AT

Karlsruhe Institute of Technology

Online Performance Queries for
Architecture-Level Performance
Models

Master Thesis of

Fabian Gorsler

At the Department of Informatics
Institute for Program Structures
and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr. Walter F. Tichy
Advisor: Dipl.-Inform. Fabian Brosig
Second advisor: Dr.-Ing. Samuel Kounev

Duration: 2012-12-12 — 2013-07-09

KIT — University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association WWW_kit_edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 2013-07-09

(Fabian Gorsler)

Abstract

As modern software systems are subject to increasing dynamics,
achieving an acceptable performance becomes a challenge of increasing
concern. Thus, during design- and run-time, the performance of a
software system needs to be analyzed continuously to avoid contention.
Model-based performance prediction is an approach to analyze software
systems by predicting their behavior and supporting users to draw
conclusions.

Available approaches for performance prediction are usually based on
their own modeling formalism and analysis tools. Users are forced to
gain detailed knowledge about these approaches before predictions can
be made. To lower these efforts, intermediate modeling approaches
simplify the preparation and triggering of performance predictions.
However, users still have to work with different tools suffering from
integration, providing non-unified interfaces and the lack of interfaces
to trigger performance predictions automatically.

Our approach is to provide a novel query language capable of expressing
queries for questions like “What is the response time of service X7
Previous shortcomings are addressed by an interface to integrate
different tools. The interface is accessible through a unified query
language to trigger performance predictions. The design of the query
language is based on a classification scheme with an implementation of
an extensible architecture aiming to integrate a broad range of tools
and third-party extensions.

The query language is evaluated by integrating a prominent approach
for performance prediction and controls it while conducting a perfor-
mance analysis. Two additional approaches are conceptually evaluated
for integration and showing promising synergies. Overall the results are
encouraging and motivate the future development of our query language
and the integration of additional tools.

vii

Zusammenfassung

Da moderne Software-Systeme steigender Dynamik unterworfen sind,
ist es eine immer bedeutsamere Herausforderung ein akzeptables
Leistungsverhalten zu erzielen. Aus diesem Grund ist es, wihrend der
Entwurfszeit und im Betrieb, notwendig das Leistungsverhalten kon-
tinuierlich zu analysieren um Engpésse zu verhindern. Modellbasierte
Leistungsvorhersage ist ein Ansatz, Software-Systeme durch Vorher-
sagen zu analysieren und Benutzer beim Riickschlieffen zu unterstiitzen.

Verfligbare Ansétze zur Leistungsvorhersage basieren fiir gewthnlich
auf eigenen Modellierungsverfahren und Analysewerkzeugen. Benutzer
werden daher dazu gezwungen Detailkenntnisse iiber diese Ansitze zu
entwickeln bevor sie Vorhersagen erstellen kénnen. Um diesen Aufwand
zu reduzieren, sowie die Vorbereitung und das Starten von Vorhersagen
zu vereinfachen, wurden Ansétze auf Basis von Zwischenmodellen
entwickelt. Nichtsdestotrotz bleiben die Probleme, dass Benutzer
mit verschiedenen, nicht integrierten Werkzeugen arbeiten miissen,
uneinheitliche Schnittstellen bereitgestellt werden und Schnittstellen
fiir eine Automatisierung von Leistungsvorhersagen fehlen.

Unser Ansatz ist es eine neuartige Abfragesprache zu entwickeln. Die
Abfragesprache erlaubt es eine Frage wie ,Was ist die Antwortzeit von
Dienst X7,“ auszudriicken. Einschrdnkungen aus fritheren Arbeiten wer-
den durch eine integrale Schnittstelle gelost, die verschiedene Werkzeuge
biindelt und es durch eine einheitliche Abfragesprache erlaubt Leis-
tungsvorhersagen auszufithren. Der Entwurf der Abfragesprache basiert
auf einem Klassifikationsschema, sowie einer Implementierung auf Basis
einer erweiterbaren Architektur um ein breites Band von Verfahren und
Erweiterungen einzubinden.

Zur Evaluierung der Abfragesprache integrieren wir einen bekannten
Ansatz fiir die Leistungsvorhersage und fiithren eine Leistungsanalyse
durch die Abfragesprache aus. Zwei weitere Ansdtze werden konzep-
tionell fiir eine spéatere Integration mit der Abfragesprache betrachtet
und zeichnen ein erfolgversprechendes Bild ab. Insgesamt sind die bish-
erigen Ergebnisse unseres Ansatzes zufriedenstellend und motivieren die
zukiinftige Weiterentwicklung der Abfragesprache sowie die Integration
weiterer Werkzeuge.

vii

Contents

. Introduction

1.1. Motivation e
1.2. Aim of the Thesis
1.3. Document Outline e

. Technological Foundations

2.1. Performance Modeling and Analyses,
2.2. The Descartes Meta-Model L.
2.3. Eclipse Modeling Framework and Xtext
2.4. OSGi Framework Approach

. Design of a Query Language for Online Performance Queries

3.1. Usage Scenarios and User Stories
3.1.1. Definition of Usage Scenarios and User Roles
3.1.2. User Stories for Offline Scenarios
3.1.3. User Stories for Online Scenarios

3.2. Classification Approach for Online Performance Queries
3.2.1. Overview of the Classification Approach
3.2.2. Objectives for different Query Classes

3.3. Specification of Functionality provided by Query Classes
3.3.1. Overview of Query Class Functionality
3.3.2. Functionality for Model Access
3.3.3. Querying the Model Structure
3.3.4. Querying Performance Metrics in Model Instances
3.3.5. Querying and Analyzing Performance Issues
3.3.6. Optimization Problem Queries

3.4. Evaluation of User Stories and Usage Scenarios
3.4.1. Introduction to the Evaluation of Expressions
3.4.2. Evaluation of Model Structure Queries
3.4.3. Evaluation of Performance Metrics Queries
3.4.4. Evaluation of Degrees-of-Freedom in Queries
3.4.5. Evaluation of a Temporal Dimension in Queries
3.4.6. Summary

3.5. Query Language Rules and Terminals
3.5.1. Conventions and Basic Grammar Rules
3.5.2. Grammar Rules for Model Access
3.5.3. Grammar Rules for Model Structure Queries
3.5.4. Grammar Rules for Performance Metrics Queries
3.5.5. Grammar Rules for Aggregate Calculation
3.5.6. Grammar Rules for Temporal Observations
3.5.7. Extensions for Constrained Queries
3.5.8. Extensions for Degree-of-Freedom Queries

ix

X Contents

3.5.9. Grammar Rules for Performance Issue Queries 42

4. Related Work 43
4.1. Intermediate Models in Performance Engineering 43
4.2. Modeling of Degrees-of-Freedom and Strategies for their Exploration 44
4.3. Approaches for the Modeling of Performance Metrics and Measurement . . 45
4.4. Detection of Bottlenecks in Performance Models 46
4.5. Domain-specific Languages for Modeling Queries 46
5. Implementation of a Query Language for Online Performance Queries 47
5.1. System Architecture and Component Description 47
5.1.1. Description of the System Architecture 47
5.1.2. Description of Interfaces within the System Architecture 50

5.2. The Mapping Meta-Model 52
5.2.1. Introduction of the Mapping Meta-Model 52
5.2.2. Description of Model Entities 52
5.2.3. Usage in Model Structure Queries 54
5.2.4. Usage in Performance Metrics Queries 54

5.3. Execution of Queries and Component Interactions 56
5.3.1. Registration and Lookup Process of the Connector Registry 56
5.3.2. Execution of Model Structure Queries 57
5.3.3. Execution of Performance Metrics Queries 59
5.3.4. Calculation of Aggregates on Performance Metrics 61
5.3.5. Absolute Calculation of Time Specifications 65
5.3.6. Configuration of Degrees-of-Freedom Evaluation 66

5.4. Eclipse-based User Interface for Performance Analysis 68
5.4.1. Query Editor and Execution Environment 68
5.4.2. Presentation of Query Results 68

6. Evaluation of Design and Implementation 71
6.1. Controlling the Palladio Component Model (PCM) 71
6.1.1. Introduction to the Palladio Component Model 71
6.1.2. Mapping the Palladio Component Model 72
6.1.3. Run-Time Scenario and the MediaStore Example 72
6.1.4. Case Study with the MediaStore Example 73
6.1.5. Summary 7

6.2. Integrating the KLAPER Approach and KlaperSuite 77
6.2.1. Introduction to the KLAPER Approach 7
6.2.2. Mapping KLAPER with the Mapping Meta-Model 78
6.2.3. Integrating KlaperSuite as Connector 79
6.2.4. Summary 79

6.3. Implementing a Performance Data Repository (PDR) 80
6.3.1. Introduction to the Performance Data Repository 80
6.3.2. Description of the Repository Meta-Model 80
6.3.3. Accessing historic Model Instances 81
6.3.4. Computation of Impacts 81

6.4. Controlling Experiments with the Software Performance Cockpit (SoPeCo) 82
6.4.1. Introducing the Software Performance Cockpit 82
6.4.2. Integrating the Software Performance Cockpit 82
6.4.3. Control Loop for Sensitivity Analysis. 84
6.4.4. Summary 85

Contents xi
7. Conclusion and Future Work 87
7.1. Summary and Conclusion oL 87
7.2. Future Work e 88
Bibliography 91
Appendices 97
A, Acronyms ... 97
B. Index of DQL Grammar Rules 98
C. Implemented Software Components 99

xi

List

2.1.
2.2.
2.3.

3.1.

5.1.
5.2
5.3.
5.4.
9.5.
5.6.
0.7.
5.8.
5.9.
5.10.

5.11.
5.12.

5.13.
5.14.
5.15.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

of Figures

Descartes Meta-Model Overview based on [BHK12] 7
Ecore Kernel based on [SBPM09, p. 105] 8
OSGi Life Cycle Layer State Machine from [OSG11, p. 92] 9
Overview of the Query Classification Approach 23
Overview of Components and Dependencies 48
Interfaces provided by the Query Execution Engine 50
Interfaces provided by the Connector Registry 50
Interfaces provided by a Connector Implementation to the Connector Registry 51
Interfaces provided by a Connector Implementation for Query Execution . . 52
Diagram of the Mapping Meta-Model 53

Instances of the Mapping Meta-Model representing the Query from Listing 3.1 55
Instances of the Mapping Meta-Model representing the Query from Listing 3.2 55
Instances of the Mapping Meta-Model representing the Query from Listing 3.3 56
Interaction of the DQL Query Execution Engine with the DQL Connector

Registry o . o e 58
Interaction between Software Components during the Execution of a Model

Structure Query 60
Interaction between Software Components during the Execution of a Per-

formance Metrics Queryo 62
Steps for Pre- and Post-Processing of Aggregates in addition to Figure 5.12 64
Reference Points for Time Specifications 66
Screenshot of the Eclipse IDE showing a DQL Query for PCM 69
Component Diagram of the MediaStore Example from [IPD12] 73
Experiment Automation Configuration Meta-Model from [Merll] 75
KLAPER Meta-Model from [GMRS08] 78
The Repository Meta-Model as Extension of the Mapping Meta-Model . . . 80
Computation of Impacts through ObservableImpact 83

Descartes Query Language (DQL) Architecture with a Control Loop with
SoPeCo e 85

xiii

List of Tables

3.1. User Types and Usage Environments
3.2. Query Classification Matrix

XV

Listings

3.1. Example of a Model Structure Query with LIST ENTITIES
3.2. Example of a Model Structure Query with LIST METRICS
3.3. Example of a Performance Metrics Query with SELECT
3.4. Example of a Performance Metrics Query with SELECT and an Aggregation
Operation of Results oo
3.5. Example of a Model Structure Query with LIST DOF
3.6. Example of a Performance Metrics Query with SELECT and EVALUATE DOF .
3.7. Example of a Model Structure Query with SELECT with OBSERVE using cus-
tom Time Units o
3.8. Example of a Model Structure Query with SELECT with OBSERVE using
BETWEEN o e e e e e

4.1. MQL Example from [FJKH12]

6.1. MediaStore Example for LIST ENTITIES
6.2. MediaStore Example for LIST METRICS
6.3. MediaStore Example for SELECT
6.4. MediaStore Example for LIST DOF v o v v
6.5. MediaStore Example for SELECT with EVALUATE DOF
6.6. Repository Meta-Model Example for SELECT with OBSERVE requesting a
model instance three stepsinthepast
6.7. Repository Meta-Model Example for SELECT with OBSERVE referring to an
ObservableImpact
6.8. Example of a Degree of Freedom (DoF) Query
6.9. Example of a DoF Query in a Control Loop with SoPeCo
6.10. Exchange of Queries in the Control Loop with SoPeCo

xvii

1. Introduction

Modern Information Technology (IT) environments and systems are expected to provide
tailored services to customers in a responsive manner. Performance and availability are of
fundamental importance for today’s software systems [MDAO04, SW02]. On the other side,
modern IT solutions are introducing additional abstraction layers leading to an increasing
complexity of these systems, which makes achieving an adequate performance challenging.

To avoid performance problems within a software system, it is important to analyze its
performance characteristics during all phases of its life-cycle. Software Performance En-
gineering (SPE) is a discipline that focuses on “systematic, quantitative approaches to the
cost-effective development of software systems to meet performance requirements” [SWO02].
At each phase of the life-cycle of a software system, SPE helps to estimate the level of
performance a system can achieve and helps to make recommendations to improve the
performance level [MDAO4].

While during the design the choice of components and algorithms is of interest and their
behavior needs to be analyzed, at operation the dynamic allocation of processing resources
to handle customer workloads becomes more important [BHK12]. Achieving not a suffi-
cient level of performance during operation, providers might suffer from not being able to
process all incoming customer requests and to miss business goals. For both cases predic-
tions are needed to make an assumption on the behavior of the software system and to be
able to act before the system is saturated.

Typically, in SPE performance models are used to predict the performance of software
systems [Kou05]. A performance model is an abstract representation of a software system
and may also include the resources used by a software system. The advantage of the use of
performance models is, that they allow to make predictions before a software system is fin-
ished and that the cost is lower than providing a real system for experimentation [MAD94].

1.1. Motivation

Several approaches for model-based performance prediction exist [BDIS04, Koz10]. The
approaches differ in their modeling formalism, their expressiveness and their model solving
techniques. The available approaches can be categorized as predictive performance models
and descriptive performance models with architecture-level information.

Predictive performance models capture the temporal system behavior and can be used for
performance prediction by means of analytical or simulation techniques. To simulate the

2 1. Introduction

behavior of software systems using predictive performance models various approaches exist.
One example of a family of modeling formalism are queuing networks and their special-
izations [MDA04, Kou06, LCW™09]. Descriptive, architecture-level performance models
describe performance-relevant aspects of software system at the software architecture level.
These can normally be transformed automatically into predictive performance models al-
lowing to predict the system performance for a given workload and configuration scenario.
Prominent examples are the UML SPT profile [Obj05] and its successor the UML MARTE
profile [Obj11b], the CSM [WPP*05], PCM [BKR09] and KLAPER [GMRS08].

Available approaches for model-based performance predictions usually provide their own
toolchain and proprietary interfaces to trigger performance predictions, e.g. [SKM12,
CDF*13]. Thus, performance analysts are demanded to learn the modeling formalism
of the used approach and have to get familiar with the available toolchain for triggering
performance analyses. A common interface to access common performance prediction tools
is desirable.

The efforts for a performance prediction are high, which motivates the development of ap-
proaches to unify performance predictions by using intermediate modeling steps [WPP*05,
GMRSO08]. These approaches aim to reduce the effort of transforming descriptive perfor-
mance models to predictive performance models by addressing the N-to-M problem of n
descriptive performance models to be analyzed by m suitable predictive performance mod-
els. Instead of transforming an architecture-level model directly to a predictive model, the
authors propose an intermediate model as transformation target. Using these approaches,
existing transformations from the intermediate model to predictive performance models
can be reused. However, the approaches does not provide a generic interface to trigger
performance predictions. Performance analysts still need to deal with multiple solving and
analysis tools, and in case of automated performance analysis, toolchains suffer from miss-
ing Application Programming Interfaces (APIs) to trigger predictions programmatically.

Furthermore in online prediction scenarios as in [KBHR10], performance analysts are often
faced with questions like:

e What performance would a newly deployed service exhibit and how much resources
should be allocated to it?

e What would be the effect of migrating a service from one Virtual Machine (VM) to
another?

e How should the system configuration be adapted to avoid performance problems
arising from increasing customer workloads?

We refer to these questions as online performance queries and address the previously
mentioned shortcomings by providing a novel interface to trigger performance predictions.
Our approach is based on a query language as an interfaces that (i) allows the description
of performance queries, (ii) eases manual usage, and (iii) provides an API to trigger queries
in a programmatic way.

1.2. Aim of the Thesis

The aim of the thesis is the development of a language for performance queries. We focus
on online prediction scenarios with architecture-level performance models. However, this
allows also the usage for predictions at system development and deployment time. We
pursue the following goals:

e Provide an overview of common usage scenarios for performance predictions.

1.3. Document Outline 3

e Identify different classes of performance queries and provide a corresponding classi-
fication scheme.

e Propose expressions to form a query language for the analyzed usage scenarios.

e Design and implement a toolchain to connect the proposed query language as uni-
fying interface to existing performance prediction approaches.

e Implement the query language with pre- and post-processing steps allowing orthogo-
nal features, expose extension points for third-party contributions and provide users
a graphical interface to execute queries.

e Evaluate the design and implementation with established performance modeling ap-
proaches to demonstrate the applicability and appropriateness of the query language.

The query language includes features to address concerns during the design-time of soft-
ware systems, i.e. to configure a sensitivity analysis of variable parameters, and during
the run-time, i.e. to configure a trade-off of prediction timeliness vs. accuracy. It captures
the demands of manually querying a performance model, i.e. to browse a performance
model and to build queries incrementally, and to automate performance predictions, i.e.
to prepare or to generate queries by applications.

For the integration of existing interfaces we provide a toolchain consisting of an editor to
be used for building queries, exemplary implementations for architecture-level performance
models and interfaces to process queries from arbitrary sources. The implementation is
realized with a special focus on an extensible architecture to integrate available approaches
for model-based performance predictions in subsequent development steps.

We evaluate the applicability of our query language in several steps. First the design of
the query language is evaluated by providing a showcase of a workflow for performance
analysis, exemplary queries and descriptions of the expressiveness of queries. Following,
the query language is evaluated by providing an integration of an established example
of an architecture-level performance model [BKR09, Koz10]. Furthermore, we show how
the query language can be used to employ intermediate performance models as they are
presented in [GMRS08], and how the queries can be integrated into an existing experi-
mentation framework for sensitivity analysisfWHHH10].

1.3. Document Outline

In Chapter 2 an introduction of relevant technologies is given. The introduced technolo-
gies build a foundation for the design of the Descartes Query Language (DQL) and its
implementation.

Chapter 3 focuses on the design of DQL. We describe a set of motivating usage scenar-
ios and user stories. The user stories will be leveraged to derive a classification scheme
for queries and to classify the resulting functionality of queries. The designated query
classes are used to formulate a conceptual design for the implementation. The chapter is
completed by the detailed description of the resulting grammar used to form DQL.

Chapter 4 provides an overview of the state of the art of related work in research. An
additional excerpt introducing Structured Query Language (SQL) as Domain-specific Lan-
guage (DSL) concludes the chapter.

Chapter 5 is focused on the implementation of DQL. The toolchain used for the implemen-
tation is based on Xtext as a framework for creating DSLs, Eclipse Modeling Framework
(EMF) for the modeling of implementation parts and OSGi as run-time environment of-
fering the foundation to realize an extensible software architecture. Besides of the static

4 1. Introduction

software architecture, platform dynamics and the execution of queries are explained in
detail.

To demonstrate the capabilities and the appropriateness of DQL, an evaluation is following
in Chapter 6. In the evaluation, we apply DQL to established modeling approaches like
Palladio Component Model (PCM), and demonstrate further use cases of implementation
artifacts to provide access to performance data repositories.

The concluding Chapter 7 summarizes the work and contribution of this thesis and gives
an outlook on future work.

2. Technological Foundations

This chapter introduces technological foundations fundamental for this thesis. The first
two sections focus on the field of Software Performance Engineering (SPE). In Section 2.1
an introduction to performance modeling and analyses will be given, which is completed by
an introduction of the Descartes Meta-Model (DMM) and its building blocks in Section 2.2.
The DMM is an example of a descriptive performance model capturing architecture-level
information. The final two sections focus on technologies used in the implementation parts.
Section 2.3 presents technologies used in Model-driven Software Development (MDSD) as
integral parts of the implementation artifacts. The OSGi Framework as an approach for
implementing component-oriented architectures will follow in Section 2.4 and complete
this chapter.

2.1. Performance Modeling and Analyses

Modeling software systems can be seen as a compromise between effort for modeling,
accuracy of calculated results and the amount of computing time needed. Especially
when using online performance analyses to predict the behavior of a software system,
the required computing time becomes an influencing factor. In addition, the selected
modeling technique determines the available analysis techniques, as models have varying
expressiveness.

The Operational Analysis is a set of common methods to evaluate the behavior of a system
analytically. Common methods are, e.g. the Service Demand Law for determining the
service time of requests at resources, the Utilization Law to calculate the average fraction
of utilization of resources or Little’s Law for calculating the average number of requests
waiting to be processed at a specific resource. Detailed descriptions of methods of the
Operational Analysis can be found in [MDAO4, p. 61 ff.].

Opposed to analytic methods, simulation models can be used to predict the behavior of
a system and allow to capture dynamics. The Operational Analysis is limited to static
relationships of model entities. Simulation models might therefore be seen as being more
expressive at the price of additional effort for modeling and solving. Furthermore the higher
Degree of Freedom (DoF) through modeling comes at the danger “..that simulation models

that are not properly validated can produce useless and misleading results” [MDAO4, p. 38].

Additional model validation steps to analyze whether the desired information demand can
be answered, are an essential and recurring task during the simulation model creation. In
[MDAO4, p. 36 ff.] a discussion of analytic methods and simulation models is given.

6 2. Technological Foundations

A common approach for simulation models and performance prediction is the use of Queue-
ing Network (QN) Models, that are introduced informally in the following. A QN consists
of one or more queues, connections between queues and tokens that characterize requests.
Requests are processed at queues by servers and each queue has at least one server asso-
ciated for completing requests at a given service time.

Depending on the actual modeling approach, the requests can be modeled as open, closed
or mixed workloads to describe how requests enter and leave the system. In addition, a
QN can be enhanced to support different classes of workloads, that might use different
queues depending of their class. These models allow to reflect more complex systems. A
formal description of QNs with additional examples can be found in [MDAO4].

To compute performance metrics using a QN, several approaches exist. One approach
might be to use Operational Analysis as proposed by [DB78]. Although being not as
expressive as a simulation, bounds for the system can be calculated. An approach for the
simulation of an extended form of QNs, SImQPN, can be found in [KB06, KSM11]. The
simulation of request processing is based on stochastic distributions for service times and
step-wise transitions of requests between queues. Furthermore the scheduling of requests
at queues can be defined to meet the circumstances of the real-world system.

For providers of architecture-level performance models, e.g. like the DMM, one fundamen-
tal challenge is to provide transformation approaches towards analytic methods or simu-
lation models. Tailored transformations are crucial to offer users views on their software
systems and to predict performance metrics for these views. A view might be composed
only of a set of model entities, as the performance analyst or software engineer is focused
on a special part of the software system.

As software systems might change over time and the modeled resource allocation might
be altered due to new requirements, automated transformations and analyses are needed
to reason the effort for simulation purposes. Through generalized transformation rules,
the effort for validation of simulation models can be reduced and might only occur during
development time. Past work shows this approach is viable [WHSB01, ILFW05, BKK09].

2.2. The Descartes Meta-Model

The DMM is a novel approach for modeling modern distributed computing facilities and
enterprise software systems. The main objective of the DMM is the management of Service
Level Agreements (SLAs)! while ensuring an efficient resource allocation. Especially in
modern computing environments, e.g. Cloud Computing environments, where a resource
allocation on demand is possible, customers are likely to optimize their resource allocation
[BHK12].

Using a dynamic resource allocation, providers can adapt their computing power to their
customers’ demand and therefore reduce the operating cost of their computing systems.
For customers the dynamic resource allocation should be a transparent process as in an
optimal scenario the response times should not change during changes in the allocation.
The key challenge in this case is the self-awareness of systems to reconfigure their resource
allocation. Human interaction should be reduced to a minimum effort.

The concept of the DMM is based on an architecture-level approach covering more aspects
than a plain stochastic performance model. An architecture-level model covers a broader
view of an environment and is able to evolve and to reflect dynamic system changes. The
additional benefit of architecture-level performance models comes at the cost of higher
effort for creating the model instance and maintaining it.

!This thesis deals only with performance relevant aspects of the DMM, other aspects are out of scope.

2.2. The Descartes Meta-Model 7

Adaptation Process

L v H

Adaptation Points

System Architecture QoS Model

Application Architecture
£

I

I

I

I

| .

<<InternalAction>> O

I ResourceDemandX
I

|

I

I

I

I

I

I

Degrees-of-
Freedom

Resource Landscape

<<Container>>
<<Contail

e3

<<Container>>
Node2

c_________________:\ J

Figure 2.1.: Descartes Meta-Model Overview based on [BHK12]

An architecture-level performance model is desirable as a foundation of the Descartes
Query Language (DQL) in order to provide online prediction capabilities and to reflect
dynamic configuration changes of an operating environment. Furthermore having a more
general approach than pure stochastic performance models as foundation, allows to cope
with complex environments found in modern data centers.

From a high-level point of view the DMM should be seen as the integration of different
parts as shown in figure 2.1: (i) A Resource Landscape Sub Meta-Model for the modeling of
environments, (ii) an Application Architecture Sub Meta-Model to cover the performance
characteristics of an application, (iii) an Adaptation Point Sub Meta-Model to reflect the
DoF in a system environment and finally (iv) an Adaptation Process Sub Meta-Model to
represent the logic for adaption processes.

Through using (i) and (ii) already System Architecture Quality of Service (QoS) models
can be created, e.g. for evaluating capacity planning scenarios. For more sophisticated
models using (iii) and (iv) complex and dynamic structures can be modeled. This way,
the gap between models of software systems and models of computing systems, is bridged
allowing more advanced techniques.

Examples for the modeling of DoFs in the Adaptation Point Model are options to define
boundaries on the configuration space (e.g. Virtual Machine (VM) need at least one
virtual Central Processing Unit (vCPU) provisioned and can operate up to eight vCPUs)
and furthermore offers validation capabilities (e.g. 1 - 64 GBs of memory can be allocated,
but configurations are only valid in steps of the power of 2 Bytes). Through modeling
Adaptation Points of an environment, technical aspects can be formalized and evaluated
as a scheme of rules.

The implementation of DMM is based on Eclipse Modeling Framework (EMF), which is
introduced in Section 2.3. The meta-model part is still under ongoing development and
will be extended in future. Furthermore the model is also constrained by rules using the
Object Constraint Language (OCL) that brings semantics to the model and ensures valid
model instances. [BHK12, Obj12]

8 2. Technological Foundations

eSuperTypes

EClass o EAttribute . EDataType
name: String " eAttributes name: String eAttributeType " name: String
0..*

eReferences

Vo

EReference
name: String eOpposite
containment: boolean
lowerBound: int
upperBound: int 0.1

eReferenceType

Figure 2.2.: Ecore Kernel based on [SBPMO09, p. 105]

2.3. Eclipse Modeling Framework and Xtext

EMF is part of the Eclipse Modeling Project? providing a meta-model, called Ecore, and
a toolchain for MDSD tightly integrated into the Eclipse Platform. EMF is intended to
bridge pure modeling techniques like described by Model-driven Architecture (MDA) and
more pragmatic approaches like MDSD [SBPMO09]. It provides facilities to specify parts
of applications using model-based techniques to assist engineers during the initial devel-
opment and later maintenance phases. Using clean and well-defined modeling techniques,
the software design is expected to benefit from precise actions that can be performed to
implement changes.

The Ecore Meta-Model is made up on several parts, where the Kernel is the main part as
displayed in figure 2.2. The Kernel consists of the entities required to model object-oriented
classes with attributes, data types and references between classes. Further extensions of
the Kernel are based up on structural and behavioral features, classifiers, packages and
factories and annotations. Seen from an architectural viewpoint, Ecore features a class-
concept that addresses known features of the Java programming language and makes it
therefore a suitable meta-model for Java-based implementations [SBPMO09, p. 106 ff.].

The foundation of EMF is derived from the principles of Unified Modeling Language
(UML) and Meta Object Facility (MOF) created by the Objects Management Group
(OMG). OMG defines these standards for interoperability and collaboration in software
architecture, engineering and development domains. EMF and its meta-model Ecore are
built up on a subset of these specifications crafted to object-oriented software development,
which can be seen as Ecore is based on a subset of UML Class Diagrams [Objl1la, Objllc,
Objl1d].

For the implementation of programming languages and Domain-specific Languages (DSLs),
Xtext? provides an integrated toolchain approach [Ecl12]. The Xtext toolchain is based on
EMF and uses model-driven techniques to provide a comprehensive set of infrastructure to
start the customization of a DSL environment. To provide the infrastructure, Xtext uses
a grammar file in an Extended Backus-Naur Form (EBNF)-like syntax as input, which
is processed to provide a tailored parser and lexer, an editor integrated with the Eclipse
Integrated Development Environment (IDE) and source code skeletons to customize the
environment. The language infrastructure is provided for further use as set of OSGi
Bundles (see Section 2.4).

The internal representation of the parser and lexer results is stored as a EMF model
instance. Using this representation of DSL statements, the language developer can inter-
pret the model instance and implement the execution of statements. The User Interface

’http://www.eclipse.org/modeling/
3http://www.eclipse.org/Xtext/

http://www.eclipse.org/modeling/
http://www.eclipse.org/Xtext/

2.4. OSGi Framework Approach 9

newFramework .

update
stop
INSTALLED .
init

STARTING

init, start
start

update CACTWE -

stop
update

STOPPING

Figure 2.3.: OSGi Life Cycle Layer State Machine from [OSG11, p. 92]

(UI) parts generated through Xtext provide an editor with support for the textual syn-
tax of a DSL implemented. The editor is capable of syntax highlighting and to provide
a context-dependent assistance to complete statements. A developer may extend the
context-dependent assistance with more sophisticated completion advice through imple-
menting hooks for grammar rules.

2.4. OSGi Framework Approach

The OSGi Framework is an approach for developing, deploying and operating component-
oriented developed software. Software components are contained in OSGi Bundles, that
can be deployed to OSGi-compliant run-times. The OSGi Framework is the foundation
for the development of an OSGi-compliant run-time. Examples for OSGi-compliant run
times are Eclipse Equinox?, Apache Felix® or IBM CICS®. To allow dynamic and scalable
application management, each OSGi Bundle defines its depending packages and which
packages it provides to the OSGi run-time. OSGi is focused on Java-based environments,
therefore software packages are corresponding to Java packages. To separate concerns of
the framework, it is split into several layers. A brief introduction to the Life Cycle Layer
and the Services Layer will follow [OSG11, p. 7 ff.].

To support on-demand usage of software components in a run-time, OSGi specifies a
Life Cycle Layer for OSGi Bundles. Bundles are started when functionality is required
from dependent OSGi Bundles and are stopped if they are no longer in use. The life cycle
management allows OSGi-based software products to scale their static overhead by present
demands[OSG11, p. 79 ff.].

The life cycle management of OSGi Bundles consists of several different states. After
initializing the OSGi Framework, OSGi Bundles found through the run-time are registered
as installed OSGi Bundles. When a bundle is starting, its dependencies are resolved and
additional resources are initialized, e.g. a Classloader for the OSGi Bundle. After a
successful start the becomes active and is operational.

When the OSGi Bundle is stopping, resources are deallocated and dependent OSGi Bundles
need to be stopped (i.e. if stopped forcefully). After this process completes, the OSGi
Bundle stays resolved and can be started again. While staying resolved, the OSGi run-
time is able to choose which OSGi Bundle resources to be kept alive, e.g. the Classloader

‘http://www.eclipse.org/equinox/
Shttp://felix.apache.org/
Shttp://www.ibm.com/software/htp/cics/

http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.ibm.com/software/htp/cics/

10 2. Technological Foundations

instance, in order to save resources. The complete state machine of the OSGi Life Cycle
Layer can be seen in Figure 2.3.

Using the Service Layer in OSGi applications, functionality from different OSGi Bundles
can be used in a dynamic and decoupled fashion. A bundle may register services, that can
be referenced from other OSGi Bundles on demand. The registration of services is based on
exposing a Java interface provided by a OSGi Bundle as offered service [OSG11, p. 117 ff.].
Exposing services from OSGi Bundles and requesting services from other OSGi Bundles
can be seen as an implementation approach of a Component-based Software Engineering
(CBSE)-based architecture.

As the Service Layer depends on the concepts of the Life Cycle Layer, services are aware of
the life cycle management and offer management operations to promote life cycle changes
to services based on an event-oriented mechanism. Using a Service Reference, OSGi Bun-
dles are able to request functionality of other OSGi Bundles on demand.

While a Service Reference is stored, the exposing OSGi Bundle is not needed to be active.
A OSGi Bundle might stay resolved until the Service Reference is used to obtain an
instance of the service. If the service is requested, the OSGi Bundle is activated. The life
cycle management allows therefore an efficient dependency handling among OSGi Bundles
and the OSGi run-time.

10

3. Design of a Query Language for Online
Performance Queries

This chapter introduces the conceptual foundation and the design of DQL as a textual
syntax to express online performance queries. The chapter uses a funnel-like structure
starting at the definition of high-level requirements down to abstract grammar rules to
specify the language. In Section 3.1 at first the prospect usage scenarios for DQL is
outlined and illustrated by user stories. Based on these requirements, in Section 3.2 the
functionality of queries is analyzed to form a classification scheme. Using this classification
scheme, in Section 3.3 expressions will be formed as an initial textual representation,
which is evaluated by exemplary queries in Section 3.4 to judge on the language structure
in contrast to the initial user stories. Section 3.5 completes this chapter with detailed
descriptions of the grammar rules.

3.1. Usage Scenarios and User Stories
3.1.1. Definition of Usage Scenarios and User Roles

Foundation for the design of the query language is the analysis of requirements presented
in this section. As no directly comparable query language in the domain of SPE exists, this
section will introduce usage scenarios and corresponding roles acting as language users.
For each role, a corresponding scenario introduction and environment description is given.
To derive requirements, user stories will be used. Each user story contains an objective
the role wants to achieve through using the query language.

The user stories presented in this section are intended to illustrate requirements and are
based on a compromise between formal requirement definitions describing each possible
functionality and informal approaches for agile development practices as in [Coh10, p. 235
ff.]. The user stories and their implied functionality will be discussed for each user role.

User stories are built up on single sentences written in active language and contain a
single objective, but not an exact specification on the way to achieve an objective. If user
stories are too long, they are split up in multiple stories and if additional information is
required to reason on user stories or to understand the scenario, the discussion will provide
additional details.

In Table 3.1 all user roles, scenarios and domains for the following user stories are shown.
On the first layer, user types are differentiated by human and machine users. The language

11

12 3. Design of a Query Language for Online Performance Queries
User Type | Scenario | User Role Description
Software Archi- | Evaluate different software architecture ap-
. tect proaches for performance goals
offline - . - -
Software FEngi- | Evaluate different implementation approaches,
neer frameworks or libraries with derived models from
Human experiment runs
online Performance Investigate for optimization potential, advice re-
Analyst source management, coordinate SLA restoration
process manually
offline Performance Automated performance regression testing after
Testing redesign and refactorings based on automated
performance model extraction and evaluation
Application Application-specific fine tuning of low-level con-
Server figuration parameters based on actual workload
demands, e.g. for thread pool sized or garbage
online collection
Monitoring Sys- | Periodic performance queries with run-time as-
Machine tem pects and .forecasting functionality for alerting
and reporting
Resource Man- | Resource management helps to optimize the re-
agement source allocation for software systems during run-
time and tries to find the best trade-off between
response times/throughput and allocation cost

Table 3.1.: User Types and Usage Environments

shall integrate requirements for both types in order to provide an unified interface. Next,
for both user types, the usage scenario might be either offline, e.g. for analyses during
the design time of a software system, or online, e.g. to determine performance bottlenecks
during operation in production. To support the discussions, another layer separates the
user roles, e.g. into roles of software engineers, application servers or resource management
systems.

The following user types, usage scenarios and roles are defined and influenced up on
information from [BHK12, RBBT11, TNGO05]. Further refinements of the query language
design and a classification scheme will follow in the subsequent sections.

3.1.2. User Stories for Offline Scenarios
3.1.2.1. Software Architect and Software Engineer
Scenario

During design and development time several decisions have significant impact on the per-
formance of the resulting software system. During design time the choice of components,
their communication patterns and the underlying infrastructure have direct influence on
performance metrics during run time. Whereas during development time the selection of
algorithms and the settings of tuning and system parameters influence the performance
behavior.

Environment

For both roles, the environment is an offline environment. Thus the software system
and its resource allocations can be changed without any risk of SLA violations. Recurring
experiments through the performance model instance and changing the instance is possible.
On the other hand the workload patterns found in real workloads are not reproducible,
which limits the validity of experiments. As during design time only parts of the software

12

3.1. Usage Scenarios and User Stories 13

system might be available, resource demands and parameterization in the performance
model instance will be based on assumptions. During development time these assumptions
can be refined through measurements, but the deployment for later operation might change
the system configuration.

User Stories

* US 1: As a user, I want the system for query execution to load a performance model
instance of a specific performance meta-model.

* US 2: As a user, I want explore all queryable entities of my performance model
instance.

* US 3: As a user, I want to list all queryable performance metrics of the entities
contained in the underlying performance meta-model.

* US 4: As a user, I want to query performance metrics from model entities of my
performance model instance.

* US 5: As a user, I want to aggregate retrieved metrics for further analysis tasks by
statistical means.

* US 6: As a user, I want to access and analyze model revisions, e.g. for analyzing
impacts.

* US 7: As a user, I want to limit structural queries to contain only a specific amount
of structural information. [implied feature]

* US 8: As a user, I want to specify model entities to query and reference them with
aliases. [implied feature]

* US 9: As a user, [want to control which metrics should be calculated for specific
model entities. [implied feature]

* US 10: As a user, I want the performance model instance to be interpreted auto-
matically. [implied feature]

* US 11: As a user, I want to focus on specifying which metrics to compute, but not
to parameterize the model solver. [implied feature]

Discussion

US 1 allows users to specify which performance meta-model family is required to analyze
the model instance and where the model instance can be found. Support for a performance
meta-model family is meant as term for a query interpreter that is able to compute metrics
for a performance model instance based on a particular meta-model. A more detailed
description follows in later chapters.

Afterwards in US 2 and US 3 the user gathers structural information about the model
instance and the capabilities of the available model solvers for the specified performance
model family. The actual performance query in US 4 then returns performance-relevant
results back to the user.

For the US 2 and especially US 3, the user needs to be able to specify, besides of the model
instance, model entities. As there might be a large amount of entities in a performance
model instance, users shall be able to limit query results using filters as in US 7. For
further processing, the user then needs to specify the entities to be analyzed as in US 8.
Furthermore US 4 implies that the calculation of metrics can be specified explicitly as in
US 9. For analyzing results, e.g. to unveil a resource with least utilization, users need to

13

14 3. Design of a Query Language for Online Performance Queries

assisted through specifying aggregates calculated on top of performance metrics that stem
from simulation.

As performance model instances vary in their amount of model entities and structure, users
shall be unburdened from interpreting performance model instances manually as in US 10.
Furthermore the solving of performance model instances depends on the parameterization
of solver components that shall be parameterized automatically as in US 11. Interpretation
and parameterization are essential and inseparable steps for the analysis of a performance
model instance.

In order to assist a software architect during the composition of components into a software
architecture and software developers during the selection of algorithms, the system should
offer an interface to access historic instances as in US 6 in order to compare alternatives
and to make decisions based on facts.

3.1.2.2. Performance Testing System
Scenario

As a sub-process in Continuous Integration (CI), a system for testing the performance
by examining the performance model can be installed. The performance testing system
is built to derive automatically a performance model instance from a software system
and execute performance queries on this model instance. Deriving a performance model
instance might be realized through providing a skeleton of a performance model instance
and measuring resource demands by executing several workloads. Using the measurement
data, the skeleton can be populated with estimates and performance queries can be used to
analyze the impact of changes. Using this technique, performance regressions after complex
refactorings, redesigns or upgraded program libraries can be detected. The process is
executed by a machine user without human interaction.

Environment

This scenario is executed in an offline environment. The performance testing system is
set up during the development phase of a software system. The software development
team specifies queries to ensure performance-critical sections of the software system are
tested continuously and change impacts can be detected. As the low-level structure of
performance model instances might change during the development, high-level entities
(e.g. components) will usually remain but their identifiers might vary.

User Stories

* US 12: As a user, I want the system to resolve model entities by symbolic identifiers
independent from the model structure.

* US 13: As a user, I want to filter model entities by their attributes. [implied
feature]

Discussion

As in US 4, performance queries are executed on a model instance. Special in this case is
the fact, that model instances might be derived automatically and the model structure, e.g.
model entity identifiers, can vary. To cope with this problem, users need the capability
of queries to list (US 2) and possibly filter (US 13) entities that can be embedded in
queries to retrieve metrics. With this capability, machine users can be used to automate
the execution and analysis of performance query results.

14

3.1. Usage Scenarios and User Stories 15

3.1.3. User Stories for Online Scenarios
3.1.3.1. Performance Analyst
Scenario

A software system has been successfully developed and was deployed on computing re-
sources for operation. The system is serving customer requests and fulfilling business
transactions. As the expected workload distribution during design and development time
differs from the real-world environment, the deployment of applications shall be optimized
based on measurements during operation. Optimization might take place through the new
settings of configuration parameters to cope with the workload demands. To control the
process a performance analyst queries the performance model instance of the system in
operation.

Environment

This scenario represents an online setting. The model instance is parameterized with
resource demands and utilization rates from the live system and historic data. Different
workload patters, e.g. depending on the weekday or hour of day, need to be considered
when making reconfiguration suggestions. Underprovisioning of resources can lead to SLA
violations, thus during run-time fast reconfiguration advises are necessary to ensure the
QoS. The (recorded) live data is also valuable to make more accurate decisions about a
redesign and refactorings for subsequent revisions of the software system.

User Stories

* US 14: As a user, I want the system to interpret the model instance and list all
variable parameters.

* US 15: As a user, I want to analyze the dynamic behavior of performance models.

* US 16: As a user, I want to select varying aspects of a performance model for
analyzing dynamic behavior.

* US 17: As a user, I want to control how parameters are varied and define bounds
of the parameter space.

* US 18: As a user, I want to control how my performance model instance parameters
are explored.

* US 19: As a user, I want the model solver to vary DoF for a sensitivity analysis.
[implied feature]

* US 20: As a user, I want to specify the least statistical significance level for sensi-
tivity. [implied feature]

Discussion

Through the variation of parameter settings for specific entities, i.e. using DoFs, in perfor-
mance models, a performance analyst can make his advice for a redesign or refactorings of
a software system. The advice will be based on a compromise of varying workload profiles.
Using the automated parameterization of the model instance, the performance analyst can
work efficiently and examine the model dynamics as in US 15. For a goal-oriented anal-
ysis of performance models, the performance analyst needs to control the size of and the
way the parameter space is explored. The system should assist users and list all variable
parameters as in US 14 in order to reduce manual efforts.

15

16 3. Design of a Query Language for Online Performance Queries

If the performance analyst wants to focus on a limited amount of parameters to vary, he
needs to be able to select these model entities as in US 16. To further reduce the amount
of simulation results, the performance analyst needs to be unburdened from a systematical
evaluation of parameter combinations. The system therefore should automatically perform
a sensitivity analysis as in US 19 and respect statistical requirements as in US 20. US 18
allows the performance analyst to specify which model exploration strategy to use.

3.1.3.2. Monitoring and Resource Management Systems
Scenario

After a software system has been deployed and transitioned into operation, it is being
monitored for availability and other qualitative aspects. A sophisticated monitoring system
can make use of a performance model instance and derive trends to recognize and forecast
QoS violations before the latter happens. For the predictions, the monitoring system
can use the performance model parameterized with live monitoring data obtained during
runtime.

By reusing the analyses of the monitoring system, further analyses can be conducted
through a resource management system, to control the operation and utilization of all
resources.

Environment

This scenario is in an online setting. As the monitoring system is also responsible for
alerting staff in case of QoS violations, it has to react within time bounds to evaluate
monitoring results. In case of online performance predictions and queries, the system
must be able to express the demand for fast, but less accurate, responses.

For a resource management system, that performs reconfiguration tasks to maximize the
utilization of resources at the least cost, the demand for accurate or fast predictions varies.
The reservation and release of resources depends on the platform provider and therefore
the actual demand is defined by the concrete usage scenario.

User Stories

* US 21: As a user, I want to control the solving of a performance model instance by
specifying a trade-off between, e.g. speed and accuracy.

* US 22: As a user, [want fine grained control of the significance level for stochastic
model predictions. [implied feature]

Discussion

Using a constraint for the execution of model solvers as in US 21 allows users to advice
the system to create responses in a suitable fashion. The actual solving process depends
on the model solver, that tries to fulfill the user requirements as good as possible. More
fine-grained control is possible through US 22.

3.1.3.3. Application Server or Middleware System

Scenario

An application has been deployed to an application server and is handling customer work-
load. The application uses various resources provided by the application server, e.g. thread
pools and connection pools. Furthermore the application server takes care of the memory
management and garbage collection. The configuration of the resources is done by system
operators during deployment time.

16

3.2. Classification Approach for Online Performance Queries 17

Environment

This scenario is in an online environment. The application is serving customer requests
and the application server provides exclusive resources to the application. The resources
have tunable parameters regarding the size (e.g. for thread pools) or frequency parameters
(e.g. garbage collection). For highest efficiency, these parameters need to be adjusted to
the current workload.

User Stories
* US 23: As a user, I want to explore possible bottlenecks in applications.
* US 24: As a user, I want to detect the abundance of resources in allocations.

* US 25: As a user, I want to derive application performance models during run-time.
[implied feature]

* US 26: As a user, [want to control the automated derivation of performance models
with focus on specific parts. [implied feature/

Discussion

Besides of queries centering on raw performance metrics, querying performance models
for optimization advice should be possible. In US 23 and US 24 the user triggers the
automated analysis of a model instance. Given these information, the user can start to
alter tunable parameters at run-time to achieve an efficient execution state.

As reconfiguration actions change the model structure and parameter values, US 25 mo-
tivates the creation of a facility for deriving model instances during run-time. In addition
in US 26 the granularity of the derived model is focused to allow to derive more abstract
model instances. Using more abstract performance model instances, the effort for simu-
lation can be reduced. For both user stories the requirement is exposed to performance
meta-model connectors, as from the language part these requirements are too specialized
for providing generic language constructs.

3.2. Classification Approach for Online Performance Queries

3.2.1. Overview of the Classification Approach

Based on the usage scenarios and user stories from the previous section, the classification
scheme introduced in this section will present a structured overview of our approach for
different classes of performance queries. The differences between the query classes manifest
in their functionality and expressiveness. In Table 3.2 the classes with a brief description
of their intention are shown.

The classification scheme allows to define an order of query classes. Each class has at least
one expression consisting of one or multiple keywords associated, i.e. a way to express an
information demand, that differentiates it from other classes. When a new class provides
a new expression and furthermore leverages an expression from another class, it is meant
to be a higher-order class. Applying this ordering to the classes as shown in Table 3.2, it
is possible to derive a hierarchy of query classes (i.e. layers) and furthermore expressions
can be reused in superior classes. Another illustration of the query class hierarchy would
be to interpret the language constructs provided by a class as components that can be
reused by components from other, higher-order, classes.

As described in Section 3.1, the functional requirements differ among user roles. As the
user stories are intended to describe objectives for the design and need only be specified

17

18 3. Design of a Query Language for Online Performance Queries

Query Class Query Type Expression Description
Model Instance | USING Access a model instance, i.e.
Access load it from a filesystem
Model Access Model Entity | FOR Access a model entity by inter-
Access preting the model instance
Listing of Enti- | LIST ENTITIES | List all analyzable entities and
ties optionally filter by a condition
Model Structure Listing of Met- | LIST METRICS List all calculable metrics for
rics specified entities
Basic Query SELECT Calculate requested performance
metrics for specified entities
Constrained CONSTRAINED AS | Calculate metrics with con-
Query straints regarding the calculation
Performance Metrics process
DoF Query EVALUATE DOF Analyze performance metrics un-
der varying parameterization of
the model instance
Performance Issues Detect Bottle- | DETECT BOTTLE- | Detect bottlenecks in perfor-
necks NECKS mance model instances

Table 3.2.: Query Classification Matrix

once, the given collection of user stories is not complete for each role. It implies that
objectives and functionality can be reused on demand by across different roles. The classes
to be introduced are therefore part of the different user roles, but provide a summary of
similar functionality. A description of the classes follows in Section 3.2.2 with references
to grammar rules of the resulting DQL.

3.2.2. Objectives for different Query Classes
Model Access

This query class provides expressions for technical demands while accessing performance
model instances. A technical demand can be a way to express to load a specific performance
model instance from its serialized form in a file system, which is expressed in US 1. After
loading the model instance, a user has to handle the entities and therefore a way to name
the relevant model entities is needed as defined by US 8.

To summarize, this class is intended to provide expressions to enable users to access model
instances and to access model entities, where access is meant to load and reference model
instances or model entities.

e Query Class: Model Access
~ Model Instance Access: Load and Instantiate, see UsingClause

~> Model Entity Access: Reference and Use, see ForClause

Model Structure

Using queries from this class, users can discover elements from a performance model in-
stance that are either interpreted as resources, services or metrics. Metrics are associated
to an entity, i.e. either a resource or service. This class follows US 2 and US 3 and their
implied user stories.

An integral part of this query class is the demand for US 10 as the interpretation of model
element types depends on a performance meta-model family connector. The language

18

3.2. Classification Approach for Online Performance Queries 19

itself shall not make any assumptions about model element types, but leverage information
supplied by the connector. This ensures a loosely coupled and reusable language design.

The expressions provided by this class are essential to allow users to rely on the query
language solely. A user can discover model elements and is not forced to interpret the low-
level characteristics of the performance meta-model family. This query class enables users
to list analyzable model entities consisting of listings of resources and services together
with their associated metrics.

e Model Structure

~» Listing of Entities: Interpret and List, see ListEntitiesQuery

~~ Listing of Resources & Services: Interpret, List and Filter, see ListResources-
Query

~~ Listing of Metrics: List and Derive, see ListMetricsQuery

Performance Metrics

This class supports users to derive performance metrics from performance model instances
as of US 4. As for the preceding class, the user is neither faced with low-level details of
the performance meta-model family, nor with further solver properties for configuration
purposes. To satisfy demands arising from the usage in online scenarios as in US 21,
users shall be able to control the level of details in simulations and accuracy with a solver
constraint.

To cope with questions arising from dynamic aspects in performance models, i.e. DoFs
for model entities, this class offers facilities to configure the exploration and analysis of
DoFs as in US 15 and related user stories. The semantics of queries in this class depend
on the underlying performance meta-model family and are therefore out of scope for the
language design.

Expressions of this class serve for the extraction of performance metrics from performance
model instances without low-level model knowledge. Queries in this class allow users
to select metrics for model entities, constraint the execution of the solver and allow the
exploration of DoF. Facilities for solving DoF increase the productivity of users as they
can partly automate the process of analyzing dynamic behavior in performance model
instances.

e Performance Metrics

~~ Basic Queries: Select Metrics and Request Solving, see SelectQuery
~~ Constrained Queries: Constrain Model Solver Execution, see ConstraintClause

~» DoF Queries: Explore DoF in Performance Model Instances, see DoFClause

Performance Issues

Instead of interpreting query result manually, this query class is intended to perform
an automated DoF exploration to detect shortcomings in the allocation and design of
resources and services. These shortcomings might result in bottlenecks, limiting the overall
performance as stated for US 23.

Within this class the user is only required to define the performance model instance and
the DoF. Then a query is formed of keywords to detect bottlenecks under varying usage
scenarios.

19

20 3. Design of a Query Language for Online Performance Queries

e Performance Issues

~~ Bottleneck Detection: Automated Bottleneck Search, see DetectBottlenecks-
Query

Optimization Problems

As highest-order query class, this class is intended for the formulation of optimization
problems. By the term optimization problem a user defines the targeted result of a perfor-
mance analysis in a well-structured fashion. As this class is out of scope of this thesis and
depending on the results of underlying classes, we do not make assumptions on language
constructs for this class.

3.3. Specification of Functionality provided by Query Classes

3.3.1. Overview of Query Class Functionality

In Section 3.3.2 access to model files is described followed by facilities to access the struc-
ture of model entities in Section 3.3.3. The next layer for user-controlled performance
analyses in Section 3.3.4 offers functionality to express performance-related queries to
performance models delivering performance metrics. The functionality for these layers is
summarized in Figure 3.1a.

Upon this basic model solving functionality, further performance issue-related approaches
are introduced in Section 3.3.5 and an outlook to optimization problem-related queries is
given in Section 3.3.6. These layers are summarized in Figure 3.1b.

3.3.2. Functionality for Model Access

This part of the query language deals with loading and accessing performance model
instances. Furthermore, this query class also allows to access entities in the performance
model instance to create an alias for them. Expressions from this class are based on
the expression USING to specify a performance model instance and FOR to name relevant
entities from the performance model instance.

The USING Expression

As the query language is not limited to a single performance meta-model and the persis-
tence mechanisms might differ significantly between performance meta-models, the loading
of models is delegated to a performance meta-model specific plug-in parameterized with a
suitable location identifier, e.g. a namespace identifier for the plug-in concatenated with
a Uniform Resource Identifier (URI).

The FOR Expression

By using the FOR expression, users can specify which performance model entities are rel-
evant for the analysis. Only entities specified in this expression can be used to retrieve
performance metrics from. Additionally, FOR supports the aliasing of model entities (i.e.
services or resources) to assist users working with the query language. The identifiers
of model entities depend on the underlying performance meta-model, that might rely on
anything ranging from subsequent integer-based identifiers up to Universally Unique Iden-
tifiers (UUIDs). As for further operations on the entities, the user would have to repeat
the identifier, the query might suffer from illegibility. To circumvent this shortcoming, a
central alias mapping is necessary.

20

3.3. Specification of Functionality provided by Query Classes 21

3.3.3. Querying the Model Structure

Queries for the model structure are intended to serve information demands of users. Sup-
port for these queries is necessary to provide a unified interface for the analysis of per-
formance model instances. Without this query class additional tools depending on the
performance meta-model family would be necessary to work with the performance model
instance. Using the structural information, performance queries can be formulated and
executed. The support and interpretation of the model structure is contained in a plug-in
that is aware of a specific performance meta-model family.

To query the model structure, the principal keyword for this query class is LIST. To gather
information about queryable model entities the LIST ENTITIES expression can be used.
After entities have been discovered, the plug-in can be queried for available metrics of
the entities using LIST METRICS queries. The use of these queries allows users to build
higher-order queries afterwards and to start to analyze the performance model.

The LIST ENTITIES Expression

As different performance meta-models are supported by the query language, no general
assumption about the queryable model entities is possible. To offer a general interface,
the query language distinguishes only between services, i.e. model entities processing a
workload, and resources, i.e. model entities utilized by services to handle workloads.

The actual decision whether a model entity is a service or a resource, thus being an entity
providing performance metrics, depends on the connector for the performance meta-model.
To cope with this problem, the plug-ins are provided with a meta-model for mapping their
service- and resource-like entities to the query language. This mapping approach allows to
abstract from specific performance meta-models while retaining all structural information
required for performance queries.

In addition to LIST ENTITIES the expressions LIST RESOURCES and LIST SERVICES exist.
These query types are derived from LIST ENTITIES with implicit filtering. The implicit
filter ensures the result of the query will only contain resources respectively services from
the performance model instance.

The LIST METRICS Expression

As the interpretation of services and resources might vary between performance meta-
models, the metrics computable for a given model entity might also vary. Therefore, the
LIST METRICS expression queries the plug-in for the performance meta-model family, as
specified in the USING expression, which responds with available performance metrics for
a given model entity.

Concluding the keywords LIST ENTITIES and LIST METRICS unburden users from ana-
lyzing the model structure manually and model-specific knowledge how the model can be
transformed to retrieve metrics.

3.3.4. Querying Performance Metrics in Model Instances

With the ability of structural model access through a performance meta-model plug-in,
the next layer of query classes is related to queries for performance metrics. The SELECT
keyword is the principal keyword for this query class. To form a SELECT expression for a
performance analysis, the following workflow is suggested.

21

22 3. Design of a Query Language for Online Performance Queries

The SELECT Expression

To form a query for analyzing performance metrics through the SELECT expression, the
following steps are necessary:

1. Define which performance model instance to use = USING
2. Define which model entities shall be analyzed = FOR

3. Define which metrics shall be computed = SELECT

The combination of these language constructs allows to retrieve performance metrics for
specific model entities. The availability of metrics depends on the evaluation of the used
performance model instance and further run-time aspects. As these properties depend
on the performance meta-model family, their handling and evaluation is part of a specific
plug-in and not in scope for the classification scheme.

As in Figure 3.1a shown, the family of Basic Queries is the first layer in queries for
performance metrics. The following layers, i.e. Constrained Queries and DoF Queries,
will serve for more complex query scenarios.

The CONSTRAINED AS Expression

For online performance queries, the response time of the computation of performance met-
rics can be crucial to fulfill subsequent tasks. The objective of further tasks might involve
triggering reconfiguration processes of the resource landscape to cope with SLA require-
ments. From a language perspective, involving the query language and the execution logic
of the query language, only an advice for the computation of performance metrics can be
made. The keyword forming the expression for this advice is CONSTRAINED AS.

From a plug-in perspective, there might be several points how to handle the advice. A first
target for the trade-off might be the model transformation from the originating perfor-
mance model into the simulation or analytic model. The model instances for performance
metric calculation might be varied in their level of granularity, where less simulation model
artifacts might mean less computation effort. Plug-in developers may therefore consider
the advice specified through the CONSTRAINED AS expression, the referenced entities in the
FOR expression and additionally the requested metrics in the SELECT expression to realize
tailored model transformations.

For model solvers based on statistical modeling or statistical processes, the advice can
be interpreted to stop all computations at a given level of statistical significance of the
computed result and to return the result. Depending on the actual performance meta-
model and the metrics to be calculated there might even be more decision points for
handling the trade-off advice.

As the availability of solver constraints is influenced by several factors and depends directly
on the components used for solving DQL queries, the query language makes no assumption
on the available solver constraints. Each performance meta-model specific plug-in must
therefore provide descriptions of available constraints.

The EXPLORE DOF Expression

The next higher layer for performance queries as in Figure 3.1a is the exploration of DoFs
in a performance model instance. Using DoFs in performance model instances allows
to express variability, e.g. in the resource layer where containers of resources might be
provisioned with varying amounts of resources. If a computing system is modeled with
these DoFs, the key question is to find an efficient configuration, while taking the QoS

22

3.3. Specification of Functionality provided by Query Classes

23

Query Functional Range

Query Functional Range

J

Higher-order Queries

= Constrained Query
+ Degrees of Freedom

Using DoF Exploration Mechanisms
upper and lower bounds of changes
can be analysed

= Basic Query
+ Tradeoff Advise

=

Advise is a hint for the Accuracy/
Speed-Tradeoff of Prediction Methods

(a) Layers of Queries for User-Controlled Analyses

Self-Aware Computing

Self-Aware Computing

Online Performance Queries might be
a part of achieving Self-Aware
Computing in research and enterprises

= Optimization Problem

This query class solves optimization
problems and provides advice for
solving performance concerns in
architecture-level performance models

= DoF Exploration
+ Bottleneck Heuristics

Explore a DoF model and apply
heuristics for bottleneck detection

(b) Layers of Queries for Automated Performance Model Solving

Figure 3.1.: Overview of the Query Classification Approach

23

24 3. Design of a Query Language for Online Performance Queries

into account. In Section 4.2 the current state of the art in modeling and solving DoF
is outlined. The expression for DoF exploration is based on the EXPLORE DOF keyword,
requiring several subsequent statements to configure the exploration optionally.

For the exploration of a model instance to find parametric dependencies in tuning pa-
rameters, e.g. the configuration settings of the resource landscape, the exploration needs
to perform a partitioning of the parameter space and a sensitivity analysis while per-
forming parameter variations. Therefore the language will offer configuration options as
the expression GUIDED BY to select an exploration strategy from an exploration strategy-
aware plug-in and the accuracy trade-off for the sensitivity analyses using the expression
CONSTRAINED AS as used for constrained queries. Finally, to cope with performance mod-
els missing an integrated modeling of DoF, a user can supply a DoF model specification
and customized plug-in through the expression WITH.

To foster the usability of DoF exploration and to allow comprehensive DoF models, a
user can select which parameters to vary using the VARYING expression. Especially in
online scenarios, exploring a full parameter space would impose a high computation effort.
Limiting the parameter space is therefore crucial for DoF exploration in online scenarios
and supports tailored model transformations as irrelevant DoFs can be sliced out from
analytical or simulation models.

Although a manual exploration of DoF is possible, the exploration in complex models is
time-intensive, due to manual efforts for parameter variation subject to inaccuracy and
error-prone. As this class deals with user-controlled analyses, drawing conclusions from
explorations is not part of the language and its execution. Users have to decide which
model parts to vary and how to steer the performance analyses in order to extract relevant
performance metrics.

3.3.5. Querying and Analyzing Performance Issues

Figure 3.1b shows the relevant classification for Higher-order Queries as shown in Fig-
ure 3.1a. Although these classes are out of scope for the implementation of the query
language in this thesis, the design of queries for performance issues shall be outlined. As a
representative example for performance issue detection approaches, queries for bottleneck
detection will be outlined in this section. A brief overview about the state of the art in
bottleneck detection can be found in Section 4.4.

Bottlenecks in performance models are resources limiting the system’s total performance
because of saturation under a specific workload. In real-world scenarios bottlenecks can
degrade the performance of systems and lead to SLA violations. An example for a bottle-
neck in real-world environments, that could be found through the analysis of a performance
model instance, is the provisioning of Random Access Memory (RAM) for a VM. If the
provisioned amount of RAM is not sufficient, swapping of memory pages is necessary in
order to complete customer requests.

The additional resource demand for swapping and the resulting higher response times could
cause SLA violations. Using a fine-grained performance model instance, this bottleneck
could have been detected through analyses of workload resource demands and their effects
on the resource landscape.

The DETECT BOTTLENECKS Expression

The class of queries for performance issue analyses is represented through the keyword
DETECT. To perform a bottleneck analysis, queries using the DETECT BOTTLENECK expres-
sion can be used. The bottleneck detection shall reuse functionality for DoF exploration.

24

3.4. Evaluation of User Stories and Usage Scenarios 25

Using varying usage profiles or varying resource allocations, bottlenecks might be detected
through sensitivity analysis and optimized detection heuristics.

Another query type from this class might be a mechanism for detecting overprovisioning of
resources. The functionality of this kind of query might be related to bottleneck detection,
but with exploration strategies working in opposite direction (e.g. minimize allocation
until saturation with fixed workload vs. mazimize resource utilization until saturation with
varying workloads). Further analysis on this query type should unveil whether this type
would fit into a query class and which objectives need to be achieved for providing an
implementation.

3.3.6. Optimization Problem Queries

Based on the previously introduced query classes, the query class for Goal-oriented Queries
shifts from analyzing performance model instances manually towards an entirely auto-
mated approach to solve optimization problems for efficient allocation and operation.
This class combines approaches from several other classes, e.g. reusing bottleneck de-
tection heuristics as in Section 3.3.5, but with an automated configuration of DoFs to be
varied. In [BHK12] an example for an optimization problem is presented as: “How should
the system configuration be adapted to avoid QoS problems or inefficient resource usage
arising from changing customer workload?”.

Currently the language design does not contain language constructs to form expressions
of optimization problems. To design and implement these expressions, a combination
with the S/T/A Meta-Modeling approach could be a reasonable foundation [HBK12].
The S/T/A Meta-Modeling allows to model reusable adaptations applied to performance
model instances in order to enable an automation of management processes for efficient
operation of software systems. Further research on the S/T/A Meta-Modeling could in-
clude a linguistic approach for modeling optimization problems in order to link them with
adaptation strategies.

3.4. Evaluation of User Stories and Usage Scenarios

3.4.1. Introduction to the Evaluation of Expressions

The previous sections introduced user stories, see Section 3.1, an approach for classification
of queries, see Section 3.2, and finally the necessary functionality for the different query
classes is introduced in Section 3.3. To discuss the design approach of DQL as query
language for online performance queries, this section will evaluate exemplary queries and
link queries to their originating user stories from Section 3.1. A more formal description
of language constructs provided by DQL and rules for creating expressions will follow in
Section 3.5, where the resulting grammar rules are explained in detail.

The ordering of query examples and their discussion will follow a bottom-up workflow
approach of using DQL in a performance analysis. The starting point of the performance
analysis is an architecture-level performance model and a simulation engine capable of
handling online and offline queries. The designated workflow for the performance analysis
is defined as:

0. Preparation: Create/provide a performance model instance
1. Explore the structure of the performance model instance

. Analyze available performance metrics

w N

. Request the computation of performance metrics

25

[\]

26 3. Design of a Query Language for Online Performance Queries

In addition advanced examples are presented capturing the analysis of DoFs in Section 3.4.4
and how to access historic performance models and to retrieve performance metrics from
these instances in Section 3.4.5. The evaluation of the query examples given in this section
is conceptually. In Chapter 6 implementation approaches will be evaluated by executing
queries through DQL and its implemented software components connected to a real per-
formance model instance and with its related toolchain.

The class of Performance Issue Queries is not evaluated within this section or further
chapters as this class is at the current state of this thesis not yet a fully implemented part

of DQL.

3.4.2. Evaluation of Model Structure Queries

Listing 3.1 shows the entry point for performance analyses using an architecture-level
performance model (US 2). The query returns an instance of the Mapping Meta-Model.
The Mapping Meta-Model is a data structure for the abstraction from a given performance
meta-model family to the means of DQL as described in Section 5.2. The result contains
all available entities, i.e. services and resources, found in the model instance queried.

The entities are annotated with an absolute identifier represented as java.lang.String
and, if the DQL Connector can supply this information, a human-readable alias is set as
suggestion for an alias in further queries (US 12). A DQL Connector is named through the
USING expression and is a software component capable of handling a specific performance
meta-model family (US 1). The USING expression is two-fold and contains also the location
of the performance model instance requested. The parts are separated by the @ character.

LIST ENTITIES
USING nop@’void://url’;

Listing 3.1: Example of a Model Structure Query with LIST ENTITIES

The actual selection and creation of an instance of an adequate DQL Connector is delegated
to the DQL Query Execution Engine (QEE), which is a software component responsible
for executing the query. Detailed descriptions of DQL Connectors and the DQL QEE will
be given in Chapter 5.

The next query in Listing 3.2 shows an example to retrieve information on the available
performance metrics that can be computed for entities of interest (US 3). As the com-
putability of performance metrics can depend on conditions that can not be defined at
a language level, static information about metrics can not be provided by the means of
DQL.

LIST METRICS (RESOURCE ’idi1’ AS resli,
SERVICE ’id2’ AS svcl)
USING nop@’void://url’;

Listing 3.2: Example of a Model Structure Query with LIST METRICS

Given the information gathered through the queries shown in Listing 3.1 and Listing 3.2,
a user is able to proceed to request performance metrics through DQL.

3.4.3. Evaluation of Performance Metrics Queries

This section proceeds to conduct a performance analysis. Listing 3.3 shows an example of
a query for performance metrics with a constraint, i.e. a Constrained Query (US 4, US 21).

26

T W N

ISNEGUR Ol

3.4. Evaluation of User Stories and Usage Scenarios 27

The query requests the computation of two metrics for two different model entities. The
results are represented as instance of the Mapping Meta-Model and, if applicable, metrics
which failed to be calculated, are indicated as invalid result.

SELECT resl.metricl, svcl.metric?2

CONSTRAINED AS "accurate"

FOR RESOURCE ’idl1’ AS resl,
SERVICE ’id2’ AS svcl

USING nop@’void://url’;

Listing 3.3: Example of a Performance Metrics Query with SELECT

As analysis tasks might require to compute statistical metrics on top of performance
metrics, Listing 3.4 gives an example for the computation of an aggregate (US 5). In
this case, the computation is expected to work by a best-effort approach, i.e. to compute
the aggregate for those entities, where the requested metric available and valid. Error
messages during the computation will point out missing metrics and the result will be
marked as invalid.

SELECT PERCENTILE (*.utilization) [percentile="90"]
FOR RESOURCE ’idl1’ AS bladel, RESOURCE ’id2’ AS blade2,

RESOURCE ’id3°’ AS blade3, RESOURCE ’id4’ AS blade4
USING nop@’void://url’;

Listing 3.4: Example of a Performance Metrics Query with SELECT and an Aggregation
Operation of Results

Using the queries from Section 3.4.2 followed by the examples from this section, a user
is able to perform analysis tasks without the need for additional tools. DQL integrates
the necessary support for auxiliary tasks like browsing for entities, testing for available
metrics, controlling a solver and computing aggregated statistical metrics.

3.4.4. Evaluation of Degrees-of-Freedom in Queries

As an advanced scenario of performance analysis, DQL allows to analyze dynamics through
controlling the simulation of DoFs (US 15). To support users in these analyses, DQL allows
to query all available DoFs as shown in Listing 3.5 (US 14). The concept is similar to the
concepts of the Model Structure Query class as shown in Section 3.4.2. At the current
implementation state, querying the allowed bounds of the parameter space of a DoF is not
yet implemented at the language level.

USING nop@’void://url’;

Listing 3.5: Example of a Model Structure Query with LIST DOF

Listing 3.6 shows a query for performance metrics, as in Listing 3.3, but with the extension
to explore DoFs. Through the keyword EVALUATE DOF it is extended to analyze DoFs
(US 16). For each DoF, the parameter space is defined through iterating numerical values.
The different syntax representations for the parameter space definition will be explained in
Section 3.5.8. The exploration of the parameter space is controlled through an exploration
strategy (US 17, US 18). The result of the query is one instance of the Mapping Meta-
Model for each valid combination of DoFs in the parameter space.

27

© 00 O ULk W N

Tl W N~

T W N

28 3. Design of a Query Language for Online Performance Queries

SELECT resl.metricl, svcl.metric?2
CONSTRAINED AS "accurate"

EVALUATE DOF

VARYING ’idDoF1°’ AS DoF1 <1 .. 100 BY 1>,

’idDoF2°’ AS DoF2 <1, 2, 3, 4>
GUIDED BY "FullParameterSpaceExploration"
FOR RESOURCE ’idl1’ AS resi,
SERVICE *id2°’ AS svcl

USING nop@’void://url’;

Listing 3.6: Example of a Performance Metrics Query with SELECT and EVALUATE DOF

Based on the foundations shown in Section 3.4.2 and Section 3.4.3, this section demon-
strates the reusability of concepts for composing advanced queries capturing performance
model dynamics. This way, once a user has put effort in building a Performance Metrics
Query, this effort can be leveraged to build queries for analysis tasks on top of first insights.

3.4.5. Evaluation of a Temporal Dimension in Queries

For analyzing model instance changes or their evolving over time, to aggregate historic
information or to access a historic model instance, a user can query model-specific time
units through a statement like Listing 3.7 (US 6). As in Section 3.4.4 the query is an
extended form! of the example shown in Section 3.4.3. The interpretation of the time unit
and the aggregation of samples is specific for the given performance meta-model and the
underlying DQL Connector. The language does not provide any static information of time
units.

SELECT resl.metricl, svcl.metric?2
FOR RESOURCE ’idl’ AS resl,
SERVICE ’id2’ AS svcl
USING nop@’void://url”’
OBSERVE 48 ModelInstances SAMPLED BY 1h;

Listing 3.7: Example of a Model Structure Query with SELECT with 0BSERVE using custom
Time Units

Listing 3.8 shows another example for the specification of time units. These time units
allow to define a time frame that is in line with the clock. The interpretation of these time
units is therefore defined by the means of the implementation of DQL. For relative time
specifications, the interpretation is explicitly defined in Section 5.3.5. Having multiple
options, i.e. absolute and relative time specifications in addition to specific time units,
users are free to decide how to access model instances and revisions.

SELECT resl.metricl, svcl.metric2
FOR RESOURCE ’id1’ AS resi,
SERVICE ’id2’ AS svcl
USING nop@’void://url’
OBSERVE BETWEEN ’2012-01-01T10:00’ AND -3m 2d 4h;

Listing 3.8: Example of a Model Structure Query with SELECT with OBSERVE using
BETWEEN

!The CONSTRAINED AS keyword is omitted as it does not foster the expressiveness.

28

3.5. Query Language Rules and Terminals 29

Besides of performance analysis during design and development phases, DQL offers support
for time units allowing to analyze historic performance data. The support of these concepts
fosters the claim of DQL to offer an unified interface to access performance model instances
and to eliminate the need for auxiliary tools or manual efforts.

3.4.6. Summary

The query examples have shown that a performance analysis of a performance model
instance through DQL is possible. A user can rely on the language constructs offered
and is not forced to use assisting tools. Through DQL the toolchain required for solving,
transforming and validating performance model instances is hidden.

As an advantage of a textual syntax for queries, DQL allows to extend expressions through
additional keywords with a low effort. Using additional keywords new language function-
ality can be added to the existing language structure, while previously defined queries can
still be used. Users are therefore neither forced to change their existing queries when new
functionality is added, nor are forced to learn new features continuously.

An example for this advantage is using the EVALUATE DOF expression to extend a Perfor-
mance Metrics Query towards analyzing DoFs or using the OBSERVE expression for adding
a temporal dimension to queries as shown in the previous sections.

3.5. Query Language Rules and Terminals
3.5.1. Conventions and Basic Grammar Rules
3.5.1.1. Conventions

The subsequent sections will introduce the grammar rules defining the DQL to perform
online performance queries. The grammar rules are visualized through syntax diagrams?.
To distinguish between technical terms, a non-terminal rule is represented as NonTerminal
and a terminal rule as Terminal. These typographic conventions for grammar rules will
be used in the remaining document. An index of referenced grammar rules can be found

in Appendix B.

3.5.1.2. Rule ID

The non-terminal ID is provided by Xtext [Ecl12]. It is based on the Identifier non-terminal
from [GJST11, p. 23 ff.]. The non-terminal can be used, e.g. to represent Java class or
method names.

3.5.1.3. Rule INT

The non-terminal INT is provided by Xtext [Ecl12]. It is based on the DecimalNumeral
non-terminal from [GJST11, p. 25 ff.]. The non-terminal can be used to represent decimal
numbers consisting of one or multiple digits.

3.5.1.4. Rule STRING

The non-terminal STRING is provided by Xtext [Ecll12]. It is based on the StringLiteral
non-terminal from [GJST11, p. 36 f.]. The non-terminal can be used to represent instances
of java.lang.String found in Java source code.

2The graphical syntax is based on the Railroad Diagram Generator at http://railroad.my28msec.com/
rr/ui.

29

http://railroad.my28msec.com/rr/ui
http://railroad.my28msec.com/rr/ui

30 3. Design of a Query Language for Online Performance Queries

3.5.1.5. Rule DescartesQL

ModelStructureQuery

PerformanceMetricsQuery

PerformancelssueQuery

DescartesQL is the foundation for all valid statements that can be expressed through DQL.
The rule allows to choose between the non-terminal rules for queries from the different
query classes and is finished by a terminal ;.

See Section 3.2, ModelStructureQuery, PerformanceMetricsQuery and PerformancelssueQuery
for more information.

3.5.2. Grammar Rules for Model Access

3.5.2.1. Rule UsingClause

»—(USING H ModelReferenceClause |—><

The UsingClause provides information for accessing a model instance through a DQL Con-
nector and is essential to Model Structure Queries, Performance Metrics Queries and Per-
formance Issue Queries. In ModelReferenceClause all information for referencing a model
instance is stored.

See Section 3.3.2 and ModelReferenceClause for more information.

3.5.2.2. Rule ModelReferenceClause

»—{ ModelFamily ModelLocation |—><

A ModelReferenceClause contains the information required to start executing a query. To
delegate a query to a DQL Connector, the DQL QEE is used to look up a suitable DQL
Connector with the information provided through ModelFamily. The ModelLocation con-
tains a Connector-specific value referencing a model location.

See Section 5.1, ModelFamily and ModelLocation for more information.

3.5.2.3. Rule ModelFamily

A ModelFamily is specified as ID and used to identify a DQL Connector for executing the
query.

3.5.2.4. Rule ModellLocation

A ModellLocation is specified as STRING and used to specify where a model instance can
be found.

30

3.5. Query Language Rules and Terminals 31

3.5.3. Grammar Rules for Model Structure Queries

3.5.3.1. Rule ModelStructureQuery

ListQuery

!

In ModelStructureQuery the top-level queries for the class of Model Structure Queries are
aggregated. Currently the class is solely based on the rule ListQuery.

3.5.3.2. Rule ListQuery

LIST ListEntitiesQuery UsingClause

ListResourcesQuery

ListServicesQuery

ListMetricsQuery

ListDoFQuery

2l

ListQuery is a compilation of different queries to list entities from a model instance. Queries
from this class can be recognized through starting with the keyword LIST and utilizing an
UsingClause to reference a model instance to be analyzed.

3.5.3.3. Rule ListEntitiesQuery

ENTITIES

i

ListEntitiesQuery is a supertype of ListResourcesQuery and ListServicesQuery to retrieve a
listing of entities with performance-centric properties, e.g. resources or services. Subse-
quently ListMetricsQuery can be used to retrieve available performance metrics for entities.

3.5.3.4. Rule ListDoFQuery

DOF ‘ WithClause '

The ListDoFQuery is a specialization of the ListQuery and is used to list all DoFs found in a
model instance. Through a DoF, properties of the model instance can be altered reflecting
changes in made to a system to be analyzed, e.g. different input parameters for algorithms
or more computing resources.

See Section 3.3.4 and WithClause for more information.

3.5.3.5. Rule ListResourcesQuery

RESOURCES

The ListResourcesQuery is a specialization of a ListEntitiesQuery containing only a listing
of resources. See ListEntitiesQuery for more information.

31

32 3. Design of a Query Language for Online Performance Queries

3.5.3.6. Rule ListServicesQuery

SERVICES

The ListServicesQuery is a specialization of a ListEntitiesQuery containing only a listing of
services. See ListEntitiesQuery for more information.

3.5.3.7. Rule ListMetricsQuery

bb—(METRICS EntityReferenceClause

A ListMetricsQuery determines all computable metrics for entities contained in the Enti-
tyReferenceClause. As the availability of computable metrics depends on conditions that
are not definable at a language level, the DQL Connector provides these metrics. This
approach fosters flexibility in implementing DQL Connectors.

3.5.3.8. Rule WithClause

»—(WITH H ModelReferenceClause |—N

Through a WithClause an additional information source for DoF models can be used. The
structure of this clause is similar to the UsingClause, but using WITH as initiating terminal.
The interpretation of the additional information source is subject to the DQL Connector
referenced in the UsingClause.

See UsingClause for more information.

3.5.3.9. Rule EntityReferenceClause

' EntityReference l

The EntityReferenceClause consists of one or more instances of the rule EntityReference to
select entities from the model instance referenced through the UsingClause.

See EntityReference and UsingClause for more information.

3.5.3.10. Rule EntityReference

>>—{ EntityType H STRING AliasClause

An EntityReference is used to reference an entity found in a performance model instance.
The performance model instance is referenced by a UsingClause. The rule consists of Enti-
ty Type to specify the entity type, a STRING to specify the absolute identifier of the entity
in the source model instance and an optional AliasClause to specify a more convenient alias,
especially is case of entity identifiers that are generated automatically and not optimized
for readability.

See UsingClause, EntityType and AliasClause for more information.

32

3.5. Query Language Rules and Terminals 33

3.5.3.11. Rule EntityType

l RESOURCE '
SERVICE

The rule EntityType consists of terminals for all entity types that are supported in Perfor-
mance Metric Queries, i.e. entities that are directly queryable. Through this rule, the set
of allowed entities in queries limited at the language level.

See Section 3.2 for more information.

3.5.3.12. Rule AliasClause

)=l

The AliasClause allows to specify a user-friendly identifier as alias for an entity. The alias
can be used in other parts of the query to reference the aliased entity from the model
instance specified in the UsingClause. An alias can be specified through the terminal AS
followed by the alias specified as ID.

3.5.4. Grammar Rules for Performance Metrics Queries

3.5.4.1. Rule PerformanceMetricsQuery

In PerformanceMetricsQuery the top-level queries for the class of Performance Metrics
Queries are aggregated. Currently the class is solely based on the rule SelectQuery.

3.5.4.2. Rule SelectQuery

>>—(SELECTH MetricReferenceClauses I—T{ ConstraintClause ITT{ DoFClause |7—{ ForClause H UsingClause |»
‘ ObserveClause '

The SelectQuery consists of mandatory an optional parts. The mandatory parts are the
foundation for executing a query to retrieve performance metrics. The optional parts
extend the functionality towards higher query classes and in case of the ObserveClause it
extends the functionality of model access.

Mandatory parts of a SelectQuery in a bottom-up way are the UsingClause to reference a
model instance, the ForClause to specify which model entities are relevant for the query,
MetricReferenceClauses to specify the performance metrics to be computed for the relevant
entities and the terminal SELECT.

The optional rules are the ConstraintClause to extend the query towards the Constrained
Query Class and the DoFClause, see Section 3.5.7, to extend the query towards the DoF
Query class, see Section 3.5.8. Through an additional temporal dimension specified by the
ObserveClause, see Section 3.5.6, the way the model instances are accessed is changed to
allow to query other performance model instance revisions.

See Section 3.3.4, Section 3.4.3, Section 3.4.4, Section 3.4.5 for more information. Relevant
clauses are following.

33

34 3. Design of a Query Language for Online Performance Queries

3.5.4.3. Rule MetricReferenceClauses

' MetricClauseType l

MetricReferenceClauses consist of one or more instances of the rule MetricClauseType to
reference entities found in the ForClause and metrics computable for these entities.

See ListMetricsQuery and ForClause for more information.

3.5.4.4. Rule MetricClauseType

MetricClause

AggregateMetricClause

Within MetricReferenceClauses two different types of metric-referencing rule instances are
valid. A user might either choose a plain MetricClause to reference an available perfor-
mance metric directly or an AggregateMetricClause to compute an aggregate of performance
metrics.

See MetricClause, Section 3.4.3 and AggregateMetricClause for more information.

3.5.4.5. Rule MetricClause

MetricReference

A MetricClause contains, through an instance of the rule MetricReference, a direct reference
to a performance metric computable for an entity.

See MetricReference for more information.

3.5.4.6. Rule MetricReference

The MetricReference is provided by an instance of ID to provide an identifier or alias for
the entity, a terminal . to separate the entity referencing identifier or alias from the metric
name and another instance of ID to provide the metric name.

3.5.4.7. Rule ForClause

FOR EntityReferenceClause

In a ForClause all entities being used in a query, are listed through EntityReferenceClause.
Entities not listed within this clause are therefore not usable, but might be used implicitly
through the DQL Connector, e.g. for calculating other performance metrics.

See EntityReferenceClause for more information.

34

3.5. Query Language Rules and Terminals 35

3.5.5. Grammar Rules for Aggregate Calculation
3.5.5.1. Rule AggregateMetricClause

»—| StatisticalAggregateType l MetricStarClause ' ConfigurationPropertiesClause |7—><
MetricClauses

For the computation of aggregates based on performance metrics, the AggregateMetric-
Clause provides necessary ways for expressing aggregate calculation. The calculation of
aggregates is independent of the capabilities of a DQL Connector, thus implemented at the
language level. The aggregate calculation is part of the DQL QEE and available aggregates
are defined at the language level.

In order to calculate an aggregate, a user is able to choose a statistical operation as
an instance of StatisticalAggregateType. The StatisticalAggregateType is used to select the
operations for performing the calculation based on the available performance metrics. The
available performance metrics are defined either as MetricStarClause or MetricClause. To
provide additional information for the computation of aggregates, e.g. the percentile to
find its corresponding value, the ConfigurationPropertiesClause can be used.

See Section 5.3.4, StatisticalAggregate Type, MetricStarClause, MetricClause and Configura-

tionPropertiesClause for more information.

3.5.5.2. Rule StatisticalAggregateType

)

MAX

SUM

SUMOFSQUARES
STDDEV

VAR

PERCENTILE

To support users calculating aggregates based on performance metrics without any de-
pendency on the underlying performance meta-model, DQL supports several statistical
operations to calculate aggregates at the language level. The set of available statistical
operations is based on Apache Commons Math?, which is used to compute some of the
available aggregates. The documentation of Apache Commons Math contains all necessary
information on the available aggregate functions.

Remarks for Aggregate Functions

e PERCENTILE: This function requires the configuration property percentile with a
value ranging from 1 to 100. The parameter defines which percentile should be
computed.

See Section 5.3.4 and ConfigurationPropertiesClause for more information.

3http://commons . apache.org/proper/commons-math/userguide/stat.html

http://commons.apache.org/proper/commons-math/userguide/stat.html

36 3. Design of a Query Language for Online Performance Queries

3.5.5.3. Rule MetricClauses

' MetricClause l

Through the rule MetricClauses, all metrics for computing an aggregate within a Aggregate-
MetricClause can be referenced. Each instance of MetricClause contained in MetricClauses
provides a single value for the aggregate computation process.

See AggregateMetricClause and MetricClause for more information.

3.5.5.4. Rule MetricStarClause

To compute an aggregate for multiple model entities with the same metric name, the
MetricStarClause is provided for convenience. A user can name the desired metric name
through the ID non-terminal in this clause and each model entity found in the instance
of the ForClause is added implicitly to the request for providing the named metric. The
metrics will in turn be used to calculate the requested aggregate.

See ForClause for more information.

3.5.5.5. Rule ConfigurationPropertiesClause

»—@L?nﬁgurationPropertyClause

For additional information that is required during the computation of aggregates, e.g. the
value n to compute the n-th percentile for, the ConfigurationPropertiesClause allows to
add meta-information for the computation process. The meta information is represented
through one or multiple expressions of the type ConfigurationPropertyClause.

See StatisticalAggregate Type and ConfigurationPropertyClause for more information.

3.5.5.6. Rule ConfigurationPropertyClause

o

A ConfigurationPropertyClause allows to specify a key-value pair. A key consists of one
or multiple parts of the non-terminal ID separated by the terminal .. The value in a
ConfigurationPropertyClause is specified through the non-terminal STRING, which might
be converted based on the key to provide the expected type. Key and value are separated
by the terminal =.

36

3.5. Query Language Rules and Terminals 37

3.5.6. Grammar Rules for Temporal Observations

3.5.6.1. Rule ObserveClause

»—(OBSERVE H ObservationClause SampleClause

The ObserveClause allows to express a temporal dimension in DQL queries. By a temporal
dimension, one or multiple different model instances might be used to compute perfor-
mance metrics. The ObserveClause is initiated through the terminal OBSERVE, a specifica-
tion of the observation formulated in the ObservationClause and a DQL Connector-specific
SampleClause to specify samples over multiple model instances. The ObserveClause is or-
thogonally to Performance Metrics Queries as it does not change the query expression and
the operations performed, but adds an additional dimension that the query needs to be
solved for.

See Section 3.4.5, Section 5.3.5, Section 6.3.3, ObservationClause and SampleClause for more
information.

3.5.6.2. Rule ObservationClause

ConnectorTimeUnitClause

ConnectorlnstanceReferenceClause

ObserveRelativeClause

ObserveBetweenClause

To specify an observation, the ObservationClause provides several options. A user might
choose between a ConnectorTimeUnitClause or a ConnectorlnstanceReferenceClause with
DQL Connector-specific time units or reference marks and ObserveRelativeClause or Ob-
serveBetweenClause to use time specifications defined by means of DQL.

See ConnectorTimeUnitClause, ConnectorinstanceReferenceClause, ObserveRelativeClause and
ObserveBetweenClause for more information.

3.5.6.3. Rule ConnectorTimeUnitClause

o

In a ConnectorTimeUnitClause a user can express the amount of time units using the INT
non-terminal and the identifier of the desired time unit through the ID non-terminal. The
availability of time units and the interpretation of these units depends on the referenced
DQL Connector.

See a DQL Connector-specific documentation, e.g. Section 6.3.3, for more information.

3.5.6.4. Rule ConnectorlnstanceReferenceClause

“ STRING

In a ConnectorlnstanceReferenceClause a user can express the kind of a reference through
the ID non-terminal and the reference value through the STRING non-terminal. The
availability of reference units and the interpretation of these units depends on the used
DQL Connector.

See a DQL Connector-specific documentation, e.g. Section 6.3.4 for more information.

37

38 3. Design of a Query Language for Online Performance Queries

3.5.6.5. Rule ObserveRelativeClause

»—{ ObserveRelativeDirectionType AbsoluteTimeClause

RelativeTimeClause

An ObserveRelativeClause consists of a direction in time specified through the ObserveRela-
tiveDirectionType and either an AbsoluteTimeClause or a RelativeTimeClause to specify the
bounds of the time window for observations defined through this clause.

See ObserveRelativeDirectionType, AbsoluteTimeClause and RelativeTimeClause for more in-

formation.

3.5.6.6. Rule ObserveRelativeDirectionType
=y
NEXT

To specify a relative time window, the ObserveRelativeDirectionType is used. By using the
terminal SINCE, the time window is specified starting at a point in time in the past and
spanned towards the present time. The terminal NEXT is the opposite, spanning a time
window starting at the present time towards a future point in time.

See ObserveRelativeClause for more information.

3.5.6.7. Rule AbsoluteTimeClause

An AbsoluteTimeClause specifies a formatted date string through the non-terminal STRING.
The format is specified by the definition of date patterns of the class java.text.Simple-
DateFormat? as part of the Java 6 Application Programming Interface (API).

See Section 5.3.5 for more information.

3.5.6.8. Rule RelativeTimeClause

bbi—‘ RelativeTimeDurationClause I—J—N

A RelativeTimeClause consists of one or multiple instances of the type RelativeTimeDura-
tionClause to specify an amount of time to span a time window using a reference point in
time. The reference point is specified through other rules for time definitions.

See ObserveRelativeClause and ObserveBetweenClause for more information.

3.5.6.9. Rule RelativeTimeDurationClause

»—I INT H TimeModifierType |—><

The definition of a time duration in an instance of RelativeTimeDurationClause is based
on the non-terminal INT to specify the amount of time units and a TimeModifierType to
specify the factor for calculating the time duration based on the time units.

“http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat . html

38

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

3.5. Query Language Rules and Terminals 39

3.5.6.10. Rule TimeModifierType

666éddde

The TimeModifierType contains terminals describing different time units. The time units
and abbreviations as non-terminals are based on the class java.text.SimpleDateFormat® from
the Java 6 API. As Millisecond is the smallest unit defined by this rule, time duration cal-
culations are based on this resolution.

3.5.6.11. Rule ObserveBetweenClause

»—(BETWEEN AbsoluteTimeClause AND AbsoluteTimeClause
RelativeTimeWithSignClause RelativeTimeWithSignClause

The ObserveBetweenClause is used to define a custom time frame. The terminal BETWEEN

is the start of the rule followed by a time specification through either AbsoluteTimeClause

or RelativeTimeWithSignClause as start of the time window, the terminal AND and another

time specification to mark the end of the time window. As the calculation of the time

window can be realized through various approaches, the actual calculation process is not
defined at the language level, but at the implementation level of the DQL QEE.

See Section 5.3.5, AbsoluteTimeClause and Relative TimeWithSignClause for more informa-
tion.

3.5.6.12. Rule RelativeTimeWithSignClause

»—{ RelativeTimeSignType H RelativeTimeClause |—><

A RelativeTimeWithSignClause extends the RelativeTimeClause by prefixing it with an in-
stance of RelativeTimeSignType. The RelativeTimeSignType defines a relative time specifi-
cation to be interpreted as directed into the past or the future.

See RelativeTimeSignType for more information.

3.5.6.13. Rule RelativeTimeSignType

The RelativeTimeSignType expresses a time direction into the past through the terminal -
or into the future through the terminal +.

Shttp://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

39

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

40 3. Design of a Query Language for Online Performance Queries

3.5.6.14. Rule SampleClause

»—(SAMPLED BY)—[—{ RelativeTimeDurationClause I—j—N

Through the SampleClause, a query resulting in multiple results, e.g. querying n model
instances from the past through an O0BSERVE BETWEEN expression or an OBSERVE SINCE
expression, can be aggregated to samples. The size of a sample can be defined through us-
ing one or multiple instances of the rule RelativeTimeDurationClause to define the duration,
i.e. the size, of a single sample. The rule is initiated through the terminal SAMPLED BY.

The availability of this sampling mechanism depends on the referenced DQL Connector
and not defined through by means of DQL.

3.5.7. Extensions for Constrained Queries

3.5.7.1. Rule ConstraintClause

PD—(CONSTRAINED AS H STRING I—N

The ConstraintClause is used to provide an advice for solving the model instance and to
calculate performance metrics. It is an extension of the SelectQuery and used to build
queries from the class of Constrained Queries.

See Section 3.3.4, Section 3.4.3 and SelectQuery for more information.

3.5.8. Extensions for Degree-of-Freedom Queries

3.5.8.1. Rule DoFClause

>>—(EVALUATE DOF)T{ VaryingClause W ExplorationStrategyClause W ConstraintClause ITT{ WithClause ITN

The DoFClause extends a SelectQuery to analyze performance model instances under vary-
ing parametric settings, i.e. DoFs. The rule consists of four additional rules that can be
added optionally to control the exploration of the DoFs. The non-terminal initiating the
rule is EVALUATE DOF.

Using a VaryingClause the relevant DoFs can be selected explicitly, using a Exploration-
StrategyClause the strategy for the exploration of DoF configuration spaces can be set, the
ConstraintClause allows to define the trade-off between accuracy and response time and the
WithClause allows to specify an additional solver for DoFs besides of the DQL Connector.

See Section 3.3.4, Section 3.4.4, SelectQuery, VaryingClause, ExplorationStrategyClause,
ConstraintClause and WithClause for more information.

bb—(VARYING DoFReference

The VaryingClause is initialized through the non-terminal VARYING and allows to specify
one or multiple instances of non-terminal rules of the type DoFReference. This rule allows
users to specify which DoFs should be varied during the evaluation of DoFs.

3.5.8.2. Rule VaryingClause

40

3.5. Query Language Rules and Terminals 41

3.5.8.3. Rule DoFReference

»—{ STRING

AliasClause ConfigurationPropertiesClause

DoFVariationClause

A DoFReference is a specialized variant of the EntityReference for referencing DoF entities
in a performance model instance. By means of DQL, a DoF is an entity in a model instance
that can be used for varying its parametric settings in order to analyze the performance
dynamics of a model instance. The exact definition of model entities serving as DoF is
subject to the referenced DQL Connector.

The DoFReference consists of a non-terminal of the type STRING as the identifier in the
model instance of the DoF, an optional alias definition through an instance of AliasClause
and optionally either a ConfigurationPropertiesClause or a DoFVariationClause, which is a
specialized ConfigurationPropertiesClause.

See AliasClause, ConfigurationPropertiesClause and DoFVariationClause for more informa-
tion.

3.5.8.4. Rule DoFVariationClause

IntervalVariationClause
ValueVariationClause

A DoFVariationClause specializes the behavior of a ConfigurationPropertiesClause for ex-
pressing the variation of a DoF shorthand. The rule is initiated by the terminal < followed
by either an IntervalVariationClause or a ValueVariationClause to express the valid DoF
parameter variation space and is terminated by the terminal >.

See Section 5.3.6, IntervalVariationClause, ValueVariationClause and ConfigurationProperties-
Clause for more information.

3.5.8.5. Rule IntervalVariationClause

e O et ()]

Using an IntervalVariationClause, the range of valid parameter values can be specified.
The parameter space is evaluated through an initial value, i.e. the first non-terminal
INT, a bound specification, i.e. the second non-terminal INT, and an increment, i.e. the
third non-terminal INT. The final semantics for evaluating the clause are subject to the
implementation.

See Section 5.3.6 for more information.

3.5.8.6. Rule ValueVariationClause

2

A ValueVariationClause is used to specify an absolute list of possible parameter settings
for a DoF. The rule consists of one or multiple non-terminal INT instances separated by a
terminal ,.

See Section 5.3.6 for more information.

41

42 3. Design of a Query Language for Online Performance Queries

3.5.8.7. Rule ExplorationStrategyClause

DP—(GUIDED BY H STRING I—T‘ ConfigurationPropertiesClause |7—N

If a DQL Connector supports different exploration strategies, an ExplorationStrategyClause
can be used to specify which exploration strategy is to be used. The exploration strategy
is specified through an instance of the non-terminal STRING rule and can be, if necessary,
configured through a ConfigurationPropertiesClause.

See Section 5.3.6 and ConfigurationPropertiesClause for more information.

3.5.9. Grammar Rules for Performance Issue Queries

3.5.9.1. Rule PerformancelssueQuery

In PerformancelssueQuery the top-level queries for the class of Performance Issue Queries
are aggregated. Currently the class is solely based on the rule DetectQuery.

3.5.9.2. Rule DetectQuery

bb—(DETECr H DetectBottlenecksQuery I—N

A DetectQuery is used to start an automated analysis of a performance model instance for
a specific cause. The rule is initiated through the terminal DETECT and followed by the
non-terminal DetectBottlenecksQuery. It is used to express which automated analysis shall
be conducted.

See DetectBottlenecksQuery for more information.

3.5.9.3. Rule DetectBottlenecksQuery

»—(BO‘I‘I’LENECKS H DoFClause H UsingClause |—N

The DetectBottlenecksQuery is initiated by the terminal BOTTLENECKS followed by a non-
terminal DoFClause and a non-terminal UsingClause. Using this rule, a DQL Connector
can be queried to analyze a performance model instance for bottlenecks limiting the over-
all system performance. The exploration of DoFs helps to determine the significance of
parameter influences.

See Section 4.4 for more information.

42

4. Related Work

Supplementary to Chapter 3, this chapter presents related approaches to reason on the
design and foundations of DQL. In Section 4.1 intermediate modeling approaches will
be outlined to be used as assisting technique in SPE for analyzing performance model
instances. Section 4.2 focuses on formal approaches being used to capture dynamics in
performance model instances and Section 4.4 is related to a specialized analysis technique
answering also qualitative questions through analyzing performance model instances. With
a special emphasis on the textual syntax of DQL, Section 4.5 will complete the related
work with an outlook to Structured Query Language (SQL) as a successful approach in
the field of DSLs.

4.1. Intermediate Models in Performance Engineering

Intermediate modeling approaches allow to generalize transformation processes through
an intermediate step. The intermediate step is based on a predefined intermediate model,
that has a specified set of transformation rules either for incoming, outgoing or both
directions. Once a set of transformation rules has been defined, the rules can be reused
for other model instances if the rule set is based on the meta-model level. Being more
general, intermediate models cope with the problem having of n input formats and m
output formats (N-to-M problem). In the SPE domain such approaches can be used for
the analysis of performance models as follows.

In [SL11] an overview of the history and development of approaches for model interoper-
ability in the SPE domain is presented. Starting at interchange formats for tool interoper-
ability, more recent intermediate model approaches are introduced. The foundation of the
most recent approaches is based on Performance Model Interchange Format (PMIF) in its
enhanced version S-PMIF [SLP10]. S-PMIF allowed users to cover the complete process
from design models to analysis models with the adequate tooling for each step.

Approaches specialized on intermediate models are Performance by Unified Model Analy-
sis (PUMA) with Core Scenario Model (CSM) and Kernel LAnguage for PErformance and
Reliability analysis (KLAPER), both addressing the N-to-M problem. Both approaches
have their foundation in different software design domains [GMS06, WPP*05]. The PUMA
approach is based on the challenge to analyze design models in UML Profile for Schedu-
lability, Performance and Time (UML-SPT) based on UML [Obj05]. The intermediate
step in PUMA refers to CSM, which is then used to transform into an analysis model, e.g.

43

44 4. Related Work

into a Petri Net (PN), QN or Layered Queueing Network (LQN), for simulation purposes.
Hidden in the CSM step is the transformation and parameterization of the analysis model
to unburden users from manual work.

KLAPER differs significantly from PUMA in the following points: (i) KLAPER is focused
on CBSE, (ii) makes no specific assumption about the incoming design model and (iii)
allows the individual parameterization of the analysis model in the intermediate step
through its own Extensible Markup Language (XML)-based language [GMS06, GMRS08,
Koz10]. Thus KLAPER can be seen as being more general, but at the cost of effort
for defining initial incoming transformations and the parameterization if not using an
automated approach.

Through intermediate models automation approaches for the analyses of performance mod-
els have been developed. The approaches, once all transformations rules have been imple-
mented, see [GMRS08, p. 329 ff.] for remarks on the effort, allow the automated analysis
from the design model to the analysis model. Therefore users of these approaches are
unburdened from the manual transformation of performance model instances, but they
are forced to decide which model solving techniques shall be used for the analysis.

Besides of the decision of choosing the right model solving technique, the intermediate
approach is focused on offline execution and offers no support for requirements in an
online scenario, e.g. a trade-off between accuracy and speed of predictions.

4.2. Modeling of Degrees-of-Freedom and Strategies for their
Exploration

As modern computing environments become more dynamic, e.g. through the reconfig-
uration of run-time aspects like available vCPUs, architecture-level performance models
need to offer facilities for modeling these aspects. As example we refer to the Adaptation
Points Meta-Model as part of DMM [BHK12, HBK12]. In this example, the Adaptation
Points meta-model can be used to enrich an existing resource landscape model instance
to express certain DoFs of deployment resources. For instance a VM could be annotated
as being configurable to operate on 1 to n vCPUs. Further details on this topic can be
found in Section 2.2.

Besides of the modeling aspect, from DoFs new challenges are opened. For performance
predictions and their derived reconfiguration processes in real-world scenarios, the recon-
figuration process needs to be modeled. This model reflects the valid configuration space
of the DoFs and the conforming reconfiguration space in the real-world environment. Find-
ing an optimal solution for the reconfiguration then is in essence an optimization problem,
where a solution, e.g. a Pareto-optimal solution, needs to be found [KR11].

An important aspect of DoFs and the number of configuration options (d;) for a given DoF,
is the rapidly growing configuration space. DoFs are depending on each other, thus leading
to a total number of D = []" d; valid model instance configuration settings representing
the experiment runs to be conducted. The configuration space might be growing even
further when considering more complex parametric dependencies, e.g. due to constraints
arising from hardware configurations or software licensing. Thus the simulation of all
possible configuration options for finding an at least Pareto-optimal solution, causes high
computing demand that might exceed available capacities.

To cope with this challenge, advanced methods for the exploration of the configuration
space are needed. A viable solution for this problem is the usage of statistical models
for the configuration space and a sensitivity analysis for finding satisfying results with
reasonable simulation effort. In [WKH11] the concept of software performance curves is

44

4.3. Approaches for the Modeling of Performance Metrics and Measurement 45

proposed. The concept is solely based on statistical reasoning about model parameters
without the need of any knowledge of the underlying system.

When applying software performance curves, an efficient experiment selection can reduce
the total number of experimental setups to analyze. Due to the statistical model, results for
missing simulation points (i.e. combinations of configuration options) can be interpolated
and the next experiments can be selected based on statistical relevance. Concluding in
[WHKF12] statistical methods for parameter selection are evaluated for their prediction
quality. The results show that a reduction of the number of experiments with respect to
statistical errors is possible and a viable option for further research activities.

4.3. Approaches for the Modeling of Performance Metrics
and Measurement

This section will introduce modeling techniques for the modeling of measures. Using
standardized meta-models for the modeling of measures, the results of tools with dif-
ferent model solving approaches become comparable and users gain more flexibility. As
one approach for the modeling of metrics, the OMG introduced the Structured Metrics
Metamodel (SMM) as part of their Architecture Driven Modernization (ADM) roadmap
[ODbj12].

SMM is focused on the use in scenarios related to software technology and contains exem-
plary metrics for the Software Engineering (SE) domain, but is not limited to this domain.
Using SMM, any kind of structured metric can be modeled, measured and represented.
When using SMM for measuring, users can follow a process similar to (i) defining measures
by new SMM instances, (ii) apply the measures to source model instances of a software
system and (iii) retrieve measurement results.

Consistently with previous works of OMG, SMM is defined as instance of the MOF Meta-
Model. This allows integration with other meta-models of the OMG, e.g. with UML
[Objlla, Obj12]. Concluding the intention of SMM can be formulated as: "This executable
measuring should enable another tool vendor, presented with the same measure libraries,
observation information and instance models, to be able to apply those measures in an
unambiguous fashion and to come up with the same measurements (subject to uncertainty

errors)" [Obj12].

As an example for the implementation of SMM, Measurement Architecture for Model-
Based Analysis (MAMBA) supports a wide-range of SMM features and adds additional
features. One notable addition of MAMBA is MAMBA Query Language (MQL) as inter-
face to metrics. MAMBA is an implementation of SMM based on Ecore instead of MOF
as underlying meta-model. Opposite to SMM, MAMBA offers a variety of tools for the
execution of queries against model instances [FvHIJT11, FJKH12].

MQL has a SQL-like textual syntax and supports, advanced of the core functionality of
SMM, aggregates on measurements. In addition also a run-time environment for MAMBA
exists, that allows continuous queries of model instances. An exemplary query of MQL
can be seen in the following:

select AverageMethodResponseTime ("exampleMethod") as avgrt
from myApp where avgrt > 500 group by kdm.code.MethodUnit

Listing 4.1: MQL Example from [FJKH12]

The structure of the query example shows a direct relation to the structure of SQL. SQL
is a common example for a DSL as a query language and it allows to hide the actual data
access and calculation from the user.

45

46 4. Related Work

4.4. Detection of Bottlenecks in Performance Models

In [WFPOQ7] the authors outline the identification of bottlenecks as a direction for SPE
research. A bottleneck is defined as a resource, limiting the performance of a whole system
due to saturation. As already described by [DB78] for a given workload profile, each kind
of queuing network has at least one bottleneck. The analysis of bottlenecks and especially
the judgment on their impact can be seen as integral part of SPE besides of predicting raw
performance metrics, e.g. predicting the exact queue length of a resource serving requests.

Due to the increasing complexity of software systems and their sophisticated resource
allocations, e.g. message-driven software systems with exclusive resource pools for different
message types and different QoS classes, searching for bottlenecks is crucial for efficient
operation. The dynamics of these systems can be described and approximated by layered
bottlenecks with layered resources and services as in [FPW06].

In these models, the execution of a service depends on other services to be executed, im-
plying a hierarchical resource possession. These hierarchies imply that a single bottleneck
might be caused by a composition of multiple other bottlenecks. This leads to the demand
for specialized techniques of bottleneck detection, besides of judging between the states
saturated or mot-saturated.

4.5. Domain-specific Languages for Modeling Queries

A DSL is a kind of a programming language or set of formal expressions to express a specific
problem. Often a DSL has only a limited expressiveness to formulate problems. The
reduced expressiveness is advantageous in order to reduce the effort for learning a language,
but on the other side the language elements of a DSL composed of general instructions
might not be as efficient for computation as implemented manually. Leveraging the concept
of DSLs, users can increase their productivity through the use of a DSL in certain scenarios
but for the compromise to be able to use the language just in a single domain-context
[Fow10].

One widespread approach of a DSL for accessing structured data is SQL. It is based on
relations as structure for organizing data and can be used to retrieve and manipulate
data or alter the structure of relations. The roots of SQL are in Structured English Query
Language (SEQUEL), which is intended to offer users of different experience levels a unified
interface to relational databases [CB76].

In SEQUEL users can formulate statements in a declarative way. The underlying Rela-
tional Database Management System (RDBMS) has to break down queries and translate
them into instructions that can be executed on the underlying computing environment. In
this way users are unburdened from platform characteristics like file access, object storage
locations and more complex tasks like transaction management or physical data layouts.

Furthermore, besides of human users, the strict structure of statements in SQL allows also
machine users to use SQL as an API to RDBMS. An example of SQL as an interface for
machine users is Java Persistence API (JPA). When using JPA all SQL is generated hidden
from the software developer and executed without any human interaction [DeMO09]. From
a software developer’s view, the developer is only interacting with Enterprise JavaBeans
(EJBs) and the execution container (i.e. an Java Application Server with JPA) is managing
the direct interaction with the underlying RDBMS [Sak09].

The approach of SQL shows that a DSL with a declarative and strictly structured for-
malism is appropriate for both human and machine users. Moreover this kind of interface
unburdens users from detailed knowledge about the underlying system characteristics and
environment involved in executing queries. Hence, concepts of SEQUEL and SQL are a
viable foundation for the design of a DSL for online performance queries.

46

5. Implementation of a Query Language
for Online Performance Queries

This chapter explains the approach of implementing DQL. It uses the usage scenario
descriptions and the resulting textual syntax described in Chapter 3 to compose an archi-
tecture capable of the requirements and to provide an implementation suitable as a first
starting point for later development. At first the system architecture consisting of several
components will be introduced in Section 5.1. As an approach of an abstraction layer to
support different performance modeling approaches, the implementation is built around
the Mapping Meta-Model. The usage of the Mapping Meta-Model and the role as an ab-
straction layer is explained in Section 5.2. The interaction of components and conceptual
realization of processing queries is presented in Section 5.3. The chapter is finished by
presenting the Ul realized to provide users an Eclipse-based interface in Section 5.4

5.1. System Architecture and Component Description

5.1.1. Description of the System Architecture
5.1.1.1. Introduction of the System Architecture

The implementation of DQL is based on the principles of CBSE with a separation of
concerns between the different implemented software components. The foundation for
the encapsulation and interaction of components is realized through OSGi Bundles and
the OSGi Service Layer as introduced in Section 2.4. The minimal set of components to
assemble a complete run-time environment for DQL can be seen in Figure 5.1. These
components can be deployed on OSGi-compliant run-time environments, e.g. FEclipse
Equinox, which is the designated development platform.

The components shown in Figure 5.1 are separated in order to allow the flexible devel-
opment of new features. Each component is focused on a single concern and provides
interfaces to their consumers in order to use the functionality provided by the component.
Furthermore, as CBSE suggests, the separation allows to exchange component implemen-
tations, while reducing the impact of changes. To change the implementation of a software
component, the changes are hidden by interfaces, which allows to develop parts of DQL
independently. This section will present a brief overview of the components, while Sec-
tion 5.1.2 will present detailed descriptions of the interfaces provided by components.

47

48 5. Implementation of a Query Language for Online Performance Queries

Provide ConnectorProvider
Interface as OSGi Declarative

Service to the OSGi Run-Time

DQL: El
Connector
DQL:) E _C: DQL: . E <<requests>>
Language & Editor Query Execution Engine
On demand request of DQL QEE On demand request of
(Lookup-driven Process) DQL Connector (Lookup- DQL: E
driven Process) C Connector Registry

Requests all Components providing
ConnectorProvider Interface from OSGi
Service Registry (Event-driven Process)

Figure 5.1.: Overview of Components and Dependencies

5.1.1.2. DQL Language & Editor Component

The DQL Language & Editor Component is the result of the code generation facility
provided by Xtext, see Section 2.3, and the grammar of DQL as input. The component
consists of several sub-components to provide the parser and lexer for DQL statements,
an Eclipse EMF-based model to represent a DQL statement and an editor for the Eclipse
IDE with user assistance features, e.g. syntax highlighting and content assist, to write
DQL queries.

This component can be assembled to fit demands. In a batch usage scenario, where
the run-time for DQL might be deployed on a headless server, the sub-components for
the editor should be removed from the assembly. Whereas in a desktop deployment,
the sub-components providing the editor would provide a valuable user interface. For the
consuming component, the DQL QEE, the EMF representation of the query is the relevant
result of this component to process the query further.

5.1.1.3. DQL Query Execution Engine (QEE)

The DQL QEE is the central hub for executing queries. Based on the raw EMF repre-
sentation of the DQL query provided by the DQL Language & Editor Component, the
QEE interprets the query and performs semantic checks of the requested computation.
Semantic checks are applied, f.i. in the MetricReferenceClauses for entities not referenced
through the ForClause, and the query processing is aborted if the QEE detects any severe
errors.

The QEE is also responsible for the calculation of aggregates, see Section 5.3.4, and the
interpretation of the temporal dimension of queries, see Section 5.3.5. Additional time
units may be provided through functionality of the DQL Connector implementation, in
Section 6.3 an example is presented. To delegate the computation of performance metrics
and accessing performance model instances, the QEE utilizes DQL Connectors that are
being looked up through querying a centralized DQL Connector Registry.

Through the strict decoupling of parsing, interpreting and executing queries, taking place
at the QEE layer, and the solving of model-centric queries, taking place at the Connector

48

5.1. System Architecture and Component Description 49

layer, the isolated QEE component serves as central abstraction layer. The centralization
of abstraction allows either replacing the current DQL implementation by a new approach
or to replace the solver encapsulation approach through a more sophisticated subsystem
than the current approach of the Connector layer. Thus the architecture enables future
improvements through replacing parts of the application without direct impact on other
layers.

5.1.1.4. DQL Connector

A DQL Connector is a OSGi Bundle for interpreting queries of a specific performance meta-
model family, e.g. one Connector might be implemented for DMM and another Connector
might be implemented for Palladio Component Model (PCM). Thus the term Connector
is a synonym for the realization of a performance meta-model plug-in, but as each OSGi
Bundle might be considered as plug-in, the term Connector shall avoid confusion and
emphasize the relation to the DQL context. In a query, a specific Connector is named
through the ModelFamily in the UsingClause provided by the user.

The implementation of a Connector has to provide a set of Java Interfaces that is intro-
duced in Section 5.1.2 and its availability is announced through the OSGi mechanism for
Declarative Services. The Declarative Service is exposed together with the implementation
of a Java Interface and registered as a service Section 2.4 provides additional information
about the OSGi Service Layer.

In order to realize the computation of performance metrics for requests, the implementer of
the Connector is free to choose how to implement the Connector. As the performance meta-
model families differ significantly, e.g. comparing DMM to a meta-model for Queueing
Petri Networks (QPNs), the implementer might only implement parts of the set of available
classes and their functionality for Performance Metric Queries. Due to the CBSE-based
implementation approach, only the relevant interfaces need to be provided by the deployed
component while others are omitted.

5.1.1.5. DQL Connector Registry

As DQL should support multiple performance meta-model families, the DQL Connector
Registry performs the bookkeeping of available DQL Connectors for the different perfor-
mance meta-model families. The need for a Connector Registry arises from the fact, that
OSGi has no explicit support for different OSGi Bundles providing the same functionality,
i.e. implementing the same Java Interfaces, and to select one of these Bundles by an addi-
tional property. OSGi offers only a ranking mechanism for providing a service by declaring
a rank [OSG11, p. 116]. A detailed description of the registration mechanism realized for
DQL using Declarative Services will follow in Section 5.1.2.2.

The registration process follows the OSGi Lifecycle, i.e. triggered through the lifecycle of
DQL Connector Bundles resulting in an event-oriented process. After completion, the DQL
QEE can request references to DQL Connectors, which can be used to create an instance
of a DQL Connector for a specific performance meta-model family and the desired query
class.

Thus using the Connector Registry, the effort for looking up DQL Connectors has a small
footprint requiring only to access two instances of the associative data structure java.-
util.HashMap and is aligned to the OSGi run-time. Without the Connector Registry, the
look up of the DQL QEE would result in searching each available Bundle for the requested
Java Interface and supported performance meta-model family.

49

50 5. Implementation of a Query Language for Online Performance Queries

<<Interface>>
QueryExecutionEngine

+execute(DescartesQL): List<EntityMapping>
+execute(Resource): List<EntityMapping>
+execute(String): List<EntityMapping>
+isValidQuery(): boolean

Figure 5.2.: Interfaces provided by the Query Execution Engine

<<Interface>>
ConnectorRegistry

+bindConnector(ServiceReference<ConnectorProvider>): void
+requestServiceReference(String, Class<T>): ServiceReference<S>
+unbindConnector(ServiceReference<ConnectorProvider>): void
+updateConnector(ServiceReference<ConnectorProvider>): void

Figure 5.3.: Interfaces provided by the Connector Registry

5.1.2. Description of Interfaces within the System Architecture
5.1.2.1. Interfaces provided by the Query Execution Engine

The DQL QEE is the starting point for executing DQL queries. A query can be submitted
to the QEE for computing performance metrics or other information. The relevant meth-
ods provided by the QEE are shown in Figure 5.2. To submit a query, the QEE offers the
execute-methods with support for different input formats. A user can decide to submit
a query as instance of DescartesQL, which is an EMF-based model instance provided by
the Xtext parser, as instance of Resource, which is a EMF Resource to load the Xtext
model instance from persistent storage, or as instance of String, which is a raw textual
representation of the query.

Internally in the current implementation state, the execute-methods reuse the execute-
(DescartesQL) method to provide results. The execute-methods are blocking. Results
of the execution are returned as List<EntityMapping>. If the results should be treated as
valid by the caller, i.e. during the whole execution process no error or exception happened,
the isValidQuery method returns true. Otherwise the results should not be used for
further processing. The problem needs to be analyzed manually in this case, e.g. through
analyzing logs of QEE or the referenced Connector.

5.1.2.2. Interfaces provided by the Connector Registry

The DQL Connector Registry provides an unified interface for interaction with the OSGi
Service Layer and the DQL QEE to request a reference to create an instance of a specific
DQL Connector. Figure 5.3 shows the relevant methods of the unified interface.

For the interaction with the OSGi Service Layer, the methods bindConnector, unbind-
Connector and updateConnector are necessary. They are part of the lifecycle manage-
ment to maintain the references to available DQL Connectors. These methods are used
only internally and the mapping of the OSGi Lifecycle to means of DQL will be explained
in Section 5.3.1.

The method requestServiceReference is used to retrieve a reference to a Connector-
Provider, see Section 5.1.2.3, serving for a specific performance meta-model family. The
performance meta-model family is specified as String and a specific query class is re-
quested as second parameter of the type Class<T>. The separation of support for a

50

5.1. System Architecture and Component Description 51

<<Interface>>
ConnectorProvider

+createModelStructureQueryConnectorinstance():
ModelStructureQueryConnector

+createPerformancelssueQueryConnectorinstance():
PerformancelssueQueryConnector

createPerformanceMetricsQueryConnectorinstance():
PerformanceMetricsQueryConnector

Figure 5.4.: Interfaces provided by a Connector Implementation to the Connector Registry

specific performance meta-model family and support of a specific query class allows to
span the support of a specific performance meta-model family across multiple Connectors.

5.1.2.3. Interfaces provided by a Connector Implementation

The DQL Connector provides two interfaces for executing queries on the performance
model instance. In Figure 5.4 the ConnectorProvider interface is shown. The imple-
mentation of this interface is instantiated through an OSGi ServiceReference obtained
from the DQL Connector Registry. After an instance of ConnectorProvider has been
created, an instance of a type derived from QueryConnector, as shown in Figure 5.5, can
be created. The interface is based on the factory approach.

A ConnectorProvider implementation allows to create instances of Connectors for spe-
cific query classes, introduced in Section 3.2, realized as implementations of the inter-
faces ModelStructureQueryConnector, PerformanceMetricsQueryConnector or Per-
formanceIssueQueryConnector. A Connector implementation might therefore only im-
plement the interfaces that are actually available for the performance meta-model family
and is not forced to provide stubs.

Furthermore for each request-method shown in Figure 5.5, a complementary supports-
method exists indicating whether a request in a query class is supported. In case of the
class of Performance Metrics Queries, support for basic performance metrics through the
requestMetrics-method might be available, but support for analyzing DoFs through the
requestDoFMetrics-method might be unavailable. Testing for supported methods allows
a transparent exception handling and error reporting to users while using Connectors
from arbitrary sources. The referenced type EntityMapping, used as data structure for
requests and responses between the DQL QEE and the implementation of Connectors, will
be introduced in Section 5.2.

For the interfaces PerformanceMetricsQueryConnector and PerformancelIssueQuery-
Connector, which are both being derived from the StatefulQueryConnector interface, an
additional reset-method exists. As PerformanceMetricsQueryConnector and Perfor-
manceIssueQueryConnector allow to configure their internal behavior through additional
get- and set-methods', this method is used to reset the Connector instance back to an
reentrant state.

An example for a configurable behavior is the selected exploration strategy for the request-
DoFMetrics-method in the PerformanceMetricsQueryConnector. As the Connector im-
plementer might reuse cached objects within a Connector component, the reset-method
is used to indicate a new request that shall be interpreted using the default values and
reset any Connector-internal state, that might have misleading impact on the results.

!Omitted in Figure 5.5 to support the overview.

o1

52 5. Implementation of a Query Language for Online Performance Queries

<<Interface>>
PerformancelssueQueryConnector

+requestBottleneckDetection(EntityMapping): EntityMapping

<<Interface>> <<Interface>>
QueryConnector < StatefulQueryConnector

+getBundleProperty(String): String +reset(): void

<<Interface>> <<Interface>>

ModelStructureQueryConnector PerformanceMetricsQueryConnector

+requestDoF(EntityMapping): EntityMapping +requestDoFMetrics(EntityMapping): List<EntityMapping>
+requestEntities(EntityMapping): EntityMapping +requestMetrics(EntityMapping): EntityMapping
+requestProbes(EntityMapping): EntityMapping

Figure 5.5.: Interfaces provided by a Connector Implementation for Query Execution

Thus the reset-method ensures a reentrant Connector implementation, while allowing
Connector-internal optimization.

5.2. The Mapping Meta-Model

5.2.1. Introduction of the Mapping Meta-Model

The Mapping Meta-Model is an EMF-based meta-model serving as an abstraction layer
between DQL queries and specific performance meta-model families. Furthermore it is
used to represent the results of queries and can be used as a persistence mechanism.

The focus of the Mapping Meta-Model is to (i) retain information of a architecture-level
performance model instance in a well-structured and generalized fashion and (ii) to repre-
sent DQL query contents in an abstract way with focus on the structural properties of the
queried performance model instance. The term structural properties is in this case defined
to be centric to the model entities of performance model instances together with their
computable performance metrics. These structural properties can be requested through
instances of the Mapping Meta-Model, while the relationship, i.e. the architectural details,
among the entities is hidden.

Thus, due to missing relationships among model entities, the Mapping Meta-Model is not
intended to replace neither architecture-level modeling approaches, nor performance mod-
eling approaches. Detailed descriptions of the meta-model, the usage as abstraction layer
between the DQL QEE and the DQL Connectors will follow in the subsequent sections. In
Section 6.3 an approach for extending the Mapping Meta-Model into a Performance Data
Repository (PDR) for persisting query results and to provide access to historic results will
follow.

5.2.2. Description of Model Entities

In Figure 5.6 the Mapping Meta-Model is shown. The meta-model is made up on three lay-
ers forming a generic representation of structural properties extracted from a performance
model instance.

52

5.2. The Mapping Meta-Model 53

Top-Level
Aggregates

measurable metric) and Results

Generic Representation of Probes (i.e. aﬁ

o
Mapping g
modelLocation: EString - Probe
doF ExtendedEntity
‘ - - 0.7 metricName: EString
properties: Properties ZF
aggregates:
‘ %7 probes
’ Result
EntityMapping \ Entit
’ y valid: EBooleanObject
identifier: EString
alias: EString
DecimalResult

0. R -
services Service value: EB|gD§C|ma!
accuracy: EBigDecimal
0.*
resources Resource
@

Generic
Representation of
Model Entities

Figure 5.6.: Diagram of the Mapping Meta-Model

The Top-Level Aggregates are on the left side in Figure 5.6. EntityMapping, derived
from the abstract type Mapping, is used to aggregate all information retrieved from a
performance model instance by using computations or to submit a request for performance
metrics. The property modelLocation stores an URI interpretable by the utilized DQL
Connector. The containers for aggregates, doF, resources and services store references
to representations of different model entities found in architecture-level performance model
instances.

In resources and services the representations of performance-relevant entities are stored.
The referenced types are in the center of Figure 5.6 and part of the layer for Generic Rep-
resentation of Model Entities. Both are derived from the abstract type Entity with the
properties identifier to store an absolute identifier of the model entity as used in the
performance model instance and alias to store any kind of identifier the user suggested
in the originating DQL query, see AliasClause. To request and store performance metrics,
the Entity type allows to store references to the Probe type, which will be described in
the subsequent paragraphs.

The remaining attributes of EntityMapping of the types Aggregate and DoF are de-
rived from the type ExtendedEntity with an additional attribute properties of the type
java.util.Properties from the Java API. The properties attribute is intended to store
meta-information that is supplementary to the ExtendedEntity and required to interpret
the instance referenced. In case of the type Aggregate, which is used to store results of
the DQL QEE for computed aggregates, see Section 5.3.4, these information are related
to the computation process of an aggregate. For the DoF type, which is used to represent
a DoF and its setting, properties may contain information on the DoF variation. The
value of the Aggregate, i.e. the result, and DoF, i.e. the decimal value of a DoF in the
current variation, is stored through the last part of the meta-model, the layer for Generic

53

54 5. Implementation of a Query Language for Online Performance Queries

Representation of Probes and Results on the right.

The Probe type is used to specify the computation of a performance metric, that can be
identified through the attribute metricName. As identifiers of metrics might vary between
different performance meta-model families, the metricName is supplied as String. When
the result of a computation is returned through an instance of the Mapping Meta-Model,
Probes are replaced through sub-types of the abstract type Result. A Result has the
property valid to indicate whether the necessary computation processes have finished
without any errors and if the result value is eligible to be used for analysis by the user.
Currently, the Mapping Meta-Model only offers the type DecimalResult as result value.
Other types may be added in future revisions. The DecimalResult allows to store a value
of the result and its accuracy or the significance for statistical values, both represented
as the type Double.

To illustrate the usage of the Mapping Meta-Model, Section 5.2.3 and Section 5.2.4 pro-
vide examples and exemplary instances of the meta-model. The usage of the attributes
aggregates and doF in the EntityMapping type will be explained in the sections Sec-
tion 5.3.4 and Section 5.3.6.

5.2.3. Usage in Model Structure Queries

The Mapping Meta-Model supports Model Structure Queries in order to provide an
overview of queryable entities for a given performance model instance. This section de-
scribes the usage of the Mapping Meta-Model between the DQL QEE and DQL Connec-
tors. For queries from this class, the QEE uses the response of the Connector to pass it
back to the user as response.

In case of a query using the LIST ENTITIES expression, the result provided by the DQL
Connector contains all resources and services recognized in the performance model in-
stance. For this query type, the Mapping Meta-Model is used to form the request and the
response. Figure 5.7 shows exemplary instances for the request and response pair used.
The request on the left contains an instance of the EntityMapping with the modelLocation
attribute set. The DQL Connector can therefore look up the performance model instance
and query it through its internal operations. The response on the right shows an instance
of Service and an instance of Resource, which could be found in the performance model
instance. For both instances, the identifier is set, but the alias is empty as it is not
yet set by the Connector. A DQL Connector may suggest an alias.

Following the exemplary workflow for performance analysis using DQL as suggested in
Section 3.4, the subsequent query based on the LIST METRICS expression is intended to
reveal the available performance metrics for a set of explicitly specified entities. Figure 5.8
shows the corresponding request and response between DQL QEE and the DQL Connector.
The request contains an instance of EntityMapping and names the relevant instances of
Resource and Service with their identifier attribute set properly.

In the response on the right of Figure 5.8, the original request is extended and contains
instances of Probe with the metricName attribute set. These Probes indicate computable
metrics and are individual for their referencing entity, i.e. metric! is available for the
resource aliased as resI, but not for the service with the alias svcl.

5.2.4. Usage in Performance Metrics Queries

In Figure 5.9 the example of the Mapping Meta-Model for a SELECT expression is shown.
The request is formed through submitting an instance of the EntityMapping and naming
all relevant entities as instances of the types Resource or Service and the desired metrics
as Probe. In this example, the request is similar to the response shown in Figure 5.8.

54

5.2. The Mapping Meta-Model

55

request: EntityMapping

modelLocation = “void://url*

response: EntityMapping

modelLocation = “void://url*

:Resource

identifier = “id1“
alias = “res1”

:Service

identifier = “id2"
alias = “svcl”

Request
asuodsay

Request
asuodsay

55

response: EntityMapping

modelLocation = “void://url*

:Resource

identifier = “id1“
alias = *

:Service

identifier = “id2“
alias =

response: EntityMapping

modelLocation = “void://url*

:Resource
identifier = “id1“
alias = “resl1”

:Probe

metricName = “metric1”

:Service
identifier = “id2“
alias = “svcl”

:Probe

metricName = “metric2”

Figure 5.7.: Instances of the Mapping Meta-Model representing the Query from Listing 3.1

Figure 5.8.: Instances of the Mapping Meta-Model representing the Query from Listing 3.2

56 5. Implementation of a Query Language for Online Performance Queries

response: EntityMapping response: EntityMapping
modelLocation = “void://url” modelLocation = “void://url”
:Resource :Resource
identifier = “id1“ identifier = “id1“
alias = “res1” alias = “resl1”
:Probe -l :DecimalResult
0l o
metricName = “metricl” Qg -é metricName = “metricl”
ol = accuracy =1
xr|o
@ value = 123
:Service :Service
identifier = “id2“ identifier = “id2“
alias = “svcl” alias = “svcl”
:Probe :DecimalResult
metricName = “metric2“ metricName = “metric2“
accuracy = 1
value = 456

Figure 5.9.: Instances of the Mapping Meta-Model representing the Query from Listing 3.3

In the response, the instances of Probe have been replaced by instances of Decimal-
Result?. The instances of DecimalResult are populated with the computed results by
the DQL Connector and can be returned directly to the user for further processing and
analysis. As this illustration observes only the communication between the DQL QEE and
the DQL Connector, further tasks like the calculation of aggregates are not part of the
examples. In Section 5.3.4 the process for aggregate calculation and their representation
in the Mapping Meta-Model will be described.

5.3. Execution of Queries and Component Interactions
5.3.1. Registration and Lookup Process of the Connector Registry

OSGi allows to assemble components consisting of interfaces and corresponding implemen-
tations. These components are encapsulated within OSGi Bundles and can be deployed
to an OSGi run-time environment [OSG12, p. 217]. Following the system architecture
description for DQL Connectors in Section 5.1.1.4, for each supported performance meta-
model family a distinct DQL Connector implementation exists. These Connector imple-
mentations are encapsulated as separated OSGi Bundles. Although multiple component
definitions within a single OSGi Bundle are possible, the description following assumes
each OSGi Bundle to offer a DQL Connector is only exposing a single component.

To provide the functionality contained in OSGi Bundles on demand, OSGi allows to expose
components as Declarative Service to the run-time environment and manages dependen-
cies [OSG12, p. 215 fI.]. Once a service is declared, it can be looked up through the
OSGi Service Component Registry (SCR). The OSGi SCR is responsible for the lifecy-
cle management of components. The lookup of components provides a result of the type
ServiceReference that can be used to create an instance of the implementing class of
the requested interface. Both are declared explicitly by the component. For each DQL
Connector, the ConnectorProvider interface is exposed to the OSGi SCR.

The OSGi SCR is not capable to specify and index services by additional properties,
e.g. a key represented as String, to identify different services for the same implemented

2The attribute valid is omitted for space reasons.

56

5.3. Execution of Queries and Component Interactions 57

interface, e.g. the ConnectorProvider interface. Thus an OSGi run-time having multiple
DQL Connectors deployed would not offer an option to select an appropriate Connector
for the requested performance meta-model family. Instead each service providing the
ConnectorProvider interface would have to be tested for support of the performance
meta-model family requested and if the corresponding Connector is found an instance can
be created. In case of multiple Connectors and frequent queries, this effort would not be
reasonable and cause a significant overhead.

To work around this limitation, the DQL Connector Registry exists as introduced in
Section 5.1.1.5. Through the Connector Registry the interface ConnectorRegistry is
exposed together with a corresponding implementation. To realize a registration process
for Connectors, the Connector Registry declares a 1-to-n reference to all services providing
the ConnectorProvider interface. Through the OSGi Declarative Services, controlled
through an event strategy, the registration of all DQL Connectors is initiated [OSG12, p.
220 ff.]. The OSGi SCR then triggers method calls on the ConnectorRegistry interface
by events for binding, updating and unbinding a DQL Connector. Currently only the
binding and unbinding is supported by the DQL Connector Registry.

An partial illustration of the process to register and obtain instances of a DQL Connector
by using the Connector Registry is shown in Figure 5.10. The process can be split into three
phases. In Phase 1 the OSGi Declarative Services are recognized during the deployment of
Bundles and registered at the OSGi SCR. The registration of the DQL Connector triggers
the creation of the DQL Connector Registry and binds the Connector. In Phase 2 the
DQL QEE processes a query and tries to perform a lookup of a Connector. To find the
Connector, the ServiceReference of the DQL Connector Registry is requested, which
is used to obtain an instance of the service. Finally in Phase 3 the ServiceReference
and instance of a DQL Connector (i.e. supporting the requested performance meta-model
family and query class) is acquired and the actual query processing can start.

To simplify lookups of DQL Connectors by their performance meta-model family and
supported query class at the Connector Registry, an index data structure is used. When a
new Connector is bound to the Connector Registry, the Connector is put into a two stage
index, i.e. a key-key-value data store. The implementation of the index is realized using a
java.util.Map. First using the performance meta-model family identifier as key referring
to another instance of Map. The second Map contains an entry for each query class for
which an implementation for this performance meta-model family exists. The value in the
second Map instance is a ServiceReference that can be used to finally obtain an instance
of the ConnectorProvider.

The resulting type of the index in the Java implementation is Map<String, Map<Class,

ServiceReference<ConnectorProvider». The lookup of a particular ConnectorProvider
can be realized through a two-fold lookup in subsequent Map instances. In case of unde-

ploying, i.e. unbinding, a DQL Connector, the Connector Registry can remove the entries

from the data structure. In order to control the registration process, several additional
properties exist in the meta-information of the component descriptor of a Connector. The

process ensures a reasonable overhead even in case of frequent query request rates and

a high number of available DQL Connectors while it ensures to be conforming to the

dynamics of the OSGi run-time.

5.3.2. Execution of Model Structure Queries

Executing Model Structure Queries involves several layers of the DQL system architecture.
The interpretation and control flow to execute Model Structure Queries will be outlined
in this section.

57

5. Implementation of a Query Language for Online Performance Queries

58

18PIA0II0108UU0D) UINjal

€ aseyd

Ansibayi0108uu0) w8l

(<JBPIN0I4I0128UU0D>80UBI}8HSINIBS)DINISS

<I3PIN0I-410103UU0D>3IUBI8)9y3JIAISS uinlal

-

(--")@2uaiseyadiniasIsanbal

\\ v

Z aseyd

(<Ans169Y10108UU0D>8IUBI8}9HIINIBS)IIINIBS

<Ans1B3y10109UU0D>82UBIBJ0HIINISS UINJBI

190

(Ansi6ay10108UU0D)32UBI8}0HdIINIBSISB

(- .touow_ccou_uc_g

T aseyd

92IMI3S aAne.Ie|Daqg Aojdag

- L
|

92IAI8S aAnelIe|oaq Aojdag

Ansiboy
jusuodwo)
9JINIBS 19S0

J0198uu0d 10d

-

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ e

Ansibay
J0198UU0D 10d

auibu3g uonnoax3
Kiand 104

Figure 5.10.: Interaction of the DQL Query Execution Engine with the DQL Connector

Registry

58

5.3. Execution of Queries and Component Interactions 59

The involved components and implementation parts to execute a Model Structure Query
being outlined in this section are:

¢ DQL QEE — Implementation of the External Interface: Implementation of
an interface exposed to users to execute queries.

e DQL QEE — Model Structure Query Interpreter: Responsible for pre-
processing and validating queries, performs transformation of queries into instances
of the Mapping Meta-Model.

¢ DQL Connector — Model Structure Query Connector: Executes the query
based on the information found in the instance of the Mapping Meta-Model, is
specific to a performance meta-model family and utilizes external tools if necessary.

Figure 5.11 shows the conceptual control flow for processing a Model Structure Query
and the involved parts of DQL. After a request is received by the implementation of the
external interface of the QEE, it is delegated to an interpreter for its query class, i.e.
the Model Structure Query Interpreter. As the availability of Connectors depends on the
current state of the OSGi run-time and the declaration of services (see Section 5.3.1), the
interpreter tries to find an adequate Connector to process the query. If no compatible
Connector is found, the processing is aborted. Otherwise the processing can be continued
and more compute-intensive tasks for preparing the query for processing can be performed.

The compute-intensive tasks performed are interpreting the query first, which is a task di-
rectly depending on the actual type of Model Structure Query issued, e.g. LIST ENTITIES
in contrast to LIST METRICS, and, therefore special for each type of Model Structure
Query. To delegate the execution of the request to the Connector instance created, it is
encapsulated as instance of the Mapping Meta-Model. An illustration of the different in-
stances of the Mapping Meta-Model for executing Model Structure Queries can be found in
Section 5.2.3. After requesting the Connector to execute the query, the performance meta-
model specific processing of the query is started. Specific processing involves accessing the
performance model instance and evaluating it.

The processing of a request consists of multiple steps within the Connector. First the
request needs to be processed, which involves accessing the model instance and to check
for availability of all required information. The actual solving process depends on the used
performance meta-model family and might involve an additional component for model
solving. An example for an additional component could be a technology for querying
model instances for model entities, e.g. EMF ModelQuery® in case of an EMF-based
performance meta-model family like PCM or DMM. After completing the execution of the
external solver, the results can be stored in a response using the Mapping Meta-Model
and are returned to the user.

The process shown in this section is the generic approach for executing Model Structure
Queries. The different Model Structure Queries defined as children of ListQuery require no
additional processing at the moment. Later extensions of the Model Structure Query class
could provide filtering mechanisms, that could be realized by additional processing steps
implemented while returning results to the user. The abstraction layer introduced through
the Mapping Meta-Model allows to operate by using generic processing steps among the
different queries realized in the Model Structure Query class.

5.3.3. Execution of Performance Metrics Queries

To advance from the previous section, this section will outline the interaction between lay-
ers of the DQL QEE and a DQL Connector to execute Performance Metrics Queries. Con-
trary to Model Structure Queries, Performance Metrics Queries usually involve complex

3http://www.eclipse.org/modeling/emf/?project=query

59

http://www.eclipse.org/modeling/emf/?project=query

5. Implementation of a Query Language for Online Performance Queries

60

sanjeA Jnsay uiney

““““ =

1sanbay snoax3y

1sanbay aeal)d

_
A1and AIsA % 181diaiu)

aouelisu| areal)d

Jo108uu0) A1snd

r
I
| L
_ _
_ asuodsay ayeald
I [
I
oo =
> san[eA ynsay uinay
aindwo) |
I
<
I J9A|0S [eula1x3 a1ndax]
I
I >
| 1sanbay ssa20.1d
_ [
I
I
I
I
I
I
I
I
I
I
I
I
I L
I I
I I
I I
I I
I I
I I
| |
jusuodwo)d
J19A|0S |9POIN

:10108uUu0) 10A

2IN19NAS |9PON
:10108uu0) 10A

A \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

L =)

saneA Jnsay uiney

A1and) anoex3y

[dueisu| areal)d

Ja1aidiaqu) A1and
2IN19N11S |9PON
‘330 104

T
|

9JdeLILlu| [eulalxy
Jo uoneuawadwy
330 104

Figure 5.11.: Interaction between Software Components during the Execution of a Model

Structure Query

60

5.3. Execution of Queries and Component Interactions 61

model transformations and compute-intensive simulations that take place at the Connector
layer.

The involved components and implementation parts to execute a Performance Metrics
Query being outlined in this section are:

e DQL QEE — Implementation of the External Interface: Implementation of
an interface exposed to users to execute queries.

e DQL QEE — Performance Metrics Query Interpreter: Responsible for pre-
processing and validating of queries, performs transformation queries into instances
of the Mapping Meta-Model, parameterizing the Connector.

e DQL Connector — Performance Metrics Query Connector: Executes the
query based on the information found in the instance of the Mapping Meta-Model, is
specific to a performance meta-model family and utilizes external tools if necessary.

Figure 5.12 illustrates the processing of a Performance Metrics Query for a Constrained
Query, i.e. a SelectQuery containing a ConstraintClause, with an additionally defined tem-
poral dimension through an ObserveClause. Extending this query towards an DoF Query
using a DoFClause would cause additional operations to be executed being omitted in Fig-
ure 5.12 as they would not necessarily use additional layers, but degrade the overview of
interactions in the figure.

The execution of the query starts by initiating the lookup process for a suitable DQL
Connector for query execution taking place before the query is interpreted. As part of the
subsequent interpretation process, the ConstraintClause and the ObserveClause are evalu-
ated and the settings are propagated to the Performance Metrics Query Connector. To
evaluate the ObserveClause additional time calculation steps are necessary as described in
Section 5.3.5.

For both clauses, ConstraintClause and ObserveClause, the information obtained contains
no structural properties of the performance model instance. As the Mapping Meta-Model
is intended as a abstraction layer for the structure of a performance model instance, the
information is not embedded as part of the Mapping Meta-Model within the request. To
delegate the information to the Connector, set-methods of the Performance Metrics Query
Connector are used.

The subsequent steps are related to the creation of the request through the Mapping Meta-
Model. Before the request is executed by the Connector, additional steps are required for
computing aggregates that may be part of the request. These steps are described in
Section 5.3.4. In case an aggregate is requested, certain conditions imply modifications of
the original request, but during a post-processing step all modifications that are applied
implicitly are reverted before the results are passed back to the user.

The process of calculating performance metrics is specific for each DQL Connector imple-
mentation. As performance meta-model families differ significantly no general assumption
on the calculation process can be made and is subject to the implementer. As for the
computation process no assumptions are made at any layer of DQL, neither any assump-
tions are made for the applicability for DQL Connector settings as constraints or temporal
dimensions. For these settings even at the Connector level no general assumption on the
impact of settings can be made, as they depend on the underlying performance model
instance.

5.3.4. Calculation of Aggregates on Performance Metrics

In Section 3.5.5 language elements for calculating aggregates on top of performance metrics
are introduced. Aggregates in DQL are part of the language and are not being calculated

61

5. Implementation of a Query Language for Online Performance Queries
R |

62

sarehalbby ss8201d-1S0d

aindwo)d

asuodsay ayeald

son[eA Jynsay uiney

19A|0S [eulR1XT 91Ndaxy

>

1sanbay ssa001d
[

sanjeA 1nsay uinay

1sanbay snoax3

so1ebalbby ssa20id-ald
[

1sanbay areal)d
[

uoisuawiq elsodwa] 189S

urensuod 19S

_
A1and AIBA % 181diaiu)

A |||||||||||||||||||||||||||||||||||||||

aguelisu| areal)d

jusauodwo)d
JBN|0S [9PON
:10108uu0) 10A

10108uu0) A1and
SOBN "Had
:10108UUu0) 10A

||||||||||||||||||||||||||||||||||||||| v

sanjeA)nsay uiney

R
|
|

A1and anoex3y

aduelsu| areald

Ja18udiaqu A1and
SOBN "Had
330 104

—
|

9JdeLlILlu| [eulalxy
JO uoneuawa|dw|
330 10d

Figure 5.12.: Interaction between Software Components during the Execution of a Perfor-

mance Metrics Query

62

5.3. Execution of Queries and Component Interactions 63

by requesting aggregations of performance metrics through functionality of the DQL Con-
nector. Instead, aggregates are calculated at the DQL QEE layer and their influence on
performance metrics calculation at the DQL Connector is as minimal as possible. The
most significant influence are requests of the QEE to calculate additional performance
metrics implicitly, among other performance metrics requested through the query, in or-
der to compute desired aggregates. For users this process is transparent. This section is
an addition of Section 5.3.3, where the execution of queries from the class of Performance
Metrics Queries is outlined.

The process of calculating aggregates is integrated directly with the process of executing
common Performance Metrics Queries. The process is initiated during the evaluation of
the MetricReferenceClauses within the PerformanceMetricsQueryInterpreter. All found
aggregates are registered in a central data structure for an additional pre-processing step
before submitting the request to the Connector for execution. A finalizing post-processing
step is executed after the Connector has completed its work in order to calculate the values
of all aggregates. The feature is implemented orthogonally to the remaining processing of
Performance Metrics Queries, i.e. the Connector requires no special functionality to offer
support for aggregates.

Figure 5.13a shows the steps for calculating aggregates as part of the pre-processing phase
using the AggregateController implementation of the QEE. At first, for each aggregate,
the required performance metrics to compute the aggregate are stored in a index data
structure. The type of the index is Map<String, Set<String». The key in the Map is the
identifier of a model entity, the Set contains all required metric names of the entity in order
to compute the requested aggregates. Using this index, all metrics required additionally
being found during the pre-processing step can be tracked and merged among the other
aggregates requested. Thus the pre-processing ensures that no duplicated requests for
additionally inserted performance metrics can occur.

As aggregates are implemented orthogonally and the Connector is not aware of requested
aggregates, the pre-processing step in the QEE has to request additional performance
metrics for computing the aggregates implicitly. In order to perform an implicit re-
quest, the performance metrics required additionally are merged with the instance of the
EntityMapping that is already available and is created through the usual processing of
requests in the QEE. The pre-processing consists of two additional pre-processing steps
that are necessary to extend the set of performance metrics within the originating request
(M,) with additional performance metrics (M,/). The additional performance metrics
are not yet part of the request and stem from the set of performance metrics required for
aggregate computation (M,). The resulting set M, = M,\(M,NM,) of performance met-
rics is added as common requests for performance metrics among the explicitly requested
performance metrics to the original request and can be delegated to the Connector for com-
putation. Thus the Connector implementation is not required to be changed to support
calculating metrics for aggregate computation.

To add additional performance metrics efficiently, the request is indexed as the additional
performance metrics are. To detect missing metrics, the additionally required metrics are
iterated and if metrics are missing in the request, they are added. The operations on
the data structures are realized through the operations available for Map and Set with
the corresponding implementations based on hash functions allowing to access contents
efficiently.

After the computation of performance metrics through the Connector is finished and the
EntityMapping used as response is available, the post-processing of aggregates as shown in
Figure 5.13b is started. Using the response of the Connector, all aggregates, that have been
recognized during pre-processing, are to be calculated and inserted into the aggregates

63

64 5. Implementation of a Query Language for Online Performance Queries

! !

4 DQL: Query Execution Engine ‘ (DQL: Query Execution Engine

for each Aggregate: Q}D Post-Process each Aggregate
_ Calculate required Metrics i.e. calculate Aggregates —~*—

| |

(DQL: Query Execution Engine J [DQL: Query Execution Engine J

Build Indexes for Request Build Indexes for Response

| |

4 . .))
DQL: Query Execution Engine DQL: Query Execution Engine
g Add required Probes to Request Remove not requested Probes

@ Q

(a) Pre-Processing Steps (b) Post-Processing Steps

Figure 5.13.: Steps for Pre- and Post-Processing of Aggregates in addition to Figure 5.12

containment of EntityMapping. The calculation of aggregates is based on the software
library Apache Commons Math?, which offers support for the computation of statistical
metrics, and in case of trivial computations on self-implemented classes for computing
the aggregate. The available aggregates supported by DQL are exposed through the
StatisticalAggregate Type grammar rule in queries. Future extensions can reuse the existing
infrastructure to offer additional aggregates by extending the StatisticalAggregateType at
the language level and providing a suitable implementation of AggregateCalculator in
the QEE.

Complementary to adding performance metrics required implicitly to the requesting Entity-
Mapping, the post-processing removes not explicitly requested performance metrics from
the EntityMapping instance for responding. If the performance metrics would be kept in
the response, users might be served with a result that was not requested and consider it
as malicious. For the removal of performance metrics not requested explicitly, the index
structure of the pre-processing containing all missing performance metrics, M, is reused.
In order to perform the removal efficiently, the response is indexed with two inverse indexes.

The index of all calculated performance metrics in the response is of the type Map<String,
Map<String, Probe», where the first key is the identifier of an Entity in the Mapping
Meta-Model and the second key is the metricName of a Probe. This Probe is referenced
by an Entity, with a final reference to the instance of Probe as value. At run-time the
response does not contain instances of the type Probe but DecimalResult to transport
results. As Probe is the super-type and no explicit downcasting is necessary, the im-
plementation uses the parameterization through the type Probe which is preferable as
additional result types that might be added in future are already supported. Using this
index together with the index of additional performance metrics, the corresponding Probes
of performance metrics added implicitly can be found efficiently. In order to detach these
Probes from their Entity instances, another index of the type Map<String, Entity> is
utilized, which uses the identifier of an Entity as key and the Entity as value. The
removal process can use this index to call the corresponding methods for removing a Probe
from an Entity at the corresponding Entity instance.

To present the calculated aggregates to the user, the results are stored in the EntityMapping
used as response. For storing the response, the probes attribute of the Aggregate type is
used and the Aggregates are stored in the containment aggregates of EntityMapping.

“http://commons . apache.org/proper/commons-math/userguide/stat.html

64

http://commons.apache.org/proper/commons-math/userguide/stat.html

5.3. Execution of Queries and Component Interactions 65

For meta-information, e.g. in case of the PERCENTILE aggregate (see StatisticalAggregate-
Type), that are required to calculate the aggregate, the properties attribute of Aggregate
is used. Although the Mapping Meta-Model shall only represent a view on the structure of
the performance model instance used for analysis, this extension is reasonable. Aggregates
do not represent the structure of the performance model instance, but are directly based
on entities representing the performance model instance structure. Furthermore, from
a technical view, the embedding of higher-order information within the Mapping Meta-
Model allows to present a coherent view on a performance meta-model instance under
the angle of the query. Excluding the results of aggregate calculation would have made
another approach for the representation of metrics necessary.

In summary the process of calculating aggregates could be implemented as orthogonal
feature in the class of Performance Metrics Queries. The approach is independent of
capabilities of Connectors as long as Performance Metrics Queries are supported and
might can be leveraged to be used for calculating aggregates based on the evaluation of
DoFs. The implementation of pre- and post-processing of aggregates is implemented to
support even huge amounts of aggregates and performance metrics used in aggregates by
using adequate data structures and indexing methods. More comprehensive queries might
be a result of the usage of DQL in usage scenarios generating queries by machine users,
e.g. by a Performance Testing System (see Section 3.1.2.2) or a Monitoring and Resource
Management System (see Section 3.1.3.2).

5.3.5. Absolute Calculation of Time Specifications

The usage of time in the ObservationClause with the referenced grammar clauses Ob-
serveRelativeClause and ObserveBetweenClause and further child clauses raise the need for
a definition of the calculation of time points in the DQL. As the definition of interpreting
time is not part of the language design, the decision for time calculations takes part in
the implementation of DQL. For calculating absolute points in time, the interpretation
of the temporal dimension needs to be realized within the DQL QEE in order to provide
consistent results. Additional, Connector-dependent interpretations, can be provided by
a DQL Connector and are subject to be specified by the Connector implementer.

The relevant language parts addressed in this section are used to compute time frames. A
time frame has an absolute point in time for its start and end. As relative time expressions
are allowed, the absolute points in time to define a time frame need to be calculated. For
defining rules to calculate absolute points in time, the following expressions will be used:

to is the present point in time.

ts/tg is the absolute point in time of the start/end of a time frame.

dg/dg is the relative time duration specified as the starting/ending point in time.

e T is the time frame spanned by tg and tg.

The temporal ordering of points in time assumes tg < tg, i.e. the absolute point in time
tg is earlier than tg. No assumption is made on a constraint on ¢y and its relative ordering
to tg or tg. tg is only required for obtaining a reference date to calculate relative date
specifications in case no other reference date can be used. Thus the position of ¢y in
Figure 5.14 does not reflect the temporal ordering of ¢y, tg and tg.

Figure 5.14 illustrates the different cases for calculating time frames. The cases shown
correspond to the time calculations performed in the classes ObserveBetweenInterpreter
and ObserveRelativeInterpreter of the DQL QEE. The calculation of the time frame
T and the interpretation of tg and tg is implemented with the following semantics:

65

66 5. Implementation of a Query Language for Online Performance Queries

l 1) i 2) l 1)
| | | | | | | | | |

| I I I | | I I I |
ts to tE ts tU tE

/;\ l ” /;\

ts to tE ts to tE

(c) tg relative, tg absolute (d) tg relative, tg relative

Figure 5.14.: Reference Points for Time Specifications

e Figure 5.14a: T is defined directly with tg as starting point in time and tg as ending
point in time.

e Figure 5.14b: T is defined by using tg as starting point in time and tg is specified
as tg = tg + dg, i.e. the relative duration specified as end is added to the absolute
start of T'.

e Figure 5.14c: To define T at first tg has to be calculated as tg = ty + dg and the
end of T" can be directly specified as tg. Otherwise as the visualization suggests, tg
does not need to be a point in time before t3. The calculation of tg allows both, i.e.
negative and positive specifications of duration.

e Figure 5.14d: As for the previous case at first tg has to be calculated as tg = tg+dg,
which is then reused to calculate tg as tg = tg + dg. After tg and tg have been
calculated, T is defined.

The steps for calculating and the case-dependent definition of reference points for cal-
culating absolute points in time from relative specifications allow to map all possible
combinations of time specifications that can be expressed through the DQL.

5.3.6. Configuration of Degrees-of-Freedom Evaluation

The configuration of exploring DoFs is two-fold and takes place at the query language
level. Through the DoFClause a user can (i) configure the process-specific settings for
the DoFs exploration and (ii) specify the parameter space for each DoF available in the
performance model instance used. Further configuration settings might be based on DQL
Connector-specific configurations, e.g. configuration files within OSGi Bundles, that are
not part of DQL.

The process-specific settings for DoFs evaluation are specified through the non-terminals
ExplorationStrategyClause, ConstraintClause and WithClause. For each of these clauses, a
corresponding pair of get/set-methods exists in the PerformanceMetricsQueryConnector
interface. The actual values of settings and their interpretation is subject to the Connec-
tor. Especially for the interpretation of the WithClause and to construct an advanced usage
scenario of DoFs evaluation with an additional exploration controller see Section 6.4. The
usage scenario introduced in the referenced section gives an outlook for the implementation

66

5.3. Execution of Queries and Component Interactions 67

of a software component for systematically exploring DoFs integrated with a Connector
to form a control loop.

For specifying the individual parameter space of a DoF within a VaryingClause, the Con-
figurationPropertiesClause can be used. As linear parameter space expansion and setting a
set of fixed values for a DoF might be common use cases, the DoFVariationClause exists.
The DoFVariationClause and its children IntervalVariationClause and ValueVariationClause
are abbreviations of the ConfigurationPropertiesClause, to which it is transformed in the
DQL QEE. An example is shown in Listing 3.6.

The ValueVariationClause is used to define a set of values of the query level that shall
be applied to a DoF. Thus the ValueVariationClause is a simple example for eliminating
the need to modify a performance instance manually to change individual entity values
for retrieving performance metrics using an external tool supplementary to DQL. If a
ValueVariationClause is specified, it is transformed into the following set of property keys
and values before it is submitted to the Connector:

e function with the fixed value fized.

e value with one or multiple integer values separated by a ,.

A Connector should use the values provided in the value property to set each value as a
value for the DoF, which will be used to perform the calculation of performance metrics.
Thus the amount of supplied values for varying a DoF has direct influence on the amount
of computations required and results returned.

The IntervalVariationClause represents an iteration of integer values spanning an linear
interval of discrete values. It is corresponding to a for loop found in programming lan-
guages. The IntervalVariationClause is transformed into the the following property keys of
the ConfigurationPropertiesClause:

e function with the fixed value iterate to indicate how to interpret the other proper-
ties.

e start (s) with an integer value as start of the interval to be spanned.
e end (e) with an integer value as end of the interval to be spanned.

e step with an integer value to be added to the current value of the iteration.

Using these properties, a Connector implementation should interpret the properties corre-
sponding to the following for loop: for(int i = start; i < end; i += step) { /*

x/ }. The interval specified through the IntervalVariationClause is formally defined
as (s, e] € Z.

As the DoFs specified in a VaryingClause represent information that are directly related to
the structure of a performance model instance, they are eligible to be represented through
the Mapping Meta-Model directly. An instance of EntityMapping allows to store and
represent DoFs as the type DoF as shown in Figure 5.6. Furthermore as the DoF type is
derived from ExtendedEntity it allows to store an instance Property as attribute, which
is used to represent the meta-information contained in the ConfigurationPropertiesClause.
Following this approach the QEE can use the Mapping Meta-Model to forward all necessary
and structurally relevant information to the Connector.

Vice-versa the Mapping Meta-Model can also be leveraged to represent the setting of a
DoF when the results of a query are returned. The setting of a DoF can be represented
as DecimalResult attached to a DoF. Thus a coherent view on the performance metrics
returned through an instance of the Mapping Meta-Model and the current setting of DoFs

67

68 5. Implementation of a Query Language for Online Performance Queries

can be ensured. Through the coherent view, a user can recognize the setting of DoFs easily
without guessing the order of evaluating DoFs. QEE and the corresponding Connector can
leverage this effect to perform optimization during execution, i.e. to parallelize executions
of queries in the parameter space, without taking care of a special ordering of executions.

5.4. Eclipse-based User Interface for Performance Analysis
5.4.1. Query Editor and Execution Environment

Based on the source code generated by Xtext, an editor with syntax highlighting and
checking support is available. The editor allows users to write queries in DQL within
the Eclipse IDE and is a foundation for the implementation of a Ul for DQL. The main
focus for Ul enhancements is on the execution of queries, the integration with the Eclipse
platform and the implementation of content assist hints for the query editor.

For a tight integration with the Eclipse platform, the ability to execute DQL queries within
the IDE is a mandatory foundation. To integrate DQL and to launch queries, two steps are
necessary: (i) Implement org.eclipse.debug.ui.ILaunchShortcut in order to provide
the launch support as it is commonly available for e.g. Java programs through using the
Run Dialog and (ii) implement the abstract class org.eclipse.core.runtime. jobs.Job
in order to delegate the execution of a query to the Eclipse platform.

At the current implementation level of the DQL in the Eclipse IDE no additional settings
are required in order to execute a query. The Run Dialog is therefore populated with
a default dialog window derived of the class org.eclipse.debug.ui.AbstractLaunch-
ConfigurationTabGroup presenting a familiar view to the user. The execution of jobs
is set to be scheduled in the background for long-running jobs. The value is specified
statically using the constant Job.LONG.

Xtext provides a mechanism to implement content assist for the implementation of a
language. The code generation of Xtext provides an abstract class that can be implemented
to provide content assist for individual grammar rule combinations for allowed language
constructs. The current implementation of content assist for DQL allows to complete
statements with the identifiers and available metric names of model entities. To realize the
content assist of identifiers, in the background DQL queries are generated and executed
to examine the model instance. The results are then displayed and a user may choose
between alternatives. The content assist is also usable to complete identifiers in case a
user provided only a partial identifier.

The resulting DQL Editor is embedded in the Eclipse IDE as shown in Figure 5.15. The
upper half of the screenshot shows the DQL Editor generated through Xtext. The query
shown has special formatting for a query and allows to use the content assist to complete
parts of the query by suggestions. Through the launcher mechanism of Eclipse, the query
can be submitted to the DQL QEE for execution.

5.4.2. Presentation of Query Results

To display query results, a view for the Mapping Meta-Model is available. The view is
based on the class org.eclipse. jface.viewers.TableViewer and visualizes instances of
the Mapping Meta-Model as flat table. The view is embedded in the Eclipse IDE and
users may choose where to display query results.

The implementation is shown in the lower half of Figure 5.15 displaying the results of
the query execution. As the query contains DoFs, multiple tabs are visible displaying the
different instances for each combination of DoF parameter setting. The table displays the

68

5.4. Eclipse-based User Interface for Performance Analysis 69
@ (e Java - edu.kitipd.descartes.ql.lang.examples/PCM/PalladioD oF Query.dgl - Eclipse SDK (SN Ne.I]
Eile Edit Navigate Search Project Bun Window Help
T SINIBvOVQViE GVilivilvio Gvav “D 4 (e B (v
5 2/ PalladioDoF Query.dql 2 = 7
. =~ SELECT AppServer_CPU.utilisation, DBServer_CPU.utilisation -~
= EVALUATE DOF
S VARYING ' TyV-MFBwEdSActLj8Gdl_A' AS Workload
= [strategy = "Closedworkloadvariation",
function = "fixed", value = "s@, loo"],
= ' _Q8)wMEgSEd2vSeXKEbOQ9g' AS Replication
= [strategy = "AbstractActionReplication",
function = "iterate", start = "2", end = "10", step = "2"]
= FOR RESOURCE ' SuTBUBpmEdyxgpPYxT_m3w@CPU' AS AppServer_CPU,
RESOURCE ' _tVi40Dg_EeCCbpF63PfiyAGCPU' AS DBServer CPU
USING pcm@' fedu.kit.ipd.descartes.ql.lang.examples/PCM/mediastore.properties’; ~
w
<[)< >
Palladio Palladio [4 Sirmula 'O Palladio 2 Palladio Palladio Palladio Palladio Palladio = g8
Entity Type ° Entity Alias : Entity Identifier . Metric Name : Result Valid? - Result Value - Result Accurzs -
D DoF Replication | _0BjWMEQ9Ed2vSeXKEb0Q9g : Parameter Setting | true . 6.000000{ 1.000000
D DoF . Workload _TW-MFBWEdBACtLi8Gdl_A | Parameter Setting | true 50.000000 1.000000
R Resource | AppServer CPU | _SuTBUBpmEdyxgpPYxT_m3w@: utilisation Ctrue 0.601094: 1.000000
R Resource | DBServer CPU | tVi40Dq EeCCbpF63PfiyA@CP; utilisation true 0.500804 ; 1.000000
Writable Insert 1:13 =

Figure 5.15.: Screenshot of the Eclipse IDE showing a DQL Query for PCM

for each available instance of DecimalResult one row showing all relevant information,

e.g. the Entity it belongs to.

As the Mapping Meta-Model is currently the only data structure used for representing the
results of queries, i.e. serving for all query classes, results from all query classes can be
represented through instances of this view. For later revisions, the view can be extended

to support more features, e.g. on demand filtering on a column level.

69

6. Evaluation of Design and
Implementation

This chapter presents an evaluation of the DQL approach. It evaluates the design deci-
sions from Chapter 3 and the implementation approach from Chapter 5 by investigating
approaches for the interaction of DQL with established scientific approaches. In Section 6.1
an evaluation of a DQL Connector implemented for PCM is presented showing DQL con-
trolling PCM. Section 6.2 shows a conceptual approach to integrate DQL with KLAPER
for analyzing performance model instances through using intermediate models. A view
on the capabilities of temporal dimension of DQL is presented in Section 6.3 showing an
approach to extend the Mapping Meta-Model into a PDR. The chapter is finished with
an outlook in Section 6.4 to a prospect usage scenario of Software Performance Cockpit
(SoPeCo) in a control loop with the DQL approach to conduct efficient experimentation
with DoFs.

6.1. Controlling the Palladio Component Model (PCM)
6.1.1. Introduction to the Palladio Component Model

PCM is a modeling language for the architecture of CBSE-based software systems and
their deployment on resource landscapes to predict the performance of systems. The ap-
proach addresses the needs of users during design, development and maintenance phases of
software systems [RBBT11]. As CBSE encourages the reuse of generic components in ar-
bitrary environments, each component represents a set of provided and required interfaces
together with business logic. Components are intended to be used as black box building
blocks as only the interfaces are exposed. To ensure an acceptable level of QoS or to satisfy
SLAs, it is important to predict the performance of these independent components after
their assembly. Using these predictions, the PCM approach supports the CBSE process
in a way to allow architectural decisions for the selection of components and their com-
position as early as possible. A detailed and illustrated description of PCM approach can
be found in [BKR09].

The Palladio Bench! is an Eclipse-based set of tools for modeling instances of PCM and
to execute simulations of these models. The tool allows to define model instances through
using graphical editors with an UML-based graphical syntax. When a simulation run is

"http://www.palladio-simulator.com/tools/

71

http://www.palladio-simulator.com/tools/

72 6. Evaluation of Design and Implementation

completed, the results obtained during simulation can be accessed through various repre-
sentations. The modeling part of the Palladio Bench is realized by means of EMF and
related tools.

For the evaluation of the DQL implementation, PCM is a valuable target. On the one side,
PCM has already been used in case studies of real-world systems, e.g. enterprise storage
systems in [HBR'10] and large-scale e-mail systems in [RBKR12], and on the other side
PCM is available as an approach for SPE from academia with a working software stack
and validated examples. The examples allow to compare the usage of the Palladio Bench
directly and DQL as interface to the Palladio Bench. The Palladio Bench and PCM are
therefore viable evaluation targets for DQL. Especially the internal data structures, the
Mapping Meta-Model in DQL, and the interfaces for the communication between the DQL
QEE and DQL Connectors can be evaluated in-depth.

6.1.2. Mapping the Palladio Component Model

The integration of PCM with DQL requires to provide suitable data structures to store
all relevant information. From the viewpoint of DQL, especially the Mapping Meta-Model
must be able to transport the necessary information to reference model entities from PCM,
to specify which metrics to calculate and to return all computed information from PCM
to the user.

PCM consists of various sub-packages, that are composed to form an architecture-level
model of a software system and a resource landscape. The behavior of components is
specified in Service Effect Specifications (SEFFs). For performance predictions, especially
the Resource Demanding Service Effect Specification (RDSEFF) is important. A RDSEFF
contains, besides of control flow-relevant information, the expected resource consumption
of actions executed in components [BKR09, RBB*11].

As described by [Merll, p. 51] the resulting PCM model entities for which response times
are provided through the simulation of PCM instances, are EntryLevelSystemCalls,
ExternalCallActions and UsageScenarios. These entities are mapped to Services
in the Mapping Meta-Model. By convention a Probe with the metric name responseTime
will be provided on request for these entities.

Within the referenced RDSEFF of these model elements, the resource demand is mapped
to resources. Detailed descriptions of the modeling of a RDSEFF can be found in [RBB*11,
p. 48 ff]. Stated by [Merll, p. 51] the metrics available for active resources are demanded-
Time and utilization. The current mapping approach maps all ResourceContainers and
LinkingResources as Resource in the Mapping Meta-Model.

6.1.3. Run-Time Scenario and the MediaStore Example

Currently the Palladio Bench does not offer an unified API for controlling and analyzing
simulations. To control the simulation process, the Palladio Experiment Automation?® is
maintained as an incubating project for the Palladio Bench. The implementation of this
interface is based on the work in [Mer11] to conduct automated experiment runs.

The interface expects a model instance of the PCM as input and allows to set various
simulation-dependent parameters. To automate experimentation, the APT allows to specify
model elements that shall be varied in consecutive simulations. The variations are realized
through model transformations of the originating PCM instance. To ensure not to violate
the model semantics, the variations are implemented context-dependent with specialized

2http://sdqweb.ipd.kit.edu/wiki/Palladio_Experiment_Automation

72

http://sdqweb.ipd.kit.edu/wiki/Palladio_Experiment_Automation

6.1. Controlling the Palladio Component Model (PCM) 73

< <Compositestruches =
Bt MediaStore_System

aMame

1 AssChe_WebGl & AssCle_MediaStoe | Aosttx_DEAdapEr
=0 F(——0O
1AudioDE!
aharme TWiediaStoreRequiriRGE)\ aMamne)\
I1Soundrequiredrale IDBRequredRale
“Lare 1 AssChi_AudioCB

= | AssCty_Digitalwat..,
aMame

ahame

Figure 6.1.: Component Diagram of the MediaStore Example from [IPD12]

implementations for each model entity to be varied (e.g. for workload classes, loops or
branches).

There exists no external API to retrieve results from simulations to direct performance
metrics. The internal Sensor Framework, that is used to store computed results of sensors
during the simulation, can be queried to retrieve the sensor measurements. Using the
sensor measurements, performance metrics can be calculated manually. As the Palladio
Bench is not designed to be used for automated analyses, this limitation is reasonable. Re-
sults presented through the DQL should be seen as exemplary as the results in PCM might
differ and the implementation of the calculation of results from the Sensor Framework in
DQL is only intended to be a workaround from the API limitations.

For evaluation and demonstration purposes, the Palladio Bench provides the MediaS-
tore3 example. The MediaStore is used to represent a web application consisting of mul-
tiple components. The application serves requests from customers to access media files
stored in a repository. The components are allocated on a middleware layer with an addi-
tional database access layer. The middleware and the database component are allocated
on different computing environments with exclusive hardware interconnected by an Eth-
ernet link. Figure 6.1 shows a view on the components of the MediaStore. By using
the mapping described in Section 6.1.2, the MediaStore is a suitable target for testing
the implementation of a DQL Connector and to evaluate the DQL textual syntax and
implementation.

6.1.4. Case Study with the MediaStore Example

To illustrate the features of the DQL Connector for the PCM, a case study for demon-
strating the capabilities of DQL and the implementation of the DQL Connector for the
Palladio Bench will be given. The case study uses the MediaStore example and demon-
strates the usage of DQL Queries to control the Palladio Bench. The queries allow to
automate simulations and to extract structural information from the different sub-models

of the PCM.

6.1.4.1. Model Structure Queries

To start analyzing the MediaStore, a user would start to explore the model structure as
in Listing 6.1. Using LIST ENTITIES all mapped PCM entities found in the MediaStore
are presented to the user in the means of DQL either as Resource or Service. As being
mandatory for later identification of entities, the identifier field in the Mapping Meta-
Model entities contains the identifier from the PCM instance, i.e. information retrieved

3http://sdqueb.ipd.kit.edu/wiki/PCM_3.3/Example_Workspace

73

http://sdqweb.ipd.kit.edu/wiki/PCM_3.3/Example_Workspace

ST W N

74 6. Evaluation of Design and Implementation

from the Identifier class. Furthermore, where applicable, the alias field in the Mapping
Meta-Model Entity is set to the value from the NamedElement class.

For performing the lookup process of model entities, the Connector accesses the model
instances by issuing OCL queries. As a complete instance of the PCM consists of multiple
sub-model instances, the USING keyword references a properties file serving as index to all
additionally required information and model locations.

LIST ENTITIES
USING pcm@’mediastore.properties’;

Listing 6.1: MediaStore Example for LIST ENTITIES

For the mapping of resources in the PCM, a workaround is required. The Sensor Frame-
work provides only access to Strings built from different patterns to identify the results
of the simulation. In case of a ResourceContainer, e.g. a server system or a VM from the
resource landscape, that consists of multiple ProcessingResourceSpecifications, only
the absolute identifier of the ResourceContainer is parsable. The different Processing-
ResourceSpecifications are represented by their NamedElement alias and not the unique
Identifier. For LinkingResource the situation is alike.

For reasons of simplicity the absolute identifier of the container, e.g. ResourceContainer
or LinkingResource, is used and concatenated with the alias of the actual resource con-
tained. Using this approach, the MediaStore example is usable without modification in
this case study. Future changes of the MediaStore might lead to different, unpredictable
results.

6.1.4.2. Performance Metrics Queries

After all relevant model entities in the PCM instance have been discovered, users can
continue to explore structural information. Listing 6.2 shows how to retrieve the available
metrics for PCM model instances. The shown identifiers contained in the FOR keyword
represent the absolute identifiers from the PCM sub-model instances. As the Palladio
Bench consists of graphical tools for manipulating the model instances, the identifiers are
usually not visible. In case of a textual tool like DQL, using the aliases through the AS
keyword allows an easier re-identification of identifiers for human users.

As the Palladio Bench offers no interface to test for metrics that are computable for model
entities without analyzing simulation results, the available metrics are hard coded in the
Connector based on the instance type of PCM model entity queried. The definition of
available metrics is based on [Merll, p. 51] and has been tested by reverse engineering
the results obtained from the Sensor Framework.

LIST METRICS
(RESOURCE ’ _5uTBUBpmEdyxqpPYxT_m3w@CPU’ AS AppServer_CPU,
RESOURCE ’ _tVi40Dq_EeCCbpF63PfiyAQCPU’ AS DBServer_CPU,
RESOURCE ’ _tVi40Dq_EeCCbpF63PfiyAQHDD’ AS DBServer_HDD,
SERVICE > _u770YEhFEd2v5eXKEbOQ9g’ AS svcl)

USING pcm@’mediastore.properties’;

n

Listing 6.2: MediaStore Example for LIST METRICS

At this step users could gather enough structural knowledge of available model entities and
computable metrics for these entities. Users can now start to issue performance queries

74

N O U W N =

6.1. Controlling the Palladio Component Model (PCM) 75

ExperimentRepository |

-repetitions : Elnt

PCMModelFiles

N Nl

-name : EString -name : EString [J——

MeasurementCountStopCondition StopCondition / \ ExperimentalDesign f K
| — i i i SimuComConfij
1.4
SimTimeStopCondition Variation /i
ValueProvider X

[FminValue : ELong.
<> :ELong
[variedObjectld : EString FullFactorial OneFactorAtATime

N T

VariationType

[-exponent : EDoule [values : EString -name ; EString
-factor : EDouble -strategyClass : EString

Figure 6.2.: Experiment Automation Configuration Meta-Model from [Mer11]

to obtain performance metrics computed through the simulation of the PCM instance.
As mentioned in Section 6.1.3, the simulation process is controlled through the PCM
Experiment Automation interface as described in [Merll, p. 60 ff.]. The simulation
results are cached on disk, therefore subsequent queries require no additional simulation.
In case of changes to the model instance, the cached results need to be deleted manually.

An example for a basic performance metrics query is shown in Listing 6.3. The use of
aliases in the FOR keyword allows users to use more convenient shortcuts in the SELECT
keyword. To obtain the results, the Connector uses the Sensor Framework and accesses the
stored simulation results on disk. As described previously, the access requires workarounds
as the Palladio Bench is not designed for external access.

SELECT AppServer_CPU.utilisation, DBServer_CPU.utilisation,
DBServer _HDD.utilisation, svcl.responseTime
FOR RESOURCE ’ _5uTBUBpmEdyxqpPYxT_m3w@QCPU’ AS AppServer_CPU,
RESOURCE ’ _tVi40Dq_EeCCbpF63PfiyAQCPU’ AS DBServer_CPU,
RESOURCE ’ _tVi40Dq_EeCCbpF63PfiyAQHDD’ AS DBServer_HDD,
SERVICE ’ _u770YEhFEd2v5eXKEbOQ9g’ AS svcl
USING pcm@’mediastore.properties’;

Listing 6.3: MediaStore Example for SELECT

As aggregations of metrics are supported by DQL, further calculations based on these
metrics are possible, e.g. to calculate the mean utilization of a set of resources. The
feature is part of the language and executed in the DQL QEE, therefore it is realized
independently of the Connector.

6.1.4.3. Degrees-of-Freedom as Extension of the Palladio Bench

In [Merl11] further features of the Experiment Automation interface are explained. Be-
sides of controlling the simulation engine of the Palladio Bench, also altering PCM model
instances is possible. The Experiment Automation interface consists of a meta-model for
the configuration of experiments as shown in Figure 6.2. Within this meta-model, the
Variation type allows to specify how a specific model element shall be varied. Us-
ing a VariationType with semantic support of the model entity to be varied and a

75

76 6. Evaluation of Design and Implementation

ValueProvider to provide variation values, the meta-model allows to define a configu-
ration parameter space.

Currently, the Palladio Bench offers no feature to define model parameter variations or, by
means of DQL, it does not allow to specify DoFs. The Experiment Automation interface
works around this limitation by modifying copies of the PCM sub-models and executing
several independent simulation runs. Accessing the results is possible through the Sensor
Framework, which allows to store multiple experiment runs within one experiment series.

In summary, using the model variations allows to implement DoFs in the DQL Connector
for PCM. Hence, as described before, even if the results may not be accurate, the Connector
would be usable as interface to the Palladio Bench for specifying the execution of an
experiment series with varying parametric settings for model entities.

The resulting implementation of DoFs allows to perform at a first step to analyze which
DoFs are available for model variation as shown in Listing 6.4. The PCM sub-models
are queried through the use of OCL queries and available DoFs that comply with the
Experiment Automation interface are listed.

LIST DOF
USING pcm@’mediastore.properties’;

Listing 6.4: MediaStore Example for LIST DOF

In a second step, users can retrieve performance metrics while specifying which DoFs
shall be varied. The Listing 6.5 shows the extension of the preceding Listing 6.3 with
the EVALUATE DOF keyword. The query alters two DoFs independently resulting in a
configuration space with a multiplicative dependency of factors and factor levels. Instead of
a single result, DQL returns one instance of the Mapping Meta-Model for each combination
in the configuration parameter space.

The variations are specified for model elements from PCM sub-models. The DoF Workload
is the population of requests within the simulation, the Replication replicates executions
of an AbstractAction. For each DoF a valid VariationType has been set as strategy in
the DoF-specific properties. The VariationType implements all necessary logic to modify
PCM sub-models in order to set the variation values for the model instances created. The
implementation of VariationType is part of the Experiment Automation implementation.
For both value specifications of the DoFs in DQL, the specifications are transformed into a
compatible format to be used by the SetValueProvider from the Experiment Automation
interface.

76

00 O Uik WK

e e N el
DU WD~ OO

6.2. Integrating the KLAPER Approach and KlaperSuite 77

SELECT AppServer_CPU.utilisation, DBServer_CPU.utilisation,
DBServer _HDD.utilisation, LAN.utilisation, svcl.responseTime
EVALUATE DOF

VARYING ’_TyV-MFBwEd6ActLj8Gdl_A’ AS Workload
[strategy = "ClosedWorkloadVariation",
function = "fixed", value = "50, 100, 200, 400"],
>’ _Q8jwMEg9Ed2v5eXKEbOQ9g’ AS Replication
[strategy = "AbstractActionReplication",
function = "iterate",
start = "2", end = "10", step = "2"]
FOR RESOURCE ’__oYXADq_EeCCbpF63PfiyAQLAN’ AS LAN,

RESOURCE ’ _5uTBUBpmEdyxqpPYxT_m3w@CPU’ AS AppServer_CPU,
RESOURCE ’ _tVi40Dq_EeCCbpF63PfiyAQCPU’ AS DBServer_CPU,
RESOURCE ’ _tVi40Dq_EeCCbpF63PfiyAQHDD’ AS DBServer_HDD,
SERVICE ’ _u770YEhFEd2v5eXKEbOQ9g’ AS svcl

USING pcm@’mediastore.properties’;

Listing 6.5: MediaStore Example for SELECT with EVALUATE DOF

6.1.5. Summary

The case study in Section 6.1.4 demonstrated that the concepts of DQL are usable to map
and implement a scientific approach like the Palladio Bench and PCM. Furthermore users
are enabled to conduct performance analyses of PCM instances through a set of queries
written in DQL. The functionality of the Palladio Bench could be exploited by means of the
Experiment Automation interface together with DQL to offer an experimental environment
for simulating PCM model instances with DoFs. A comparable functionality is currently
not exposed through the Palladio Bench.

For the Mapping Meta-Model, as integral part of the interfaces between the DQL QEE
and the implementation of a DQL Connector, the case study showed that the compromise
between a flat-structure for the ease of use and the preservation of architectural information
is viable for connecting to established and field-tested solutions for SPE.

An example of the Eclipse IDE showing DQL and PCM integrated to conduct simulations
of PCM instances can be seen in Figure 5.15.

6.2. Integrating the KLAPER Approach and KlaperSuite
6.2.1. Introduction to the KLAPER Approach

A general introduction to the KLAPER approach and the N-to-M Problem was presented
in Section 4.1. KLAPER allows to analyze the behavior of performance model instance
through the transformation of design models into performance models. The term N-to-M
Problem refers in this case to the usage of an intermediate model that allows to define
generalized transformations towards the intermediate model from a design meta-model.
Outgoing from the intermediate model again generalized transformations can be used
towards performance models, that can be analyzed.

By using an intermediate model and by implementing transformations at the meta-model
level, realizing support for different software design meta-models (e.g. UML) is a sin-
gular effort. After the transformation to the intermediate model is implemented, each
valid instance of the meta-model can be used for performance analyses. As the outgoing
transformation from the intermediate model towards an analysis model is also a singular
effort, users without expert knowledge on specialized mathematical methods and simu-
lation models are able to conduct performance analyses on their software design models

7

78 6. Evaluation of Design and Implementation

resource
KlaperModel bﬁ Resource |—

4 Y

offeredService| 0.~ 0.1

Service
0.1 0.
0. Binding
= 0.1 behavior

] 0.1
Workload | Behavior :
2.4

4

nestedBehavior

0. 1.+

— in 0." 0.1 o —
Transition Step
out 0.” 0..1 from

I I I]
|Star1 | | End | | Activity I:

0.” 0.
| Acquire | |Release ” ServiceCall

Control

{ordered} [actual
0..* |Param

ActualPara

|Branch | I Fork | | Join |

Figure 6.3.: KLAPER Meta-Model from [GMRS08|

[GMRS08, CDF*13]. This section will discuss how KLAPER can be integrated conceptu-
ally with the DQL approach.

Following to [CDF*13], KLAPER allows a software architect to start working with KLAPER
by two different usage scenarios. Either a software architect might start from a soft-
ware design model towards KLAPER through model transformation or KLAPER is used
KLAPER directly, e.g. if no software design model exists and the creation is not feasible
[CDF*13]. As soon as a design model can represented as an instance of the KLAPER
intermediate model, it can be transformed into any available analysis model. From the
analysis model performance metrics can be derived through using a compatible solving
mechanism.

From the perspective of the DQL approach offering a generic user interface through a
textual syntax, supporting KLAPER would be a valuable option. On the one hand, the
approach of KLAPER is a proven and evaluated scientific approach and on the other hand
KLAPER allows to leverage existing transformations (e.g. incoming from UML, outgoing
to LQN) for use with DQL. Furthermore the effort for creating new transformations is inde-
pendent of efforts implementing the Connector [GMRS08]. From a conceptual viewpoint,
both approaches could benefit from each other as their objectives are orthogonally.

6.2.2. Mapping KLAPER with the Mapping Meta-Model

The KLAPER Meta-Model, shown in Figure 6.3, is based on the MOF Meta-Model de-
veloped by OMG [GMRS08]. The design of the KLAPER Meta-Model is focused on the
representation of a software design found in CBSE approaches. The main artifacts found
in these designs are entities being either a Service and or a Resource. From a DQL
perspective, these elements can be directly mapped into their corresponding instances of
the types Service and Resource in the Mapping Meta-Model.

Although DoFs are not explicitly supported by KLAPER, the functionality can be emu-
lated. The modeling of DoFs in DQL through modifying elements of the types Workload
and ActualParam in a KLAPER model instance allows to conduct DoF analyses. In
[GMRSO08] it is suggested to use random variables for ActualParam in order to represent
dynamics for input parameters during run-time within the performance analysis. DQL

78

6.2. Integrating the KLAPER Approach and KlaperSuite 79

could use instead absolute values and conduct several analyses, which would be similar to
the approach for the Palladio Bench in Section 6.1.4.

The remaining elements from the KLAPER Meta-Model are related to modeling the be-
havior of a software system. For DQL these parameters are out of scope. Summing up,
the mapping of KLAPER to the means of DQL is, from a conceptual viewpoint, possible.
The central concept of Service and Resource is likewise for both approaches and the
chosen abstraction layer through the Mapping Meta-Model in DQL shows a viable option
for a generic mapping with the KLAPER Meta-Model.

6.2.3. Integrating KlaperSuite as Connector

The KlaperSuite is a tool-chain based on the KLAPER intermediate modeling approach
[CDF*13]. It provides a set of transformations into the KLAPER intermediate model
and from the intermediate model towards analysis models allowing to start performance
analyses out of the box. All necessary steps for executing transformations, parameterizing
model solvers and executing model solvers are triggered automatically.

The technical foundation of the KlaperSuite implementation is the Eclipse Platform.
Model transformations are implemented through QVT, a standardized transformation
language used in MDSD [Obj11d]. For extending KlaperSuite to support additional input
models, new QVT transformations are necessary to be deployed together with Klaper-
Suite. Further implementation tasks are not required as the intermediate model serves as
an abstraction layer between the incoming instance of the meta-model and the outgoing
transformations towards model solvers. For extending the analysis capabilities, develop-
ers can supply additional Eclipse Bundles containing solvers. These Bundles need to be
deployed in the run-time environment.

Following [CDF*13], the results of an analysis are returned as plain text as the current
implementation does not offer an user interface. Using DQL and KlaperSuite as a DQL
Connector, this shortcoming could be solved. As the core principles of KLAPER and DQL
show similarities, using the Mapping Meta-Model as output format for model solvers in
KLAPER could be an approach for integrating KLAPER and DQL. The results obtained
through the model solvers, could be accessed through queries in DQL. Furthermore, as
both KLAPER and DQL are built up on the Eclipse Platform, the run-time comes at no
cost of overhead.

6.2.4. Summary

In Section 6.2.2 the alignment of the core meta-models of KLAPER and DQL were eval-
uated. The evaluation showed a structural similarity, that allows to integrate the Klaper-
Suite as a DQL Connector. Section 6.2.3 outlines the motivation for using KlaperSuite
as a DQL Connector, allowing to reuse the already existing transformations and benefit
from the efforts achieved for automating the analyses of models.

Using DQL as interface to KlaperSuite, which would allow to use the Mapping Meta-Model
for storing and representing results and to use DQL for controlling and automating the
model analyses, which would address the lacks of the implementation stage of KlaperSuite
as described in [CDFT13].

Through integrating KlaperSuite, both approaches would benefit from each other. For
DQL, the applicability in the domain of SPE would increase significantly and the devel-
opment of DQL and KlaperSuite could focus on their core usage scenarios.

79

80 6. Evaluation of Design and Implementation

ObservationRepository

< startTimestamp: EDate
endTimestamp: EDate

I
latestimpact ?
impacts

Identifier
’ Observablelmpact

‘ ‘ identifier: EString

before after
observations ’ EntityMapping ‘
latestObservation
observation
‘ - TemporalObservation
= Observation
‘ timestamp: EDate

Figure 6.4.: The Repository Meta-Model as Extension of the Mapping Meta-Model

6.3. Implementing a Performance Data Repository (PDR)
6.3.1. Introduction to the Performance Data Repository

In Section 5.2 the Mapping Meta-Model is introduced. The meta-model is used as an
abstraction layer from architecture-level performance model to the representation of per-
formance metrics and the identification of model entities. For the evaluation of the ex-
pressiveness of the OBSERVE expression, a meta-model reusing the Mapping Meta-Model
is implemented to offer access to historic performance data. The capabilities of this meta-
model can be referred to as an approach of a basic PDR.

By the term PDR we refer to a data structure to persist performance metrics with a
temporal dimension and a way to link model instances for comparisons. The meta-model
introduced in this section is designed to be used for evaluation purposes. Future work may
enhance the PDR to support more complex operations and extend the temporal dimension.

Additionally this part of the evaluation is intended to show the reusability of the Mapping
Meta-Model. The Mapping Meta-Model is not modified to be embedded into the PDR.
But a data structure embedding the Mapping Meta-Model, i.e. the PDR, allows to enhance
the Mapping Meta-Model with a temporal dimension. To evaluate the PDR and OBSERVE
expression, the operations outlined in Section 6.3.3 and Section 6.3.4 are implemented in
a DQL Connector; other operations implemented are omitted, but examples are provided
with the implementation. The Connector is identified through the model family pdr in
DQL queries.

6.3.2. Description of the Repository Meta-Model

The basic PDR approach, the Repository Meta-Model, is shown in Figure 6.4. Using
ObservationRepository the Repository Meta-Model allows to store Observations and
ObservableImpacts. Both are derived from Identifier, a stub for identifiers of model
entities that should be replaced later, and TemporalObservation, a super-type for model
entities with a temporal dimension through a time stamp.

An Observation is a container for an EntityMapping and provides a temporal dimen-
sion through inheriting TemporalObservation. A way to access historic instances of
EntityMapping is shown in Section 6.3.3.

80

=W N =

6.3. Implementing a Performance Data Repository (PDR) 81

ObservableImpact is intended to store references to instances of EntityMapping as before
and after a point in time in order to provide a view to the difference of these model
instances. Therefore an ObservableImpact should not directly be referenced on the tem-
poral dimension, but it is referenced by a reference through an Identifier. An example
is presented in Section 6.3.4.

In the further examples built on top of the Repository Meta-Model, the assumption is
made that each model instance has the same structure (i.e. the same entities and probes)
as found in the latest model instance. Throughout all model instances, identifiers are
assumed to be absolute and unique. Using OCL the Repository Meta-Model could be
extended to ensure these invariants.

6.3.3. Accessing historic Model Instances

The query shown in Listing 6.6 is an instance of a SELECT query to retrieve three metrics
for two different model entities. The keyword OBSERVE is used to indicate a ConnectorTime-
UnitClause. A ConnectorTimeUnitClause expresses a count of time units and an identifier to
refer to a Connector-dependent time unit. The interpretation of count and unit is subject
to the DQL Connector. In case of this query, the time unit before is referenced with a
count of 3.

SELECT s10.cpuUtilization, s10.netUtilization, wl.queuelength
FOR RESOURCE ’srv10’ AS s10, SERVICE ’webappl’ AS wl

USING pdr@’simple.repository’

OBSERVE 3 before;

Listing 6.6: Repository Meta-Model Example for SELECT with 0BSERVE requesting a model
instance three steps in the past

The implementation of the DQL Connector for PDR interprets the time unit before as
steps backwards in time starting at the latest Observation. For the evaluation it is
assumed that the right model instance can be retrieved using an index calculated as
index = models.size() - stepsBefore - 1. Hence the index computation assumes an
temporal order of model instances, which is not assured through OCL in the meta-model.

The ConnectorTimeUnitClause allows to implement Connector-specific time units while
being aligned to the DQL and natural language. As the time units are not being specified
at the language level, the universality of time expressions can be specialized at a suitable
implementation layer. A DQL Connector might delegate the interpretation of time units
to a data source, e.g. a RDBMS that serves the Connector with model instances.

6.3.4. Computation of Impacts

Concluding to the support of Observations, the Connector offers support to compute the
impact of two model instances stored in an ObservableImpact. In Listing 6.7 the 0BSERVE
keyword specifies a ConnectorlnstanceReferenceClause, that is composed of a Connector-
dependent reference name Impact and its identifier impactl referring directly to an Ob-
servableImpact in the model instance simple.repository by its identifier.

81

=W N

82 6. Evaluation of Design and Implementation

SELECT s10.cpuUtilization, s10.netUtilization, wl.queuelength
FOR RESOURCE ’srv10’ AS s10, SERVICE ’webappl’ AS wl

USING pdr@’simple.repository’

OBSERVE Impact ’impactl’;

Listing 6.7: Repository Meta-Model Example for SELECT with OBSERVE referring to an
Observablelmpact

To compute metrics from the ObservableImpact, the difference of all DecimalResults is
calculated as subtracting from their preceding value. The impact computation is illustrated
by Figure 6.5. Figure 6.5a shows an example for an instance of the ObservableImpact
with instances of EntityMapping attached as after and before. It is assumed that
the structure of the instances of EntityMapping is equal, i.e. consisting of the same
Resources, Services and DecimalResults. Using this assumption, the DQL Connector
can compute the impact of those instances as the difference. The resulting instance of
EntityMapping which is returned to the user as result is shown in Figure 6.5b.

To sum up, as in the preceding example, the implementation of ConnectorlnstanceRefer-
enceClause allows Connector-specific references to express more complex temporal relations
being modeled on top of other model elements in the PDR. The motivation for this addi-
tional clause is to support the natural language structure, as otherwise the order of unit,
i.e. a reference name, and reference itself, i.e. a reference identifier, would contradict to
the common language.

6.4. Controlling Experiments with the Software Performance
Cockpit (SoPeCo)

6.4.1. Introducing the Software Performance Cockpit

SoPeCo? is a framework for the sensitivity analysis of parameter variations in experimental
settings. As founded in the SPE-domain, the focus is set on performance model instances,
but not limited to. It allows to conduct parameter variation based on statistical models in
order to reduce the amount of required experiment runs while covering a comprehensive
parameter space. Missing values can be interpolated with different statistical methods. In
Section 4.2 foundations are outlined.

The main software components of SoPeCo are the Core, the WebUI and the MEController.
The Core component is responsible for the execution infrastructure, controlling experiment
execution and persistence. The WebUI serves the web user interface of SoPeCo to con-
figure experiment runs and visualize results. To control an experiment, the MEController
component needs to be implemented. It it used to control the System under Test (SuT),
defines the available in- and output parameters and is responsible for the life-cycle. More
details can be found in [WHHH10] and in the examples®.

6.4.2. Integrating the Software Performance Cockpit

Although no implementation of the SoPeCo as DQL Connector exists, an approach for a
conceptual integration is outlined. The reasons for omitting an implementation in means
of this thesis are two-fold: (i) Using SoPeCo requires another component as SuT as the
approach is intended solely for systematic parameter variation and not for the actual model
solving and (ii) the static architecture of the MEController component is not well-suited
to be used with the dynamic query interface of DQL.

‘http://www.sopeco.org/home
Shttp://www.sopeco.org/tutorials/getting-started/matrix

82

http://www.sopeco.org/home
http://www.sopeco.org/tutorials/getting-started/matrix

6.4. Controlling Experiments with the Software Performance Cockpit (SoPeCo)

83

:Observablelmpact

identifier =

“impact1”
timestamp = 1234567890

after

:EntityMapping

modelLocation = “void://url*

:Resource
identifier = “id1* |
alias = “resl1”

:DecimalResult !

metricName = “metricl”

accuracy = 1 |
value =123
:Service |
identifier = “id2"
alias = “svcl” ‘

:DecimalResult

metricName = “metric2“
accuracy = 1
value = 456

before
:EntityMapping

modelLocation = “void://url*

:Resource
! identifier = “id1“
alias = “res1”

:DecimalResult

metricName = “metricl”

‘ accuracy =1
value = 23
‘ :Service
identifier = “id2“
alias = “svcl”

:DecimalResult

metricName = “metric2"
accuracy =1
value = 56

:EntityMapping

modelLocation = “void://url*

:Resource
identifier = “id1*
alias = “res1”

(a) Instances of the Mapping Meta-Model aggregated in an ObservableImpact

:DecimalResult

metricName = “metric1”

accuracy =1
value =100
:Service
identifier = “id2“
alias = “svcl”

:DecimalResult

metricName = “metric2“
accuracy =1
value = 400

(b) Computed Impact of ObservableImpact as Difference between after and before from 6.5a

Figure 6.5.: Computation of Impacts through ObservableImpact

83

SO W N~

84 6. Evaluation of Design and Implementation

Regarding (i) an example for using SoPeCo in a control loop within the DQL is given
in Section 6.4.3. Backgrounds for reasoning (ii) will be explained in the following. The
limitations arise from technical issues, while on a conceptual level both approaches could
be integrated with.

To implement a MEController, the component offers the abstract superclass Abstract-
MEController. Within this class, the user has to define all input parameters using the
annotation @InputParameter and all output parameters as @0bservationParameter. The
SoPeCo run-time analyzes the implementing class for class attributes with these annota-
tions. A user is therefore forced to provide an adequate implementation of the Abstract-
MEController for each model instance to be analyzed.

SELECT rl.queuelength, sl.responseTime
EVALUATE DOF
VARYING ’abc123’ AS workload
[fuction = "fixed", values = "12, 67, 192"]
FOR ’resl1’ AS rl, ’svcl’ AS s1
USING solver@’void://url’;

Listing 6.8: Example of a DoF Query

From a DQL perspective, attributes annotated with @InputParameter would be a DoF
that can be specified in a SELECT query by using the EVALUATE DOF keyword. Furthermore
using the VARYING keyword within EVALUATE DOF only a subset of the available DoF can
be selected to be varied during experimentation, in Listing 6.8 an example is given. DQL
makes therefore no assumptions about available DoF, but allows to put restrictions on DoF
or to advice the Connector how to process DoF. In the example a parameter workload is
varied with a fixed set of values.

To use SoPeCo as DQL Connector for systematic experimentation, for each performance
model instance suitable implementations of AbstractMEController would be required.
Otherwise, users would be limited to analyze only entities of a model instance being
explicitly implemented in the implementation of AbstractMEController. A way to deal
with this issue could be to use functionality of the Java language like the Java Reflection
APIS to modify classes while being executed in a run-time or an alternate implementation
of the AbstractMEController.

6.4.3. Control Loop for Sensitivity Analysis

To integrate SoPeCo with DQL, given that a solution for the technical limitation described
in Section 6.4.1 is found, SoPeCo can be embedded into a DQL Connector and can be
used for systematic parameter variation. To use SoPeCo as external tool for parameter
variation, the WITH keyword within the EVALUATE DOF expression is suitable. It can be
used to specify the location of an instance of SoPeCo, that shall be queried by the DQL
Connector to get parameter setting for DoFs suggested through SoPeCo. Thus the the
usage of SoPeCo is subject to the Connector implementation and an instance of SoPeCo
can be run independently of the DQL run-time.

The query in Listing 6.9 shows a query from the class of Performance Metric Queries
with EVALUATE DOF keyword, that should be executed by a DQL Connector for the perfor-
mance meta-model family solver. The EVALUATE DOF keyword contains a WITH keyword
specifying that the evaluation of DoF variation shall be conducted through the sopeco
handler that can be found at an URL. That way, a Connector being able to solve models,

Shttp://docs.oracle.com/javase/tutorial/reflect/

84

http://docs.oracle.com/javase/tutorial/reflect/

~N O Uk W N

()

6.4. Controlling Experiments with the Software Performance Cockpit (SoPeCo) 85

DQL: E FT
C Connector &\ p

(1). Evaluate DoFs
(2a). Set Parameters
(2b). Compute Metrics

(2c). Analyze Results

. . (2d). Reiterate, if needed
DQL: E DQL: E <<requests>>

Language & Editor C: Query Execution Engine (3). Interpolate, if needed i
SoPeCo
£ O wiDQLMEController
~ DQL:
Connector Registry

Figure 6.6.: DQL Architecture with a Control Loop with SoPeCo

but unable to explore DoFs, can be extended with the SoPeCo logic consumed as external
component.

SELECT rl1.queuelength, sl.responseTime

EVALUATE DOF
VARYING ’abc123’ AS workload
[fuction = "fixed", values = "12, 67, 192"]
WITH sopeco@’https://my.host.com/SoPeCo’

FOR ’resl1’ AS rl1l, ’svcl’ AS s1

USING solver@’void://url’;

Listing 6.9: Example of a DoF Query in a Control Loop with SoPeCo

SELECT rl1.queuelength, sl.responseTime
FOR ’resl1l’ AS rl1, ’svcl’ AS sli
USING solver@’void://url?param=abcl23&value=67";

Listing 6.10: Exchange of Queries in the Control Loop with SoPeCo

The sopeco handler is used to build a control loop together with the DQL Connector.
Figure 6.6 shows the Connector with a component for SoPeCo embedded. In this case,
the Connector delegates the exploration of the DoF parameter space to the SoPeCo com-
ponent. In turn, the SoPeCo component uses the Connector with transformations of the
originating model instance to reflect the changes of DoFs and to solve the transformed
instances.

For the transformation of model instances for applying DoF parameter settings and to exe-
cute queries, a special DQLMEController needs to be implemented. The DQLMEController
instructs the Connector to solve the altered model instances, through reusing the origi-
nating query by slicing out parts related to DoFs and with the new model instance to be
used. An example is shown in Listing 6.10.

6.4.4. Summary

Using SoPeCo for automating the sensitivity analysis has further advantages for online
scenarios. The approach focuses on sophisticated methods for reducing the number of
required experiments to calculate metrics through statistical means. Given a query is
executed with CONSTRAINED AS keyword in the DoFs part, the advice can be delegated

85

86 6. Evaluation of Design and Implementation

to the SoPeCo instance. SoPeCo can use the advice to interpolate parameter settings of
DoFs by wider steps in the parameter space.

Summing up, the output parameters for the sensitivity analysis are defined together with
the SELECT keyword and the input parameters are either explicitly specified through the
VARYING keyword or implicitly specified through the model instance. The approach of a
control loop allows to integrate both approaches, while leveraging advantages from both.
The concept of the DQLMEController is reusable across different Connectors by specifying a
Connector interface for manipulating model instances — e.g. through an ALTER statement
in a prospect Model Alteration Query class.

86

7. Conclusion and Future Work

7.1. Summary and Conclusion

The Descartes Query Language (DQL) approach presented in this thesis shows an option
for the integration and unification of different tools for model-based performance predic-
tions. The design of DQL is based on an extensible query classification scheme, which
isolates classes from others, thus allowing to extend language parts independently. The
implementation is realized using an extensible, component-oriented architecture to provide
the necessary means for extending the language functionality incrementally. As the eval-
uation points out, the applicability of DQL is given and our approach is a viable option
for future research activities. Within the evaluation of the language design, exemplary
queries are shown and a showcase of a workflow for a performance analysis is presented.
As the workflow points out, a performance analysis can be conducted using DQL without
the need of the underlying low-level details of the modeling formalism. As users are un-
burdened from manual efforts and low-level knowledge of the modeling formalism, a main
objective of DQL is achieved.

The implementation of DQL is based on the OSGi Framework, which could be leveraged
as a suitable foundation for a Component-based Software Engineering (CBSE)-based de-
velopment approach. Fach software component of DQL is enclosed in an OSGi Bundle
exposing interfaces, if necessary. To consume functionality of other OSGi Bundles, the
OSGi Service Layer is used, which supports the separation of components. A strict sepa-
ration of components and concerns allows an extensible implementation and changes with
foreseeable impact. The interaction between the software components, especially the DQL
Query Execution Engine (QEE) as central processing hub, the DQL Connectors providing
support for performance models and the DQL Connector Registry as lookup mechanism
allows to incorporate support for more performance models. Thus the claim to provide an
integrative approach is supported by design and implementation.

The internal Mapping Meta-Model is an important abstraction layer used for data inter-
change between the software components, for carrying parameterization information and
to present results to users. Although the meta-model approach might not yet be complete
to represent each available model-based performance prediction approach, the applicabil-
ity for at least two proven approaches is shown and it might be leveraged for use in future
usage scenarios. The evaluation unveiled also that the DQL approach at the current stage
is already capable to control an established approach for model-based performance predic-
tion, the Palladio Component Model (PCM) approach. The implemented DQL Connector

87

88 7. Conclusion and Future Work

is able to control PCM while performing queries for the model structure and to retrieve
performance metrics. In case of Degrees of Freedom (DoFs), the DQL Connector allows ad-
ditionally to perform simulations of PCM instances with varying parameter values, which
is not yet part of the PCM simulation engine and user interface.

The evaluation is continued with an outlook to integrate the intermediate model Kernel
LAnguage for PErformance and Reliability analysis (KLAPER) as approach for solving
the N-to-M transformation problem and Software Performance Cockpit (SoPeCo) to offer
a sophisticated solution for efficient experimentation with DoFs. In case of KLAPER and
KlaperSuite as its implementation, the evaluation shows that integrating both approaches
is viable and results in a win-win-situation for both approaches. DQL addresses short-
comings of the current implementation state, while KLAPER provides means to conduct
performance predictions using various descriptive and predictive performance models. For
SoPeCo a similar win-win-situation is described conceptually, but technical limitations do
not allow yet to integrate both approaches. In both evaluation cases, the evaluation shows
conceptual similarities and ways for integrating the approaches.

As final evaluation target, an extension of the Mapping Meta-Model to form a Perfor-
mance Data Repository (PDR), is introduced. The PDR approach is used to show the
capabilities of DQL to extend queries with a temporal dimension without altering the re-
maining structure of queries. For users this means less effort, while they can focus on their
actual query. Another orthogonal feature of DQL, aggregations of performance metrics by
statistical means, shows non-invasive extensions while integrating proven approaches. In
case of PCM, users can aggregate performance metrics obtained from PCM through DQL
queries, which is in this way not supported by PCM but possible through DQL.

The DQL approach as presented by this thesis is completed with an editor provided as
plug-in for the Eclipse Integrated Development Environment (IDE). The editor allows users
to write queries, execute performance predictions and display results obtained by queries.
The editor provides also content assistance to write queries. The content assistance in-
ternally uses DQL queries to obtain model-specific information from the underlying DQL
Connector to provide advice to the user. Thus using DQL as Application Programming
Interface (API) is possible and viable.

Concluding we could achieve our goals and objectives and demonstrate benefits of the DQL
approach. Especially as interface for integrating other approaches and unifying interfaces,
DQL has its strength. To integrate future extensions, DQL provides the necessary ex-
tension points and allows third-party users to integrate their approaches. Extensions can
be tailored to provide only necessary parts while reducing efforts for the implementation
and benefit from the already existing artifacts. Finally, although the focus of the query
language is put on architecture-level performance models with a descriptive nature, the
integration of predictive performance models is possible. Hence, the query language allows
the integration of conceptual different modeling approaches and provides means to unify
different interfaces for different use cases by a single facade. This makes the DQL approach
suitable as an integration platform for model-based performance predictions.

7.2. Future Work

During the development of DQL several additional features have been discovered, but are
not used as part of the thesis due to time limitations. This section will outline future
opportunities and extensions of DQL from a design and implementation viewpoint in
addition to the current state of DQL.

Objectives for future work and promising extensions of DQL are:

88

7.2. Future Work 89

e Connector Settings Query Class: Aligned to the Model Structure Query Class,
users should be able to extract information regarding Connector-specific settings
through the DQL. Examples for these settings are the currently set exploration
strategy or available constraints.

e Entity Parameterization Query Class: Besides of extracting performance met-
rics, the DQL approach could also be used to parameterize performance model in-
stances with data obtained from monitoring systems through additional DQL Con-
nectors.

e Unification of Query Results from different Sources: In complex enterprise
scenarios multiple information sources exist. An Information Technology (IT) system
might be monitored by a set of monitoring systems. In order to assist a performance
analyst, DQL could provide a UNION expression that allows to combine results from
multiple queries into a single result set. The functionality of UNION would correspond
to its Structured Query Language (SQL) counterpart and could be implemented by
merging multiple instances of the Mapping Meta-Model.

e Filtering Expressions and DQL QEE Support: In order to increase the read-
ability of results from queries especially in the Model Structure Query Class, that
tend to consist of a high amount of result values, filtering expressions and func-
tionality is required. The filter specification should be defined by DQL expressions,
interpreted at the DQL QEE and DQL Connector layers and being represented
through the Mapping Meta-Model.

e DQL Connector for VMware vSphere: VMware vSphere! is used in a research
project in the Descartes Research Group. To access performance metrics through
the monitoring components of vSphere, an APT exists. As the API consists of com-
plex and generic classes, the effort for implementing direct API access in custom
applications can be considered high. Embedding vSphere through a DQL Connector
would simplify working with the API in context of Software Performance Engineering
(SPE) research.

e DQL Connector for Monitoring Tools: As usage scenario outside of the field of
SPE, DQL Connectors for different monitoring systems found in industry could be
realized. Users could access different monitoring systems through DQL queries and
have a more general view on their systems. Together with the implementation of
UNION expression different sources for monitoring data could be integrated by DQL
as middleware. Candidates for implementations of the DQL Connector could be
Nagios? as Open Source product or IBM Tivoli Monitoring® as commercial product.

Design and the implementation of the DQL approach are realized by using extensible
technologies and, supported by a strict separation of concerns, the impact and effort of
additional features is quantifiable for new features. Thus, when new features for inclu-
sion in DQL are discovered, their integration is possible while the effort and impact are
foreseeable.

"http://www.vmware . com/products/datacenter-virtualization/vsphere/
’http://www.nagios.org/
Shttp://www.ibm.com/software/products/us/en/tivomoni/

89

http://www.vmware.com/products/datacenter-virtualization/vsphere/
http://www.nagios.org/
http://www.ibm.com/software/products/us/en/tivomoni/

Bibliography

[BDISO04]

[BHK12]

[BKKOY]

[BKR09)]

[CB76]

[CDF+13]

[Coh10)]

[DB7S]

[DeMO09]

[Ecl12]

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-Based Perfor-
mance Prediction in Software Development: A Survey,” IEEE Transactions
on Software Engineering, vol. 30, no. 5, 2004.

F. Brosig, N. Huber, and S. Kounev, “The Descartes Meta-Model,”
Karlsruhe Institute of Technology, Karlsruhe, Tech. Rep., 2012.
[Online|. Available: http://sdqweb.ipd.kit.edu/publications/descartes-pdfs/
DMM-TechReport-0.81.pdf

F. Brosig, S. Kounev, and K. Krogmann, “Automated extraction of palladio
component models from running enterprise Java applications,” in Proceedings
of the 4th International ICST Conference on Performance FEvaluation
Methodologies and Tools. ICST, Oct. 2009, p. 10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1698822.1698835

S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems and
Software, vol. 82, mo. 1, pp. 3-22, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2008.03.066

D. D. Chamberlin and R. F. Boyce, “SEQUEL,” in Proceedings
of the 1976 ACM SIGFIDET (now SIGMOD) workshop on Data
description, access and control - FIDET ’76. New York, New York,
USA: ACM Press, May 1976, pp. 249-264. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=800296.811515

A. Ciancone, M. L. Drago, A. Filieri, V. Grassi, H. Koziolek, and
R. Mirandola, “The KlaperSuite framework for model-driven reliability
analysis of component-based systems,” Software & Systems Modeling, pp.
1-22, Mar. 2013. [Online]. Available: http://link.springer.com/article/10.
1007/s10270-013-0334-8 /fulltext.html

M. Cohn, Succeeding with Agile: Software Development using Scrum, ser. The
Addison-Wesley signature series. Upper Saddle River, NJ: Addison-Wesley,
2010. [Online]. Available: http://swb.bsz-bw.de/DB=2.1/PPNSET?PPN=
31415941X

P. Denning and J. Buzen, “The Operational Analysis of Queueing Network
Models,” ACM Computing Surveys (CSUR), vol. 10, no. 3, 1978. [Online].
Available: http://dl.acm.org/citation.cfm?id=356735

L. DeMichiel, “JSR 317: Java Persistence 2.0,” Java Community Process,
Tech. Rep., 2009. [Online]. Available: http://jcp.org/en/jsr/detail?id=317

Eclipse Foundation, “Xtext 2.3 Documentation,” Tech. Rep., 2012.
[Online|. Available: http://www.eclipse.org/Xtext/documentation/2.3.0/
Documentation.pdf

91

http://sdqweb.ipd.kit.edu/publications/descartes-pdfs/DMM-TechReport-0.81.pdf
http://sdqweb.ipd.kit.edu/publications/descartes-pdfs/DMM-TechReport-0.81.pdf
http://dl.acm.org/citation.cfm?id=1698822.1698835
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dl.acm.org/citation.cfm?id=800296.811515
http://dl.acm.org/citation.cfm?id=800296.811515
http://link.springer.com/article/10.1007/s10270-013-0334-8/fulltext.html
http://link.springer.com/article/10.1007/s10270-013-0334-8/fulltext.html
http://swb.bsz-bw.de/DB=2.1/PPNSET?PPN=31415941X
http://swb.bsz-bw.de/DB=2.1/PPNSET?PPN=31415941X
http://dl.acm.org/citation.cfm?id=356735
http://jcp.org/en/jsr/detail?id=317
http://www.eclipse.org/Xtext/documentation/2.3.0/Documentation.pdf
http://www.eclipse.org/Xtext/documentation/2.3.0/Documentation.pdf

92

Bibliography

[FIKH12]

[Fow10]

[FPW*06]

[FvHJI*11]

[GJST11]

[GMRS08]

[GMS06]

[HBK12]

[HBR10]

[ILFWO05]

[IPD12]

S. Frey, R. Jung, B. Kiel, and W. Hasselbring, “MAMBA: Model-Based
Software Analysis Utilizing OMG’s SMM,” no. May, 2012. [Online]. Available:
http://eprints.uni-kiel.de/15393/

M. Fowler, Domain-specific Languages, ser. Addison-Wesley signature series.
Upper Saddle River, N.J.: Addison-Wesley, 2010. [Online]. Available:
http://swb.bsz-bw.de/DB=2.1/PPNSET?PPN=355396769

G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno, “Layered
Bottlenecks and Their Mitigation,” in Third International Conference on the
Quantitative Evaluation of Systems - (QEST’06). IEEE, 2006, pp. 103-114.
[Online|. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1703994

S. Frey, A. van Hoorn, R. Jung, W. Hasselbring, and B. Kiel, “MAMBA: A
measurement architecture for model-based analysis,” no. 1112, 2011. [Online].
Available: http://eprints.uni-kiel.de/14421/

J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, “The Java
Language Specification,” 2011. [Online]. Available: http://docs.oracle.com/
javase/specs/

V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta, “KLAPER: An
Intermediate Language for Model-Driven Predictive Analysis of Performance
and Reliability,” in The Common Component Modeling Example, ser. Lecture
Notes in Computer Science, A. Rausch, R. Reussner, R. Mirandola, and
F. Plasil, Eds. Springer Berlin / Heidelberg, 2008, vol. 5153, pp. 327-356.
[Online|. Available: http://dx.doi.org/10.1007/978-3-540-85289-6_ 13

V. Grassi, R. Mirandola, and A. Sabetta, “A Model Transformation
Approach for the Early Performance and Reliability Analysis of Component-
Based Systems,” in Component-Based Software Engineering, ser. Lecture
Notes in Computer Science, I. Gorton, G. Heineman, I. Crnkovié,
H. Schmidt, J. Stafford, C. Szyperski, and K. Wallnau, Eds. Springer
Berlin Heidelberg, 2006, vol. 4063, pp. 270-284. [Online]. Available:
http://dx.doi.org/10.1007/11783565_19

N. Huber, F. Brosig, and S. Kounev, “Modeling dynamic virtualized resource
landscapes,” Proceedings of the 8th international ACM SIGSOFT conference
on Quality of Software Architectures - QoSA ’12, p. 81, 2012. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2304696.2304711

N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus, and R. H. Reussner,
“Performance modeling in industry,” in Proceedings of the 32nd ACM/IEEFE
International Conference on Software Engineering - ICSE 10, vol. 2. New
York, New York, USA: ACM Press, May 2010, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1810295.1810297

T. A. Israr, D. H. Lau, G. Franks, and M. Woodside, “Automatic
generation of layered queuing software performance models from commonly
available traces,” in Proceedings of the 5th international workshop
on Software and performance - WOSP ’05. New York, New York,
USA: ACM Press, Jul. 2005, pp. 147-158. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1071021.1071037

IPD Reussner, “PCM 3.3 - Example Workspace,” 2012. [Online]. Available:
http://sdqweb.ipd.kit.edu/wiki/PCM __3.3/Example_Workspace

92

http://eprints.uni-kiel.de/15393/
http://swb.bsz-bw.de/DB=2.1/PPNSET?PPN=355396769
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1703994
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1703994
http://eprints.uni-kiel.de/14421/
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/
http://dx.doi.org/10.1007/978-3-540-85289-6_13
http://dx.doi.org/10.1007/11783565_19
http://dl.acm.org/citation.cfm?doid=2304696.2304711
http://dl.acm.org/citation.cfm?id=1810295.1810297
http://dl.acm.org/citation.cfm?id=1071021.1071037
http://dl.acm.org/citation.cfm?id=1071021.1071037
http://sdqweb.ipd.kit.edu/wiki/PCM_3.3/Example_Workspace

Bibliography 93

[KBOG]

[KBHR10]

[Kou05]

[Kou06]

[Koz10]

[KR11]

[KSM11]

[LCWT09]

[MAD94]

[MDAOA]

[Merl11]

[Obj05]

S. Kounev and A. Buchmann, “SimQPN - A tool and methodology for
analyzing queueing Petri net models by means of simulation,” Performance
Fvaluation, vol. 63, no. 4-5, pp. 364-394, May 2006. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0166531605000477

S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards Self-
Aware Performance and Resource Management in Modern Service-
Oriented Systems,” in 2010 IEEFE International Conference on Services
Computing. IEEE, Jul. 2010, pp. 621-624. [Online]. Available: http:
//ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=5557287

S. Kounev, “Performance Engineering of Distributed Component-Based
Systems- Benchmarking, Modeling and Performance Prediction,” Ph.D. dis-
sertation, Darmstadt University of Technology, Aug. 2005.

——, “Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets,” IEEE Transactions on Software
Engineering, vol. 32, no. 7, pp. 486-502, 2006.

H. Koziolek, “Performance evaluation of component-based software systems:
A survey,” Performance Fvaluation, vol. 67, mno. 8, pp. 634-658,
Aug. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S016653160900100X

A. Koziolek and R. Reussner, “Towards a generic quality optimisation
framework for component-based system models,” Proceedings of the 1jth
international ACM Sigsoft symposium on Component based software
engineering - CBSE ’11, p. 103, 2011. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=2000229.2000244

S. Kounev, S. Spinner, and P. Meier, “Introduction to Queueing Petri Nets:
Modeling Formalism, Tool Support and Case Studies,” Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering (ICPE
2012), Boston, USA, 22-25 April 2012, pp. 9-18, 2011.

J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai, “Performance
model driven QoS guarantees and optimization in clouds,” in 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Computing. IEEE,
2009, pp. 15-22. [Online|. Available: http://ieeexplore.ieee.org/xpls/abs_ all.
jsp?arnumber=5071528

D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy, Capacity Planning and
Performance Modeling ™~ From Mainframes to Client-Server Systems. Pren-
tice Hall, Englewood Cliffs, NG, 1994.

D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida, Performance
by Design: Computer Capacity Planning By FExample. Upper Saddle
River, NJ, USA: Prentice Hall PTR, Jan. 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=995/032

P. Merkle, “Comparing Process- and Event-oriented Software Performance
Simulation,” Master Thesis, Karlsruhe Institute of Technology, 2011. [Online].
Available: http://sdqweb.ipd.kit.edu/publications/pdfs/merkle2011a.pdf

Object Management Group, “UML Profile for Schedulability, Performance,
and Time Specification 1.1,” mno. January, 2005. [Online]. Available:
http://www.omg.org/spec/SPTP/1.1/

93

http://linkinghub.elsevier.com/retrieve/pii/S0166531605000477
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557287
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557287
http://linkinghub.elsevier.com/retrieve/pii/S016653160900100X
http://linkinghub.elsevier.com/retrieve/pii/S016653160900100X
http://portal.acm.org/citation.cfm?doid=2000229.2000244
http://portal.acm.org/citation.cfm?doid=2000229.2000244
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5071528
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5071528
http://dl.acm.org/citation.cfm?id=995/032
http://sdqweb.ipd.kit.edu/publications/pdfs/merkle2011a.pdf
http://www.omg.org/spec/SPTP/1.1/

94

Bibliography

[Obj11a)
[Obj11b)
[Obj11c]
[Obj11d]
[Obj12]

[0SG11]

[0SG12]

[RBB'11]

[RBKR12]

[Sak09]

[SBPMO09]

[SKM12]

[SL11]

[SLP10]

——, “Meta Object Facility Core Specification 2.4.1,” 2011. [Online].
Available: http://www.omg.org/spec/MOF /2.4.1/

——, “Meta Object Facility (MOF) 2.0 Query/View/Transformation,” 2011.
[Online]. Available: http://www.omg.org/spec/QVT/1.1/

——, “Unified Modeling Language 2.4.1 - Infrastructure,” 2011. [Online].
Available: http://www.omg.org/spec/UML/2.4.1/

——, “Unified Modeling Language 2.4.1 - Superstructure,” 2011. [Online].
Available: http://www.omg.org/spec/UML/2.4.1/

——, “Structured Metrics Metamodel 1.0,” 2012. [Online]. Available:
http://www.omg.org/spec/SMM/1.0/

OSGi Alliance, “OSGi Service Platform Core Specification - Release 4,
Version 4.3,” mno. April, 2011. [Online]. Available: http://www.osgi.org/
Download/Release4V43

——, “OSGi Service Platform Service Compendium - Release 4, Version
4.3,” no. January, 2012. [Online|. Available: http://www.osgi.org/Download/
Release4V43

R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek,
H. Koziolek, K. Krogmann, and M. Kuperberg, “The Palladio Component
Model,” Chair for Software Design & Quality, Faculty of Informatics, Karl-
sruhe Institute of Technology, Karlsruhe, Tech. Rep. March, 2011. [Online].
Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

C. Rathfelder, S. Becker, K. Krogmann, and R. Reussner, “Workload-
aware System Monitoring Using Performance Predictions Applied to
a Large-scale E-Mail System,” in 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software
Architecture. IEEE, Aug. 2012, pp. 31-40. [Online]. Available: http:
/ /ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6337759

K. Saks, “JSR 318: Enterprise JavaBeans 3.1,” Java Community Process,
Tech. Rep., 2009. [Online]. Available: http://jcp.org/en/jsr/detail?id=318

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, FEMF:
Eclipse Modeling Framework. Addison-Wesley, 2009. [Online]. Available:
http://books.google.com/books?id=0AYcAAAACAAJ&pgis=1

S. Spinner, S. Kounev, and P. Meier, “Stochastic Modeling and Analysis using
QPME: Queueing Petri Net Modeling Environment v2.0,” in Proceedings of
the 33rd International Conference on Application and Theory of Petri Nets
and Concurrency (Petri Nets 2012), ser. Lecture Notes in Computer Science
(LNCS), S. Haddad and L. Pomello, Eds., vol. 7347. Springer-Verlag, 2012,
pp- 388-397.

C. Smith and C. Lladé, “Model Interoperability for Performance Engineering:
Survey of Milestones and Evolution,” in Performance Evaluation of Computer
and Communication Systems. Milestones and Future Challenges, ser. Lecture
Notes in Computer Science, K. Hummel, H. Hlavacs, and W. Gansterer, Eds.
Springer Berlin Heidelberg, 2011, vol. 6821, pp. 10-23. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25575-5_ 2

C. U. Smith, C. M. Lladé, and R. Puigjaner, “Performance Model Interchange
Format (PMIF 2): A comprehensive approach to Queueing Network Model

94

http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/SMM/1.0/
http://www.osgi.org/Download/Release4V43
http://www.osgi.org/Download/Release4V43
http://www.osgi.org/Download/Release4V43
http://www.osgi.org/Download/Release4V43
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6337759
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6337759
http://jcp.org/en/jsr/detail?id=318
http://books.google.com/books?id=oAYcAAAACAAJ&pgis=1
http://dx.doi.org/10.1007/978-3-642-25575-5_2

Bibliography 95

[SW02]

[TNGO5]

[WFPO7]

[WHHH10]

[WHKF12]

[WHSBO1]

[WKH11]

[WPP+05]

interoperability,” Performance Evaluation, vol. 67, no. 7, pp. 548-568, Jul.
2010. [Online]. Available: http://dx.doi.org/10.1016/j.peva.2010.01.006http:
//linkinghub.elsevier.com /retrieve/pii/S0166531610000076

C. U. Smith and L. G. Williams, Performance Solutions - A Practical Guide
to Creating Responsive, Scalable Software. Addison-Wesley, 2002. [Online].
Available: dl.acm.org/citation.cfm?id=500664

E. Thereska, D. Narayanan, and G. Ganger, “Towards Self-Predicting
Systems: What If You Could Ask "What-If"?” in 16th International
Workshop on Database and Expert Systems Applications (DEXA’05). 1EEE,
2005, pp. 196-200. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1508272

M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Future of Software Engineering (FOSE ’07).
IEEE, May 2007, pp. 171-187. [Online|. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4221619

D. Westermann, J. Happe, M. Hauck, and C. Heupel, “The Performance
Cockpit Approach: A Framework For Systematic Performance Evaluations,”
in 2010 36th EUROMICRO Conference on Software Engineering and
Advanced Applications. ITEEE, Sep. 2010, pp. 31-38. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=5598076

D. Westermann, J. Happe, R. Krebs, and R. Farahbod, “Automated inference
of goal-oriented performance prediction functions,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering -
ASE 2012, ser. ASE 2012. New York, New York, USA: ACM Press, 2012, p.
190. [Online|. Available: http://doi.acm.org/10.1145/2351676.2351703http:
//dl.acm.org/citation.cfm?doid=2351676.2351703

M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov, “Automated
performance modeling of software generated by a design environment,”
Performance Evaluation, vol. 45, no. 2-3, pp. 107-123, Jul. 2001. [Online].
Available: http://dx.doi.org/10.1016/S0166-5316(01)00033-5

D. Westermann, R. Krebs, and J. Happe, “Efficient Experiment Selection
in Automated Software Performance Evaluations,” in Computer Performance
Engineering, ser. Lecture Notes in Computer Science, N. Thomas, Ed.
Springer Berlin Heidelberg, 2011, vol. 6977, pp. 325-339. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24749-1 24

M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J. Merseguer,
“Performance by unified model analysis (PUMA),” in Proceedings of the 5th
international workshop on Software and performance - WOSP ’05. New
York, New York, USA: ACM Press, Jul. 2005, pp. 1-12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1071021.1071022

95

http://dx.doi.org/10.1016/j.peva.2010.01.006 http://linkinghub.elsevier.com/retrieve/pii/S0166531610000076
http://dx.doi.org/10.1016/j.peva.2010.01.006 http://linkinghub.elsevier.com/retrieve/pii/S0166531610000076
dl.acm.org/citation.cfm?id=500664
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1508272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1508272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4221619
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4221619
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5598076
http://doi.acm.org/10.1145/2351676.2351703 http://dl.acm.org/citation.cfm?doid=2351676.2351703
http://doi.acm.org/10.1145/2351676.2351703 http://dl.acm.org/citation.cfm?doid=2351676.2351703
http://dx.doi.org/10.1016/S0166-5316(01)00033-5
http://dx.doi.org/10.1007/978-3-642-24749-1_24
http://dl.acm.org/citation.cfm?id=1071021.1071022

A. Acronyms

97

A. Acronyms

ADM Architecture Driven Modernization.

APl Application Programming Interface.

CBSE Component-based Software Engi-
neering.

Cl Continuous Integration.

CSM Core Scenario Model.

DMM Descartes Meta-Model.
DoF Degree of Freedom.

DQL Descartes Query Language.
DSL Domain-specific Language.

EBNF Extended Backus-Naur Form.
EJB Enterprise JavaBean.
EMF Eclipse Modeling Framework.

IDE Integrated Development FEnviron-

ment.

IT Information Technology.
JPA Java Persistence API.

KLAPER Kernel LAnguage for PErfor-
mance and Reliability analysis.

LQN Layered Queueing Network.

MAMBA Measurement Architecture for
Model-Based Analysis.

MDA Model-driven Architecture.

MDSD Model-driven Software Develop-
ment.

MOF Meta Object Facility.
MQL MAMBA Query Language.

OCL Object Constraint Language.
OMG Objects Management Group.

PCM Palladio Component Model.
PDR Performance Data Repository.

PMIF Performance Model
Format.

Interchange

97

PN Petri Net.

PUMA Performance by Unified Model
Analysis.

QEE Query Execution Engine.
QN Queueing Network.
QoS Quality of Service.
QPN Queueing Petri Network.

RAM Random Access Memory.
RDBMS Relational

ment System.

RDSEFF Resource Demanding Service Ef-
fect Specification.

Database Manage-

SCR Service Component Registry.
SE Software Engineering.
SEFF Service Effect Specification.

SEQUEL Structured English Query Lan-
guage.

SLA Service Level Agreement.

SMM Structured Metrics Metamodel.
SoPeCo Software Performance Cockpit.
SPE Software Performance Engineering.
SQL Structured Query Language.

SuT System under Test.

SVN Subversion.

Ul User Interface.
UML Unified Modeling Language.

UML-SPT UML Profile for Schedulabil-
ity, Performance and Time.

URI Uniform Resource Identifier.
UUID Universally Unique Identifier.

vCPU virtual Central Processing Unit.
VM Virtual Machine.

XML Extensible Markup Language.

98

Acronyms

B. Index of DQL Grammar Rules

AbsoluteTimeClause, see p. 38.
AggregateMetricClause, see p. 35.
AliasClause, see p. 33.

ConfigurationPropertiesClause,
36.

see p.

ConfigurationPropertyClause, see p. 36.

ConnectorlnstanceReferenceClause, see
p- 37.

ConnectorTimeUnitClause, see p. 37.
ConstraintClause, see p. 40.
DescartesQL, see p. 30.
DetectBottlenecksQuery, sece p. 42.
DetectQuery, see p. 42.

DoFClause, see p. 40.

DoFReference, see p. 41.
DoFVariationClause, see p. 41.
EntityReferenceClause, see p. 32.
EntityReference, see p. 32.

Entity Type, see p. 33.
ExplorationStrategyClause, see p. 42.
ForClause, see p. 34.
IntervalVariationClause, see p. 41.
ListDoFQuery, see p. 31.
ListEntitiesQuery, see p. 31.
ListMetricsQuery, see p. 32.
ListQuery, see p. 31.
ListResourcesQuery, see p. 31.
ListServicesQuery, see p. 32.

MetricClause, see p. 34.

98

MetricClauses, see p. 36.
MetricClauseType, see p. 34.
MetricReferenceClauses, see p. 34.
MetricReference, see p. 34.
MetricStarClause, see p. 36.
ModelFamily, see p. 30.
ModelLocation, see p. 30.
ModelReferenceClause, see p. 30.
ModelStructureQuery, see p. 31.
ObservationClause, see p. 37.
ObserveBetweenClause, see p. 39.
ObserveClause, see p. 37.
ObserveRelativeClause, see p. 38.

ObserveRelativeDirectionType,
38.

see p.

PerformancelssueQuery, see p. 42.
PerformanceMetricsQuery, see p. 33.
RelativeTimeClause, see p. 38.
RelativeTimeDurationClause, see p. 38.
RelativeTimeSignType, see p. 39.
RelativeTimeWithSignClause, see p. 39.
SampleClause, see p. 40.

SelectQuery, see p. 33.
StatisticalAggregateType, see p. 35.
TimeModifierType, see p. 39.
UsingClause, see p. 30.
ValueVariationClause, see p. 41.
VaryingClause, see p. 40.

WithClause, see p. 32.

C. Implemented Software Components

99

C. Implemented Software Components

The following software components are implemented as part of this thesis. The Subversion
(SVN) Repository Root containing all source codes can be found at https://svnserver.
informatik.kit.edu/i43/svn/descartes/code/querylang/.

e DQL Connector

edu.kit.ipd.descartes.
nector

edu.kit.ipd.descartes.
tor, for testing purposes

edu.kit.ipd.descartes.
Connector

edu.kit.ipd.descartes.
itory) Connector

¢ DQL Language & Editor

edu.kit.ipd.descartes.
edu.kit.ipd.descartes.

edu.kit.ipd.descartes.

ql.

ql.

ql.

ql.

ql.
ql.
ql.

connector: Interfaces for implementing a Con-

connector.nop: NOP (No Operation) Connec-

connector.pcm: PCM (Palladio Component Model)

connector.pdr: PDR (Performance Data Repos-

lang: Main Xtext project
lang.sdk: Xtext generated contents

lang.ui: Xtext generated contents

e DQL Query Execution Engine (QEE)

edu.kit.ipd.descartes.ql.core.engine: Query Execution Engine (QEE)

edu.kit.ipd.descartes.ql.core.platform.eclipse: Platform-specific Code

for Eclipse

edu.kit.ipd.descartes.ql.core.platform.external: Platform-specific Code
for integrating Generic Java/OSGi Applications

edu.kit.ipd.descartes.ql.core.registry: Connector Registry

e Models

— edu.kit.ipd.descartes.ql.models.mapping: Mapping Meta-Model, Eclipse
Modeling Framework (EMF)-based

— edu.kit.ipd.descartes.ql.models.repository: Performance Data Reposi-

tory (PDR), EMF-based

99

https://svnserver.informatik.kit.edu/i43/svn/descartes/code/querylang/
https://svnserver.informatik.kit.edu/i43/svn/descartes/code/querylang/

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Aim of the Thesis
	1.3 Document Outline

	2 Technological Foundations
	2.1 Performance Modeling and Analyses
	2.2 The Descartes Meta-Model
	2.3 Eclipse Modeling Framework and Xtext
	2.4 OSGi Framework Approach

	3 Design of a Query Language for Online Performance Queries
	3.1 Usage Scenarios and User Stories
	3.1.1 Definition of Usage Scenarios and User Roles
	3.1.2 User Stories for Offline Scenarios
	3.1.3 User Stories for Online Scenarios

	3.2 Classification Approach for Online Performance Queries
	3.2.1 Overview of the Classification Approach
	3.2.2 Objectives for different Query Classes

	3.3 Specification of Functionality provided by Query Classes
	3.3.1 Overview of Query Class Functionality
	3.3.2 Functionality for Model Access
	3.3.3 Querying the Model Structure
	3.3.4 Querying Performance Metrics in Model Instances
	3.3.5 Querying and Analyzing Performance Issues
	3.3.6 Optimization Problem Queries

	3.4 Evaluation of User Stories and Usage Scenarios
	3.4.1 Introduction to the Evaluation of Expressions
	3.4.2 Evaluation of Model Structure Queries
	3.4.3 Evaluation of Performance Metrics Queries
	3.4.4 Evaluation of Degrees-of-Freedom in Queries
	3.4.5 Evaluation of a Temporal Dimension in Queries
	3.4.6 Summary

	3.5 Query Language Rules and Terminals
	3.5.1 Conventions and Basic Grammar Rules
	3.5.2 Grammar Rules for Model Access
	3.5.3 Grammar Rules for Model Structure Queries
	3.5.4 Grammar Rules for Performance Metrics Queries
	3.5.5 Grammar Rules for Aggregate Calculation
	3.5.6 Grammar Rules for Temporal Observations
	3.5.7 Extensions for Constrained Queries
	3.5.8 Extensions for Degree-of-Freedom Queries
	3.5.9 Grammar Rules for Performance Issue Queries

	4 Related Work
	4.1 Intermediate Models in Performance Engineering
	4.2 Modeling of Degrees-of-Freedom and Strategies for their Exploration
	4.3 Approaches for the Modeling of Performance Metrics and Measurement
	4.4 Detection of Bottlenecks in Performance Models
	4.5 Domain-specific Languages for Modeling Queries

	5 Implementation of a Query Language for Online Performance Queries
	5.1 System Architecture and Component Description
	5.1.1 Description of the System Architecture
	5.1.2 Description of Interfaces within the System Architecture

	5.2 The Mapping Meta-Model
	5.2.1 Introduction of the Mapping Meta-Model
	5.2.2 Description of Model Entities
	5.2.3 Usage in Model Structure Queries
	5.2.4 Usage in Performance Metrics Queries

	5.3 Execution of Queries and Component Interactions
	5.3.1 Registration and Lookup Process of the Connector Registry
	5.3.2 Execution of Model Structure Queries
	5.3.3 Execution of Performance Metrics Queries
	5.3.4 Calculation of Aggregates on Performance Metrics
	5.3.5 Absolute Calculation of Time Specifications
	5.3.6 Configuration of Degrees-of-Freedom Evaluation

	5.4 Eclipse-based User Interface for Performance Analysis
	5.4.1 Query Editor and Execution Environment
	5.4.2 Presentation of Query Results

	6 Evaluation of Design and Implementation
	6.1 Controlling the Palladio Component Model (PCM)
	6.1.1 Introduction to the Palladio Component Model
	6.1.2 Mapping the Palladio Component Model
	6.1.3 Run-Time Scenario and the MediaStore Example
	6.1.4 Case Study with the MediaStore Example
	6.1.5 Summary

	6.2 Integrating the KLAPER Approach and KlaperSuite
	6.2.1 Introduction to the KLAPER Approach
	6.2.2 Mapping KLAPER with the Mapping Meta-Model
	6.2.3 Integrating KlaperSuite as Connector
	6.2.4 Summary

	6.3 Implementing a Performance Data Repository (PDR)
	6.3.1 Introduction to the Performance Data Repository
	6.3.2 Description of the Repository Meta-Model
	6.3.3 Accessing historic Model Instances
	6.3.4 Computation of Impacts

	6.4 Controlling Experiments with the Software Performance Cockpit (SoPeCo)
	6.4.1 Introducing the Software Performance Cockpit
	6.4.2 Integrating the Software Performance Cockpit
	6.4.3 Control Loop for Sensitivity Analysis
	6.4.4 Summary

	7 Conclusion and Future Work
	7.1 Summary and Conclusion
	7.2 Future Work

	Bibliography
	Appendices
	A Acronyms
	B Index of DQL Grammar Rules
	C Implemented Software Components

