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Abstract Queueing Petri nets are a powerful formalism that can be ex-
ploited for modeling distributed systems and analyzing their performance
and scalability. By combining the modeling power and expressiveness of
queueing networks and stochastic Petri nets, queueing Petri nets pro-
vide a number of advantages. In this paper, we present Version 2.0 of
our tool QPME (Queueing Petri net Modeling Environment) for model-
ing and analysis of systems using queueing Petri nets. The development
of the tool was initiated by Samuel Kounev in 2003 at the Technische
Universitat Darmstadt in the group of Prof. Alejandro Buchmann. Since
then the tool has been distributed to more than 100 organizations world-
wide. QPME provides an Eclipse-based editor for building queueing Petri
net models and a powerful simulation engine for analyzing the models.
After presenting the tool, we discuss ongoing work on the QPME project
and the planned future enhancements of the tool.

1 Introduction

QPME (Queueing Petri net Modeling Environment) [20] is a modeling and anal-
ysis tool based on the Queueing Petri Net (QPN) modeling formalism. The tool
is developed and maintained by the Descartes Research Group [7] at Karlsruhe
Institute of Technology (KIT). Introduced in 1993 by Falko Bause [1], the QPN
formalism has a number of advantages over conventional modeling formalisms
such as queueing networks and stochastic Petri nets. By combining the modeling
power and expressiveness of queueing networks and stochastic Petri nets, QPNs
enable the integration of hardware and software aspects of system behavior into
the same model. In addition to hardware contention and scheduling strategies,
QPNs make it easy to model simultaneous resource possession, synchronization,
asynchronous processing and software contention. These aspects have significant
impact on the performance of modern enterprise systems.

Another advantage of QPNs is that they can be used to combine qualitative
and quantitative system analysis. A number of efficient techniques from Petri net
theory can be exploited to verify some important qualitative properties of QPNs.
The latter not only help to gain insight into the behavior of the system, but are
also essential preconditions for a successful quantitative analysis [3]. Last but
not least, QPN models have an intuitive graphical representation that facilitates
model development. In [11], we showed how QPNs can be used for modeling



distributed e-business applications. Building on this work, we have developed a
methodology for performance modeling of distributed component-based systems
using QPNs [9]. The methodology has been applied to model a number of systems
ranging from simple systems to systems of realistic size and complexity. It can be
used as a powerful tool for performance and scalability analysis. Some examples
of modeling studies based on QPNs can be found in [14,15,18,21]. These stud-
ies consider different types of systems including distributed component-based
systems, event-based systems and Grid computing environments.

In this paper, we present QPME 2.0 (Queueing Petri net Modeling Environ-
ment) - a tool for stochastic modeling and analysis of systems using queueing
Petri nets. The paper is an updated and extended version of [13] where we pre-
sented version 1.0 of the tool. QPME is made of two major components, a QPN
Editor (QPE) and a Simulator for QPNs (SimQPN). In this paper, we present an
overview of these components. Further details on their internal architecture and
implementation can be found in [8,10,12,24]. QPME is available free-of-charge
for non-profit use (see [7]) and has been distributed to more than 100 universi-
ties and research organizations worldwide. The current license is closed-source,
however, there are plans to make the tool open-source in the near future.

The most important new features introduced in Version 2.0 of the tool are
the following:

— Central queue management and support for having multiple queueing places
that share the same underlying physical queue.

— Advanced query engine for processing and visualization of simulation results.

— Support for simulating hierarchical QPNs using SimQPN.

— Support for defining probes that specify metrics of interest for which data
should be collected.

— Support for two additional simulation output data analysis techniques: spec-
tral analysis and standardized time series.

— Support for empirical and deterministic distributions.

— Improved performance and scalability of the simulation engine (SimQPN).

— Automatic detection of infinitely growing queues (model instability).

— A number of features improving user friendliness (e.g., simulation progress
bar and "stop simulation”" button).

The rest of this paper is organized as follows: We start with a brief intro-
duction to QPNs in Section 2. Sections 3 and 4 provide an overview of the QPN
editor and the simulation engine, respectively. Section 5 presents the framework
for processing and visualization of the simulation results. Finally, Section 6 sum-
marizes the ongoing and future work on QPME and the paper is wrapped up
with some concluding remarks in Section 7.

2 Queueing Petri Nets

The main idea behind the QPN formalism was to add queueing and timing
aspects to the places of Colored Generalized Stochastic Petri Nets (CGSPNs) [1].



This is done by allowing queues (service stations) to be integrated into places of
CGSPNs. A place of a CGSPN that has an integrated queue is called a queueing
place and consists of two components, the queue and a depository for tokens
which have completed their service at the queue. The behavior of the net is as
follows: tokens, when fired into a queueing place by any of its input transitions,
are inserted into the queue according to the queue’s scheduling strategy. Tokens
in the queue are not available for output transitions of the place. After completion
of its service, a token is immediately moved to the depository, where it becomes
available for output transitions of the place. This type of queueing place is called
timed queueing place. In addition to timed queueing places, QPNs also introduce
immediate queueing places, which allow pure scheduling aspects to be described.
Tokens in immediate queueing places can be viewed as being served immediately.
Scheduling in such places has priority over scheduling/service in timed queueing
places and firing of timed transitions. The rest of the net behaves like a normal
CGSPN. A formal definition of a QPN follows [1]:

Definition 1. A QPN is an 8-tuple
QPN = (Pa T7 Ca Iia I+7 MO, Q, W) where:

1. P={p1,p2,....,Dn} is a finite and non-empty set of places,

2. T ={t1,t2,....,tm } is a finite and non-empty set of transitions, PNT = 0,
8. C is a color function that assigns a finite and non-empty set of colors to
each place and a finite and non-empty set of modes to each transition.

4. I= and IT are the backward and forward incidence functions defined on

P x T, such that
I7(p,t),I*(p,t) € [C(t) = C(p)ms), V(p,t) € P x T"
5. My is a function defined on P describing the initial marking such that
My(p) € C(p)ms-
6. Q= (Q1,Q2 (q1,--,qp))) where
— Q1 C P is the set of timed queueing places,
— Q4 C P is the set of immediate queueing places, Q1NQy =0 and
— q; denotes the description of a queue?® taking all colors of C(p;) into
consideration, if p; is a queueing place or equals the keyword ‘null’, if p;
is an ordinary place.

7. W = (Wi, Wa, (w1, -y wi))) where

- Wl C T is the set of timed transitions,

- W:fg C Zj is the set of z;mmedz'ate transitions,
W10W2:®, W1UW2:T and

I The subscript MS denotes multisets. C(p)ams denotes the set of all finite multisets
of C(p).

2 In the most general definition of QPNs, queues are defined in a very generic way
allowing the specification of arbitrarily complex scheduling strategies taking into
account the state of both the queue and the depository of the queueing place [1]. In
QPME, we use conventional queues as defined in queueing network theory.



— w; € [O(t;) — R such that Ve € C(t;) :
w;(c) € RT is interpreted as a rate of a negative exponential distribution
specifying the firing delay due to color ¢, if t; € Wi or a firing weight
specifying the relative firing frequency due to color ¢, if t; € Ws.

For a more detailed introduction to the QPN modeling formalism, the reader
is referred to [1,3]. To illustrate the above definition, we present an example
QPN model of a simple Java EE system. The model was taken from [11] and is
shown in Figure 1.

WLS-Thread-Pool

DATABASE SERVER
DBS-PQ DBS-CPU DBS-I/0

Client

Figure 1. QPN Model of a Java EE System [11]

The system modeled is an e-business application running in a Java EE envi-
ronment consisting of a WebLogic Server (Java EE application server) hosting
the application components and a backend database server used for persisting
business data. In the following, we describe the places of the model:

Client Queueing place with IS scheduling strategy used to represent clients
sending requests to the system. Time spent at the queue of this place cor-
responds to the client think time, i.e., the service time of the queue is equal
to the average client think time.

WLS-CPU Queueing place with PS scheduling strategy used to represent the CPU
of the WebLogic Server (WLS).

DBS-CPU Queueing place with PS scheduling strategy used to represent the CPU
of the database server (DBS).

DBS-I/0 Queueing place with FCFS scheduling strategy used to represent the
disk subsystem of the DBS.

WLS-Thread-Pool Ordinary place used to represent the thread pool of the WLS.
Each token in this place represents a WLS thread.

DB-Conn-Pool Ordinary place used to represent the database connection pool
of the WLS. Tokens in this place represent database connections to the DBS.



DBS-Process-Pool Ordinary place used to represent the process pool of the
DBS. Tokens in this place represent database processes.

DBS-PQ Ordinary place used to hold incoming requests at the DBS while they
wait for a server process to be allocated to them.

The following types of tokens (token colors) are used in the model:

Token ’r;’ represents a request sent by a client for execution of a transaction
of class i. For each request class a separate token color is used (e.g., r1’,
'ro’, 'r3’,...). Tokens of these colors can be contained only in places Client,
WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/0.

Token ’t’ represents a WLS thread. Tokens of this color can be contained only
in place WLS-Thread-Pool.

Token ’p’ represents a DBS process. Tokens of this color can be contained only
in place DBS-Process-Pool.

Token ’c’ represents a database connection to the DBS. Tokens of this color
can be contained only in place DB-Conn-Pool.

We now take a look at the life-cycle of a client request in our system model.
Every request (modeled by a token of color ’r;” for some i) is initially at the queue
of place Client where it waits for a user-specified think time. After the think
time elapses, the request moves to the Client depository where it waits for a
WLS thread to be allocated to it before its processing can begin. Once a thread is
allocated (modeled by taking a token of color ’t’ from place WLS-Thread-Pool),
the request moves to the queue of place WLS-CPU, where it receives service from
the CPU of the WLS. It then moves to the depository of the place and waits for
a database connection to be allocated to it. The database connection (modeled
by token ’c’) is used to connect to the database and make any updates required
by the respective transaction. A request sent to the database server arrives at
place DBS-PQ (DBS Process Queue) where it waits for a server process (modeled
by token p’) to be allocated to it. Once this is done, the request receives service
first at the CPU and then at the disk subsystem of the database server. This
completes the processing of the request, which is then sent back to place Client
releasing the held DBS process, database connection and WLS thread.

3 QPE - Queueing Petri net Editor

QPE (Queueing Petri net Editor), the first major component of QPME, provides
a graphical tool for building QPN models [8]. It offers a user-friendly interface
enabling the user to quickly and easily construct QPN models. QPE is based
on the Eclipse Rich Content Platform (RCP) and the Graphical Editing Frame-
work (GEF) [23]. The latter is an open source framework dedicated to providing
a rich, consistent graphical editing environment for applications on the Eclipse
platform. As a GEF application, QPE is written in pure Java and runs as a
standalone RCP application on all operating systems officially supported by the
Eclipse platform. This includes Windows, Linux, Solaris, HP-UX, IBM AIX and



Apple Mac OS among others, making QPE widely accessible. The only thing
required is a Java Runtime Environment (JRE) 6.0. It is recommended to run
QPE on Windows since this is the platform it has been tested on.

Being a GEF application, QPE is based on the model-view-controller (MVC)
architecture. The model in our case is the QPN being defined, the views provide
graphical representations of the QPN, and finally the controller connects the
model with the views, managing the interactions among them. QPN models
created with QPE can be stored on disk as XML documents. QPE uses its
own XML schema based on the Petri Net Markup Language (PNML) [4] with
some changes and extensions to support the additional constructs available in
QPN models. Figure 2 shows the QPE main window which is comprised of four
views: Main Editor View, Outline View, Properties View and Console View. The
Main Editor View contains a Net Editor, Palette and Color Editor. The Net Editor
displays the graphical representation of the currently edited QPN, the Palette
displays the set of QPN elements that are used to build QPN models and the
Color Editor, shown in Figure 3, is used to define the token colors available for
use in the places of the QPN. The Properties View enables the user to edit the
properties of the currently selected element in the Net Editor. Finally, the Console
View is used to display output from QPE extensions and plug-ins.
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A characterizing feature of QPE is that it allows token colors to be defined
globally for the whole QPN instead of on a per place basis. This feature was
motivated by the fact that in QPNs typically the same token color (type) is
used in multiple places. Instead of having to define the color multiple times, the
user can define it one time and then reference it in all places where it is used.
This saves time, makes the model definition more compact, and last but not
least, it makes the modeling process less error-prone since references to the same
token color are specified explicitly.

Another characterizing feature of QPE, not supported in standard QPN mod-
els [21], is the ability to have multiple queueing places configured to share the
same underlying physical queue?. In QPE, queues are defined centrally (similar
to token colors) and once defined they can be referenced from inside multiple
queueing places. This allows to use queueing places to represent software entities,
e.g., software components, which can then be mapped to different hardware re-
sources modeled as queues [21]. This feature of QPE, combined with the support
for hierarchical QPNs, allows to build multi-layered models of software architec-
tures similar to the way this is done in layered queueing networks, however,

3 While the same effect can be achieved by using multiple subnet places mapped to a
nested QPN containing a single queueing place, this would require expanding tokens
that enter the nested QPN with a tag to keep track of their origin as explained in [2].



with the advantage that QPNs enjoy all the benefits of Petri nets for modeling
synchronization aspects.
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Figure 4. QPE Incidence Function Editor

Figure 4 shows the Incidence Function Editor. The incidence function specifies
the behavior of the transition for each of its firing modes in terms of tokens
destroyed and/or created in the places of the QPN. Once opened the Incidence
Function Editor displays the transition input places on the left, the transition
modes in the middle and the transition output places on the right. Each place
(input or output) is displayed as a rectangle containing a separate circle for each
token color allowed in the place. The user can create connections from token
colors of input places to modes or from modes to token colors of output places.
If a connection is created between a token color of a place and a mode, this means
that when the transition fires in this mode, tokens of the respective color are
removed from the place. Similarly, if a connection is created between a mode and
a token color of an output place, this means that when the transition fires in this
mode, tokens of the respective color are deposited in the place. Each connection
can be assigned a weight interpreted as the number of tokens removed/deposited
in the place when the transition fires in the respective mode.

Further details on the implementation of QPE can be found in [8,24].



4 SimQPN - Simulator for Queueing Petri Nets

The second major component of QPME is SimQPN - a discrete-event simulation
engine specialized for QPNs. It is very light-weight and has been implemented
100% in Java to ensure portability and platform-independence. SImQPN can be
run either as Eclipse plugin in QPE or as a standalone Java application. Thus,
even though QPE is limited to Eclipse-supported platforms, SimQPN can be
run on any platform on which Java SE 5.0 is available. This makes it possible
to design a model on one platform (e.g., Windows) using QPE and then analyze
it on another platform (e.g., Linux) using SimQPN. SimQPN configuration pa-
rameters are stored as metadata inside the XML file containing the QPN model.

SimQPN simulates QPNs using a sequential algorithm based on the event-
scheduling approach for simulation modeling. Being specialized for QPNs, it
simulates QPN models directly and has been designed to exploit the knowledge
of the structure and behavior of QPNs to improve the efficiency of the simulation.
Therefore, SImQPN provides much better performance than a general purpose
simulator would provide, both in terms of the speed of simulation and the quality
of output data provided.

SimQPN currently supports most, but not all of the QPN features that are
supported in QPE. The reason for not limiting QPE to only those features sup-
ported by SimQPN is that QPE is meant as a general purpose QPN editor and
as such the QPN features it offers should not be limited to any particular anal-
ysis method. SimQPN currently supports three different scheduling strategies
for queues inside queueing places: Processor-Sharing (PS), Infinite Server (IS)
and First-Come-First-Served (FCFS). A wide range of service time distributions
are supported including Beta, BreitWigner, ChiSquare, Gamma, Hyperbolic,
Exponential, ExponentialPower, Logarithmic, Normal, StudentT, Uniform and
VonMises as well as deterministic and empirical distributions. Empirical distri-
butions are supported in the following way. The user is expected to provide a
probability distribution function (PDF), specified as an array of positive real
numbers (histogram) read from an external text file. A cumulative distribution
function (CDF) is constructed from the PDF and inverted using a binary search
for the nearest bin boundary and a linear interpolation within the bin (resulting
in a constant density within each bin).

Timed transitions are currently not supported, however, in most cases a timed
transition can be approximated by a serial network consisting of an immediate
transition, a queueing place and a second immediate transition. The spectrum
of scheduling strategies and service time distributions supported by SimQPN
will be extended. Support for timed transitions and immediate queueing places
is also planned and will be included in a future release.

4.1 Probes and Data Collection Modes

SimQPN offers the ability to configure what data exactly to collect during the
simulation and what statistics to provide at the end of the run. This can be



specified on a per location basis where location is defined to have one of the
following five types:

. Ordinary place.

. Queue of a queueing place (considered from the perspective of the place).
. Depository of a queueing place.

. Queue (considered from the perspective of all places it is part of).

. Probe.

Tk W N~

A probe is a tool to specify a region of interest for which data should be
collected during simulation. The region of a probe includes one or more places
and is defined by one start and one end place. The goal is to evaluate the time
tokens spend in the region when moving between its begin and end place. The
probe starts its measurements for each token entering its region at the start
place and updates the statistics when the token leaves at the end place. It can
be specified whether the measurements start when the token enters the start
place or when the token leaves it. The same can be specified for the end place.
Each probe references a subset of the colors defined in the QPN. A probe only
collects data for tokens of the referenced colors.

Currently, probes allow to gather statistics for the residence time of a token
in a region of interest. For example, in the model shown in Figure 1, a probe
can be used to measure the time spent at the database server, which consists
of places DBS-PQ, DBS-CPU and DBS-1/0. In this case, the probe starts at place
DBS-PQ (on entry) and ends at place DBS-I/0 (on exit). For each transaction
of type i for which data should be collected, a reference to color ’'r;’ is defined
in the probe. As a result, the user is provided with the mean residence time of
requests in the database server including the associated confidence interval and
distribution.

The probes are realized by attaching timestamps to individual tokens. In the
start place a probe adds the current simulation time as a timestamp to all tokens
of colors it is interested in. A token can carry timestamps from different probes.
Thus intersecting regions of several probes in a QPN are supported. Firing tran-
sitions collect all timestamps from input tokens and copy the timestamps to the
output tokens. For each output token only the timestamps of probes interested in
the token color are passed on. In some models, e.g. with a synchronous fork/join,
it is possible that a transition gets tokens with different timestamps from the
same probe. In this case, a warning is issued and only the minimal timestamp is
passed on. The other timestamps are discarded. In the end place of a probe, its
timestamp is removed and its statistics are updated.

For each location the user can choose between six modes of data collection
(called stats-levels). The higher the mode, the more information is collected
and the more statistics are provided. Since collecting data costs CPU time,
the more data is collected, the slower the simulation would progress. Therefore,
by configuring data collection modes, the user can speed up the simulation by
making sure that no time is wasted collecting unnecessary data. The six data
collection modes (stats-levels) are defined as follows:



Mode 0 In this mode no statistics are collected.
Mode 1 This mode considers only token throughput data, i.e., for each location
the token arrival and departure rates are estimated for each color.
Mode 2 This mode adds token population, token occupancy and queue utiliza-
tion data, i.e., for each location the following data is provided:
— Token occupancy (for locations of type 1 or 3): fraction of time in which
there is a token inside the location.
— Queue utilization (for locations of type 2 or 4): proportion of the queue’s
server resources used by tokens arriving through the respective location.
— For each token color of the respective location:
e Minimum/maximum number of tokens observed in the location.
e Average number of tokens in the location.
e Token color occupancy: fraction of time in which there is a token of
the respective color inside the location.
Mode 3 This mode adds token residence time data, i.e., for each location the
following additional data is provided on a per-color basis:
— Minimum/maximum observed token residence time.
— Mean and standard deviation of observed token residence times.
— Estimated steady state mean token residence time.
— Confidence interval (c.i.) for the steady state mean token residence time
at a user-specified significance level.
Mode 4 This mode adds a histogram of observed token residence times.
Mode 5 This mode additionally dumps token residence times to a file for fur-
ther analysis.

Since probes currently only support residence time statistics, mode 1 and 2
do not apply to them.

4.2 Steady State Analysis

SimQPN supports the following four methods for estimation of the steady state
mean residence times of tokens inside the various locations of the QPN:

1. Method of independent replications (replication/deletion approach).
2. Method of non-overlapping batch means (NOMB).

3. Spectral analysis.

4. Standardized time series.

We refer the reader to [16,19] for an introduction to these methods. All of them
can be used to provide point and interval estimates of the steady state mean
token residence time. Details on the way these methods were implemented in
SimQPN can be found in [12]. For users that would like to use different methods
for steady state analysis (for example ASAP [22]), SImQPN can be configured to
output observed token residence times to files (mode 5), which can then be used
as input to external analysis tools. SImQPN utilizes the Colt open source library
for high performance scientific and technical computing in Java, developed at
CERN [6]. In SimQPN, Colt is primarily used for random number generation



and, in particular, its implementation of the Mersenne Twister random number
generator is employed [17].

We have validated the analysis algorithms implemented in SimQPN by sub-
jecting them to a rigorous experimental analysis and evaluating the quality of
point and interval estimates [12]. In particular, the variability of point estimates
provided by SimQPN and the coverage of confidence intervals reported were
quantified. A number of different models of realistic size and complexity were
considered. Our analysis showed that data reported by SimQPN is very accurate
and stable. Even for residence time, the metric with highest variation, the stan-
dard deviation of point estimates did not exceed 2.5% of the mean value. In all
cases, the estimated coverage of confidence intervals was less than 2% below the
nominal value (higher than 88% for 90% confidence intervals and higher than
93% for 95% confidence intervals). For FCFS queues, SimQPN also supports
indirect estimation of the steady state token residence times according to the
variance-reduction technique in [5].

SimQPN includes an implementation of the method of Welch for determining
the length of the initial transient (warm-up period). We have followed the rules
in [16] for choosing the number of replications, their length and the window
size. SiImQPN allows the user to configure the first two parameters and then
automatically plots the moving averages for different window sizes. Simulation
experiments with SimQPN usually comprise two stages: stage 1 during which
the length of the initial transient is determined, and stage 2 during which the
steady-state behavior of the system is simulated and analyzed. Again, if the
user prefers to use another method for elimination of the initialization bias, this
can be achieved by dumping collected data to files (mode 4) and feeding it into
respective analysis tools.

4.3 Departure Disciplines

A novel feature of SImQPN is the introduction of the so-called departure dis-
ciplines. This is an extension of the QPN modeling formalism introduced to
address a common drawback of QPN models (and of Petri nets in general), i.e.,
tokens inside ordinary places and depositories are not distinguished in terms of
their order of arrival. Departure disciplines are defined for ordinary places or de-
positories and determine the order in which arriving tokens become available for
output transitions. We define two departure disciplines, Normal (used by default)
and First-In-First-Out (FIFO). The former implies that tokens become available
for output transitions immediately upon arrival just like in conventional QPN
models. The latter implies that tokens become available for output transitions
in the order of their arrival, i.e., a token can leave the place/depository only
after all tokens that have arrived before it have left, hence the term FIFO. For
an example of how this feature can be exploited and the benefits it provides we
refer the reader to [9]. An alternative approach to introduce token ordering in an
ordinary place is to replace the place with an immediate queueing place contain-
ing a FCFS queue. The generalized queue definition from [1] can be exploited to
define the scheduling strategy of the queue in such a way that tokens are served



immediately according to FCFS, but only if the depository is empty [3]. If there
is a token in the depository, all tokens are blocked in their current position until
the depository becomes free. However, the generalized queue definition from [1],
while theoretically powerful, is impractical to implement, so, in practice, it is
rarely used and queues in QPNs are usually treated as conventional queues from
queueing network theory.

5 Processing and Visualization of Simulation Results

After a successful simulation run, SimQPN saves the results from the simulation
in an XML file with a .simgpn extension which is stored in the configured output
directory. In addition, a summary of the results in text format is printed on the
console and stored in a separate file with a .log extension.

QPE provides an advanced query engine for processing and visualization of
the simulation results. The query engine allows to define queries on the sim-
ulation results in order to filter, aggregate and visualize performance data for
multiple places, queues and colors of the QPN. The results from the queries can
be displayed in textual or graphical form. QPE provides two editors that can be
used as a front-end to the query engine: "Simple Query Editor" and "Advanced
Query Editor".

Q opme el G P

File View Tools Help
ODags
B spassh

g Configuration: example_config
= | Date: Sat Aug 14 17:29:49 CEST 2010

Place/Color Queue utilization due to this place  Token Occupancy Departure Throughput  Mean Token Population  Confidence Interval Half Length  Confidence Interval Mean!

Client (qplace:queue) 0943
Client (qplace:depository) 1
4 DBS-CPU (aplacequeve) 0757
X1 0014 3,106 1109 217,398
DBS-CPU (gplace:depository) 4
D8S-Conn-Pool (place) 1
DBS-1/O (gplace:depository) 4
DBS-/O (qplace:queue) 0171
DBS-PQ (place) 0
DBS-Process-Pool (place) 1
WLS-CPU (qplace:queue) 1
WLS-CPU (aplacedepository) 0
WLS-Thread-Pool (place) o
Queve Mezan Total Token Population  Total Departure Throughput  Queue Utilization  Mean Token Residence Time  Total Arrival Throughput
QO (queue) 2856 0014 0943 199938 0014
Q1 (queue) 56,686 0014 1 3967985 0014
Q2 (queue) 3,106 0014 0757 217,398 0014
Q3 (queue) 0,207 0014 0171 14488 0014

Open Advanced Query Editor

Figure 5. Basic Query Editor



5.1 Simple Query Editor

The "Simple Query Editor", shown in Figure 5, is displayed when opening the
.simgpn file containing the results from the simulation. The editor displays the
collected statistics for the various places and queues of the QPN. Statistics are
reported on a per location basis where location is defined as in Sect. 4.1). The
five location types are denoted as follows:

1. "place" - ordinary place.

2. "gplace:queue" - queue of a queueing place considered from the perspective
of the place.

3. "gplace:depository" - depository of a queueing place.

4. "queue" - queue considered from the perspective of all places it is part of.

5. "probe".

The statistics for the various locations are presented in two tables. The
first table contains the statistics for locations of type "place", "qplace:queue",
"gplace:depository" and "probe", while the second one contains the statistics for
locations of type "queue". Depending on the configured data collection modes
(see Sect. 4.1), the set of available performance metrics for the various locations
may vary.

By clicking on multiple locations while holding "Ctrl", the user can select a
set of locations and respective token colors. A right click on a selection opens the
context menu (see Figure 6) in which the user can choose which metric should
be visualized for the selected set of locations and token colors. After choosing
a metric, the user can select the form in which the results should be presented.
Currently, three options are available: "Pie Chart", "Bar Chart" and "Console
Output". Figure 7 shows an example of a pie chart and bar chart for the metric
mean token residence time.

The "Simple Query Editor" is intended for simple filtering and visualization
of the simulation results and does not provide any means to aggregate met-
rics over multiple locations and token colors. Queries involving aggregation are
supported by the "Advanced Query Editor".

5.2 Advanced Query Editor

The "Advanced Query Editor" is opened by clicking on the respective button
at the bottom of the "Simple Query Editor". Using this editor the user can
define complex queries on the simulation results involving both filtering and
aggregation of performance metrics from multiple places, probes and queues of
the QPN. An example of such a query is shown in Figure 8.

A query is defined by first selecting a set of locations and a set of colors
using the combo boxes and the + /- buttons at the top of the editor. The selected
locations and colors specify a filter on the data that should be considered as part
of the query. Using the table at the bottom of the editor, the user can select the
specific performance metrics of interest and how data should be aggregated with
respect to the considered locations and colors. Three options for aggregating
data are available:
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Figure 7. Example Diagrams

— "For each" - no aggregation is applied and performance metrics are consid-
ered separately for each location/color.

— "Average" - the average over the selected locations/colors is computed.
— "Sum" - the sum over the selected locations/colors is computed.

Two "Aggregation" fields are available, the left one is applied to the set
of locations, while the right one is applied to the set of colors. Similarly, two
"Visualization" fields are available, one applied to the set of locations, the other
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one to the set of colors. QPE currently offers three visualization options: "Bar
Chart", "Pie Chart" and "Console Output".

Depending on the selected aggregation options, there are four possible scenar-
ios: a) no aggregation, b) aggregation over colors, ¢) aggregation over locations,
d) aggregation over both colors and locations. The four scenarios are depicted
in Figure 9 illustrating how performance metrics are aggregated and used to
produce a set of charts capturing the results from the respective query. Assum-
ing that the user has selected a set of locations p1, pa, ..., P and a set of colors
c1,C2, ..., Cp, & matrix is generated that contains the values of the selected per-
formance metric for each combination of location and color. Some of the cells
of the matrix could be empty (denoted in grey in Figure 9). This could happen
if the metric is not available in the configured data collection mode or if the
considered color is not defined for the respective location. The number of charts
generated depends on the selected aggregation options. In case no aggregation
is selected, m + n charts are generated. In the case of aggregation over the set
of colors or locations, one chart is generated. Finally, in the case of aggregation
over both colors and locations, the result of the query is a single value.

6 Ongoing and Future Work

As part of our ongoing and future work on QPME, enhancements along three
different dimensions are envisioned: i) user friendliness, ii) model expressiveness
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ments that have been planned.

Improve User Friendliness Support for the following features will be added:
o Introduce modeling templates (e.g., for modeling common types of re-

Improve Model Expressiveness Support for the following features will be

sources and workloads) to facilitate model reuse.
o Introduce automated support for sensitivity analysis.

added:
Load-dependent service times (resource demands).

Improve Model Analysis Methods Support for the following features will
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Further scheduling strategies for queues, e.g., GPS, priority scheduling.

Timed transitions.

Transition priorities and inhibitor arcs.
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o Support for parallel/distributed simulation to take advantage of multi-

core Processors.
o Support for analytical model solution techniques (structured analy-

sis techniques, product-form solution techniques, approximation tech-
niques).

o Further methods for determining the length of the simulation warm-up
period.

7 Summary

In this paper, we presented QPME 2.0, our tool for modeling and analysis using
queueing Petri nets. QPME provides a user-friendly graphical interface enabling
the user to quickly and easily construct QPN models. It offers a highly opti-
mized simulation engine that can be used to analyze models of realistically-sized
systems. In addition, being implemented in Java, QPME runs on all major plat-
forms and is widely accessible. QPME provides a robust and powerful tool for
performance analysis making it possible to exploit the modeling power and ex-
pressiveness of queueing Petri nets to their full potential. The tool is available
free-of-charge for non-profit use and there are plans to make it open-source in
the near future. Further information can be found at the QPME homepage [20].
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