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1. Introduction

Performance engineering dates back to 1909 when Agner Krarup Erlang was given the task
to analyze the performance of telephone networks [PR10]. He showed that queuing theory
could be used to predict the required number of circuits for good telephone coverage. This
method also proved effective to analyze the performance of software systems [BDMIS04],
during the software’s design phase as well as to run time. It can be used to analyze the
performance of a system hosted on a single server as well as for distributed component-
based systems. When analyzing the performance of a software system questions like the
following arise::

• How long does a user have to wait on average until his request is handled?

• What is the longest time a user has to wait?

• How many database/application servers are required to fulfill a certain service level
agreement (SLA)??

• What is the highest number of concurrent users the system can handle?

To analyze a system, predict its future system states and answer questions like the previ-
ously mentioned the system has to be modeled. Since the beginning of performance engi-
neering, the area has evolved. There exists a variety of modeling formalisms. Predictive
models, like, for example, Queueing Nets (QNs), Layer QNs, Queueing Petri Nets (QPNs).
Architectural performance models, like Descartes Modeling Language (DML) or Palladio
Component Model (PCM) can be transformed to predictive models for analysis. The
model can be analyzed using analytical or simulation approaches (see 2.3) provided by
formalism specific tooling. Modeling formalisms and their corresponding tooling have dif-
ferent advantages and disadvantages. Performing an educated choice of formalism and
tooling is difficult. This means engineers have to understand multiple formalisms, know
their strengths and know how to use the corresponding tooling. An attempt to simplify
this is the Descartes Query Language (DQL) [GBK14], a query based language that utilizes
an adapter based approach to support a multitude of modeling formalisms. It enables the
user to specify what performance questions and metrics he is interested in. DQL requires a
model of the system in a supported modeling formalism, but to use DQL the user does not
need to know or understand the used modeling formalim. Using DQL the user can retrieve
information about the model, the values of performance metrics and even use automated
detection of performance issues. DQL also allows the user to run multiple simulation on a
model while automatically changing some details about the model. This approach brings
multiple advantages:
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2 1. Introduction

• The user does not need to understand the underlying modeling formalism to use
DQL. This means one person can model the system using his preferred formalism
and others can analyze the system via DQL without having any understanding of
the used modeling formalism.

• Utilizing automated model transformation the user can transform the model to a
formalism that fits his needs and run DQL queries on it without having to learn
about a second formalism or its tooling. For example a formalism specialized on
design time analysis might be used during the development of a product and the
model is later automatically transformed to a formalism for run time analysis.

• DQL filters the collected data and only returns the requested information, making
the results more lucid. As mentioned above an user usually has a specific in question
in mind during a performance analysis, which he formulate as a DQL query. DQL
then answers the users question.

• The option to run multiple simulation on a model while automatically changing
some details about the model makes it easy to for example analyze if/how much the
performance of a system would improve if it had three, five or seven database servers.

To support a variety of modeling formalisms DQL uses a modularized approach, it dele-
gates the actual analysis to a formalism specific component called connector. This allows a
plugin style development. While the DQL engine takes care of the calculation of aggregates
(sums, averages, ...), the connector can freely decide how he handles most matters. The
connector chooses which entities with what metrics it offers, or what model properties can
automatically be varied during batch simulation. The connector can also decides which
values it allows for the runtime guiding CONSTRAINED AS clause. This freedom makes the
implementation of a connector to more than a simple implementation task, a lot design
choices have to be made. All currently implemented connectors support architecture level
performance models, like PCM [BHK11]. But with the amount of freedom the connectors
have it should also be possible to use DQL for a run time analysis modeling formalism.
In this thesis we want to test this hypothesis by implementing a connector for simQPN,
a simulator for QPNs. QPNs are a modeling formalism that was published first by Bause
in 1993 [Bau93]. They consist of a combination of two prior modeling formalisms, the
Petri Nets (PNs) and QNs. The result is a modeling formalism that hardware contention,
scheduling strategies, simultaneous resource possession, synchronization, blocking and soft-
ware contention can be modeled with [KB06]. While many analysis methods for QNs can
also be used on QPNs, simQPN utilizes simulations to analyze QPNs since this approach
scales better [KB06]. We chose QPNs over other modeling formalims, since for QPNs
there already exists extensive tooling, for example Queueing Petri net Modeling Environ-
ments (QPMEs) which also uses simQPN as a simulator. Aside from proving that DQL
has uses outside of analyzing architecture level models, this will also give users of simQPN
access to the advantages of DQL. For new users configuring simQPN simulations can be
quite confusing, while the proposed connector will always guarantie that a valid configu-
ration is used. This means the user can start simulations without having any knowledge
about how simulations work. As mentioned above, an user usually has a very specific
question in mind when starting a simulation, so DQLs query - answer style leads to lucid
results. Also simQPN currently does not support the batch analysis of slightly different
models, so the connector will also provide new features for the users of QPN.
chapter 2 introduces the foundations needed to understand this thesis, this includes DQL,
QPNs, some basics for the simulation of the latter and a short introduction to QPME.
Then in section 3.2 we explain our approach for the design and implementation of a
simQPN connector for DQL. It covers our goals, the plan for the implementation and
evaluation of the connector. Before we could start on the implementation of the connector
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3

we had to make make a series of design choices. Which QPN entities should we use as DQL
entities? How should the CONSTRAINED AS feature be implemented? What properties of
the model can the user variate during batch execution? These issues among others are
discussed in chapter 4. The technical details for the implementation of the three subcon-
nectors, the Model Structure Query Connector, the Performance Metric Query Connector
and the Performance Issue Query Connectorcan be found in chapter 5. Afterwards we
evaluate the connector in chapter 6, this includes unit testing as well as a performance
test. The concluding chapter 7 summarizes the thesis and lists ideas for future work.

3





2. Foundations

This chapter explains the foundations needed to understand this thesis. In section 2.1 the
main subject of this thesis DQL will be explained. Then the structure of QPNs is shown
in section 2.2, followed by details about the simulation of the latter in section 2.3. Lastly
QPME, a tool for modelling and analysis of QPNs will be introduced in section 2.4. QPME
consists of two independent tools, Queueing Petri net Editor (QPE) and simQPN. QPE
is a graphical interface for the creation and manipulation of QPNs. SimQPN is QPMEs
simulator for QPNs.

2.1 Descartes Query Language

The Descartes Query Language (DQL) provides a common interface for various perfor-
mance modeling formalisms. This abstraction level enables the user to access multiple
modeling formalisms through one interface. The user can use queries to select which
performance metrics should be calculated for the system. Performance metrics are val-
ues which to indicate the performance of the system. An example for a performance
metric would be the average time an user has to wait for completion of a request. To
use DQL to analyze a network, it first has to be described using one of the supported
modeling formalisms, like PCM. The syntax of DQL is similar to the Structured Query
Language (SQL), which makes it easy to understand.
The query language DQL supports three types of queries:

• Model Structure Queries

• Performance Metrics Queries

• Performance Issue Queries

Model Structure Queries are the basic queries that every analysis starts with. They can
be identified by the LIST keyword, which every Model Structure Query starts with. The
analysis of a system usually starts of with a query to LIST all available entities. Entities
represent every instance over which statistics can be compiled. Next comes a query to
LIST all available performance metrics for the entities of interest. If the user plans on
using Degree of Freedom (DoF), he can also formulate a Model Structure Query to LIST

the available DoF options. The core of DQL are the so-called Performance Metric Queries.
These queries specify which information about the systems performance is required. In
Table 2.1 you can see three examples for DQL queries. The first one is a basic query to
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6 2. Foundations

Querytype Query Result

Model Structure LIST ENTITIES

USING connector@’modelpath’;
RESOURCE Entity1
RESOURCE Entity2

Model Structure LIST METRICS (
RESOURCE ’Entity1’ AS Client,
RESOURCE ’Entity12’ AS Database)

USING connector@’modelpath’;

Entity1.metric1
Entity1.metric2
Entity2.metric3
Entity2.metric4

Performance Metric SELECT

Client.metric1,
Database.metric4

CONSTRAINED AS ’Accurate’
FOR

RESOURCE ’Entity1’ AS Client,
RESOURCE ’Entity2’ AS Database

USING connector@’modelpath’;

Client.metric1: 0.3
Database.metric4: 7

Table 2.1: Example DQL-Queries with Results

LIST all available entities, which reveals that there are two entities, Entity1 and Entity2.
With the next query the user wants to know which metrics are available for both entities.
The query returns four available metrics, the metrics1-4. With this knowledge the user
now decides that he is interested in metric1 for Entity1 and metric4 for Entity2. He also
uses the CONSTRAINED AS feature to specify that he prefers accurate results over execution
speed. In the second and third query, DQL’s aliasing feature was used to rename the
non descriptive Entity1/Entity2 to Database and Client respectively. The last line of
every DQL query contains the USING clause that specifies which connector should be used
to obtain the desired metrics and the path to the model that should be analyzed. Aside
from the Model Structure and Performance Metrice Queries there are the Performance
Issue Queries. As the name suggests these queries can be used to find performance issues.
They currently only support the option to DETECT BOTTLENECKS, but will be expanded
in the future. It should be noted, that to date the DETECT BOTTLENECK feature is not
established for any modeling formalism. The Performance Issue Queries are a step towards
the descartes vision of self-aware computing. A self-aware computer is given a goal and
optimizes it’s own execution in order to achieve this goal with the minimal amount of
resources and energy [AME+09]. In theory a program could use Performance Issue Queries
to analyze which parts of the system are bottlenecks for it’s performance and then optimize
it’s own structure accordingly if it expects load spikes.
DQL utilizes a modularized approach in order to support multiple modeling formalisms.
Every incoming query is first fed into to Query Execution Engine (QEE), which validates
the query and transforms the query from a string to the internal query format. The QEE
then requests the connector for the used modeling formalism from the connector registry.
This connector then compiles the requested information and sends them back to the QEE,
which then validates the results, calculates aggregates if necessary and displays the results
to the user. Every DQL connector consists of the following pieces:

• OSGi Bundle Activator

• Connector Provider

• Connectors for the supported Query types

DQL implements a architecture defined by Open Services Gateway Initiative (OSGi)), a
approach for fully modulized programs. It allows you to install, uninstall, start and stop
components without having to restart the whole program. The OSGi Bundle Activator is
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2.1. Descartes Query Language 7

part of the OSGi Life cycle for a component and is called during the starting period of the
the application. It initializes the OSGi bundle context and any other resources that might
be required. The Connector Provider is a interface in DQL, that implements the functions
shown in Figure 2.1. This class is necessary, since not every connector necessarily supports
all three query types and with the connector provider it doesn’t have to provide method
stubs for the unimplemented methods.

Figure 2.1: The Connector Provider Interface

The core of a DQL connector are the PerformanceQueryConnector, the ModelStructure-
QueryConnector and the PerformanceIssueQueryConnector. Each of these connectors han-
dles the calculation of results for the according types of queries. In Figure 2.2 you can see
the interfaces for the three connectors.

Figure 2.2: The Connector Interfaces
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8 2. Foundations

2.2 Queueing Petri Nets

The Queueing Petri Nets (QPNs) are a modeling formalism for the qualitative and quan-
titative performance analysis of networks [Bau86]. For example in [Kou06b] QPNs were
used to analyze the performance of a web shop. QPNs are PNs to which the queues from
the QN were added. The Petri Nets (PNs) or place/transition nets are a combination
of places, transitions and tokens. The places act as containers for tokens and transitions
connect two or more places. They are responsible for the movement of tokens between
places. In Figure 2.3 a) you can see an example for a QN. The circles represent the places
Place1, Place2 and Place3, while the black dots are the tokens contained within them.
The three places are connected by one weighted transition (Transition1) which triggers
when it can remove one token from Place1 and three from Place3. Upon activation it
removes these token and places two new tokens in Place3. Figure 2.3 b) shows the PN
after the transition triggered.

Place1 Place2

Place3

Transition1

1 3

2

Place1 Place2

a) b)

Place3

Transition1

1 3

2

Figure 2.3: Firing of Weighted Transitions

More advanced PNs also allow for tokens of different colors and transitions that can only
trigger after a certain time (timed transitions). QPNs are PNs which also contain queuing
places, which are places with the functionality of a queue from the QNs. In Figure 2.4
you can see the structure of a queuing place. Incoming tokens are first placed in the
waiting area, the server then moves one token from the waiting area to the depository
after a specified think time. To determine which token should be moved upon activation
a multitude of approaches (scheduling strategies) are available. Examples for scheduling
strategies are first-come-first-served, processor-sharing, infinite server, random or priority.
For more information on the subject of scheduling strategies see [SKM]. The depository of
a queuing place acts as a normal QN place, meaning the tokens are available for transitions.
This enables the modeler to easily represent scheduling strategies and brings the benefits of
QNs into the world of Petri nets [Kou06a]. Some of the most used performance metrics for
QPNs are token throughput and average token wait time for a specific place. To analyze
the behaviour of tokens and to derive these values simulation can be used, as described in
section 2.3

8



2.3. Simulation 9

Server

Waiting Area
Server

Depository

Figure 2.4: Structure of a Queuing Place

2.3 Simulation

There exist analytic approaches to analyze QPNs, but these approaches do not scale well
due to the state space explosion problem [KB03a]. The solution to handling bigger net-
works is to simulate their behavior and analyze the statistics gathered during the simula-
tion. Since the behavior of the model can be described as a chain of events, discrete-event
simulation can be used [Mer11]. User requests and internal requests could be modeled as
events. With simulations it is important to differentiate between two different types of
time [Fuj99]. Simulation time is the term used to describe time inside the simulation, for
example every request to database Y takes five seconds of simulation time. The simulation
will not actually wait for five seconds, but maybe only a fraction of a second. This allows
simulations to cover long time spans of simulated time quickly. If we want to refer to the
real time passed, not the time inside the simulation we will use the term wall-clock time.
When analyzing models we assume that we are interested in the long term behavior of the
system. It can be assume that after a long time of simulation the behavior of the simulated
system represents the long term behavior of the model. This state is called steady-state
and it’s behavior is called steady-state behavior. The time needed to reach the steady-
state is called warm up period. There exist various techniques for the prediction of the
warm up periods duration [LKPW08]. After the warm up period is over the simulation
starts collecting information about the behavior of the system. The statistics to look for
during steady-state analysis are the meanµ, the varianceσ and the confidenceinterval.
The confidence interval describes the interval that the mean is contained in. It can be
calculated using the following formula from [Wal13]:

µ(n) ± tn-1,1-α/2

√
S2(n)
n

n stands for the amount of data points, while S2(n) represents the sample variance. We
can use this confidence interval to configure the run time of our simulation. We simulate
not for a fixed time period, but until the confidence interval is either smaller than an
absolute value or less then a prior defined percentage of the mean. These two approaches
are called relative and absolute precision.

2.4 Queueing Petri net Modeling Environment

The Queueing Petri net Modeling Environment (QPME) consists of two major pieces,
the QPE and simQPN, a simulation engine. QPE can be used to create QPNs via an

9



10 2. Foundations

intuitive drag-and-drop interface. QPE is entirely written in java using Eclipse’s GEF.
The resulting QPNs can be saved to XML or analyzed with simQPN.

Figure 2.5: Building a QPN using QPE

SimQPN is QPME’s simulator for QPN Models. It supports three approaches for the quan-
titative analysis of the steady-state-behavior of QPN models, the Batch Means Method, the
Replication/Deletion Approach of the Method of Independent Replications and the Method
of Welch [Wel67][LKK91][Paw90]. The Batch Means Method is mostly used since it is
easy to configure. QPME also supports different rules for how long the simulation should
run, which are Fixed Sample Size, Sequential/Absolute Precision and Sequential/Relative
Precision. Fixed Sample Size is the default mode, which simply stops the simulation after
a fixed amount of simulation time has passed. The other two approaches are sequential
approaches, which means the sample size (which in this case is equivalent to the passed
simulation time) isn’t set prior to the start of the simulation. Instead the simulation
checks during run time if a stopping rule is violated. For both modes, the stopping rule
is related to the predicted precision. As the names indicate they stop the simulation once
a certain absolute/relative precision is reached. The Sequential/Relative Precision rule is
the easiest to use, since it doesn’t require any prior knowledge. With simQPN the user
can specify stat levels for each place, which indicate how much information he requires
about the place. The available stat levels as listed in [SKM] are:

• Level 0: No statistics are collected.

• Level 1: Only token throughput data is collected.

• Level 2: Token population, token occupancy and queue utilization data is collected.

• Level 3: Token residence time statistics will be monitored.

• Level 4: A histogram of observed token residence times is added.

• Level 5: Token resides times are saved to a file. data

SimQPN then adjusts the precision of the tracked results accordingly to speed up the
simulation.

10



3. Approach

This chapter explains how we plan to implement a SimQPN connector for DQL. First
in section 3.1 we state the goals we want to achieve in thesis, using the approach de-
tailed in section 3.2. We will go into detail about our approach for the implementation
(subsection 3.2.1) and the evaluation of the results (subsection 3.2.2).

3.1 Goals

The implementation of the SimQPN connector for DQL can be divided in the following
subgoals:

1. Support Model Structure Queries.This includes loading the QPN model and
mapping of QPN elements to DQL services, resources and metrics.

2. Support Performance Queries This means we have to run a simulation and ex-
tract the requested information from the simulation results. Finally we will add
support for DoF, which means running multiple simulations either parallel or se-
quential.

a) Derive SimQPN configuration from the DQL Query To start a SimQPN-
simulation a configuration is needed. This includes for example total run time,
duration of the warmup period and a level indicating the required depth of
statistics for each place. Choosing these values correctly is essential to collect
useful information from the simulation.

b) Filter Simulation Results for Results SimQPN returns the results of a
simulation in form of XML-File. We plan to derive according XPaths from the
requested performance metrics to extract the required information.

c) Add DoF support Adding DoFsupport will allow the user to access informa-
tion collected from multiple simQPN-simulations.

3.2 Approach

3.2.1 Implementation

This subsection explains the approach we took for the implementation of a SimQPN-
Connector for DQL. It also explains which design choices we will have to make in the

11



12 3. Approach

process of the implementation. Finally, we sketch our approach on the evaluation of the
SimQPN Connector. As mentioned in section 2.1 the main task when implementing a
DQL-Connector is to implement these three subconnectors:

1. ModelStructure

2. PerformanceMetrics

3. PerformanceIssueQuerryConnector

As mentioned in [GBK14] the best approach is to implement them in this order, since
they tend to build on another. For this theses we will implement only the first two, since
simQPN doesn’t support anything that could be used to detect bottlenecks and building
this feature from scratch is beyond the scope of this thesis.

3.2.1.1 Model Structure Queries

To answer model structure queries we need to decide what entities are available, what per-
formance metrics can be calculated for named entities and what DoF options are available.
In our case the available entities will be the places in the QPN. To extract the names and
types of these places we will mostly reuse existing code from QPME. For performance
metrics we decided to offer every statistic that simQPN is capable of calculating. It is
important to mention that the available statistics differ between different types of places.
We have two different ideas for DoF options. The first idea is to let the user change the
initial population of color tokens in every place. This way the user can for example test
the performance of his network for different amounts of requests. The second idea we have
is to let the user define how often a place should be ’cloned’. Cloning a place will split the
amounts of initial and incoming tokens equally between them. This can be used to analyze
the performance of a system with for example different amounts of database servers.

3.2.1.2 Performance Metric Queries

The first decision that needs to be made when implementing support for performance
metric queries is what parameters to allow for the CONSTRAINED AS clause and how
to interpret these. First we want to implement only two options: ’Acurate’ and ’Fast’.
Simulations with ’Acurate’ will run until sufficient relative precision is reached, while ’Fast’
will return fast but less accurate results. The next design choice that hast to be made is
how to configure the simQPN simulation. While many parameters are simple to choose
sufficiently well, there are a few that make for hard decisions. The two parameters that
make for the main concerns are the total runtime for simulations constrained as ’Fast’ and
the duration of the simulations warmup period. The total runtime for ’Fast’ simulations
is difficult, since the resulting precision of two QPN’s with the same absolute precision
can vastly differ. We plan to implement an algorithm that considers the amount of places,
color tokens and number of queues in consideration. As mentioned in section 3.1 we plan
to derive XPaths from every performance metric to extract the required information from
the XML-files containing the simulation results. This means we have to derive the name
and type of the place and the involved colors/queues from the performance metric. If
there is enough time, we want to implement support for constrained as parameters of this
type: ’UP TO X h Y sec’ which will cause the simulation to only run for up to X hours
Y seconds. Unfortunately this feature will require some changes to the existing simQPN
code, since it currently only supports a total runtime measured in simulation time, not
wallclock time.

12



3.2. Approach 13

3.2.1.3 Performance Issue Queries

SimQPN is a simulation engine which does not provide additonal features beyond standard
simulation approaches that could be used for performance issue queries. This means that
we would have to implement everything from scratch. This is beyond the scope of this
thesis and will be left as future work.

3.2.2 Evaluation

Evaluating if the connector returns correct results is rather easy, we will run simulations
on some QPNs from research papers via QPME and via DQL and compare the results. On
the technological side of things, we plan to work with a combination of integration and unit
tests. We will implement integration tests for every type of query and support these with
unit tests for the key functions. A interesting idea, that unfortunately will have to be left
as future work is to take the QPN, transform it to another supported modeling formalism
and compare the results of the simQPN-connector to those of the corresponding connector.
Since we then have two ways to produce the same results, we can use this to flexibly test
the functionality of both the simQPN-connector as well as the other connector.

13





4. Design

When implementing a DQL connector for QPNs a lot of design decisions independent of
the concrete implementation have to be made. section 4.1 explains how we mapped the
QPN entities to DQL entities. Then section 4.2 explains different ways to support DoF
options. In section 4.3 our implementation of constraints is explained. The decision on
the duration of the warmup period is explained in section 4.4.

4.1 Mapping of QPN Entities to DQL Entities

DQL divides its entities in two categories, resources and services. This distinction
exists because DQL was originally meant for architectural performance models. But since
QPNs are not architectural performance models, this distinction doesn’t make much sense.
While we could make an arbitrary distinction into services and resources, we choose to
list all entities as resources. We did this because the user would not gain anything from
the distinction, it would only make things confusing for the user. We choose resources
over services, since the term service might confuse some users. The next decision we
had to make was which QPN entities we should use as DQL entities. When deciding
which options to offer as entities, it makes sense to take a look at which kind of statistics
simQPN collects, since we only want to offer entities for which there are performance
metrics available. SimQPN collects statistics for the places, colors and queues. So at a
first glance it would make sense to offer these three as entities, but the statistics simQPN
compiles for a color are always in regards to the behavior of the color tokens within a
specific place. So we moved these statistics to the places as well. While we could also
add the queue statistics to the places that utilize the queue, we chose to use the queues as
independent resources, since the queuing places would have too many performance metrics
if we added the metrics for the underlying queues to the queuing place itself. Also there
would be some weird behavior with one place using multiple queues or a queue being used
by multiple queuing places.

4.2 Choice of DoF Options

For the available DoF options it would be possible to allow the user to variate almost
anything. The two options that seemed the most useful were the initial population of
token of every color and to allow the user to configure how often a place should be cloned.
Figure 4.1 shows how the cloning would work.

15



16 4. Design

P1 P2 P3T1 T2 P2-2 P3T1-2 T2-2

T1-1 T2-1

T2-3 T2-2P2-3

P2-1

P3

a) b)

Figure 4.1: A small QPN prior and after cloning P2 two times

The cloned place would be replaced by a new set of places. For every incoming transition
to the cloned place there would be a transition to every new place. All new transitions will
have the same firing weight, which means it will be randomly chosen which one triggers.
The outgoing transitions will be multiplied but otherwise remain the same. This way if
a place is cloned X times, all incoming tokens will be equally divided between the new
places, meaning every place has 1/X of the prior traffic. This feature could be used for
analysis of the performance of a system with different amounts of database/application
servers, by cloning the place that represents the server. We choose the initial population of
token of every color over cloning because the user could use it to compare the performance
of a system with different amounts of userrequests, since in QPNs userequests are usually
modeled as tokens. This feature was deemed more important, since the analysis of per-
formance with different amounts of userrequests is useful for almost any system, while the
analysis of the performance with different setups doesn’t always make sense. Also cloning
places would require major changes to the QPN, while changing the initial population of
a color token inside a place is a matter of changing one value in the QPN. Allowing the
user to clone places as DoF options will be left as future work.

4.3 Implementation of DQL Constraints

Constraints in DQL are indicators for the connector how he should configure his simula-
tion/calculations. The syntax for a constrained as clause looks as following:

CONSTRAINED AS ’constraint’

With ’constraint’ being replaced for the actual constraint. Every connector can decide
which constraints it allows. The currently implemented connectors use some variation
of accurate and fast as constraints, it differs between connectors how many options are
available but they all rank from fastest to most accurate. We decided to only offer ’Ac-
curate’ and ’Fast’ as constraints, since an implementation like ’Very Accurate’ ’Accurate’
’Average’ ’Fast’ ’Very Fast’ isn’t too useful for the user, since he doesn’t know what the
difference between ’Very Fast’ and ’Fast’ is. The distinction between ’Accurate’ and ’Fast
on the other hand is very intuitive. This leads to the question, how do we control the accu-
racy/speed of the simQPN simulation? There are two ways to control the speed/accuracy
of a simulation, the first one is to use a fixed sample size stopping criterion (see section 2.4.
This solution has the advantage that it is very consistent. If we configure a simulation to
stop after X simulation time has passed, it will always need about the same time. This
means the user would know what run time he can expect for each option. The problem is,
that this solution doesn’t take the size or complexity of the QPN into consideration. While
X seconds might be enough for reliable data about a simple small QPN, it wouldn’t suffice
for a large complex one. Taking the size into consideration could be done with a solution
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that scales the sample size according to the amount of places within the QPN. But this
still leaves the issue with the complexity of the QPN not being taken into consideration.
The other option is to use relative precision as stopping criterion. This approach scales
with larger and more complex systems, but has the disadvantage that the time needed
to reach the required precision is subject to variance. We choose this option because we
prioritize reliability over predictability. A positive side effect of this implementation is
that we can also allow constraints of this type:

CONSTRAINED AS ’Accuracy = 0.4’

This option will allow expert users freedom to configure their simulation in more detail,
while the options ’Fast’ (0.8 accuracy) and ’Acurate’ (0.95 accuracy) are still available.

4.4 Duration of the Warmup Period

Another important parameter for the configuration of a simQPN simulation is the duration
of the warmup period (see section 2.3). When this parameter is set too low, parts of the
warmup period will be considered as steady state leading to incorrect results. If it is too
high, the simulation takes longer than necessary. There are techniques for the prediction
of the warmup periods length, from which [LKPW08] concludes MSER-5 as the favorite.
We chose to not implement MSER-5 because there are plans to implement it in simQPN,
so we went with a temporary solution which will be rendered obsolete when MSER-5 is
implemented in simQPN. We simply set the duration of the warmup period excessively
high, which leads to longer than necessary simulation. Which is preferred over sometimes
choosing it too low and producing incorrect results.

17





5. Implementation

This chapter explains how we implemented the Model Structure Query Connector (sec-
tion 5.1) and the Performance Metric Query Connector (section 5.2). In section 5.3 the
exclusion of a Performance Issue Query Connector is explained

5.1 Model Structure Query Connector

Model Structure Queries return information about the structure of the underlying model.
A Model Structure Query Connector offers three different types of Model Structure Queries,
LIST ENTITIES, LIST METRICS and LIST DOF. For all of these we need to extract infor-
mation about the model. QPME uses XML-files to save QPNs. In Figure 5.1 you can see
an example for a small XML-file that describes a QPN. We reduced the verbosity of the
qpn model to the relevant parts. This QPN contains one color (Color1), one queue new

Queue), two places (Place1, Place2). In Place1 there are initially 10 Color1 tokens, while
Place2 starts out empty. There is one transition (Transition) which connects Place1

and Place2 and moves one token from Place1 to Place2 each time the transition trig-
gers. To implement the connector we have to access information about what xml nodes
exist (i.e. how many places are there?) and also information which is contained within
the places attributes (i.e. initial population of a color reference). To do this we will uti-
lize the XPath query language [CD99]. XPaths navigate through the xml tree with the
parent/child relation between the object and utilizes conditions to filter the results. For
example the XPath /net/places/ would return a list of nodes that contains both place
elements. To filter the results xpaths uses conditions, to get all colorrefs of the Place we
would use the following XPath: /net/places/place[@id = ”14235”]/color − refs/”. The
statement place[@id = 14235] returns all places with the id 14235. Accessing attributes
instead of nodes can be done using the following XPath structure : node/@attribute. Now
that we have extracted all necessary information from the net we now need to understand
how DQL saves query information. It uses the Mapping Meta-Model, which is described
in [GBK14]. The major part of the Mapping Meta-Model is the EntityMapping class,
which you can see in Figure 5.2. For our Model Structure Query Connector the resource,
probe and dof classes have to return the requested information. The available entities will
be saved as resources. Every resource has a list of probes which represent the available
performance metrics for this entity. All available Degree of Freedom (DoF) options will
be saved in the EntityMappings list of dofs.

19



20 5. Implementation

<?xml version="1.0" encoding="UTF-8"?>

<net qpme-version="2.1.0.qualifier">

<colors>

<color real-color="4601ce" id="14235" name="Color1"/>

</color>

<queues>

<queue name="new queue" strategy="FCFS" servers="1" id="14235>

</queues>

<places>

<place id="14235" type="ordinary-place" name="Place">

<color-refs>

<color-ref color-id="14246" id="14237" initial-population="10"/>

</color-refs>

</place>

<place id="14236" type="queueing-place" name="Queue>

<color-refs>

<color-ref color-id="14246" id="14238" initial-population="0"/>

</color-refs>

</place>

</places>

<transitions>

<transition id="14239" type="immediate-transition" name="Transition">

<connections>

<connection id="14245" source-id="14245" target-id="14239"/>

<connection id="14245" source-id="14239" target-id="14246"/>

</connections>

</transition>

</transition>

</net>

Figure 5.1: Example for QPN XML file format

In 5.1 we listed the metrics we offer for ordinary places, queuing places and the queues
them self. As you can see, the queues don’t have any color specific metrics, only ordi-
nary places (places that aren’t queuing places) and queuing places collect these. For the
queuing places there are statistics for the queuing area and for the depository (see Fig-
ure 2.4). The statistics for the depository are marked with a leading Depository , while
the statistics for the queuing area are not marked specifically. For the per Color metrics
the names of the available colors are inserted. For example if a place has three colors, x1,
x2 and x3 then there would be the metrics x1 ArrivalThroughput, x2 ArrivalThroughput,
x3 ArrivalThroughput and so on for the metrics. The implementation of the Performance
Metric Query Connector can be divided into two parts, queries without DoF (single con-
figuration space) and queries with DoF.
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EntityMapping

- getModelLocation() <String>
- getDof() <EList<DoF>>
- getRessources <EList<Ressource>>
- getServics<Elist<Service>>

DoF

-getProperties() <Properties>

0..*

Resource

- getAlias() <String>
- getIdentifier() <String>
- getProbes() <EList<Probe>>

Service

- getAlias() <String>
- getIdentifier() <String>
- getProbes() <EList<Probe>>

0..*

<<Interface>>

Probe

- getMetricName() <String>
- setMetricName(String name) <void>

0..*

ProbeImpl

- getMetricName() <String>
- setMetricName(String name) <void>

DecimalResult

- getMetricName() <String>
- setMetricName(String name) <void>
- getAccuracy() <BigDecimal>
- getResult() <BigDecimal>

0..*

Figure 5.2: UML Diagramm of the EntityMapping

Metric Ordinary Place Queuing Place Queue

Place in general

TokenOccupancy

Depository TokenOccupancy

MeanTokenResidenceTime

QueueUtilization

QueueUtilizationDueToThisPlace

TotalArrivalThroughput

TotalDepartureThroughput

per Color

ArrivalThroughput

DepartureThroughput

MaximumTokenPopulation

MaximumTokenResidenceTime

MeanTokenPopulation

MinimumTokenPopulation

StandardDeviationTokenResidenceTime

TokenColorOccupancy

Depository ArrivalThroughput

Depository DepartureThroughput

Depository MaximumTokenPopulation

Depository MaximumTokenResidenceTime

Depository MeanTokenPopulation

Depository MeanTokenResidenceTime

Depository MinimumTokenPopulation

Depository MinimumTokenResidenceTime

TokenColorOccupancy

Table 5.1: Available Performance Metrics for the different types of places
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5.2 Performance Metric Query Connector

5.2.1 Single Configuration Space

Single configuration space queries are queries without DoF. Running single configuration
space queries can be divided into three tasks, first starting the simulation, then extracting
information from the results and finally returning the information. To start a simQPN
simulation there is a clear defined interface that has to be called. It requires that the
simQPN configuration is already saved to the QPN file. In chapter 4 we already discussed
how the precision, maximum run length and duration of the warmup period will be chosen.
Aside from these values, there are the stat levels for the places that have to be defined.
SimQPN allows us to assign stat levels to each place, which indicate what statistics are
collected for each place. There are six different stat levels available [SKM]:

• Level 0: No statistics are collected

• Level 1: Only token throughput data, aka arrival/departure throughput

• Level 2: Token occupancy, queue utilization, token population statistics (maximum
token population, mean token population, ...)

• Level 3: Token residence time statistics (maximum token residence time, mean
token residence time, ...)

• Level 4: Histogram of token residence times

• Level 5: Token residence times are saved to an additional file

For our connector the levels four and five are useless, since we have no way of returning
the collected data. From the other four levels we always choose the lowest one, that still
collects sufficient information. This speeds up the simulation, since as little information
as possible is collected. The stat levels for the queue statistics are applied to the queuing
place that utilizes the queue. SimQPN saves the results of a simulation to a xml file, this
means we can use XPath again to retrieve the required information. From the name of
the resource and the performance metric enough information can be collected to formulate
exact XPaths to extract the answers to the query. To return the information to DQL the
ProbeImpl for every performance metric is replaced with a DecimalResult (see Figure 5.2).
We set the accuracy of the Decimal result to the value we used for the configuration. We
parse the simQPN log file for errors, and if an error occurred during the simulation the
accuracy is set to zero to inform the user that the collected results might be incorrect.

5.2.2 Degrees of Freedom

The analysis of queries with DoF comes down to running multiple simulations, so the first
question is if they should be run parallel or sequential. simQPN does offer support for the
parallel execution of simulations. But even though this method is faster we decided against
it, since there are some QPN features where parallel execution is not supported yet. Again
we chose to cover all QPNs rather than focusing on execution speed. For every simulation
of a DoF query minor changes have to be made to the QPN. We read the original QPN,
make the changes and then write it to a folder containing log files, qpn files and result
files for the simulation. This allows the user to track what changes were made and what
the results were. Returning the information about the results is convenient, since DQL
expects a list containing the results of every simulation. The information about which DoF
parameters were chosen for which simulation is saved as DecimalResults (see Figure 5.2).
The name of the DoF parameter (i.e. initial population of x1 tokens in Client) is saved as
the DecimalResults name, the value of the parameter as the value of the DecimalResult.
Accuracy is set to 1.0 since DQL does not allow empty fields.
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5.3 Performance Issue Query Connector

As mentioned in subsubsection 3.2.1.3 we will not implement support for a performance
issue queries, so there is no need to implement a Performance Issue Query Connector.
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6. Evaluation

In this chapter, we evaluate the effect of constraints on the performance of a query in
section 6.1. The validation of our implementation is described in section 6.2.

6.1 Evaluation of constraints

Since we choose relative precision as a stopping criterion, the total run time of the simu-
lations is subject to variance. This makes the evaluation of the CONSTRAINED AS feature
difficult, since we can not simply run two simulations with different accuracy and check
if the simulation with lower accuracy. To combat this we ran extensive performance test.
We choose two models, a small QPN and a large QPN and ran 10 simulations on each,
with an accuracy of 0.95 and 0.7. This lead to a total of 40 simulations. As models we
choose the ispass03.qpe and SjAS04Model 6AS-L5.qpe which are shipped with QPME (see
[KB03b][?]). For the performance tests we used a server with the following specifications:

• Processor: Intel Core i5 4690K 4x 3.50GHz So.1150

• RAM: 8GB G.Skill TridentX DDR3-2400 DIMM CL10

• Videocard: 4096MB MSI GeForce GTX 970 OC Aktiv PCIe 3.0 x16

• Motherboard: ASRock Z87 Pro3 Intel Z87 So.1150 Dual Channel DDR3 ATX

We choose to only test the performance of single configuration space queries, since queries
with DoF are a composite of queries with single configuration space, so if the constraints
work for queries without DoF then it will work for queries with DoF as well. In 6.1 you
can see the results of our tests.

To determine that the test results follow a normal distribution we used the lilliefors test.
More information about this test can be found in [AM07]. MATLAB offers the convenient
function lillietest(x) for the execution of lilliefors tests, which returns 1 if the test
rejects the null hypothesis that the data comes from a distribution in the normal family
at the 5% significance level. As you can see in Table 6.1 all four series of measurements
are normal distributed according to the liliefors test. Now that we know that the samples
follow a normal distribution we can use the student’s t test [Hsu38] to determine whether
the runtime of the ten runs for each model with an accuracy of 0.98 can be from a normal
distribution with the same mean as the runs with an accuracy of 0.7. Again MATLAB
offers the convenient function testt2(x, y) to run a two-sample t test. It returns 1 if
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Table 6.1: Results of the performance tests

the hypothesis that both series of data follow the same normal distribution is rejected at
a 5% significance level and 0 otherwise. The student’s t test returns 1 for the small and
the large model as shown in Table 6.1, meaning the runtime of the runs with different
accuracy can not follow the same normal distribution. This proves, that the constrained
as feature correctly sets the accuracy.

Table 6.2: Results of the performance tests

6.2 Validation

The validation of our simQPN connector is based on two assumptions:

• The DQL QEE works correctly

• SimQPN works correctly

The consequences of these assumptions are, that we do not need to test if results returned
by the QEE/simQPN are correct. This means we do not need to test if for example
aggregates work or if the results returned by simQPN are correct. What we do need to
test is:

1. Are the correct DQL enties listed?

2. Are the correct metrics listed?

3. Are the correct DoF options listed?

4. Are the stat levels set correctly?

5. Is the simQPN configuration correct?

6. Are the simQPN results extracted correctly?

7. Are the QPNs modified correctly for queries with DoF?
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With these questions in mind we designed a set of integration and unit tests. Questions 1-3
are covered by integration tests for the model structure query connector. A parameterized
test verifies that LIST ENTITES, LIST METRIC and LIST DOF queries for a set of QPNs
return the correct results. Unit tests that use XPath to retrieve information about the
stat levels and simQPN configuration from the modified QPN verify that the points four
and five work correctly. Another unit test checks whether the correct results are extracted
from a simQPN results file. Question seven is also covered by a unit test, that checks
the properties of the QPN files after they were modified for a DQL query. The test
suite is completed by integration tests for different performance metric queries on the
same set of QPNs we used for the model structure queries. This set of test covers the
above mentioned error sources and offers good general coverage as well to ensure that the
connector is working as intended.
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7. Conclusion

In this final chapter, we provide a summary and conclusion of this thesis in section 7.1
and point out options for future work in section 7.2. These options include optimization
for the query processing, ideas for case studies and additional features.

7.1 Summary and Conclusion

This thesis develops a DQL connector for QPN analysis using the SimQPN simulation
engine. This connector allows users to analyze QPNs with simQPN simulation through
the DQL interface. This means users can now start simulations with next to no prior
knowledge about simulations, since our connector takes care of the simulations configura-
tion. A simulation usually returns all information that was collected and the user has to
find the values he is looking for. This is different with DQL since DQL filters the results
to fit the query. Aside from improving the usability of simQPN, the simQPN connector
for DQL also adds new features to simQPN, due to the support for the exploration of
DoF options. To implement a simQPN connector for DQL we had to implement a model
structure query connector and a performance metric query connector. While the model
structure query connector simply has to extract information from the QPN and return it,
the performance metric query connector is far more complex. It has to start and configure
simulations, filter the simulations results and support the exploration of DQL options.
Before we could implement the subconnectors, design decisions had to be made. We had
to decide how many and which DQL entities we offer and whether to brand them as re-
sources or services. We choose to offer all places and queues of the QPN as resources for
lucidity reasons. Next we had two options for what DoF options we would offer, cloning
of a place (see section 4.2) or initial color token population. We went with the initial color
token population over the cloning since the variation of initial color token population can
be used for a broader spectrum of purposes. DQLs performance metric queries contain
a CONSTRAINED AS ’value’ clause, who’s value will be directly transmitted to the con-
nector. This feature should be used to allow the user to regulate the speed/accuracy of
the simulation. We choose to allow three options for constraints, ’Accurate’, ’Fast’ and
’Accuracy = X’ with 0 < X < 1. ’Accurate’ and ’Fast’ are equivalent to ’Accuracy = 0.95’
and ’Accuracy = 0.8’ respectively. We used a relative precision stopping criterion to de-
termine the length of the simulation, which means to implement these constraints we had
to adjusted the value of the stopping criterion accordingly. On the implementation side we
used DQLs EntityMapping class to return the answer to queries. The component based
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nature of the EntityMapping makes it possible to return the answers to different queries
through the same interface. To answer model structure queries we retrieve information
about the QPN from the xml file using XPath, to answer performance metric queries we
run simQPN simulations using the according interface. To run simQPN simulation we
first had to write the simQPN configuration to the QPN file. The simQPN configuration
was derived from the constrained as clause (accuracy) and the stat levels were set to re-
trieve just enough information to answer the queries. Since simQPN saves the results of
a simulation as xml files we could utilize XPaths to retrieve the required information. To
evaluate if the simQPN connector works correctly we used a set of integration and unit
tests which we developed in regard to the possible error sources. Since we could not utilize
automated testing to evaluate whether the constrained as feature works correctly due to
the run times variance we ran a performance test to show the impact of the constrained
as feature on the run time. This evaluation allows us to be certain that we achieved our
goals and objectives. The simQPN connector improves simQPNs usablilty for new users
and added a new feature with the support for DoF. We successfully showed that DQL can
be used for modeling formalisms that are not designed for design time analysis.

7.2 Future Work

This section list the ideas that did not make it into this thesis but could be implemented
to improve the simQPN connector.

• Additional Features

– Implementation of cloning places as DoF parameter: As explained in
section 4.2 letting the user clone places within the QPN has many uses. This
feature should be prioritized since it yields the greatest benefits.

– Integrate an DQL user interface in QPME: A specialized interface that
doesn’t offer full DQL support, but only the relevant parts for running DQL
queries on QPNs would lower the barrier of entry for new users and show the
advantages of DQL even when working with only one modeling formalism.

– Support for Performance Issue Queries: The automated detection of bot-
tlenecks would be a great step toward self-aware computing, but still requires a
lot of work. It is up for disscussion wether this feature should be implemented
in simQPN, the connector or DQL.

• Optimizations for query processing

– Use parallel simulation for DoF queries: This feature would speed up the
processing of DoF queries, but unfortunately it can not be implemented until
simQPN supports parallel simulation of every QPN.

– Implementation of MSER-5 to detect the duration of the warmup
period: This feature would speed up the simQPN connector, since it currently
overestimates the duration of the warmup period. This feature should not be
implemented in the connector but in simQPN directly since the users of QPME
could also profit from it.

• Case Studies

– Use model transformation to cross test two connectors: As explained
in subsection 3.2.2 automated model transformation between QPN and another
modeling formalism that DQL supports could be used to compare the results of
two simulations on the same system. This would allow automated integration
testing for both connectors. This feature is on hold until a fully automated
model transformation is available.
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8. Acronyms

PN Petri Net

QN Queueing Net

QPN Queueing Petri Net

PCM Palladio Component Model

DQL Descartes Query Language

DML Descartes Modeling Language

QPME Queueing Petri net Modeling Environment

QPE Queueing Petri net Editor

OSGi Open Services Gateway Initiative

DoF Degree of Freedom

QEE Query Execution Engine

SQL Structured Query Language
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