Performance Impact Analysis of Securing MQTT Using TLS

Thomas Prantl, Lukas Ifflander, Stefan

Herrnleben, Simon Engel, Samuel Kounev
{firstname.lastname}@uni-wuerzburg.de
University of Wiirzburg, Germany

ABSTRACT

The interconnectivity of devices on the Internet of Things (IoT)
provides many new and smart applications. However, the integra-
tion of many devices—especially by inexperienced users—might
introduce several security threats. Further, several often used com-
munication protocols in the IoT domain are not out-of-the-box
secured. On the other hand, security inherently introduces over-
head, resulting in a decrease in performance. The Message Queuing
Telemetry Transport (MQTT) protocol is a popular communication
protocol for IoT applications—for example, in Industry 4.0, railways,
automotive, or smart homes. This paper analyzes the influence on
performance when using MQTT with TLS in terms of throughput,
connection build-up times, and energy efficiency using a repro-
ducible testbed based on a standard off-the-shelf microcontroller.
The results indicate that the impact of TLS on performance across
all QoS levels depends on (i) the network situation and (ii) the con-
nection reestablishment frequency. Thus, a negative influence of
TLS on the performance is noticeable only in deteriorated network
situations or at a high reestablishment frequency.

KEYWORDS
Pub/Sub, MQTT, IoT, TLS, Performance

ACM Reference Format:

Thomas Prantl, Lukas Ifflander, Stefan Herrnleben, Simon Engel, Samuel
Kounev and Christian Krupitzer. 2021. Performance Impact Analysis of
Securing MQTT Using TLS. In Proceedings of the 2021 ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE °21), April 19-23,
2021, Virtual Event, France. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3427921.3450253

1 INTRODUCTION

A “smart” future based on the interaction of intelligent devices
in the Internet of Things (IoT) is becoming a reality as promising
applications in areas as smart cities, smart traffic, smart homes, or
smart health show. IoT devices are the foundation of this “smart”
future. Those typically relatively small devices equipped with sen-
sors are often particularly resource-constrained and communicate
with each other and cloud services. Various lightweight commu-
nication protocols emerged to facilitate communication between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’21, April 19-23, 2021, Virtual Event, France

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8194-9/21/04...$15.00
https://doi.org/10.1145/3427921.3450253

Christian Krupitzer
christian.krupitzer@uni-hohenheim.de
University of Hohenheim, Germany

an excessive number of resource-constrained devices. One com-
monly applied protocol for communication in the IoT is the Message
Queuing Telemetry Transport (MQTT) protocol [16]. MQTT is a
lightweight publish-subscribe messaging protocol enabling effi-
cient communication of IoT devices. A central instance—called the
message broker—manages subscriptions and delivers the messages
instead of passing directly from one client to another. This protocol
is used, for example, in the context of smart home and industrial
applications [9]. Despite all the convenience that smart IoT devices
offer, one should keep in mind where the intelligence of such sys-
tems originates. It results from voluntarily surrounding ourselves
with sensors that collect data about our environment, including
personal data. That data is processed remotely and yields Al-driven
reasoning. Accordingly, IoT device owners should have a genuine
interest in the security of their data and devices—especially con-
sidering that IoT devices, on average, already suffer attacks five
minutes after their connection to the Internet [13].

Due to these security risks, a correspondingly high scientific in-
terest level in researching new security mechanisms for MQTT and
examining them concerning the required performance exists (e.g.,
[17, 19, 22]). However, often works overlook that security mecha-
nisms for making MQTT secure already exist for many applications
and are just not used. For example, in applications in which the
broker is trustworthy, TLS can prevent data such as usernames
and passwords from being transmitted in plaintext, making the
hijacking of IoT devices much more difficult. Several studies al-
ready investigated the use of TLS [1, 3, 4, 21, 25]. However, those
publications do not contain all information regarding the used soft-
ware (e.g., the MQTT or TLS implementations), workloads, metrics,
measurement setup, and, respectively, accuracy. They often do not
consider all three Quality of Service (QoS) levels of MQTT and
completely ignore different network conditions. Those types of
information are essential for ensuring their experiments’ repro-
ducibility and their results’ validity [15].

In this paper, we present and document our reproducible per-
formance measurements and analysis with well-described metrics.
The used measurement scripts and the source code for the adapted
MQTT client are available online!. Our analysis focuses on the
performance loss when using MQTT with TLS in terms of through-
put, broker connection establishment times, and energy efficiency.
Using these analyses, we answer the relevant question for develop-
ers, whether securing MQTT using TLS has a significant negative
impact on performance in typical IoT scenarios. Our contributions
are threefold:

e The design of a reproducible testbed for measurements of
MQTT, which supports the use of TLS, all QoS levels, and

!https://github.com/WueSePrantl/MQTT_TLS_Performance

https://doi.org/10.1145/3427921.3450253
https://doi.org/10.1145/3427921.3450253
https://doi.org/10.1145/3427921.3450253

different network scenarios, using a standard off-the-shelf
microcontroller;

e the definition of suitable metrics including error measures
considering the underlying measurement accuracy; and

e analyzing the impact of combining MQTT with TLS on the
throughput, broker connection establishment times, and en-
ergy efficiency using our testbed.

The remainder of this paper is structured as follows. In Section 2,
we describe the basics of MQTT and TLS, followed by an overview
of related work in Section 3. Next, Section 4 describes our testbed
design. Then, Section 5 presents the used workload patterns and
metrics. Following in Section 6, we present the evaluation of the
performance impact of combining MQTT with TLS. Lastly, Section 7
concludes this paper with a summary and future work.

2 BACKGROUND

For a better understanding of our setup, measurements, and their
evaluation and design, this section explains the basic functionalities
of MQTT and TLS. The explanations of MQTT and TLS originate
from [6, 14, 20].

2.1 Message Queuing Telemetry Transport
(MQTT)

MQTT is a lightweight Machine-to-Machine-protocol implement-
ing a publish-subscribe architecture. In MQTT, several clients—
which can be publisher and subscriber—and a central message
broker interact. If a client wants to send a message, it publishes it
under a specified topic at the message broker. The message broker
forwards this message to all clients that previously subscribed to
this topic. There is no direct communication between the clients
eliminating coupling in time, space, and synchronization [7].

For each message published, the publisher can set a QoS level.
This attribute defines the effort that is made to ensure that the data
reaches its recipient. MQTT supports three different QoS levels [11],
which we present in the following.

QoS 0 - At most once: The recipient does not confirm the recep-

tion of messages, and the publisher does not wait for such con-
firmations, nor do they store already sent messages to be able to
retransmit them if necessary.

QoS 1 - At least once: Level 1 guarantees that the sender’s data
will reach the recipient. For this purpose, the recipient confirms
the reception of data to the publisher, who, in turn, caches the sent
data to re-transmit it if necessary. However, it is possible that the
recipient receives the same data multiple times or that a publisher
sends data multiple times.

QoS 2 - Exactly once: Level 2 corresponds to Level 1. However it
guarantees that each message is received only once by the recipient.

2.2 Transport Layer Security (TLS)

TLS uses a cipher suite to provide communication security on the
TCP/IP stack at the transport level. A cipher suite consists of cryp-
tography algorithms enabling the exchange of keys, encryption,
and the securing of integrity and authenticity via message authen-
tication codes (MACs). Thus, TLS implements a transport layer
encryption between two directly communicating devices. The use

of TLS combined with MQTT can not guarantee end-to-end en-
cryption between publishers and subscribers, but only encryption
between publisher and broker or broker and subscriber. Therefore,
the use of TLS with MQTT requires that the broker is trusted since
it can read all messages. In practice, this is often the case since IoT
devices’ owners often also provide and control the broker.

3 RELATED WORK

In this section, we discuss related literature in the area of perfor-
mance analysis of MQTT with TLS. Thereby, we also highlight the
novelty of our contribution.

The authors from [4] and the subsequent publication [3] propose
a dynamic procedure to decide which TLS cipher suite fits best,
depending on the remaining energy, desired encryption strength,
and message length. The authors present a self-adaptive approach
of TLS but do not consider different network situations or QoS
levels and do not compare MQTT with and without TLS. Necessary
information for reproducibility is missing (e.g., the used MQTT
libraries), and there is also no information about the accuracy of
the obtained results.

In [21], the authors compare, among other things, MOTT with
all QoS levels with and without TLS. The authors also state the
accuracy of their measurement results, but do not specify how the
accuracy is determined. They also do not consider different network
situations and information about the used workload and testbed
(like the used access point or libraries) is incomplete.

The authors of [1, 25] determine the performance of all MQTT
QoS levels without TLS in [25] and with TLS in [1]. However, it is
impossible to compare using MQTT with and without TLS as they
use different hardware. Furthermore, both papers lack a detailed
description of (i) the measurement setup (e.g., the MQTT client im-
plementation), (ii) the MQTT client’s behavior or workload (such as
inter-arrival time of messages or the message size), (iii) the consid-
ered network scenario, and (iv) information about the measurement
accuracy.

We present a testbed for reproducible measurements to close
these gaps, including all information about used workloads, hard-
ware, and software. This testbed allows adjusting different network
situations and supporting all MQTT QoS levels, using TLS, and
showing measurement accuracy propagation through the metric
calculations. We then use the testbed to perform measurements for
the comparison of MQTT with and without TLS. An initial com-
parison of MQTT with and without TLS has also been available in
[21]. However, we (i) not only address energy efficiency as a metric
but also connection setup times with the broker and throughput,
(ii) clearly show our understanding of the accuracy of our metrics
and how achieve it. We (iii) additionally consider different network
situations, and (iv) use clearly defined and flexible workloads that al-
low specific parameters (e.g., message length) to be changed, which
means that our analysis is not limited to a specific situation.

4 TESTBED CONCEPT & REALIZATION

We need an appropriate evaluation environment to perform mea-
surements and analyze the influence of TLS on the performance of
MQTT in an IoT context. In the following, we present a concept
and realization of such a testbed.

4.1 Testbed Concept

We rely on a typical IoT device as an MQTT client whose perfor-
mance is observable to examine the performance of MQTT with
and without TLS on IoT devices. The MQTT client needs an MQTT
broker that it can reach via an appropriate access point to com-
municate using MQTT. Since different network conditions such
as packet loss should be easily configurable, an additional require-
ment is that either the broker or access point must offer appropriate
functionality for manipulating the network traffic.

IoT networks typically consist of many devices that communicate
with each other. However, considering that (i) we are only interested
in the performance of the observed IoT device, which (ii) only com-
municates directly with the broker since (iii) the communication
between clients is decoupled in time, space, and synchronization (7]
through the broker (as described in Section 2), it is sufficient for the
performance analysis of the MQTT client to model only the commu-
nication between broker, access point, and MQTT client. Hence, the
broker must be potent enough so that its performance is not affected
by the presence of other IoT devices. Usually, in IoT applications,
most of the devices are resource-scarce devices. In such settings,
the natural choice is—if not already present—to complement the
system with a powerful device or Cloud resources that can act as
an MQTT broker. Accordingly, it is readily achievable to scale the
broker without affecting the whole system. This requirement also
reflects the fundamental design principle of MQTT, that the broker
handles the complexity regarding communication. Therefore, the
broker should be provided with appropriate resources to relieve
the low performance of—often only battery-powered—IoT devices
as much as possible and achieve their best possible performance.

Consequently, we propose the concept of a testbed for perfor-
mance measurements of MQTT with and without TLS with the
following features: (i) a frequently used IoT device serving as an
MQTT client, (ii) a separate device that serves as an MQTT broker,
(iii) an access point, (iv) the access point or broker must be able to
configure different network situations quickly, and (v) appropriate
measuring equipment.

4.2 Testbed Realization
Yokogawa MQTT MQTT
WT310 Client Broker

rm/\ | |
Elegoo Power o/ i
i Acces Windows
Suppzvplgodule 3V d’) ESP8266| | point | [10 Laptop
J

Figure 1: Circuit diagram of the measurement setup for
the performance measurements of MQTT with and without
TLS.

w

The testbed components comprise of an MQTT broker and MQTT
client, a power meter, the MQTT client power supply, and a WiFi
Access Point (see Figure 1). We chose the ESP8266 microcontroller
as an MQTT client since it is a popular microcontroller support-
ing, for example, monitoring heart rate and inter-beat interval for
several subjects [26] or home automation [10]. The ESP8266 is
a 32-bit microcontroller from Espressif Systems and a so-called
System-on-a-Chip. The Elegoo Power Supply Module 1PC powers

the ESP8266 as it can directly provide the 3.3V required by the
ESP8266. A Yokogawa WT310 power measurement device moni-
tors the power consumption. As Access Point, we use a TELEKOM
Speedport Smart router. The MQTT broker runs on a laptop with
Windows 10 Enterprise Version 1803 (Build 17134.1365), having an
Intel(R) Core(TM) i7-8550U CPU with 1,8 GHz and four cores, 16
GB RAM, and an Intel(R) Dual Band Wireless-AC 8265 network
card.

We use the MQTT client implementation from [12] to realize
the MQTT client on the ESP8266 since it supports TLS and all
three MQTT QoS levels. We decided to use the Mosquitto broker in
version 1.6.9 as an MQTT broker on the Windows 10 laptop. We
generated the broker’s certificates required for TLS 1.2 using the
Windows OpenSSL version. The ESP8266 stores the fingerprint of
the created broker certificate to verify the broker’s identity before
establishing an encrypted connection.

We used the network traffic control program NetBalancer [24]
in version 9.16.1 on the Windows 10 laptop to create different
network conditions, NetBalancer allows controlling the upload and
download of individual applications by defining a packet loss rate
for an application’s upload and download link. Using NetBalancer,
we can manipulate the packet loss rate for the communication
channel between client and broker.

5 METHODOLOGY FOR MEASUREMENT
ANALYSIS

This section describes the methodology we used to analyze the per-
formance impact of TLS. Specifically, we present the used workload
patterns and metrics.

5.1 Workload Patterns

We consider three different workload patterns for which we want
to evaluate the performance impact of TLS and present them in
more detail below. Thereby, we use a state diagram to describe
the program’s behavior on the ESP8266 microcontroller for each
workload pattern. We assume that the following parameters have
been defined initially for each state diagram: QoS g, payload size B,
message repetitions R, and time between the start of transmission
of successive messages T. Also, we use the term Deep Sleep as a
synonym for the ESP8266’s energy-saving mode. Next, we present
the three workload patterns: Continuous Operation (CO), Operation
with Deep Sleep (ODP), and Connection Establishment (CE).
Continuous Operation (CO): Figure 2 illustrates the CO workload

pattern, in which the micro-controller never uses Deep Sleep. In
this pattern, the micro-controller tries to publish a message with
payload B and QoS q every T seconds. The publishing process of a
message consists of two steps: (i) Establishing a connection to the
broker if there is no connection to the broker yet, and (ii) sending
the message to the broker. Both steps together may take (1) shorter
or (2) longer than T seconds. In case (1), the micro-controller would
delay the start of the next publishing process until T seconds have
passed since the last publishing process started. In case (2), the
broker will stop the current publishing process after T seconds and
start publishing the next message. In total, the micro-controller
tries to publish R messages using this pattern.

[thow - tstart >=T1

Q:)S g,B [Tthow - tstart >=T1

ayload B,

7n§erval T, [thow - tstart<T1] [thow - tstart< T

Repetitions

R, count =0 Try reconnect Start publishing

. with Broker process for
Set tnow = current time|| Payload B with
now QoS

Connect -

i [Set thow = current tlme]
[not connected] Set thow = current time

[Set tstart = current timeJ

Set count = count +1 [connected]

[count<R] [count>=R]

[thow - tstart >= T

[thow - tstart<T]

J

Figure 2: Continuous operation (CO) - Every T seconds a pub-
lishing process for a message with payload of B using QoS ¢
is started. In total, R messages are tried to be published

Operation with Deep Sleep (ODP): Workload pattern ODP, as shown
in Figure 3, is very similar to the CO workload. The main difference
is that the micro-controller in this pattern switches to Deep Sleep
while delaying the next publishing process. Since at QoS Levels 1
and QoS Level 2, the micro-controller must wait for the successful
transmission confirmation, the micro-controller must accordingly
delay the start of Deep Sleep until receiving the confirmation.

QoS q, ([thow - tstart >=T1]
payload B, [tnow - tstart >=T1]
Interval T, [thow - tstart < T 1 [thow - tstart<T1
Repetitions
R, count =0,
success =0 Try reconnect Start publishing
with Broker process for
5 _ N payload B with
[et thow = current tlme] QoS g
Connect . -
with Broker [Set thow = current tlme]
[not connected] [q>0]

[not success-

IfuIIy published]

[successfully
published]

[connected]

[count<R]

Set tstart = current time)
Set count = count +1
Set success =0

T

[count>=R]

[q==0]

Sleep T - (thow - tstart)

[Set thow = current time]

[success ==0 & thow-tstart<T1]
[success == 11l thow - tstart >=T]

Figure 3: Operation with Deep Sleep (ODP) - Like the CO work-
load pattern, except that Deep Sleep is used between the pub-
lishing processes.

Connection Establishment (CE): The CE workload pattern, see Fig-
ure 4, consists of the micro-controller establishing first a connection
to the WiFi and then to the broker. After establishing this connec-
tion, the micro-controller immediately closes its connection to the

Repetitions R . . [count>=R]
® Establ_lsh connecion ‘ O
count =0 with Broker
A [count<R]

[Set count = count +1]<—[Close all connections]

Figure 4: Connection establishment (CE) - The micro-
controller connects to the broker and then closes all connec-
tions R times.

broker and WiFi. The micro-controller repeats these three steps R
times. This workload pattern captures the connection setup time
with the broker, which is, for example, important for motion detec-
tors of security systems.

5.2 Metrics

Since IoT devices typically have limited hardware and limited power
supply, it is especially critical to use the available energy as effi-
ciently as possible. Therefore, we use energy efficiency as a com-
parative metric to evaluate the measurement results. As a metric,
energy efficiency allows evaluating different approaches for the
same application and determining the most efficient variant. In this
way, the developer can select the most efficient variant for his ap-
plication and use it to dimension the required battery accordingly.
Following the SPEC specifications [23], we define in Equation 1,
the energy efficiency E as the ratio of the payload throughput to
the power consumption:

Payload Through,
g Ty oad Throughput (1)

Power Consumption

We introduce the abbreviation W and define it in Equation 2 as
the average power consumption per second for power consumption.
In this equation, n stands for the measurement duration in seconds
and W; for the power consumption during the ith second.

1 n
W= ;ZWI- 2)
i=1

In our measurements, we send r messages with only fixed pay-
load sizes of B bytes at fixed intervals T. Therefore, we define
the payload throughput in Equation 3 as the average successfully
transmitted payload bytes normalized to the length of the sending
interval T. In our case, either all B bytes reach the broker or 0 bytes.
Therefore, we model the amount of successfully sent bytes during
the ith interval as the product of B and §;. §; indicates whether the
the bytes’ transfer was successful or not in Equation 4.

r

Payload Throughput = > Bxoi _ B §r PG
ughput = — = i
Y &P r r=T !

T
1,
o=y

i=1 i=1
We use the Gaussian error propagation in Equation 5 to deter-
mine the accuracy of the measured payload throughput. Thereby, in
Equation 5, AT describes how precisely the ESP8266 keeps the time
intervals after which it starts publishing a message. We assume that
AT is the largest occurring deviation from the fixed time interval T
due to the unknown accuracy of the internal clock of the ESP8266.

the broker gets the i-th message
the broker does not get the i-th message

©

Bx AT
APayload Throughput = -y ; Si (5)

Using Equations 3 and 2, Equation 6 describes the energy effi-
ciency E following the SPEC specifications [23].

,
B v .
_ Payload Throughput _ r+T i§1 !
" Power Consumption n
P 13w
i=1
r r
Y68 BinsY o ©)
Bxn i3 i=1 1
= * = k
Txr & r T * Wioral
>w
i=1
———
Wtotal

We consider the errors AW;,;,; of the power consumption and
AT of the publishing intervals and how they propagate through the
calculations to evaluate our accuracy of energy efficiency measure-
ments. We use the Gaussian error propagation to model the error
propagation, allowing us to calculate the energy efficiency error
AE according to Equation 7.

n

e fo T

AE = = > e @)
r Vvtotal *T vvtotal «T

According to the Gaussian error propagation, we compute AW; ;41
using Equation 8, where AW; is the measurement error of the ith
second’s energy consumption.

AWiotal = AVV[.Z ®)

n
i=1

According to the manufacturer, Yokogawa’s power measurement
error is £(0.1% of reading + 0.2% of range) [5]. The range error
is 0.0006 Watt because we have set the measuring ranges to 3V
and 100mA. These considerations result in the final calculation of

AWy a1 according to Equation 9.

n

AWyoral = J D A0.1% % Wi +0.0006 + W)>)
i=1

In addition to energy efficiency, we also consider the time t.qp, it

takes a client to connect to the broker and become ready to start

sending messages as a metric. Since we measure t;o, through the

internal clock of the ESP8266 and do not know its accuracy, we

assume that the error At.op, is the standard deviation of top,.

6 EVALUATION

We performed measurements of the connection time and the en-
ergy efficiency for the different workload patterns in two network
scenarios: (i) assuming a stable connection and (ii) simulating an
additional packet loss for the communication channel between

the broker and the ESP8266 using NetBalancer. The workload pat-
terns CO and ODP rely on fixed time intervals T in which ESP8266
can try to publish a message. Thus, we start our evaluation with the
workload pattern CE to determine how long it takes the ESP8266
to establish a connection to the broker with and without TLS in
different network situations. The information about the connection
time is essential for the patterns CO and ODP. The period T should
be large enough to allow ESP8266 to (i) connect to the broker, and
(ii) try to publish a specific message. Based on this, we analyze the
energy efficiency by using the patterns CO and ODP.

The goal of our analysis here is to answer the following research
questions (RQs). RQ.1, how does TLS affect the connection time
between client and broker depending on the network situation.
RQ.2, how does TLS affect a client’s energy efficiency under stable
network conditions when (RQ.2.1) the connection with the broker is
held continuously or (RQ.2.2) when the client holds the connection
only to send a message and otherwise switches to energy-saving
mode. RQ.3, how does TLS affect a client’s energy efficiency when
combining the parameters from RQ.1 and RQ.2. RQ.4, how does TLS
affect the energy efficiency in different network situations when
using different QoS levels and the energy-saving mode.

6.1 Analysis of the Broker Connection Times

We performed measurements using the CE workload pattern to
evaluate the time it takes the ESP8266 with and without TLS to
connect to the broker, We varied the packet loss between 0% and 30%
in steps of 10% for TLS and without TLS. In four rounds of repetition,
for both TLS enabled and disabled, we established a new connection
400 times. Figure 6.1 shows the corresponding measurement results
for the mean value and the standard deviation of the connection
establishment time f.o,. For TLS enabled and disabled, t.,, and its
error increases with increasing packet loss. Thereby, t¢on, and its
error increases in the same network situation more when using TLS.
Thus, within the scope of our measurements, we can answer RQ.1I:
The use of TLS negatively affects the connection time, and the worse
the network situation, the stronger the adverse effect. Besides, the
standard deviation of the connection time also increases due to TLS,
whereby the negative influence here is also more significant when
the network situation is worsening.

6.2 Energy Consumption Impact of TLS

We investigate in this section our hypothesis that the use of TLS
negatively influences the energy consumption for IoT communica-
tion relying on the MQTT protocol. We analyze our claim in two

g T T

5

5 30| ——TLSused i

O —

g .2 TLS not used

£520] .

© &

5 E10[|

% \/J

g 0 7 | T | il | T
0 5 10 15 20 25 30

Packet loss [%]

Figure 5: Connection establishment (CE) - The ESP8266 con-
nects to the broker and then closes all connections R times.

40 - —— TLS used 7/’ —

30 |- TLS not used = N
/

20 |- _— -

Energy efficiency
[Bytes\Joule]

\

I \ \ \ \
20 40 60 80 100
Payload size [Bytes]

Figure 6: Energy efficiency for CO, with QoS = 0, T = 10 sec-
onds and B varied between 20 and 100 bytes.

> T T !

I I

S @ 200 - —— TLS used =

é E 150 - TLS not used // N

) % _F

2 S 100 |- L |

9 =

& R ! ! ! L
20 40 60 80 100

Payload size [Bytes]

Figure 7: Energy efficiency for ODP, with QoS = 0, T = 10 sec-
onds and B is varied between 20 and 100 bytes.

different network scenarios, with and without packet loss. Using
previous measurement results helps select a reasonable length for
the sending interval T for CO and ODP patterns. Thus, the ESP8266
has enough time on average to both (i) connect to the broker, and
(ii) try to publish a message. As we consider in the following up to
15% packet loss, we select an appropriate value for T using Figure 6.1.
For the following measurements, we set the sending interval T = 10
seconds.

Influence of TLS on Energy Consumption for Stable Con-
nections. We performed measurements for both workload pat-
terns CO and ODP to identify the influence of TLS on the energy con-
sumption in stable networks, with the following fixed parameters:
the number of messages the ESP8266 should try to publish R = 120,
the time between the start of two publishing processes T = 10
seconds, and QoS level g = 0. We varied the payload B between
20 Bytes and 100 Bytes in 20-Byte steps and configured no extra
packet loss with NetBalancer. Figures 6 and 7 illustrate the mea-
surement results for both workload patterns. It is essential to note
that each publishing process was successful for all measurements
to interpret these figures. Within the scope of our measurement
accuracy and range, we can answer RQ.2.1 and RQ.2.2 as follows:
We observe no significant performance degradation with TLS both
for continuously held connections and when using energy-saving
mode.

However, our measurements allow us to conclude:

(1) For both patterns, energy efficiency increases with the mes-
sage size, regardless of using TLS or not.

(2) The energy efficiency of ODP is—regardless of using TLS or
not—significantly higher than that of CO (considering the
Gaussian error values). This result indicates that using Deep
Sleep is worthwhile as this is the sole difference between the
two patterns.

T T
—— TLS used N
TLS not used

o))
S
T

Energy efficiency
[Bytes\Joule]
S
T

}

'S
=N
3

10 12 14 16
Packet Loss [%]

Figure 8: Energy efficiency for ODP, with QoS = 0, T = 10 sec-
onds and B = 40 bytes.

_é*? 35| |
£5 sf |
g Ei 25 IWZ\Z -
= A, TLS not used

= i 6 8 10 12 14 16

Packet Loss [%]

Figure 9: Throughput for ODP, with QoS = 0, T = 10 seconds
and B = 40 bytes.

(3) Our scenario’s energy efficiency could, in the worst case,
deteriorate by a maximum of 9 Byte/Joule for ODP and 3
Byte/Joule for CO when using TLS.

Influence of TLS on Energy Consumption in Scenarios with
Packet Loss. Since we could not detect any provable difference
in using TLS or not for energy efficiency in network situations
without additional packet loss, we concentrate on situations with
additional packet loss in the following. The previous measurements
showed that using Deep Sleep can have a positive effect on energy
efficiency. Accordingly, we next analyze the assumption that un-
der worsened network conditions, there is a difference in energy
efficiency between using TLS and not since the additional use of
TLS alone increases the average connection time with the broker
and reduces the possible time in which Deep Sleep is available.
Therefore, we performed measurements for the workload pattern
ODP, with the fixed parameters R = 720, T = 10 seconds, g = 0, B = 40,
and varied the packet loss between 5% and 15% in 5% steps using
NetBalancer. Figure 8 illustrates the energy efficiency. The measure-
ments answer RQ.3 since they allow to conclude that, within the
scope of the measuring accuracy and range, (i) there is a provable
difference in the energy efficiency when using TLS and (ii) that
regardless of the use of TLS, the energy efficiency decreases with in-
creasing packet loss. The payload throughput can partially explain
this difference in energy efficiency when using TLS for the different
network situations (see Figure 9): The same statements that apply
to energy efficiency also apply to the payload throughput. TLS neg-
atively impacts a vital component of the energy efficiency since the
payload throughput is essential for energy efficiency, and the use
of TLS degrades it. However, our measurements do not allow us to
conclude that the energy efficiency difference is solely related to

r T T T T
1001 505 0 with TLS QoS 1 with TLS
B sl QoS 2 with TLS - - - QoS 0 without TLS |
3 g QoS 1 without TLS - - - QoS 2 without TLS
Q
§%60* E~ .o |
> 8 e
o0 >~ E-- e e =2 T -
§£4o— £ R
| | | | |
4 6 8 10 12 14 16

Packet Loss [%]

Figure 10: Energy efficiency for the ODP, with T = 10 seocnds,
B =40 bytes and QoS is varied between 0 and 2.

Payload throughput
[Bytes\Second]

2l Q0S 0 with TLS QoS 1 with TLS
—— QoS 2with TLS - -- QoS 0 without TLS
1 QoS 1 without TLS - - - QoS 2 without TLS
| | | | |
4 6 8 10 12 14 16

Packet Loss [%]

Figure 11: Throughput for ODP, with T = 10 seocnds, B = 40
bytes and QoS is varied between 0 and 2.

the different payload throughput, since, for example, the average
connection times differ when using TLS or not.

Influence of the QoS Level in Scenarios with Packet Loss.
Finally, we suspected that under network conditions with additional
packet loss, higher QoS levels would result in higher throughput,
which could also have a positively affect energy efficiency. We per-
formed measurements for the workload pattern ODP as the previous
experiments showed that this increases energy efficiency to eval-
uate this assumption. We defined the parameters R = 720, T = 10
seconds, B = 40, and varied the packet loss between 5% and 15% in
5% steps using NetBalancer and varied g between 0 and 2 in steps
of 1. Figures 10 and 11 illustrate the measurement results. Figure 11
shows that using QoS levels higher than 0 increases the throughput
in our measurements, regardless of whether using TLS or not. Upon
packet loss, the message is resent at QoS 1 or 2, explaining the
higher throughput. However, there is no significant difference to
derive that when using TLS, QoS Level 1 allows higher throughput
than QoS Level 2; the same applies to the measurements without
TLS. Nevertheless, our measurements show that (i) the through-
put decreases with increasing packet loss across all QoS levels and
(ii) the use of TLS has a provable negative effect for QoS Level 1
and QoS Level 2 for a packet loss rate of 15%. Concerning energy
efficiency (see Figure 10), we answer RQ.4 as follows: The use of
TLS has a provable negative effect on energy efficiency within our

measuring range and accuracy when network conditions deterio-
rate, even when using higher QoS levels. This effect results from
the fact that when using TLS with increasing packet loss, the Deep
Sleep mode can only activate for a shorter time than when not
using TLS. Unlike throughput, the use of QoS levels higher than 0
does not result in a demonstrable improvement in energy efficiency.
However, the use of QoS Level 2 does even result in a provable
deterioration of energy efficiency than QoS Level 0. These results
suggest that the throughput is vital for energy efficiency and the
effort that ESP8266 takes to successfully send a message, which has
a direct influence on the time in which the Deep Sleep is available.

6.3 Threats to Validity

This paper focuses on specifying a testbed, measurement work-
flow, and metrics for reproducible measurements of the impact
on performance and energy efficiency when integrating TLS with
MQTT-based IoT communication. Using our concept, we performed
several measurements to (i) assess the energy efficiency and the
performance impact when combining MQTT with TLS and (ii) show
our concept’s applicability. However, we have identified the follow-
ing threats to the validity of the evaluation results.

First, we focused on the performance of the MQTT client’s per-
formance in all measurements, using only a single MQTT client and
assessing the impact of TLS on its performance. Thereby, we did not
take into account a higher number of MQTT clients also using TLS.
Handling multiple clients at the same time can influence the perfor-
mance of the broker. Multiple clients could harm message delivery
times from publishers to subscribers because as the load increases,
messages are queued and delayed in processing by the broker. How-
ever, we focus on the properties of the direct connection between a
client and the broker. We plan to use our IoT network emulator for
analyzing effects resulting from the interactions of multiple clients
as part of our future work [8]. Further, as MQTT brokers today
often run in Cloud environments—such as specialized services from
AWS, Azure, or Google’s Cloud Platform—the scalability of such
platforms helps to avoid negative impacts for larger systems.

Second, the respective metrics contain their corresponding er-
rors, which is because—compared to servers or desktop PCs— mi-
crocontrollers have significantly lower current and voltage levels.
Therefore, we can only make statements within the scope of the
existing measurement accuracy and only detect influences that
have a more significant impact than this accuracy.

Third, we focused on MQTT as a communication protocol. Simi-
lar studies (such as [2]) have shown significant performance differ-
ences between the standard IoT protocols such as MQTT, CoAP, and
DDS. In contrast, we focus on the reproducibility of the results and
the reusability of the measurement environment. For future work,
we plan to work on generalizing our results to other standard IoT
communication protocols.

Fourth, although TLS can protect the communication channel,
there is still a risk of tapping messages at the application level
after decryption. However, this problem would also occur with
end-to-end encryption on the IoT device. From the IoT device’s
point of view, TLS and end-to-end encryption have corresponding
keys and messages that must be encrypted or decrypted. Thus,
both methods have the same problems on the application level.

Storage and processing of the keys and the de- and encryption
algorithms should only occur in trust zones of the hardware, or
remote attestation procedures should ensure that the corresponding
IoT device is not infected to solve this problem. However, the aspect
of application security goes far beyond securing the communication
channel and represents an entirely independent research field.

7 CONCLUSION & FUTURE WORK

One of the most prominent protocols for communication with IoT
devices is the MQTT protocol. However, out-of-the-box MQTT does
not integrate security mechanisms. In this work, we performed
an analysis of the impact on performance and energy efficiency
when complementing MQTT with TLS. To overcome the issues
of reproducibility of related studies (e.g., [21] and [1]), we define
a hardware testbed, metrics, and workload patterns. The results
support our hypotheses. First, the use of TLS negatively impacts the
connect time to the broker, especially in settings with higher packet
loss (RQ.1). Second, assuming a stable network connection without
packet loss, there are no significant energy consumption effects
when adding TLS (RQ.2.1 and RQ.2.2). However, energy efficiency
increases with a higher message payload and benefits from the deep
sleep mode. Third, in the scenario with deep sleep use, packet loss,
and QoS Level 0, TLS negatively influences the throughput and the
efficiency (RQ.3).

Further, energy efficiency decreases with higher packet loss rates.
Lastly, QoS Level 1 and QoS Level 2 can increase the throughput in-
dependently from using TLS. For the settings with small packet loss
rates, TLS does not influence the throughput. Increased packet loss
rates decrease energy efficiency and throughput, even with higher
QoS levels (RQ.4). The application of QoS Level 2 can even reduce
energy efficiency in contrast to QoS Level 0. In all measurements
with packet loss, TLS decreases energy efficiency. Additionally, the
results show no identical relation between energy efficiency and
throughput that is valid for all QoS levels and packet loss rates.

With this paper, we contribute to the increasing body of research
in IoT communication by conceptualizing a measurement environ-
ment for reproducible analysis of the impacts on energy efficiency
and performance when securing MQTT with TLS. In this work, we
focus on the direct connection between one client and its broker.
Studying the effects in environments with multiple MQTT clients is
part of future work. We also plan to generalize our results to other
IoT communication protocols and show how, using our results,
battery sizing can be done in practice.

ACKNOWLEDGMENTS

This research has been funded by the Federal Ministry of Educa-
tion and Research of Germany in the framework KMU-innovativ -
Verbundprojekt: Secure Internet of Things Management Platform -
SIMPL (project number 16KIS0852) [18].

REFERENCES

[1] Edgaras Baranauskas et al. 2019. Evaluation of the impact on energy consumption

of MQTT protocol over TLS. In IVUS.

Y. Chen et al. 2016. Performance evaluation of IoT protocols under a constrained

wireless access network. In 2016 MoWNeT.

[3] Jin Chung. 2016. Adaptive Energy-Efficient SSL/TLS Method Using Fuzzy Logic
for the MQTT-Based Internet of Things. International Journal Of Engineering

And Comﬁuter Science (12 2016). https://doi.org/10.18535/ijecs/v5i12.04
[4] Jin Hee Chung et al. [n.d.]. An Adaptive Energy-efficient SSL/TLS Method for the

Internet of Things using MQTT on Wireless Networks. In 2016 6th International
Workshop on Computer Science and Engineering.

[5] Yokogawa Test & Measurement Corporation. [n.d.]. WT300 Serie Digitale Leis-
tungsmessgerite. ([n.d.]). Online available under https://tmi.yokogawa.com/de/
solutions/products/power-analyzers/digital-power-meter-wt300/#Details, Ac-
cessed on 28.03.2020.

[6] T Dierks et al. 2008. The Transport Layer Security (TLS) Protocol Version 1.2.
(2008). Online available under https://tools.ietf.org/html/rfc5246, Accessed on
1.01.2020.

[7] Patrick Th. Eugster et al. 2003. The many faces of publish/subscribe. Comput.
Surveys 35, 2 (2003), 114-131.

[8] Stefan Herrnleben, Rudy Ailabouni, Johannes Grohmann, Thomas Prantl, Chris-

tian Krupitzer, and Samuel Kounev. 2020. An IoT Network Emulator for Analyzing

the Influence of Varying Network Quality. In Proceedings of the 12th EAI Inter-
national Conference on Simulation Tools and Techniques (SIMUtools) (SIMUtools

2020).

G.C. Hillar. 2018. Hands-On MQTT Programming with Python: Work with the

lightweight IoT protocol in Python. Packt Publishing. https://books.google.de/

books?id=mF9dDwAAQBA]

[10] R.K. Kodali et al. [n.d.]. MQTT based home automation system using ESP8266.

In 2016 IEEE Region 10 Humanitarian Technology Conference.

[11] S.Lee et al. [n.d.]. Correlation analysis of MQTT loss and delay according to

QoS level. In 2013 ICOIN.

Schumacher Merlin et al. 2018. Async MQTT client for ESP8266 and ESP32.

(2018). Online available under https://github.com/marvinroger/async-mqtt-

client, Accessed on 28.03.2020.

Netscout. 2018. NETSCOUT Threat Intelligence Report. DAWN OF THE TER-

RORBIT ERA. Findings from Second Half 2018.

OASIS Open. 2014. MQTT Version 3.1.1, OASIS Standard, 29 October 2014. (2014).

Online available under http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.

1.1-0s.pdf, Accessed on 28.03.2020.

[15] A. V. Papadopoulos et al. 2019. Methodological Principles for Reproducible

Performance Evaluation in Cloud Computing. IEEE Transactions on Software

Engineering (2019), 1-1. https://doi.org/10.1109/TSE.2019.2927908

Giovanni Perrone et al. 2017. The Day After Mirai: A Survey on MQTT Security

Solutions After the Largest Cyber-attack Carried Out through an Army of IoT

Devices. In 2nd IoTBDS. 246-253. https://doi.org/10.5220/0006287302460253

Thomas Prantl et al. 2020. Evaluating the Performance of a State-of-the-Art

Group-oriented Encryption Scheme for Dynamic Groups in an IoT Scenario

(MASCOTS *20).

[18] Thomas Prantl et al. 2020. SIMPL: Secure IoT Management Platform. In ITSec

(1st ITG Workshop on IT Security).

Thomas Prantl et al. 2021. Towards a Group Encryption Scheme Benchmark: A

View on Centralized Schemes with focus on IoT. In 2021 ACM/SPEC International

Conference on Performance Engineering (ICPE) (ICPE21).

[20] E Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. (2018).

Online available under https://tools.ietf.org/html/rfc8446, Accessed on 1.01.2020.

S. Shapsough et al. 2018. Securing Low-Resource Edge Devices for IoT Systems.

In 2018 ISSI. https://doi.org/10.1109/ISS1.2018.8538135

[22] M. Singh et al. 2015. Secure MQTT for Internet of Things (IoT). In CSNT. 746-751.

https://doi.org/10.1109/CSNT.2015.16

[23] S.P.E.C.2014. Power and Performance Benchmark Methodology V2.2. (2014).

[24] SeriousBit SRL. 2020. NetBalancer. (2020). Online available under

https://netbalancer.com/, Accessed on 15.04.2020.

J. Toldinas et al. 2019. MQTT Quality of Service versus Energy Consumption. In

2019 23rd International Conference Electronics. 1-4.

[26] A.Skraba et al. [n.d.]. Prototype of group heart rate monitoring with NODEMCU

ESP8266. In 2017 6th MECO.

[2

[

[12

(13

[14

[16

(17

[19

)
—_

[25

https://doi.org/10.18535/ijecs/v5i12.04
https://tmi.yokogawa.com/de/solutions/products/power-analyzers/digital-power-meter-wt300/#Details
https://tmi.yokogawa.com/de/solutions/products/power-analyzers/digital-power-meter-wt300/#Details
https://books.google.de/books?id=mF9dDwAAQBAJ
https://books.google.de/books?id=mF9dDwAAQBAJ
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.5220/0006287302460253
https://doi.org/10.1109/ISSI.2018.8538135
https://doi.org/10.1109/CSNT.2015.16

	Abstract
	1 Introduction
	2 Background
	2.1 Message Queuing Telemetry Transport (MQTT)
	2.2 Transport Layer Security (TLS)

	3 Related Work
	4 Testbed Concept & Realization
	4.1 Testbed Concept
	4.2 Testbed Realization

	5 Methodology for Measurement Analysis
	5.1 Workload Patterns
	5.2 Metrics

	6 Evaluation
	6.1 Analysis of the Broker Connection Times
	6.2 Energy Consumption Impact of TLS
	6.3 Threats to Validity

	7 Conclusion & Future Work
	Acknowledgments
	References

