3.2.2 Building QPN Models . 13

4 Model Analysis using SimQPN 25
4.1 Overview . 25

4.1.1 Supported QPN Features 26
4.1.2 Simulation Output Data Analysis 27

4.2 Working with SimQPN . 29
4.2.1 Run Configuration Wizard 29
4.2.2 SimQPN Command-Line Interface 34

4.3 Processing and Visualization of
Simulation Results . 35
4.3.1 Simple Query Editor . 35
4.3.2 Advanced Query Editor 36
4.3.3 Format of SimQPN Console Output 38

5 Troubleshooting 45
5.1 Known Issues . 45
5.2 Fixed bugs . 45
5.3 Report a bug . 45

Bibliography 47

i

ii

List of Acronyms

Acronym Meaning

CGSPN Colored Generalized Stochastic Petri Net

CPN Colored Petri Net

DBS Database Server

DCS Distributed Component-based System/s

DES Discrete Event Simulation

FCFS First-Come-First-Serve (scheduling strategy)

FIFO First-In-First-Out

GSPN Generalized Stochastic Petri Net

HLQPN High-Level Queueing Petri Net

HQPN Hierarchical Queueing Petri Net

IID Independent and Identically Distributed (random variables)

IS Infinite Server (scheduling strategy)

LCFS Last-Come-First-Served (scheduling strategy)

LLQPN Low-Level Queueing Petri Net

LQN Layered Queueing Network

NOBM Method of Non-Overlapping Batch Means

PEPSY-QNS Perf. Evaluation and Prediction SYstem for Queueing NetworkS

PN (Ordinary) Petri Net

PS Processor-Sharing (scheduling strategy)

QN Queueing Network

QoS Quality of Service

QPN Queueing Petri Net

RR Round-Robin (scheduling strategy)

SLAs Service Level Agreements

SPN Stochastic Petri Net

iii

iv List of Acronyms

Chapter 1

Introduction

This document describes the software package QPME (Queueing Petri net Mod-
eling Environment), a performance modeling and analysis tool based on the
queueing Petri net (QPN) modeling formalism. QPME is made of two compo-
nents: QPE (QPN Editor) and SimQPN (Simulator for QPNs). QPE provides a
user-friendly graphical editor for QPN models based on the Eclipse/GEF frame-
work. SimQPN provides an efficient discrete-event simulation engine for QPNs
that can be used for model analysis. QPME runs on a wide range of plat-
forms including Windows, Linux, MacOS and Solaris. The tool is developed and
maintained by the Descartes Research Group at Karlsruhe Institute of Technol-
ogy (KIT).

This document presents QPME discussing its features and usage. The aim
is to provide the user with the information needed in order to use the tool
effectively without needing to understand its internals. More information on
QPME’s internal implementation details, including detailed specification of the
analysis techniques implemented, can be found in [9, 14]. An overview of the
tool is available in [15, 16].

1.1 System Requirements

QPE runs on all platforms supported by Eclipse including Windows, Linux,
Solaris, HP-UX, IBM AIX and Apple Mac OS. The only thing required is a Java
Runtime Environment (JRE) 6.0 or later. It is recommended to run QPE on
Windows since this is the platform it has been tested on.

SimQPN can be run either as Eclipse plugin in QPE or as a standalone Java
application. Thus, even though QPE is limited to Eclipse-supported platforms,
SimQPN can be run on any platform on which Java SE 6 is available. This
makes it possible to design a model on one platform (e.g., Windows) using QPE
and then analyze it on another platform (e.g., Solaris) using SimQPN.

1

2 Ch. 1. Introduction

Chapter 2

Primer on
Queueing Petri Nets

2.1 Basic Queueing Petri Nets

Queueing Petri nets can be seen as a combination of a number of different
extensions to conventional Petri nets (PNs) along several different dimensions.
In this section, we include some basic definitions and briefly discuss how queueing
Petri nets have evolved. A more detailed treatment of the subject can be found
in [2, 3, 11, 12]. An ordinary Petri net is a bipartite directed graph composed
of places, drawn as circles, and transitions, drawn as bars. A formal definition
follows [3]:

Definition 2.1 An ordinary Petri Net (PN) is a 5-tuple
PN = (P, T, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. I−, I+ : P × T → N0 are called backward and forward incidence functions,
respectively,

4. M0 : P → N0 is called initial marking.

The incidence functions I− and I+ specify the interconnections between
places and transitions. If I−(p, t) > 0, an arc leads from place p to transi-
tion t and place p is called an input place of the transition. If I+(p, t) > 0, an
arc leads from transition t to place p and place p is called an output place of the
transition. The incidence functions assign natural numbers to arcs, which we
call weights of the arcs. When each input place of transition t contains at least
as many tokens as the weight of the arc connecting it to t, the transition is said

3

4 Ch. 2. Primer on Queueing Petri Nets

to be enabled. An enabled transition may fire, in which case it destroys tokens
from its input places and creates tokens in its output places. The amounts of
tokens destroyed and created are specified by the arc weights. The initial ar-
rangement of tokens in the net (called marking) is given by the function M0,
which specifies how many tokens are contained in each place.

Different extensions to ordinary PNs have been developed in order to increase
the modeling convenience and/or the modeling power. Colored PNs (CPNs) in-
troduced by K. Jensen [10] are one such extension. The latter allow a type (color)
to be attached to a token. A color function C assigns a set of colors to each
place, specifying the types of tokens that can reside in the place. In addition to
introducing token colors, CPNs also allow transitions to fire in different modes
(transition colors). The color function C assigns a set of modes to each transition
and incidence functions are defined on a per mode basis. A formal definition of
a CPN follows [3]:

Definition 2.2 A Colored PN (CPN) is a 6-tuple CPN = (P, T,C, I−, I+,M0)
where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. C is a color function that assigns a finite and non-empty set of colors to
each place and a finite and non-empty set of modes to each transition.

4. I− and I+ are the backward and forward incidence functions defined on
P × T , such that I−(p, t), I+(p, t) ∈ [C(t)→ C(p)MS], ∀(p, t) ∈ P × T 1

5. M0 is a function defined on P describing the initial marking such that
M0(p) ∈ C(p)MS.

Other extensions to ordinary PNs allow temporal (timing) aspects to be inte-
grated into the net description [3]. In particular, Stochastic PNs (SPNs) attach
an exponentially distributed firing delay to each transition, which specifies the
time the transition waits after being enabled before it fires. Generalized Stochas-
tic PNs (GSPNs) allow two types of transitions to be used: immediate and
timed. Once enabled, immediate transitions fire in zero time. If several im-
mediate transitions are enabled at the same time, the next transition to fire is
chosen based on firing weights (probabilities) assigned to the transitions. Timed
transitions fire after a random exponentially distributed firing delay as in the
case of SPNs. The firing of immediate transitions always has priority over that
of timed transitions. A formal definition of a GSPN follows [3]:

Definition 2.3 A Generalized SPN (GSPN) is a 4-tuple
GSPN = (PN, T1, T2,W) where:

1The subscript MS denotes multisets. C(p)MS denotes the set of all finite multisets of
C(p).

2.1. Basic Queueing Petri Nets 5

1. PN = (P, T, I−, I+,M0) is the underlying ordinary PN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array whose entry wi ∈ R+ is a rate of a negative
exponential distribution specifying the firing delay, if ti ∈ T1 or is a firing
weight specifying the relative firing frequency, if ti ∈ T2.

Combining definitions 2.2 and 2.3, leads to Colored GSPNs (CGSPNs) [3]:

Definition 2.4 A Colored GSPN (CGSPN) is a 4-tuple
CGSPN = (CPN, T1, T2,W) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying CPN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array with wi ∈ [C(ti) 7−→ R+] such that
∀c ∈ C(ti) : wi(c) ∈ R+ is a rate of a negative exponential distribution spec-
ifying the firing delay due to color c, if ti ∈ T1 or is a firing weight speci-
fying the relative firing frequency due to c, if ti ∈ T2.

While CGSPNs have proven to be a very powerful modeling formalism, they
do not provide any means for direct representation of queueing disciplines. The
attempts to eliminate this disadvantage have led to the emergence of Queue-
ing PNs (QPNs). The main idea behind the QPN modeling paradigm was to
add queueing and timing aspects to the places of CGSPNs. This is done by
allowing queues (service stations) to be integrated into places of CGSPNs. A
place of a CGSPN that has an integrated queue is called a queueing place and
consists of two components, the queue and a depository for tokens which have
completed their service at the queue. This is depicted in Figure 2.1.

48(8(' (3 2 6 , 7 2 5 <

Figure 2.1: A queueing place and its shorthand notation.

6 Ch. 2. Primer on Queueing Petri Nets

The behavior of the net is as follows: tokens, when fired into a queueing
place by any of its input transitions, are inserted into the queue according to the
queue’s scheduling strategy. Tokens in the queue are not available for output
transitions of the place. After completion of its service, a token is immediately
moved to the depository, where it becomes available for output transitions of the
place. This type of queueing place is called timed queueing place. In addition to
timed queueing places, QPNs also introduce immediate queueing places, which
allow pure scheduling aspects to be described. Tokens in immediate queueing
places can be viewed as being served immediately. Scheduling in such places
has priority over scheduling/service in timed queueing places and firing of timed
transitions. The rest of the net behaves like a normal CGSPN. A formal defini-
tion of a QPN follows:

Definition 2.5 A Queueing PN (QPN) is an 8-tuple
QPN = (P, T,C, I−, I+,M0, Q,W) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN

2. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

� Q̃1 ⊆ P is the set of timed queueing places,

� Q̃2 ⊆ P is the set of immediate queueing places, Q̃1 ∩ Q̃2 = ∅ and

� qi denotes the description of a queue2 taking all colors of C(pi) into
consideration, if pi is a queueing place or equals the keyword ‘null’,
if pi is an ordinary place.

3. W = (W̃1, W̃2, (w1, ..., w|T |)) where

� W̃1 ⊆ T is the set of timed transitions,

� W̃2 ⊆ T is the set of immediate transitions, W̃1 ∩ W̃2 = ∅,
W̃1 ∪ W̃2 = T and

� wi ∈ [C(ti) 7−→ R+] such that ∀c ∈ C(ti) : wi(c) ∈ R+ is interpreted
as a rate of a negative exponential distribution specifying the firing
delay due to color c, if ti ∈ W̃1 or a firing weight specifying the relative
firing frequency due to color c, if ti ∈ W̃2.

Example 2.1 (QPN) Figure 2.2 shows an example of a QPN model of a cen-
tral server system with memory constraints based on [3]. Place p2 represents
several terminals, where users start jobs (modeled with tokens of color ‘o’) af-
ter a certain thinking time. These jobs request service at the CPU (repre-
sented by a G/C/1/PS queue, where C stands for Coxian distribution) and two

2In the most general definition of QPNs, queues are defined in a very generic way allowing
the specification of arbitrarily complex scheduling strategies taking into account the state of
both the queue and the depository of the queueing place [2]. For the purposes of this paper,
it is enough to use conventional queues as defined in queueing network theory.

2.1. Basic Queueing Petri Nets 7

'LVN��

7 H U PLQ D O V

0 H PRU \
3 D U W LW LRQ V

& 3 8

S�

S�
W�

W� W�

W�

S�

S�

S�

W�W�S�

W�

P

R R R R

R

R
R R R

RR R

RR

P

'LVN��

Figure 2.2: A QPN model of a central server with memory constraints (reprinted
from [3]).

disk subsystems (represented by G/C/1/FCFS queues). To enter the system
each job has to allocate a certain amount of memory. The amount of memory
needed by each job is assumed to be the same, which is represented by a token
of color ‘m’ on place p1. According to Definition 2.5, we have the following:
QPN = (P, T,C, I−, I+,M0, Q,W) where

� CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN as depicted in
Figure 2.2,

� Q = (Q̃1, Q̃2,
(null,G/C/∞/IS,G/C/1/PS, null,G/C/1/FCFS,G/C/1/FCFS)),
Q̃1 = {p2, p3, p5, p6}, Q̃2 = ∅,

� W = (W̃1, W̃2, (w1, ..., w|T |)), where W̃1 = ∅, W̃2 = T and
∀c ∈ C(ti) : wi(c) := 1, so that all transition firings are equally likely.

In [1] it is shown that QPNs have greater expressive power than QNs, ex-
tended QNs and SPNs. In addition to hardware contention and scheduling
strategies, using QPNs one can easily model simultaneous resource possession,
synchronization, blocking and software contention. This enables the integration
of hardware and software aspects of system behavior into the same model [5].
While the above could also be achieved by using Layered QNs (LQNs) (or
stochastic rendezvous networks), the latter are defined at a higher-level of ab-
straction and are usually less detailed and accurate. Another benefit of QPNs
is that, since they are based on Petri nets, one can exploit a number of efficient
techniques from Petri net theory to verify some important qualitative properties
of QPNs, such as ergodicity, boundedness, liveness or existence of home states.
The latter not only help to gain insight into the behavior of QPNs, but are also
essential preconditions for a successful quantitative analysis [2].

8 Ch. 2. Primer on Queueing Petri Nets

2.2 Hierarchical Queueing Petri Nets

A major hurdle to the practical application of QPNs is the so-called largeness
problem or state-space explosion problem: as one increases the number of queues
and tokens in a QPN, the size of the model’s state space grows exponentially
and quickly exceeds the capacity of today’s computers. This imposes a limit on
the size and complexity of the models that are analytically tractable. An at-
tempt to alleviate this problem was the introduction of Hierarchically-Combined
QPNs (HQPNs) [4]. The main idea is to allow hierarchical model specifica-
tion and then exploit the hierarchical structure for efficient numerical analysis.
This type of analysis is termed structured analysis and it allows models to be
solved that are about an order of magnitude larger than those analyzable with
conventional techniques.

$FWXDO
3 R S XODWL R Q

, Q S XW 2 XWS XW

8 V H U � V S H FL I L H G � S DU W� R I
WK H � V XE Q H W

* U DS K L FDO� Q R WDWL R Q � I R U
V XE Q H W� S ODFH

Figure 2.3: A subnet place and its shorthand notation.

HQPNs are a natural generalization of the original QPN formalism. In
HQPNs a queueing place may contain a whole QPN instead of a single queue.
Such a place is called a subnet place and is depicted in Figure 2.3. A subnet
place might contain an ordinary QPN or again a HQPN allowing multiple levels
of nesting. For simplicity, we restrict ourselves to two-level hierarchies. We use
the term High-Level QPN (HLQPN) to refer to the upper level of the HQPN and
the term Low-Level QPN (LLQPN) to refer to a subnet of the HLQPN. Every
subnet of a HQPN has a dedicated input and output place, which are ordinary
places of a CPN. Tokens being inserted into a subnet place after a transition
firing are added to the input place of the corresponding HQPN subnet. The
semantics of the output place of a subnet place is similar to the semantics of
the depository of a queueing place: tokens in the output place are available for

2.2. Hierarchical Queueing Petri Nets 9

output transitions of the subnet place. Tokens contained in all other places of
the HQPN subnet are not available for output transitions of the subnet place.
Every HQPN subnet also contains actual− population place used to keep track
of the total number of tokens fired into the subnet place.

10 Ch. 2. Primer on Queueing Petri Nets

Chapter 3

Building
QPN Models with QPE

3.1 Overview

QPE (Queueing Petri net Editor), the first major component of QPME, provides
a graphical tool for modeling using QPNs. It offers a user-friendly interface en-
abling the user to quickly and easily construct QPN models. QPE is based on
GEF (Graphical Editing Framework) [20] - an Eclipse sub-project. GEF is an
open source framework dedicated to providing a rich, consistent graphical edit-
ing environment for applications on the Eclipse platform. As a GEF application,
QPE is written in pure Java and runs on all operating systems officially sup-
ported by the Eclipse platform. This includes Windows, Linux, Solaris, HP-UX,
IBM AIX and Apple Mac OS among others, making QPE widely accessible.

Internally, being a GEF application, QPE is based on the model-view-controller
architecture. The model in our case is the QPN being defined, the views pro-
vide graphical representations of the QPN, and finally the controller connects
the model with the views, managing the interactions among them. QPN models
created with QPE can be stored on disk as XML documents. QPE uses its own
XML schema based on PNML [6] with some changes and extensions to support
the additional constructs available in QPN models.

A characterizing feature of QPE is that it allows token colors to be defined
globally for the whole QPN instead of on a per-place basis. This feature was
motivated by the fact that in QPNs typically the same token color (type) is used
in multiple places. Instead of having to define the color multiple times, the user
can define it one time and then reference it in all places where it is used. This
saves time, makes the model definition more compact, and last but not least, it
makes the modeling process less error-prone since references to the same token
color are specified explicitly.

Another characterizing feature of QPE, not supported in standard QPN mod-

11

12 Ch. 3. Building QPN Models with QPE

els, is the ability to have multiple queueing places configured to share the same
underlying physical queue1. In QPE, queues are defined centrally (similar to to-
ken colors) and once defined they can be referenced from inside multiple queueing
places. This allows to use queueing places to represent software entities, e.g.,
software components, which can then be mapped to different hardware resources
modeled as queues. This feature of QPE, combined with the support for hier-
archical QPNs, allows to build multi-layered models of software architectures
similar to the way this is done in layered queueing networks, however, with the
advantage that QPNs enjoy all the benefits of Petri nets for modeling synchro-
nization aspects.

For further details on the way QPE is implemented, the reader is referred
to [9].

3.2 QPE User Interface

3.2.1 QPE Main Window

Figure 3.1 shows the QPE main window, which is comprised of four views: ”Main
Editor View”, ”Outline View”, ”Properties View” and ”Console View”. In the
following, we take a brief look at each of these views. After that, we show how
QPN models are defined in QPE.

Main Editor View

The ”Main Editor View” is made up of ”Net Editor”, ”Color Editor”, ”Queue
Editor” and ”Palette”. The ”Net Editor” displays the graphical representation
of the currently edited QPN. It provides multiple document interface allowing
to have several models open at the same time. The ”Color Editor” is used to
define the global list of token colors available for use in the places of the QPN,
whereas the ”Queue Editor” is used to define the global list of queues used inside
the queueing places of the QPN. Finally, the ”Palette” displays the set of QPN
elements from which QPN models are constructed.

Outline View

The ”Outline View” provides a summary of the content of the currently active
”Net Editor”. It lists the elements of the QPN model displayed in the latter
and makes it easy to find an element based on its name. When an element is
selected in the ”Outline View”, it is automatically selected in the ”Net Editor”
as well, and the canvas is scrolled to its position so that the user can see it. This
feature is especially useful for large QPN models.

1While the same effect can be achieved by using multiple subnet places mapped to a nested
QPN containing a single queueing place, this would require expanding tokens that enter the
nested QPN with a tag to keep track of their origin as explained in [5].

3.2. QPE User Interface 13

Figure 3.1: QPE Main Window

Properties View

The ”Properties View” enables the user to edit the properties of the currently
selected element in the ”Net Editor”. The content of this view depends on the
type of the selected element.

Console View

The ”Console View” is used to display output from QPE extensions and plug-
ins such as SimQPN. For example, SimQPN uses the ”Console View” to display
progress updates during a simulation run as well as the results from the simula-
tion output data analysis.

3.2.2 Building QPN Models

The first thing that has to be done when building a QPN model is to define
the global list of colors that will be available for use in the places of the QPN.
As mentioned earlier, colors are defined using the ”Color Editor” in the ”Main
Editor View”. The ”Color Editor”, shown in Figure 3.2, is opened by selecting
the ”Colors” tab at the bottom of the ”Main Editor View”. The ”Color Editor”
consists of a table showing the currently defined colors and two buttons at the

14 Ch. 3. Building QPN Models with QPE

bottom of the table for adding and deleting colors. The delete button is only
enabled when a color is selected. Each color has three attributes - ”Name”, ”Real
Color” and ”Description”. These attributes can be edited by clicking inside the
table. The ”Name” attribute provides a unique identifier of each color that can
be used as a reference to the latter inside the places of the QPN. The ”Real
Color” is used to make it easier to visually distinguish between different colors
when referencing them. The ”Description” attribute defines the semantics of the
entity modeled using the respective token color.

Figure 3.2: Color Editor

Similarly to the ”Color Editor”, QPE provides a ”Queue Editor” where the
global list of queues available for use as underlying queues in the queueing places
of the QPN can be defined. The ”Queue Editor”, shown in Figure 3.3, is opened
by selecting the ”Queues” tab at the bottom of the ”Main Editor View”. The
”Queue Editor” consists of a table showing the currently defined queues and two
buttons at the bottom of the table for adding and deleting queues. The delete
button is only enabled when a queue is selected. Each queue has four attributes -
”Name”, ”Scheduling Strategy”, ”Number of Servers” and ”Description”. These
attributes can be edited by clicking inside the table. The ”Name” attribute pro-
vides a unique identifier of each queue that can be used as a reference to the
latter inside the queueing places of the QPN. The ”Scheduling Strategy” deter-
mines the order in which tokens are served in the queue (the possible settings

3.2. QPE User Interface 15

are explained later in this section). The ”Number of Servers” attribute specifies
the number of servers in the queue. Finally, the ”Description” attribute defines
the semantics of the entity modeled using the respective queue.

Figure 3.3: Queue Editor

Once the required colors and queues have been defined, the user can start
putting together the QPN model2. In order to do this the user has to switch back
to the ”Net Editor” tab of the ”Main Editor View”. QPN models are built using
the set of QPN elements available in the ”Palette”. In order to add an element to
the model the user has to select it in the ”Palette” and then click inside the canvas
of the ”Net Editor”. The following QPN elements are currently available in the
”Palette”: ”Ordinary Place”, ”Queueing Place”, ”Subnet Place”, ”Immediate
Transition”, ”Timed Transition” and ”Connection”. The ”Connection” element
is used to create connections between places and transitions. A connection is
created by selecting the ”Connection” element and then dragging the mouse
pointer from the input element to the output element.

The attributes of a QPN element (place or transition) can be edited by
selecting the element and using the ”Properties View”. Depending on the type
of element selected, different attributes are available as shown in the following:

2Note that QPE does not require that colors and queues be defined in the beginning of the
model construction. Colors and queues can be added at any time by opening the respective
tab of the ”Main Editor View”.

16 Ch. 3. Building QPN Models with QPE

Attributes of Ordinary Places

� Name: Name of the ordinary place.

� Departure Discipline: NORMAL or FIFO (First-In-First-Out). The
former implies that tokens become available for output transitions imme-
diately upon arrival just like in conventional QPN models. The latter
implies that tokens become available for output transitions in the order of
their arrival, i.e., a token can leave the place/depository only after all to-
kens that have arrived before it have left, hence the term FIFO. Departure
disciplines are an extension to the QPN modeling formalism introduced in
QPME. For more details refer to [11, 12].

� Colors: Token colors allowed in this place. For each token color the
following parameters can be configured:

– Name: Name of the color as defined in the ”Color Editor”.

– Initial: Initial number of tokens of the respective color in the place
(initial marking of the QPN).

– Max: Maximum number of tokens of the respective color allowed in
the place.

Attributes of Queueing Places

Name: Same as for ordinary place.

Departure Discipline: Same as for ordinary place.

Queue: Underlying queue of the queueing place.3

Scheduling Strategy: The scheduling strategy (or queueing discipline) de-
termines the order in which tokens are served in the queue. The following
values are currently allowed:

� FCFS: First-Come-First-Served.

� PS: Processor-Sharing.

� IS: Infinite-Server.

� PRIO: Priority scheduling.

� RANDOM: Random scheduling.

Number of Servers: Number of servers in the queue (queueing station) of
the place4.

3The ”New Queue” button can be used to create a new queue for the queueing place which
is automatically added to the global queue list in the ”Queue Editor”.

4Note that the ”Scheduling Strategy” and ”Number of Servers” fields are automatically set
to the values of the respective fields in the ”Queue Editor”.

3.2. QPE User Interface 17

Colors: Token colors allowed in this place. For each token color the following
parameters can be configured:

� Name: Same as for ordinary place.

� Initial: Same as for ordinary place.

� Max: Same as for ordinary place.

� Ranking: Ranking of the token color.

� Priority: Used for ”Priority” scheduling.

� Distribution: Distribution of the token service time.

� p1: 1st parameter of the distribution.

� p2: 2nd parameter of the distribution (if applicable).

� p3: 3rd parameter of the distribution (if applicable).

� Input File: Input file for empirical distribution.

Table 3.1 shows a list of the currently supported distribution functions and
their respective input parameters.

Table 3.1: Supported distributions and their input parameters.

Distribution p1 p2 p3

Beta alpha beta na
BreitWigner mean gamma cut
BreitWignerMeanSquare mean gamma cut
ChiSquare freedom na na
Gamma alpha lambda na
Hyperbolic alpha beta na
Exponential lambda na na
ExponentialPower tau na na
Logarithmic p na na
Normal mean stddev na
StudentT freedom na na
Uniform min max na
VonMises freedom na na
Empirical na na na
Deterministic c na na

Empirical distributions are supported in the following way. The user is ex-
pected to provide a probability distribution function (PDF), specified as an array
of positive real numbers (histogram). The array is read from an external text
file whose name and location are initialized using the ”Input File” parameter.

18 Ch. 3. Building QPN Models with QPE

Successive values in the text file must be delimited using semicolon ’;’ charac-
ters. A cumulative distribution function (CDF) is constructed from the PDF
and inverted using a binary search for the nearest bin boundary and a linear
interpolation within the bin (resulting in a constant density within each bin).

Attributes of Subnet Places

� Name: Name of the subnet place.

� Departure Discipline: NORMAL or FIFO (First-In-First-Out). The
former implies that tokens become available for output transitions imme-
diately upon arrival just like in conventional QPN models. The latter
implies that tokens become available for output transitions in the order of
their arrival, i.e., a token can leave the place/depository only after all to-
kens that have arrived before it have left, hence the term FIFO. Departure
disciplines are an extension to the QPN modeling formalism introduced in
QPME. For more details refer to [11, 12].

� Colors: Token colors allowed in this place. For each token color the
following parameters can be configured:

– Name: Name of the color as defined in the ”Color Editor”.

– Initial: Initial number of tokens of the respective color in the place
(initial marking of the QPN).

– Max: Maximum number of tokens of the respective color allowed in
the place.

– Direction: Specifies if tokens of the respective color are allowed to
enter the subnet (in), if they are allowed to leave the subnet (out)
or if both directions are possible (both). This setting controls the
propagation of color references to the input and the output place of
the subnet.

Attributes of Immediate Transitions

� Name: Name of the immediate transition.

� Priority: Firing priority.

� Firing Weight: Relative firing frequency of the transition.

� Modes: Modes in which the transition can fire. For each mode the fol-
lowing parameters can be configured:

– Name: Name of the mode.

– Real Color: Used to make it easier to visually distinguish between
different modes when defining the incidence functions.

– Firing Weight: Relative firing frequency of the mode.

3.2. QPE User Interface 19

Attributes of Timed Transitions

� Name: Name of the timed transition.

� Priority: Firing priority.

� Modes: Modes in which the transition can fire. For each mode the fol-
lowing parameters can be configured:

– Name: Name of the mode.

– Real Color: Used to make it easier to visually distinguish between
different modes when defining the incidence functions.

– Mean Firing Delay: Firing delay of the mode.

Defining Transition Incidence Functions

Transition incidence functions in QPE are defined using the ”Incidence Function
Editor” shown in Figure 3.4.

Figure 3.4: Incidence Function Editor

The ”Incidence Function Editor” can be opened by double-clicking on the
respective transition element in the ”Net Editor” or by right-clicking it and using
the context menu. Once opened the ”Incidence Function Editor” displays the

20 Ch. 3. Building QPN Models with QPE

transition input places on the left, the transition modes in the middle and the
transition output places on the right. Each place (input or output) is displayed as
a rectangle containing a separate circle for each token color allowed in the place.
Using the ”Connection” tool in the ”Palette”, the user can create connections
from token colors of input places to modes or from modes to token colors of
output places. If a connection is created between a token color of a place and
a mode, this means that when the transition fires in this mode, tokens of the
respective color are removed from the place. Similarly, if a connection is created
between a mode and a token color of an output place, this means that when the
transition fires in this mode, tokens of the respective color are deposited in the
place. Each connection can be assigned a weight by clicking on it and using the
”Properties” view. The weight, displayed as label next to the connection line,
is interpreted as the number of tokens removed/deposited in the place when the
transition fires in the respective mode.

Defining Subnets

Subnets of subnet places in QPE are defined using the ”Subnet Editor” shown
in Figure 3.5.

Figure 3.5: Subnet Editor

The ”Subnet Editor” can be opened by double-clicking on the respective

3.2. QPE User Interface 21

subnet place element in the ”Net Editor” or by right-clicking it and using the
context menu. Once opened the ”Subnet Editor” provides two editor pages:
”Subnet Editor” and ”Color Editor”. The former can be used in the same
way as the ”Net Editor”, except that it contains three special places (input-
place, actual-population and output-place) and two special transitions (input-
transition and output-transition). The semantics of these elements are described
in Section 2.2. The properties of the input, output and actual-population places
cannot be modified. They are automatically managed by QPE depending on
the properties of the subnet place. If more flexibility is required, the actual-
population place, the input and the output transitions can be deleted from the
subnet.

The ”Colors” page of the ”Subnet Editor” can be used to define colors local
to the subnet. These colors can only be referenced within the same subnet or
contained subnets. Colors that are defined globally are greyed out and cannot
be edited in the subnet’s color editor. In order to edit global color definitions
use the color editor of the whole net.

Use of Probes for Data Collection

A probe is a tool to specify a region of interest for which data should be collected
during simulation. The region of a probe includes one or more places and is
defined by one start and one end place. The goal is to evaluate the time tokens
spend in the region when moving between its start and end place. The probe
starts its measurements for each token entering its region at the start place and
updates the statistics when the token leaves at the end place. It can be specified
whether the measurements start when the token enters the start place or when
the token leaves it. The same can be specified for the end place. Each probe
references a subset of the colors defined in the QPN. A probe only collects data
for tokens of the referenced colors.

:/6�&38 '%6�34 '%6�&38 '%6�,�2

'%6�3URFHVV�3RRO

&OLHQW

'7%$6(�6(59(5

W� W� W� W� W�

:/6�7KUHDG�3RRO

'%�&RQQ�3RRO[
[

[[[[[[[

�
F

[

�
F

�
W �
WWW W

SS S

FF F

UL

�
S �
S

UM

Figure 3.6: QPN Model of a Java EE System [13]

Currently, probes allow to gather statistics for the residence time of a token
in a region of interest. For example, in the model shown in Figure 3.6, a probe

22 Ch. 3. Building QPN Models with QPE

can be used to measure the time spent at the database server, which consists
of places DBS-PQ, DBS-CPU and DBS-I/O. In this case, the probe starts at place
DBS-PQ (on entry) and ends at place DBS-I/O (on exit). For each transaction
of type i for which data should be collected, a reference to color ’ri’ is defined
in the probe. As a result, the user is provided with the mean residence time of
requests in the database server including the associated confidence interval and
distribution.

The probes are realized by attaching timestamps to individual tokens. In
the start place a probe adds the current simulation time as a timestamp to all
tokens of colors it is interested in. A token can carry timestamps from different
probes. Thus intersecting regions of several probes in a QPN are supported.
Firing transitions collect all timestamps from input tokens and copy the times-
tamps to the output tokens. For each output token only the timestamps of
probes interested in the token color are passed on. In some models, e.g. with a
synchronous fork/join, it is possible that a transition gets tokens with different
timestamps from the same probe. In this case, a warning is issued and only the
minimal timestamp is passed on. The other timestamps are discarded. In the
end place of a probe, its timestamp is removed and its statistics are updated.

Probes in QPE are defined using the ”Probe Editor” shown in Figure 3.7.
The ”Probe Editor” is opened by selecting the ”Probes” tab at the bottom of

Figure 3.7: Probe Editor

3.2. QPE User Interface 23

the ”Main Editor View”. The ”Probe Editor” consists of a table showing the
currently defined probes and two buttons at the bottom of the table for adding
and deleting probes. The delete button is only enabled when a probe is selected.
Each probe has five attributes - ”Name”, ”Start Place”, ”Start Trigger”, ”End
Place” and ”End Trigger”. These attributes can be edited by clicking inside the
table. The ”Name” attribute provides a unique identifier of each probe. The
”Start Place” attribute determines at which place the data collection of the probe
starts. The ”Start Trigger” attribute determines whether the data collection
starts when a token enters (”On Entry”) or leaves (”On Exit”) the start place.
The ”End Place” attribute correspondingly determines at which place the data
collection of the probe stops. Similarly, the ”End Trigger” specifies whether the
data collection stops when the token enters (”On Entry”) or leaves (”On Exit”)
the end place. When a probe is selected, the colors for which a probe collects
data can be selected using the ”Properties View”.

Behavior of Copy & Paste in QPE

The implementation of the standard ”Copy” and ”Paste” operations might seem
obvious in most editors, however, their implementation is more complicated in
the case of QPE. This is because elements in QPNs are interdependent and
copying an element from one location to another might not make sense without
adjusting the element or copying its associated elements along with it. There is
a difference in how this is handled when an element is pasted inside the same
document or when it is pasted into another document.

If an element is copied and pasted into the same document, a replica of the
element is inserted next to source element with a little offset so that the user can
distinguish between the two. Any connections of the copied element are repli-
cated as well. If multiple elements are copied, any connections between them
are replicated as connections between the replicas of the copied elements. If con-
nections between a copied element and a non-copied element exist, a connection
between the replica of the copied element and the non-copied element is created.
When transitions are copied, the newly created replicas have identical incidence
functions as the source transitions.

The behavior of ”Copy” and ”Paste” is slightly different when copying el-
ements from one document to another. When a place is copied, it might be
that its referenced colors are not defined in the target document. Therefore,
any color definitions referenced by a copied element, have to be created in the
target document. To avoid name conflicts, the names of copied colors are pre-
fixed with the name of the source QPN model. Another difference is in the way
connections are treated. Connections between copied elements and non-copied
elements are not copied in the target document, since this does not make sense
in this case. Therefore, a transition might lose some connections when copied
and its incidence function has to be adjusted accordingly.

24 Ch. 3. Building QPN Models with QPE

Chapter 4

Model Analysis using
SimQPN

4.1 Overview

QPME provides a discrete-event simulator, SimQPN, that can be used to analyze
QPN models built in QPE. SimQPN is extremely light-weight and has been im-
plemented in Java to provide maximum portability and platform-independence.
It can be run either as Eclipse plugin in QPE or as a standalone Java application.
Thus, even though QPE is limited to Eclipse-supported platforms, SimQPN can
be run on any platform for which Java Runtime Environment (JRE) 1.1 or higher
is available. This makes it possible to design a model on one platform (e.g., Win-
dows) using QPE and then analyze it on another platform (e.g., Solaris) using
SimQPN.

SimQPN simulates QPNs using a sequential algorithm based on the event-
scheduling approach to simulation modeling. Being specialized for QPNs, it
simulates QPN models directly and has been designed to exploit the knowledge
of the structure and behavior of QPNs to improve the efficiency of the simulation.
Therefore, SimQPN provides much better performance than a general purpose
simulator would provide, both in terms of the speed of simulation and the quality
of output data provided.

In this chapter, we present SimQPN from the user’s perspective. For informa-
tion on SimQPN’s internal implementation details as well as precise specification
of the analysis techniques it supports, we refer the reader to [9, 14]. It should
be noted that SimQPN currently supports most but not all of the QPN features
that can be configured in QPE. The reason for not limiting QPE to only those
features supported by SimQPN is that QPE is intended to be usable as a stan-
dalone QPN editor and as such the QPN features it offers should not be limited
to any particular analysis technique.

25

26 Ch. 4. Model Analysis using SimQPN

4.1.1 Supported QPN Features

SimQPN currently supports the following scheduling strategies for queues inside
queueing places:

� First-Come-First-Served (FCFS)

� Processor-Sharing (PS)

� Infinite Server (IS)

The following service time distributions are supported (input parameters of
distributions are shown in brackets):

� Beta (alpha, beta)

� BreitWigner (mean, gamma, cut)

� BreitWignerMeanSquare (mean, gamma, cut)

� ChiSquare (freedom)

� Gamma (alpha, lambda)

� Hyperbolic (alpha, beta)

� Exponential (lambda)

� ExponentialPower (tau)

� Logarithmic (p)

� Normal (mean, stddev)

� StudentT (freedom)

� Uniform (min, max)

� VonMises (freedom)

� Empirical

Empirical distributions are supported in the following way. The user is ex-
pected to provide a probability distribution function (PDF), specified as an array
of positive real numbers (histogram). A cumulative distribution function (CDF)
is constructed from the PDF and inverted using a binary search for the nearest
bin boundary and a linear interpolation within the bin (resulting in a constant
density within each bin). The next version of SimQPN will also include support
for deterministic distributions.

Timed transitions are currently not supported, however, in most cases a
timed transition can be approximated by a serial network consisting of an im-
mediate transition, a queueing place and a second immediate transition.

4.1. Overview 27

A novel feature of SimQPN is the introduction of the so-called departure
disciplines. The latter are defined for ordinary places or depositories and deter-
mine the order in which arriving tokens become available for output transitions.
Two departure disciplines are currently supported, Normal (used by default) and
First-In-First-Out (FIFO). The former implies that tokens become available for
output transitions immediately upon arrival just like in conventional QPN mod-
els. The latter implies that tokens become available for output transitions in
the order of their arrival, i.e., a token can leave the place/depository only after
all tokens that have arrived before it have left, hence the term FIFO. For an
example of how this feature can be exploited and the benefits it provides we
refer the reader to [11, 12].

4.1.2 Simulation Output Data Analysis

Modes of Data Collection

SimQPN offers the ability to configure what data exactly to collect during the
simulation and what statistics to provide at the end of the run. This can be
specified for each place (ordinary or queueing) of the QPN. The user can choose
between six modes of data collection (called stats-levels). The higher the
mode, the more information is collected and the more statistics are provided.
Since collecting data costs CPU time, the more data is collected, the slower
the simulation would progress. Therefore, by configuring data collection modes,
the user can speed up the simulation by making sure that no time is wasted
collecting unnecessary data. Statistics in SimQPN are provided on a per location
basis where location is defined to have one of the following four types:

1. Ordinary place.

2. Queue of a queueing place (considered from the perspective of the place).

3. Depository of a queueing place.

4. Queue (considered from the perspective of all places it is part of).

The six data collection modes (stats-levels) are defined as follows:

stats-level 0 In this mode no statistics are collected.

stats-level 1 This mode considers only token throughput data, i.e., for each
location the token arrival and departure rates are estimated for each color.

stats-level 2 This mode adds token population, token occupancy and queue
utilization data, i.e., for each location the following data is provided:

� Token occupancy (for locations of type 1 or 3): fraction of time in which
there is a token inside the location.

28 Ch. 4. Model Analysis using SimQPN

� Queue utilization (for locations of type 2 or 4): proportion of the queue’s
server resources used by tokens arriving through the respective location.

� For each token color of the respective location:

– Minimum/maximum number of tokens observed in the location.

– Average number of tokens in the location.

– Token color occupancy: fraction of time in which there is a token of
the respective color inside the location.

stats-level 3 This mode adds token residence time data, i.e., for each location
the following additional data is provided on a per-color basis:

� Minimum/maximum observed token residence time.

� Mean and standard deviation of observed token residence times.

� Estimated steady state mean token residence time.

� Confidence interval (c.i.) for the steady state mean token residence time
at a user-specified significance level.

stats-level 4 This mode adds a histogram of observed token residence times.

stats-level 5 This mode additionally dumps token residence times to a file for
further analysis.

Steady State Analysis

SimQPN supports two methods for estimation of the steady state mean resi-
dence times of tokens inside the queues, places and depositories of the QPN.
These are the method of independent replications (in its variant referred to as
replication/deletion approach) and the method of non-overlapping batch means.
Both of them can be used to provide point and interval estimates of the steady
state mean token residence time. The method of Welch is used for determining
the length of the initial transient (warm-up period). For users that would like
to use different methods for steady state analysis (for example ASAP [18, 19]),
SimQPN can be configured to output observed token residence times to files
(mode 4), which can then be used as input to external analysis tools (for exam-
ple [8]).

Simulation experiments with SimQPN usually comprise two stages: stage 1
during which the length of the initial transient is determined, and stage 2 dur-
ing which the steady-state behavior of the system is simulated and analyzed.
SimQPN utilizes the Colt open source library for high performance scientific
and technical computing in Java, developed at CERN [7]. In SimQPN, Colt is
primarily used for random number generation and, in particular, its implemen-
tation of the Mersenne Twister random number generator is employed [17].

4.2. WORKING WITH SIMQPN 29

4.2 Working with SimQPN

4.2.1 Run Configuration Wizard

SimQPN can be launched by choosing ”SimQPN” from the ”Tools” menu in
QPE. This opens the ”Run Configuration Wizard”. The latter consists of three
dialog windows:

1. Select Run Configuration

2. Simulation Run Configuration

3. Configuration Parameters for the chosen Analysis Method

Before a QPN model can be simulated, a ”configuration” must be created
which encapsulates all input parameters required for the simulation. The ”Select
Run Configuration” dialog window (Figure 4.1) can be used to create new con-
figurations or delete existing ones. All parameters belonging to a configuration
are stored as meta-attributes in the model’s XML file.

Figure 4.1: Select Run Configuration Dialog Window

When creating a new configuration, the user is first asked to select the analy-
sis method that will be used for analysis of the output data from the simulation.
Three analysis methods are currently supported:

1. Batch Means: Steady-state analysis using the method of non-overlapping
batch means.

2. Replication/Deletion: Steady-state analysis using the method of inde-
pendent replications in its variant referred to as replication/deletion ap-
proach.

3. Method of Welch: Analysis of the length of the initial transient (warm-
up period) using the method of Welch.

Steady-state analysis is applied to the observed token residence times at
places, queues and depositories of the QPN.

30 Ch. 4. Model Analysis using SimQPN

General Run Configuration Parameters

After a configuration has been created it can be used by selecting it and clicking
on the ”Next” button in the ”Select Run Configuration” dialog window. This
opens the ”Simulation Run Configuration” dialog window (Figure 4.2) which
allows the user to configure the following general simulation parameters:

Figure 4.2: Simulation Run Configuration Dialog Window

Warm up period: Length of the warm up period (initial transient) of the sim-
ulation run (in model time).

Max total run length: Maximum total length of the simulation run including
the warm up period (in model time).

Simulation stopping criterion: Criterion for determining when the simula-
tion run should be stopped. Three values are allowed:

� Fixed sample size

� Sequential / Absolute precision

� Sequential / Relative precision

”Fixed sample size” means that the simulation is run until the ”max total
run length” has been reached. ”Sequential / Absolute precision” or ”Se-
quential / Relative precision” means that the length of the simulation is
increased sequentially from one checkpoint to the next, until enough data
has been collected to provide estimates of residence times with a given
user-specified precision. The precision is defined as an upper bound on the
confidence interval half length. It can be specified either as an absolute
value (”Sequential / Absolute precision”) or as a percentage relative to the
mean residence time (”Sequential / Relative precision”). Note that if the
”Replication/Deletion” method or the ”Method of Welch” has been chosen,
the stopping criterion is automatically set to ”fixed sample size” because
the sequential stopping criteria are not applicable to these methods.

4.2. Working with SimQPN 31

Time between stop checks: Specifies how often (in model time) the simu-
lator should check if the conditions of the stopping criterion have been
fulfilled to determine if the simulation run should be stopped.

Seconds between stop checks: Used only when ”time between stop checks”
is set to 0. In this case, ”time between stop checks” is automatically
adjusted to correspond roughly to the configured ”seconds between stop
checks”.

Verbosity level: Specifies the amount of details about the progress of the simu-
lation that should be provided during the run. Verbosity level is an integer
from 0 to 3.

Output directory: Directory in which the simulation results and auxiliary
output files (e.g., raw data) should be stored.

After the user has finished configuring the parameters in the ”Simulation
Run Configuration” dialog window and clicks on the ”Next” button, the next
dialog window depends on the chosen analysis method.

Configuration Parameters for Batch Means Method

Figure 4.3: Configuration Parameters for Batch Means Method

Figure 4.3 shows the dialog window for the batch means method. The follow-
ing parameters must be configured for every ordinary place, queue or depository:

statsLevel: Specifies the data collection mode - from 0 to 5 (see Section 4.1.2.
If set to 0, no data is collected for the respective place and no statistics
are provided at the end of the run.

32 Ch. 4. Model Analysis using SimQPN

signLev: Specifies the significance level of the confidence intervals to be pro-
vided for the mean token residence times.

reqAbsPrc: If ”Sequential / Absolute precision” stopping criterion has been
chosen, this field specifies the absolute precision required. Simulation is
not stopped before enough data has been collected to provide confidence
intervals for token residence times at the respective place with half widths
not exceeding reqAbsPrc.

reqRelPrc: If ”Sequential / Relative precision” stopping criterion has been
chosen, this field specifies the relative precision required. Simulation is not
stopped before enough data has been collected to provide confidence inter-
vals for token residence times at the respective place with half widths not
exceeding (reqRelPrc ∗ 100%) percent of the corresponding mean values.

batchSize: Specifies the batch size used.

minBatches: Minimum number of batches required for steady state statistics.
If set to 0, no steady state analysis is performed for the respective token
color.

numBMeansCorlTested: If set greater than 0, the first numBMeansCorlTested
batch means observed from the beginning of the steady state period are
tested for autocorrelation to determine if the batch size is sufficient. If the
test fails, the batch size is increased repeatedly until the test is passed. If
set to 0, no autocorrelation test is performed.

bucketSize: The size of histogram buckets.

maxBuckets: Maximum number of buckets of the histogram.

The above parameters are specified on a per-color basis for every place of
the QPN. For queueing places, the parameters are set separately for the queue
and depository of the place. Note that the parameters ”signLev”, ”reqAbsPrc”,
”reqRelPrc”, ”batchSize”, ”minBatches” and ”numBMeansCorlTested” are only
enabled for places where ”statsLevel” is set to be greater than or equal to 3.
Otherwise, no steady state analysis is performed and these parameters do not
make sense. The parameters ”bucketSize” and ”maxBuckets” are only of interest
for place where ”statsLevel” is set to be greater than or equal to 4. Otherwise,
no histograms are created.

Configuration Parameters for Replication/Deletion Method

Figure 4.4 shows the dialog window for replication/deletion method. The follow-
ing parameters must be configured for every ordinary place, queue or depository:

statsLevel: Specifies the data collection mode - from 0 to 5 (see Section 4.1.2.
If set to 0, no data is collected for the respective place and no statistics
are provided at the end of the run.

4.2. Working with SimQPN 33

Figure 4.4: Configuration Parameters for Replication/Deletion Method

sighLevAvgST: Specifies the significance level of the confidence intervals to
be provided for the mean token residence times.

Note that the parameter ”sighLevAvgST” is only enabled for places where
”statsLevel” is set to be greater than or equal to 3. Otherwise, no statistics
are gathered for token residence times. The number of replications performed is
specified in the ”Select Run Configuration” dialog window (Figure 4.1).

Configuration Parameters for Method of Welch

Figure 4.5: Configuration Parameters for Method of Welch

34 Ch. 4. Model Analysis using SimQPN

Figure 4.5 shows the dialog window for the method of Welch. The following
parameters must be configured for every ordinary place, queue or depository:

statsLevel: Specifies the data collection mode - from 0 to 5 (see Section 4.1.2).
If set to 0, no data is collected for the respective place and it is excluded
from the analysis.

minObsrv: Minimum number of observations required.

maxObsrv: Maximum number of observations considered. If set to 0, no data is
collected for the respective token color and it is excluded from the analysis.

Note that the parameters ”minObsrv” and ”maxObsrv” are only enabled for
places where ”statsLevel” is set to be greater than or equal to 3. Otherwise,
no statistics are gathered for token residence times. The number of replica-
tions performed is specified in the ”Select Run Configuration” dialog window
(Figure 4.1).

For every token color, SimQPN computes the moving averages of observed
token residence times for four different window sizes and stores them in text files
in the ”output directory”. Output files are named as follows:

WelchMovAvgST-<TYPE><NAME>-col<COLOR>-win<SIZE>.txt

where <TYPE> is place, queue or depository; <NAME> is the name of the
respective place, queue or depository; and <SIZE> is the window size. The
window sizes considered are m/4, m/16, m/32 and m/64, where m is the actual
number of observations.

4.2.2 SimQPN Command-Line Interface

As mentioned earlier, SimQPN can also be run as a standalone Java application
outside of QPE. This is done using a shell script, SimQPN.bat on Windows or
SimQPN.sh on Unix/Linux platforms.

On Windows, the script is started as follows:

SimQPN.bat [-l] [-r "config"] qpe-file

where the command line parameters are interpreted as explained below:

-l tells SimQPN to list the simulation configurations defined in the QPE file.

qpe-file is the QPE file containing the model to be analyzed.

-r tells SimQPN to run the specified simulation configuration.

config is the simulation configuration to be run.

On Unix/Linux platforms exactly the same syntax is used with the only
difference that the name of the script is SimQPN.sh.

4.3. PROCESSING AND VISUALIZATION OF
SIMULATION RESULTS 35

4.3 Processing and Visualization of
Simulation Results

After a successful simulation run, SimQPN saves the results from the simulation
in an XML file with a .simqpn extension which is stored in the configured output
directory. In addition, a summary of the results in text format is printed on the
console and stored in a separate file with a .log extension.

QPE provides an advanced query engine for processing and visualization
of the simulation results. The query engine allows to define queries on the
simulation results in order to filter, aggregate and visualize performance data
for multiple places, queues and colors of the QPN. The results from the queries
can be displayed in textual or graphical form. QPE provides two editors that
can be used as a front-end to the query engine: ”Simple Query Editor” and
”Advanced Query Editor”.

Figure 4.6: Basic Query Editor

4.3.1 Simple Query Editor

The ”Simple Query Editor”, shown in Figure 4.6, is displayed when opening the
.simqpn file containing the results from the simulation. The editor displays the
collected statistics for the various places and queues of the QPN. Statistics are
reported on a per location basis where location is defined as in Sect. 4.1.2). The
four location types are denoted as follows:

36 Ch. 4. Model Analysis using SimQPN

1. ”place” - ordinary place.

2. ”qplace:queue” - queue of a queueing place considered from the perspective
of the place.

3. ”qplace:depository” - depository of a queueing place.

4. ”queue” - queue considered from the perspective of all places it is part of.

The statistics for the various locations are presented in two tables. The
first table contains the statistics for locations of type ”place”, ”qplace:queue”
and ”qplace:depository”, while the second one contains the statistics for loca-
tions of type ”queue”. Depending on the configured data collection modes (see
Sect. 4.1.2), the set of available performance metrics for the various locations
may vary.

By clicking on multiple locations while holding ”Ctrl”, the user can select a
set of locations and respective token colors. A right click on a selection opens
the context menu (see Figure 4.7) in which the user can choose which metric
should be visualized for the selected set of locations and token colors. After
choosing a metric, the user can select the form in which the results should be
presented. Currently, three options are available: ”Pie Chart”, ”Bar Chart” and
”Console Output”. Figure 4.8 shows an example of a pie chart and bar chart
for the metric mean token residence time.

The ”Simple Query Editor” is intended for simple filtering and visualization
of the simulation results and does not provide any means to aggregate met-
rics over multiple locations and token colors. Queries involving aggregation are
supported by the ”Advanced Query Editor”.

4.3.2 Advanced Query Editor

The ”Advanced Query Editor” is opened by clicking on the respective button at
the bottom of the ”Simple Query Editor”. Using this editor the user can define
complex queries on the simulation results involving both filtering and aggregation
of performance metrics from multiple places and queues of the QPN. An example
of such a query is shown in Figure 4.9.

A query is defined by first selecting a set of locations and a set of colors
using the combo boxes and the +/- buttons at the top of the editor. The selected
locations and colors specify a filter on the data that should be considered as part
of the query. Using the table at the bottom of the editor, the user can select the
specific performance metrics of interest and how data should be aggregated with
respect to the considered locations and colors. Three options for aggregating
data are available:

� ”For each” - no aggregation is applied and performance metrics are con-
sidered separately for each location/color.

� ”Average” - the average over the selected locations/colors is computed.

4.3. Processing and Visualization of SimQPN Results 37

Figure 4.7: Context Menu in Basic Query Editor

(a) Bar Chart (b) Pie Chart

Figure 4.8: Example Diagrams

� ”Sum” - the sum over the selected locations/colors is computed.

Two ”Aggregation” fields are available, the left one is applied to the set
of locations, while the right one is applied to the set of colors. Similarly, two
”Visualization” fields are available, one applied to the set of locations, the other
one to the set of colors. QPE currently offers three visualization options: ”Bar
Chart”, ”Pie Chart” and ”Console Output”.

Depending on the selected aggregation options, there are four possible scenar-
ios: a) no aggregation, b) aggregation over colors, c) aggregation over locations,

38 Ch. 4. Model Analysis using SimQPN

Figure 4.9: Advanced Query Editor

d) aggregation over both colors and locations. The four scenarios are depicted
in Figure 4.10 illustrating how performance metrics are aggregated and used to
produce a set of charts capturing the results from the respective query. Assum-
ing that the user has selected a set of locations p1, p2, ..., pm and a set of colors
c1, c2, ..., cn, a matrix is generated that contains the values of the selected per-
formance metric for each combination of location and color. Some of the cells of
the matrix could be empty (denoted in grey in Figure 4.10). This could happen
if the metric is not available in the configured data collection mode or if the
considered color is not defined for the respective location. The number of charts
generated depends on the selected aggregation options. In case no aggregation
is selected, m + n charts are generated. In the case of aggregation over the set
of colors or locations, one chart is generated. Finally, in the case of aggregation
over both colors and locations, the result of the query is a single value.

4.3.3 Format of SimQPN Console Output

As mentioned in Section 4.3, after a successful simulation run, in addition to
saving the simulation results in an XML file (.simqpn), SimQPN prints a sum-
mary of the results on the console and stores it in a separate .log file. In this
section, the format of the produced results summary is presented in detail.

4.3. Processing and Visualization of SimQPN Results 39

(a) For each - For each (b) For each - Aggregation

(c) Aggregation - For each (d) Aggregation - Aggregation

Figure 4.10: Aggregation Scenarios

Results from Batch Means Method

The excerpt below shows the format of results from the method of batch means
for one queueing place (queue and depository) and one color.

REPORT for Queue of Queueing Place : WLS-CPU---------------------

queueUtilQPl=1.0

------------------ Color = x1 --------------------

arrivCnt=80934 deptCnt=80935

arrivThrPut=0.0141931190313492 deptThrPut=0.014193294397932

meanTkPop=56.817972595483404 tkColOcp=1.0

40 Ch. 4. Model Analysis using SimQPN

meanST=4002.072502543596 stDevST=3997.8883004676186

Steady State Statistics:

numBatchesST=202 batchSizeST=400 stDevStdStateMeanST=234.045554

95% c.i. = 4002.120611373594 +/- 32.27548690360934

REPORT for Depository of Queueing Place : WLS-CPU----------------

tkOcp=0.0

------------------ Color = x1 --------------------

arrivCnt=80935 deptCnt=80935

arrivThrPut=0.0141932943979323 deptThrPut=0.0141932943979323

meanTkPop=0.0 tkColOcp=0.0

meanST=0.0 stDevST=0.0

Steady State Statistics:

numBatchesST=404 batchSizeST=200 stDevStdStateMeanST=0.0

95% c.i. = 0.0 +/- 0.0

The various quantities in the results report are defined as follows:

queueUtilQPl: Utilization of the underlying queue due to this place, i.e., pro-
portion of the queue’s server resources used by tokens arriving through
this place.

tkOcp: Token occupancy of the depository, i.e., fraction of time in which there
is a token inside the depository.

arrivCnt: Total number of tokens of the respective color that arrived in the
queue/depository during the run.

deptCnt: Total number of tokens of the respective color that departed from
the queue/depository during the run.

arrivThrPut: Rate at which tokens of the respective color arrive at the queue/de-
pository.

deptThrPut: Rate at which tokens of the respective color depart from the
queue/depository.

meanTkPop: Mean number of tokens of the respective color in the queue/de-
pository.

4.3. Processing and Visualization of SimQPN Results 41

tkColOcp: The probability that there is a token of the respective color in the
queue/depository.

meanST: Mean token residence (sojourn) time, i.e., time that tokens of the
respective color spend in the queue/depository.

stDevST: Standard deviation of the token residence time.

numBatchesST: Number of batches of observations collected.

batchSizeST: Batch size used.

stDevStdStateMeanST: Standard deviation of the steady state residence time.

90% c.i.: 90% confidence interval for the steady state mean residence time.

The following excerpt shows the aggregate results for the underlying queue
of the respective queueing place.

REPORT for Queue : Q1--

totArrivThrPut=0.01419311903134 totDeptThrPut=0.014193294397

meanTotTkPop=56.817972595483404 queueUtil=1.0

meanST=4002.072502543596

The various quantities in the results report are defined as follows:

totArrivThrPut: Total arrival throughput over all queueing places this queue
is part of.

totDeptThrPut: Total departure throughput over all queueing places this
queue is part of.

meanTotTkPop: Mean queue total token population.

queueUtil: Utilization of the queue, i.e., fraction of the available server re-
sources that are used on average.

meanST: Mean token residence (sojourn) time over all tokens visiting this
queue.

Results from Replication/Deletion Method

The excerpt below shows the format of results from the replication/deletion
method for one queueing place (queue and depository) and one color.

42 Ch. 4. Model Analysis using SimQPN

REPORT for Queue : DBS-CPU--

numReplicationsUsed = 100 numTooShortRepls = 0

minRunLen=5000000.047045088 maxRunLen=5000175.44340017

avgRunLen=5000020.540000993 stDevRunLen=25.94565026505922

avgWallClockTime=1.18217999999 stDevWallClockTime=0.030668768043

meanQueueUtil=0.7574721018056024 stDevQueueUtil=0.0046913938556502

------------------ Color=0 --------------------

meanArrivThrPut[c]=0.0142910684137 meanDeptThrPut[c]=0.01429092841

stDevArrivThrPut[c]=6.38614705E-5 stDevDeptThrPut[c]=6.3797896E-5

minAvgTkPop[c]=2.876744782905197 maxAvgTkPop[c]=3.4270894141218826

meanAvgTkPop[c]=3.118214443226206 meanColUtil[c]=0.757472101805624

stDevAvgTkPop[c]=0.10659712560 stDevColUtil[c]=0.00469139385565026

meanAvgST[c]=218.18885562939914 stDevAvgST[c]=7.15056639668919

90% c.i. = 218.18885562939914 +/- 1.1872797998046334

REPORT for Depository : DBS-CPU-----------------------------------

numReplicationsUsed = 100 numTooShortRepls = 0

minRunLen=5000000.047045088 maxRunLen=5000175.44340017

avgRunLen=5000020.540000993 stDevRunLen=25.94565026505922

avgWallClockTime=1.1821799999999 stDevWallClockTime=0.030668768043

------------------ Color=0 --------------------

meanArrivThrPut[c]=0.0142909284 meanDeptThrPut[c]=0.01429093507

stDevArrivThrPut[c]=6.379789E-5 stDevDeptThrPut[c]=6.376607356E-5

minAvgTkPop[c]=0.0 maxAvgTkPop[c]=0.0

meanAvgTkPop[c]=0.0 meanColUtil[c]=0.0

stDevAvgTkPop[c]=0.0 stDevColUtil[c]=0.0

meanAvgST[c]=0.0 stDevAvgST[c]=0.0

90% c.i. = 0.0 +/- 0.0

The various quantities in the results report are defined as follows:

numReplicationsUsed: Total number of run replications used for steady state
analysis.

numTooShortRepls: This variable is currently not used, so it can be ignored.

4.3. Processing and Visualization of SimQPN Results 43

minRunLen: The minimum length of a run replication (in model time).

maxRunLen: The maximum length of a run replication (in model time).

avgRunLen: The average length of a run replication (in model time).

stDevRunLen: The standard deviation of the run replication length (in model
time).

avgWallClockTime: The average duration of a run replication (in wall clock
time).

stDevWallClockTime: The standard deviation of the run replication duration
(in wall clock time).

meanQueueUtil: The mean queue utilization - probability that there is a token
of any color in the queue.

stDevQueueUtil: Standard deviation of the queue utilization measured from
the run replications.

meanArrivThrPut: Mean rate at which tokens of the respective color arrive
at the queue/depository (arrival rate).

meanDeptThrPut: Mean rate at which tokens of the respective color depart
from the queue/depository (departure rate).

stDevArrivThrPut: Standard deviation of the token arrival rate.

stDevDeptThrPut: Standard deviation of the token departure rate.

minAvgTkPop: Minimum average token population measured from the run
replications.

maxAvgTkPop: Maximum average token population measured from the run
replications.

meanAvgTkPop: Mean average token population measured from the run repli-
cations.

meanColUtil: Mean probability that there is a token of the respective color in
the queue/depository.

stDevAvgTkPop: Standard deviation of the average token population.

stDevColUtil: Standard deviation of the probability that there is a token of
the respective color in the queue/depository.

meanAvgST: Mean of the average residence times measured form the run repli-
cations.

44 Ch. 4. Model Analysis using SimQPN

stDevAvgST: Standard deviation of the residence times measured form the
run replications.

90% c.i.: 90% confidence interval of the mean residence time.

Chapter 5

Troubleshooting

5.1 Known Issues

5.2 Fixed bugs

5.3 Report a bug

Bugs can be reported by filing a bug report in our tracker at sourceforge.com.

45

http://sourceforge.net/tracker/?group_id=388484&atid=1613969

46 Ch. 5. Troubleshooting

Bibliography

[1] F. Bause. ”QN + PN = QPN” - Combining Queueing Networks and Petri
Nets. Technical report no.461, Department of CS, University of
Dortmund, Germany, 1993. 7

[2] F. Bause. Queueing Petri Nets - A formalism for the combined qualitative
and quantitative analysis of systems. In Proceedings of the 5th
International Workshop on Petri Nets and Performance Models, Toulouse,
France, October 19-22, 1993. 3, 6, 7

[3] F. Bause and F. Kritzinger. Stochastic Petri Nets - An Introduction to the
Theory. Vieweg Verlag, second edition, 2002. 3, 4, 5, 6, 7

[4] F. Bause, P. Buchholz, and P. Kemper. Hierarchically Combined
Queueing Petri Nets. In Proceedings of the 11th International Conference
on Analysis and Optimization of Systems, Discrete Event Systems,
Sophie-Antipolis (France), 1994. 8

[5] F. Bause, P. Buchholz, and P. Kemper. Integrating Software and
Hardware Performance Models Using Hierarchical Queueing Petri Nets. In
Proceedings of the 9. ITG / GI - Fachtagung Messung, Modellierung und
Bewertung von Rechen- und Kommunikationssystemen, (MMB’97),
Freiberg (Germany), 1997. 7, 12

[6] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber. The Petri Net Markup
Language: Concepts, Technology, and Tools. In Proceedings of the 24th
International Conference on Application and Theory of Petri Nets, June
23-27, Eindhoven, Holland, June 2003. 11

[7] CERN - European Organisation for Nuclear Research. The Colt
Distribution - Open Source Libraries for High Performance Scientific and
Technical Computing in Java, 2004. http://dsd.lbl.gov/ hoschek/colt/. 28

[8] Department of Industrial Engineering, North Carolina State University.
ASAP3 Software For Steady-State Simulation Output Analysis, 2003.
ftp://ftp.ncsu.edu/pub/eos/pub/jwilson/installasap3.exe. 28

47

48 BIBLIOGRAPHY

[9] C. Dutz. QPE - A Graphical Editor for Modeling using Queueing Petri
Nets. Master thesis, Technical University of Darmstadt, Apr. 2006. 1, 12,
25

[10] K. Jensen. Coloured Petri Nets and the Invariant Method. Mathematical
Foundations on Computer Science, Lecture Notes in Computer Science
118:327-338, 1981. 4

[11] S. Kounev. Performance Engineering of Distributed Component-Based
Systems - Benchmarking, Modeling and Performance Prediction. Shaker
Verlag, Dec. 2005. ISBN 3832247130. ISBN: 3832247130. 3, 16, 18, 27

[12] S. Kounev. Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets. IEEE
Transactions on Software Engineering, 32(7):486–502, July 2006.
doi:10.1109/TSE.2006.69. 3, 16, 18, 27

[13] S. Kounev and A. Buchmann. Performance Modelling of Distributed
E-Business Applications using Queuing Petri Nets. In Proceedings of the
2003 IEEE International Symposium on Performance Analysis of Systems
and Software - ISPASS2003, Austin, Texas, USA, March 20-22, 2003. 21

[14] S. Kounev and A. Buchmann. SimQPN - a tool and methodology for
analyzing queueing Petri net models by means of simulation. Performance
Evaluation, 63(4-5):364–394, May 2006. doi:10.1016/j.peva.2005.03.004. 1,
25

[15] S. Kounev and C. Dutz. QPME - A Performance Modeling Tool Based on
Queueing Petri Nets. ACM SIGMETRICS Performance Evaluation
Review (PER), Special Issue on Tools for Computer Performa nce
Modeling and Reliability Analysis, 36(4):46–51, March 2009. 1

[16] S. Kounev, C. Dutz, and A. Buchmann. QPME - Queueing Petri Net
Modeling Environment. In Proceedings of the 3rd International
Conference on Quantitative Evaluation of SysTems (QEST-2006),
Riverside, CA, September 11-14, 2006. 1

[17] M. Matsumoto and T. Nishimura. Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator. ACM Transactions on Modeling and Computer Simulation,
1998. 28

[18] N. Steiger and J. Wilson. Experimental Performance Evaluation of Batch
Means Procedures for Simulation Output Analysis. In Proceedings of the
2000 Winter Simulation Conference, Orlando, FL, USA, December 10-13,
2000. 28

BIBLIOGRAPHY 49

[19] N. Steiger, E. Lada, J. Wilson, J. Joines, C. Alexopoulos, and
D. Goldsman. ASAP3: a batch means procedure for steady-state
simulation analysis. ACM Transactions on Modeling and Computer
Simulation, 15(1):39–73, 2005.
ftp://ftp.ncsu.edu/pub/eos/pub/jwilson/tomacsv37.pdf. 28

[20] The Eclipse Foundation. Graphical Editing Framework (GEF), 2006.
http://www.eclipse.org/gef/. 11

	Title Page
	Contents
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 System Requirements

	2 Primer on Queueing Petri Nets
	2.1 Basic Queueing Petri Nets
	2.2 Hierarchical Queueing Petri Nets

	3 Building QPN Models with QPE
	3.1 Overview
	3.2 QPE User Interface
	3.2.1 QPE Main Window
	3.2.2 Building QPN Models

	4 Model Analysis using SimQPN
	4.1 Overview
	4.1.1 Supported QPN Features
	4.1.2 Simulation Output Data Analysis

	4.2 Working with SimQPN
	4.2.1 Run Configuration Wizard
	4.2.2 SimQPN Command-Line Interface

	4.3 Processing and Visualization of Simulation Results
	4.3.1 Simple Query Editor
	4.3.2 Advanced Query Editor
	4.3.3 Format of SimQPN Console Output

	5 Troubleshooting
	5.1 Known Issues
	5.2 Fixed bugs
	5.3 Report a bug

	Bibliography

