
How to Build a Benchmark

Jóakim v. Kistowski
University of Würzburg
joakim.kistowski@
uni-wuerzburg.de

Jeremy A. Arnold
IBM Corporation

arnoldje@us.ibm.com

Karl Huppler

karl.huppler@gmail.com

Klaus-Dieter Lange
Hewlett-Packard Company
klaus.lange@hp.com

John L. Henning
Oracle

john.henning@oracle.com

Paul Cao
Hewlett-Packard Company

paul.cao@hp.com

ABSTRACT
Standardized benchmarks have become widely accepted tools
for the comparison of products and evaluation of methodolo-
gies. These benchmarks are created by consortia like SPEC
and TPC under confidentiality agreements which provide
little opportunity for outside observers to get a look at the
processes and concerns that are prevalent in benchmark de-
velopment. This paper introduces the primary concerns of
benchmark development from the perspectives of SPEC and
TPC committees. We provide a benchmark definition, out-
line the types of benchmarks, and explain the characteristics
of a good benchmark. We focus on the characteristics impor-
tant for a standardized benchmark, as created by the SPEC
and TPC consortia. To this end, we specify the primary
criteria to be employed for benchmark design and workload
selection. We use multiple standardized benchmarks as ex-
amples to demonstrate how these criteria are ensured.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Performance attributes

General Terms
Measurement, Performance, Standardization

Keywords
SPEC; TPC; SPECpower ssj2008; SERT; SPEC CPU

1. INTRODUCTION
Standardized benchmarks have become widely accepted

tools for the comparison of software and hardware products.
They are also regularly used for the evaluation of method-
ological approaches to problems in multiple fields of com-
puter science and beyond.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688819.

In order to be accepted for standardization, benchmarks
must meet a host of quality criteria. Benchmarks candidates
must undergo a process of several steps, including the defini-
tion of measurement methodologies, workload selection, and
a number of rigorous benchmark acceptance tests. Bench-
mark inception, development, and acceptance, however, are
conducted under consortia confidentiality agreements, with
little opportunity for outside observers to profit from the
processes that these consortia have developed over time. Be-
ing unable to access these processes, calls for benchmark
development processes have become louder [6]. We address
this situation by offering this paper as a description of the
processes for benchmark inception, development, testing, re-
lease, and support for the SPEC and TPC consortia.

As part of this work, we provide a definition of the term
“benchmark” in the context of performance evaluation. Note
that we differentiate between benchmarks with the purpose
of product comparison and rating tools, which are intended
for standardized measurements as part of a product devel-
opment or evaluation process. We explain the differences
between the three types of benchmarks: specification-based,
kit-based, and hybrid. We also present the properties and
criteria that any quality benchmark or rating tool must ful-
fill. For this, we focus on the properties that workloads of
quality benchmarks must meet. We present multiple exam-
ples of standardized benchmarks and demonstrate how these
benchmarks ensure the specific quality criteria.

The remainder of this paper is structured as follows: Sec-
tion 2 presents our benchmark and rating tool definitions, it
also explains the three benchmark types. Section 3 presents
the properties of good benchmarks. The paper concludes in
Section 4.

2. WHAT IS A BENCHMARK
Before discussing the development process of a bench-

mark, we define what a benchmark is. We also explain the
difference between major types of benchmarks.

2.1 Definition of Benchmark
We define a benchmark as a “Standard tool for the com-

petitive evaluation and comparison of competing systems
or components according to specific characteristics, such as
performance, dependability, or security”.

This definition is a variation of a definition provided in
[12] with a focus on the competitive aspects of benchmarks,
as that is the primary purpose of standardized benchmarks
as developed by SPEC and TPC.

We define tools for the non-competitive system evaluation
and comparison as rating tools. Rating tools are primar-
ily intended for a standardized method of evaluation for re-
search purposes, regulatory programs, or as part of a system
improvement and development approach. Rating tools can
also be standardized and should generally follow the same
design and quality criteria as benchmarks. SPEC’s Server
Efficiency Rating Tool (SERT), e.g., has been designed and
developed using a similar process as the SPECpower ssj2008
benchmark.

2.2 Types of Benchmarks
Computer benchmarks typically fall into three general cat-

egories: specification-based, kit-based, and a hybrid between
the two. Specification-based benchmarks describe functions
that must be achieved, required input parameters and ex-
pected outcomes. The implementation to achieve the spec-
ification is left to the individual running the benchmark.
Kit-based benchmarks provide the implementation as a re-
quired part of official benchmark execution. Any functional
differences between products that are allowed to be used for
the benchmark must be resolved ahead of time and the in-
dividual running the benchmark is typically not allowed to
alter the execution path of the benchmark.

Specification-based benchmarks begin with a definition of
a business problem to be simulated by the benchmark. The
key criteria for this definition are the relevance topics dis-
cussed in section 3 and novelty. Specification-based bench-
marks have the advantage of allowing innovative software to
address the business problem of the benchmark by proving
the specified requirements of the new implementation [5].
On the other hand, specification-based benchmarks require
substantial development prior to running the benchmark,
and may have challenges proving that all the requirements
of the benchmark are met.

Kit-based benchmarks may appear to restrict some inno-
vative approaches to a business problem, but have the sig-
nificant advantages of providing near “load and go” imple-
mentations that greatly reduce the cost and time required to
run the benchmarks. For kit-based benchmarks, the “speci-
fication” is used as a design guide for the creation of the kit.
For specification-based benchmarks, the specification is pre-
sented as a set of rules to be followed by a third party who
will implement and run the benchmark. This allows for sub-
stantial flexibility in how the benchmark’s business problem
will be resolved - a principal advantage for specification-
based benchmarks.

A hybrid of these may be necessary if the majority of the
benchmark can be provided in a kit, but there is a desire to
allow some functions to be implemented at the discretion of
the individual running the benchmark.

While both specification-based and kit-based methods have
both been successful in the past, current trends have favored
kit-based development.

3. WORKLOAD PROPERTIES
Workload designers must balance several, often conflict-

ing, criteria in order to be successful. Several factors must
be taken into consideration, and trade-offs between various
design choices will influence the strengths and weaknesses
of the workload. Since no single workload can be strong in
all of these areas, there will always be a need for multiple
workloads and benchmarks [8].

It is important to understand the characteristics of a work-
load and determine whether or not it is applicable for a
particular situation. When developing a new workload, the
goals should be defined so that choices between competing
design criteria can be made in accordance with those goals to
achieve the desired balance. Several researchers and indus-
try participants have listed various desirable characteristics
of benchmarks [3, 4, 8, 1, 2, 11, 7]. The contents of the lists
vary based on the perspective of the author and their choice
of terminology and grouping of characteristics, but most of
the concepts are similar. The key characteristics can be or-
ganized in the following groups, which will be discussed in
more detail in the next sections:

• Relevance How closely the benchmark behavior cor-
relates to behaviors that are of interest to consumers
of the results

• Reproducibility The ability to consistently produce
similar results when the benchmark is run with the
same test configuration

• Fairness Allowing different test configurations to com-
pete on their merits with-out artificial limitations

• Verifiability Providing confidence that a benchmark
result is accurate

• Usability Avoiding roadblocks for users to run the
benchmark in their test environments

All benchmarks are subject to these same criteria, but
each category includes additional issues that are specific to
the individual benchmark, depending on the benchmark’s
goals.

3.1 Relevance
“Relevance” is perhaps the most important characteristic

of a benchmark. Even if the workload was perfect in every
other regard, it will be of minimal use if it doesn’t provide
relevant information to its consumers. Yet relevance is also
a characteristic of how the benchmark results are applied;
benchmarks may be highly relevant for some scenarios and
of minimal relevance for others. For the consumer of bench-
mark results, an assessment of a benchmark’s relevance must
be made in context of the planned use of those results.
For the benchmark designer, relevance means determining
the intended use of the benchmark and then designing the
benchmark to be relevant for those areas [10]. A general
assessment of the relevance of a benchmark or workload in-
volves two dimensions: the breadth of its applicability, and
the degree to which the workload is relevant in that area.
For example, an XML parsing benchmark may be highly rel-
evant as a measure of XML parsing performance, somewhat
relevant as a measure of enterprise server application per-
formance, and not at all relevant for graphics performance
of 3D games. Conversely, a suite of CPU benchmarks such
as SPEC CPU2006 may be moderately relevant for a wide
range of computing environments. The behavior illustrated
in these examples is generally true: benchmarks that are
designed to be highly relevant in a specific area tend to have
narrow applicability, while benchmarks that attempt to be
applicable to a broader spectrum of uses tend to be less
meaningful for any particular scenario [4].

Scalability is an important aspect of relevance, particu-
larly for server benchmarks. Most relevant benchmarks are
multi-process and/or multi-threaded in order to be able to
take advantage of the full resources of the server [8]. Achiev-

ing scalability in any application is difficult; for a bench-
mark, the challenges are often even greater because the
benchmark is expected to run on a wide variety of systems
with significant differences in available resources. Bench-
mark designers must also strike a careful balance between
avoiding artificial limits to scaling and behaving like real ap-
plications (which often have scalability issues of their own).

3.2 Reproducibility
Reproducibility is the capability of the benchmark to pro-

duce the same results consistently for a particular test en-
vironment. It includes both run-to-run consistency and the
ability for another tester to independently reproduce the re-
sults on another system.

Ideally, a benchmark result is a function of the hardware
and software configuration, so that the benchmark is a mea-
sure of the performance of that environment; if this were the
case, the benchmark would have perfect consistency. In re-
ality, the complexity inherent in a modern computer system
introduces significant variability in the performance of an
application. This variability is introduced by several factors,
including things such as the timing of thread scheduling, dy-
namic compilation, physical disk layout, network contention,
and user interaction with the system during the run [4]. En-
ergy efficiency benchmarks often have additional sources of
variability due to power management technologies dynami-
cally making changes to system performance and tempera-
ture changes affecting power consumption.

Benchmarks can address this run-to-run variability by run-
ning for long enough periods of time to include represen-
tative samples of these variable behaviors. Some bench-
marks require submission of multiple runs with scores that
are near each other as evidence of consistency. Benchmarks
also tend to run at steady state, unlike more typical appli-
cations which have variations in load due to factors such as
the usage patterns of users.

The ability to reproduce results in another test environ-
ment is largely tied to the ability to build an equivalent
environment. Industry standard benchmarks require results
submissions to include a description of the test environment,
typically including both hardware and software components
as well as configuration options. Similarly, published re-
search that includes benchmark results generally includes a
description of the test environment that produced those re-
sults. However, in both of these cases, the description may
not provide enough detail for an independent tester to be
able to assemble an equivalent environment.

Hardware must be described in sufficient detail for an-
other person to obtain identical hardware. Software versions
must be stated so that it is possible to use the same versions
when reproducing the result. Tuning and configuration op-
tions must be documented for firmware, operating system,
and application software so that the same options can be
used when re-running the test. TPC benchmarks require a
certified auditor to audit results and ensure compliance with
reporting requirements. SPEC uses a combination of auto-
matic validation and committee review to establish compli-
ance.

3.3 Fairness
Fairness ensures that systems can compete on their mer-

its without artificial constraints. Because benchmarks al-
ways have some degree of artificiality, it is often necessary

to place some constraints on test environments in order to
avoid unrealistic configurations that take advantage of the
simplistic nature of the benchmark.

Benchmark development requires compromises among mul-
tiple design goals; benchmarks developed by a consensus
of experts is generally perceived as being more fair than a
benchmark designed by a single company [1]. While “de-
sign by committee” may not be the most efficient way to
develop an application, it does require that compromises
are made in such a way that multiple interested parties are
able to agree that the final benchmark is fair. As a result,
benchmarks produced by organizations such as SPEC and
the TPC (both of which are comprised by members from
companies in the industry as well as academic institutions
and other interested parties) are generally regarded as fair
measures of performance.

Benchmarks require a variety of hardware and software
components to provide an environment suitable for running
the benchmark. It is often necessary to place restrictions on
what components may be used. Careful attention must be
placed on these restrictions to ensure that the benchmark
remains fair. Some restrictions must be made for technical
reasons. For example, a benchmark implemented in Java re-
quires a Java Virtual Machine (JVM) and an operating sys-
tem and hardware that supports it. A benchmark that per-
forms heavy disk IO may effectively require a certain number
of disks to achieve acceptable IO rates, which would there-
fore limit the benchmark to hardware capable of supporting
that number of disks.

Benchmark run rules often require hardware and software
to meet some level of support or availability. While this re-
stricts what components may be used, it is actually intended
to promote fairness. Because benchmarks are by nature sim-
plified applications, it is often possible to use simplified soft-
ware to run them; this software may be quite fast because
it lacks features that may be required by real applications.
For example, enterprise servers typically require certain se-
curity features in their software which may not be directly
exercised by benchmark applications; software that omitted
these features may run faster than software that includes
them, but this simplified software may not be usable for the
customer base that the benchmark is targeted to. Rules re-
garding software support can be a particular challenge when
using open source software, which is often supported pri-
marily by the developer community rather than commercial
support mechanisms.

Both of these situations require a careful balance. Placing
too many or inappropriate limits on the configuration may
disallow results that are relevant to some legitimate situa-
tions. Placing too few restrictions can pollute the pool of
published results and, in some cases, reduce the number of
relevant results because vendors can’t compete with the “in-
appropriate”submissions. Portability is an important aspect
of fairness. Achieving portability with benchmarks written
in Java is relatively simple; for C and C++, it can be more
difficult [3].

Benchmark run rules often include stipulations on how
results may be used. These requirements are intended to
promote fairness when results are published and compared,
and often include provisions that require certain basic infor-
mation to be included any time that results are given. For
example SPECpower ssj2008 requires that if a comparison is
made for the power consumption of two systems at the 50%

target load level, the performance of each system at the 50%
load level as well as the overall ssj ops/watt value must also
be stated. SPEC has perhaps the most comprehensive fair
use policy which further illustrates the types of fair use is-
sues that benchmarks should consider when creating their
run rules [9].

3.4 Verifiability
Within the industry, benchmarks are typically run by ven-

dors who have a vested interest in the results. In academia,
results are subjected to peer review and interesting results
will be repeated and built upon by other researchers. In both
cases, it is important that benchmark results are verifiable
so that the results can be deemed trustworthy.

Good benchmarks perform some amount of self-validation
to ensure that the workload is running as expected, and that
run rules are being followed. For example, a workload might
include configuration options intended to allow researchers
to change the behavior of the workload, but standard bench-
marks typically limit these options to some set of compliant
values which can be verified at runtime. Benchmarks may
also perform some functional verification that the output of
the test is correct; these tests could detect some cases where
optimizations (e.g. experimental compiler options) are pro-
ducing incorrect results.

Verifiability is simplified when configuration options are
controlled by the benchmark, or when these details can be
read by the benchmark. In this case, the benchmark can
include the details with the results. Configuration details
that must be documented by the user are less trustworthy
since they could have been entered incorrectly.

One way to improve verifiability is to include more de-
tails in the results than are strictly necessary to produce
the benchmark’s metrics. Inconsistencies in this data could
raise questions about the validity of the data. For example, a
benchmark with a throughput metric might include response
time information in addition to the transaction counts and
elapsed time.

3.5 Usability
Most users of benchmarks are technically sophisticated,

making ease of use less of a concern than it is for more
consumer-focused applications. There are, however, several
reasons why ease of use is important. One of the most impor-
tant ease of use features for a benchmark is self-validation.
This was already discussed in terms of making the bench-
mark verifiable. Self-validating workloads give the tester
confidence that the workload is running properly.

Another aspect of ease of use is being able to build practi-
cal configurations for running the benchmark. For example,
the current top TPC-C result has a system under test with
over 100 distinct servers, over 700 disk drives and 11,000
SSD ash modules (with a total capacity of 1.76 petabytes),
and a system cost of over $30 million USD. Of the 18 non-
historical accepted TPC-C results published between Jan-
uary 1, 2010 and August 24, 2013, the median total system
cost was $776,627 USD. These configurations aren’t econom-
ical for most potential users [4].

Accurate descriptions of the system hardware and soft-
ware configuration are critical for reproducibility, but can
be a challenge due to the complexity of these descriptions.
Benchmarks can improve ease of use by providing tools to
assist with this process.

4. CONCLUSIONS
This paper provides an insight into the benchmark devel-

opment criteria as employed be the SPEC and TPC con-
sortia. We provide a definition for benchmarks and rating
tools, differentiating between benchmarks for competitive
purposes and rating tools for research purposes, regulatory
programs, or as part of a system improvement and devel-
opment approach. We explain the differences between the
three major types of benchmarks: specification-based, kit-
based, and hybrid. Finally, we describe the major quality
criteria of industrial benchmarks: relevancy, repeatability,
fairness, verifiability, and usability, including examples on
how the criteria are ensured in standardized benchmarks.

5. REFERENCES
[1] R. Garćıa-Castro and A. Gómez-Pérez. Benchmark

Suites for Improving the RDF(S) Importers and
Exporters of Ontology Development Tools. In Y. Sure
and J. Domingue, editors, The Semantic Web:
Research and Applications, volume 4011 of Lecture
Notes in Computer Science, pages 155–169. Springer
Berlin Heidelberg, 2006.

[2] J. Gustafson and Q. Snell. HINT: A new way to
measure computer performance. In System Sciences,
1995. Proceedings of the Twenty-Eighth Hawaii
International Conference on, volume 2, pages 392–401
vol.2, Jan 1995.

[3] J. L. Henning. SPEC CPU2000: measuring CPU
performance in the New Millennium. Computer,
33(7):28–35, Jul 2000.

[4] K. Huppler. The Art of Building a Good Benchmark.
In R. Nambiar and M. Poess, editors, Performance
Evaluation and Benchmarking, volume 5895 of Lecture
Notes in Computer Science, pages 18–30. Springer
Berlin Heidelberg, 2009.

[5] K. Huppler and D. Johnson. TPC Express - A New
Path for TPC Benchmarks. In R. Nambiar and
M. Poess, editors, Performance Characterization and
Benchmarking, volume 8391 of Lecture Notes in
Computer Science, pages 48–60. Springer International
Publishing, 2014.

[6] K. Sachs. Performance Modeling and Benchmarking of
Event-Based Systems. PhD thesis, TU Darmstadt,
2010. SPEC Distinguished Dissertation Award 2011.

[7] S. E. Sim, S. Easterbrook, and R. C. Holt. Using
Benchmarking to Advance Research: A Challenge to
Software Engineering. In Proceedings of the 25th
International Conference on Software Engineering,
ICSE ’03, pages 74–83, Washington, DC, USA, 2003.
IEEE Computer Society.

[8] K. Skadron, M. Martonosi, D. I. August, M. D. Hill,
D. J. Lilja, and V. S. Pai. Challenges in Computer
Architecture Evaluation. Computer, 36(8):30–36, Aug.
2003.

[9] Standard Performance Evaluation Corporation. SPEC
fair use rule. http://www.spec.org/fairuse.html.

[10] Standard Performance Evaluation Corporation. SPEC
Power and Performance Benchmark Methodology.
http://spec.org/power/docs/SPEC-
Power and Performance Methodology.pdf.

[11] F. Stefani, A. Moschitta, D. Macii, and D. Petri. FFT
benchmarking for digital signal processing
technologies. In 17th IMEKO World Congress, 2003.

[12] M. Vieira, H. Madeira, K. Sachs, and S. Kounev.
Resilience Benchmarking. In K. Wolter, A. Avritzer,
M. Vieira, and A. van Moorsel, editors, Resilience
Assessment and Evaluation of Computing Systems,
XVIII. Springer-Verlag, Berlin, Heidelberg, 2012.
ISBN: 978-3-642-29031-2.

